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Abstract

For fixed size sampling designs with high entropy it is well known that the variance

of the Horvitz-Thompson estimator can be approximated by the Hájek formula. The

interest of this asymptotic variance approximation is that it only involves the first order

inclusion probabilities of the statistical units. We extend this variance formula when the

variable under study is functional and we prove, under general conditions on the regular-

ity of the individual trajectories and the sampling design, that it asymptotically provides

a uniformly consistent estimator of the variance function of the Horvitz-Thompson es-

timator of the mean function. Rates of convergence to the true variance function are

given for rejective sampling. We deduce, under conditions on the entropy of the sampling

design, that it is possible to build confidence bands whose coverage is asymptotically the

desired one via simulation of Gaussian processes whose variance function is given by the

Hájek formula. Finally, the accuracy of the proposed variance estimator is evaluated on

samples of electricity consumption data measured every half an hour over a period of

one week.

Keywords : covariance function, finite population, Hájek approximation, Horvitz-Thompson

estimator, Kullback-Leibler divergence, rejective sampling, unequal probability sampling

without replacement.
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1 Introduction

Computing the variance of the Horvitz-Thompson estimator for unequal probability sam-

pling designs can be difficult because the variance formula involves second order probability

inclusions which are not always known. The Hájek variance formula, derived in Hájek (1964)

for rejective sampling is an asymptotic approximation which only requires the knowledge of

the first order inclusion probabilities and is easy to compute. It is shown in Hájek (1964) and

Chen et al. (1994) that, for given first order inclusion probabilities, the rejective sampling

is the fixed size sampling design with the highest entropy and the validity of this formula is

closely related to the value of the entropy of the considered sampling design. Hájek (1981)

proves that this approximation is also valid for the Sampford-Durbin sampling whereas Berger

(1998a) gives general conditions on the relative entropy of the sampling design, also called

Kullback-Leibler divergence, which entail that the use of this approximated variance formula

is justified. Variants and refinements of the Hájek variance formula as well as variance esti-

mators are proposed in Deville and Tillé (2005). Matei and Tillé (2005) show on simulations

that these approximations to the variance of Horvitz-Thompson estimators work well, even

for moderate sample sizes, provided that the entropy of the underlying sampling design is high

enough. Recently Deville and Tillé (2005) and Fuller (2009) consider balanced, or approx-

imately balanced, sampling algorithms which can be useful to build designs with fixed size

and given inclusion probabilities by just balancing on the inclusion probabilities and relate

these sampling designs with rejective sampling, so that the Hájek variance approximation

remains valid.

When the aim is to build confidence intervals, the asymptotic distribution of the Horvitz-

Thompson estimator is required. The Central Limit Theorem has been checked by Erdös

and Rényi (1959) and Hájek (1960) for the simple random sampling without replacement,

by Hájek (1964) for the rejective sampling and by Víšek (1979) for the Sampford sampling.

Berger (1998b) states that the Kullback Leibler divergence of the considered sampling design,

with respect to the rejective sampling, should tend to zero when the sample size gets larger

for the Horvitz-Thompson estimator to be asymptotically Gaussian.

In recent studies in survey sampling the target was not a mean real value or a mean

vector but a mean function (see Cardot and Josserand (2011) and Cardot et al. (2012b) for

the estimation of electricity consumption curves) and one important issue was how to build

confidence bands when using πps sampling designs. A rapid technique that is well adapted

for large samples has been studied in Degras (2011) and Cardot et al. (2012a). It consists in

first estimating the covariance function of the mean estimator and then simulating a Gaussian

process, whose covariance function is the estimated covariance function, in order to determine
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the distribution of its supremum. This strategy which has been employed successfully in

Cardot et al. (2012b) to build confidence bands necessitates to have an effective estimator of

the variance function of the Horvitz-Thompson estimator. The aim of this work is to prove

under general assumptions, on the sampling design and on the regularity of the trajectories,

that the Hájek formula provides a uniformly consistent estimator of the variance function so

that it is possible to assess rigorously confidence bands built with the procedure described

previously.

The paper is organized as follows. The notations and our estimators are presented in

Section 2. In Section 3, we state our main result, the uniform convergence of the estimated

variance function under broad assumptions on the regularity of the trajectories and the sam-

pling design. We deduce that if the Horvitz-Thompson estimator is pointwise asymptotically

Gaussian, it also satisfies, under the same conditions, a functional central limit theorem

and the confidence bands obtained by the Gaussian process simulation techniques have an

asymptotic coverage which is the desired one. In section 4, we evaluate the performance of

the covariance function estimator on samples drawn from a population of N = 15055 electric-

ity consumption curves measured every half an hour over a period of one week. Note there

are many ways of drawing samples with high entropy sampling distribution and given first

order inclusion probabilities (see e.g. Brewer and Hanif (1983), Tillé (2006), Bondesson et al.

(2006) and Bondesson (2010)). Because of our large population and large sample context, we

use the Cube algorithm (Deville and Tillé (2004)) for which a very fast algorithm which can

deal with populations of millions of units has been developed in Chauvet and Tillé (2006).

The proofs are gathered in an Appendix.

2 Variance estimation and the Hájek formula

Let us consider a finite population UN = {1, ..., N} of size N supposed to be known, and

suppose that, for each unit k of the population UN , we can observe a deterministic curve

Yk = (Yk(t))t∈[0,T ]. We want to estimate the mean trajectory µN (t), t ∈ [0, T ], defined as

follows:

µN (t) =
1

N

∑
k∈U

Yk(t). (1)

We consider a sample s, with fixed size n, drawn from UN according to a fixed-size

sampling design pN (s), where pN (s) is the probability of drawing the sample s. The mean

curve µN (t) is estimated by the Horvitz-Thompson estimator (Cardot et al. (2010))

µ̂(t) =
1

N

∑
k∈s

Yk(t)

πk
=

1

N

∑
k∈U

Yk(t)

πk
1k, t ∈ [0, T ], (2)
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where 1k is the sample membership indicator, 1k = 1 if k ∈ s and 1k = 0 otherwise. We

denote by πk = Ep(1k) the first order inclusion probability of unit k with respect to the

sampling design pN (s) and we suppose that πk > 0, for all units k in U. It is well known that,

for each value of t ∈ [0, T ], µ̂(t) is a design-unbiased estimator of µN (t), i.e. Ep(µ̂(t)) = µN (t).

We denote by πkl = Ep(1k1l) the second order inclusion probabilities and we suppose that

πkl > 0.

Since the sample size is fixed, the variance γp(t, t) for each instant t of the estimator µ̂(t)

is given by the Yates and Grundy formula (see Yates and Grundy (1953) and Sen (1953)),

γp(t, t) = −1

2

1

N2

∑
k∈U

∑
l∈U,l 6=k

(πkl − πkπl)
(
Yk(t)

πk
− Yl(t)

πl

)2

, (3)

and it is straightforward to express the covariance γp(r, t) of µ̂ between two instants r and t,

as follows

γp(r, t) = −1

2

1

N2

∑
k∈U

∑
l∈U,l 6=k

(πkl − πkπl)
(
Yk(r)

πk
− Yl(r)

πl

)(
Yk(t)

πk
− Yl(t)

πl

)
. (4)

The variance formula (3) clearly indicates that if the first order inclusion probabilities are

chosen to be approximately proportional to Yk(t), the variance of the estimator µ̂(t) will be

small. Thus, if we have an auxiliary variable X, whose value xk, supposed to be positive, is

known for all the units k ∈ U and if X is correlated with the variable of interest, it can be

interesting to consider a sampling design whose first order inclusion probabilities are given

by

πk = n
xk∑
U xk

.

There are many ways of building sampling designs with given first order inclusion probabilities

(see e.g Brewer and Hanif (1983) and Tillé (2006)) and we focus here on the designs with

high entropy, where the entropy of a sampling design pN (a discrete probability distribution

on UN ) is defined by

H(pN ) = −
∑
s

pN (s) ln(pN (s))

with the convention 0 ln 0 = 0. Chen et al. (1994) have proved that for given first order

inclusion probabilities, the rejective sampling, or conditional Poisson sampling, is the fixed

size sampling design with the highest entropy. Then, a key result is the following uniform

approximation to the second order inclusion probabilities,

πkl = πkπl

{
1− (1− πk)(1− πl)

d(π)
[1 + o(1)]

}
(5)

where d(π) =
∑

U πk(1 − πk) is supposed to tend to infinity. This approximation, which is

satisfied for the rejective sampling and the Sampford-Durbin sampling (see Hájek (1981)),
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appears to be very efficient when the sample size is large enough (and thus the value of d is

also large) and the entropy of the sampling design is close to the maximum entropy. It also

ensures that the variance estimator given below is always positive.

By plugging in approximation (5) in (4), we obtain the Hájek approximation γH(r, t) of

the covariance cov(µ̂(t), µ̂(r)) in the functional case : for all (r, t) ∈ [0, T ]2,

γH(r, t) =
1

N2

[∑
U

Yk(t)Yk(r)

πk
(1− πk)−

1

d(π)

∑
U

∑
U

(1− πk)(1− πl)Yk(t)Yl(r)

]
. (6)

We consider in the following two variance estimators

γ̂H(r, t) =
1

N2

d̂(π)

d(π)

[∑
s

1− πk
π2k

Yk(t)Yk(r)−
1

d̂(π)

∑
s

∑
s

1− πk
πk

1− πl
πl

Yk(t)Yl(r)

]
, (7)

and

γ̂∗H(r, t) =
1

N2

[∑
s

1− πk
π2k

Yk(t)Yk(r)−
1

d̂(π)

∑
s

∑
s

1− πk
πk

1− πl
πl

Yk(t)Yl(r)

]
(8)

where d̂(π) =
∑

s(1−πk). Note that γ̂H(r, t) is the functional analogue of the slightly modified

variance estimator proposed by Berger (1998a) in the real case. More exactly, the variance

estimator considered by Berger (1998a) is γ̂H(r, t) multiplied by the correction factor n/(n−1)

that allows to obtain the exact expression for simple random sampling without replacement.

The second estimator, γ̂∗H(r, t) is the extension to the functional case of the Deville and Tillé

(2005)’s estimator and it has been successfully used in a very recent study by Cardot et al.

(2012b) to build confidence bands for the mean electricity consumption curve.

We can easily show the following property.

Proposition 2.1. If, for all t ∈ [0, T ], there is a constant ct such that Yk(t) = ctπk then

γH(r, t) = 0 and γ̂H(r, t) = γ̂∗H(r, t) = 0.

With real data, we do not observe Yk(t) at all instants t in [0, T ] but only for a finite

set of D measurement times, 0 = t1 < ... < tD = T . In functional data analysis, when the

noise level is low and the grid of discretization points is fine, it is usual to perform a linear

interpolation or a smoothing of the discretized trajectories in order to obtain approximations

of the trajectories at every instant t (cf. Ramsay and Silverman (2005)). When there are

no measurement errors and when the trajectories are regular enough, Cardot and Josserand

(2011) showed that linear interpolation can provide sufficiently accurate approximations of

the trajectories. Thus, for each unit k in the sample s, we build the interpolated trajectory

Yk,d(t) = Yk(ti) +
Yk(ti+1)− Yk(ti)

ti+1 − ti
(t− ti), t ∈ [ti, ti+1],
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and define the estimator of the mean curve µN (t) based on the discretized observations as

follows

µ̂d(t) =
1

N

∑
s

Yk,d(t)

πk
, t ∈ [ti, ti+1]. (9)

Its covariance is then estimated by

γ̂H,d(r, t) =
1

N2

d̂(π)

d(π)

[∑
s

1− πk
π2k

Yk,d(t)Yk,d(r)−
1

d̂(π)

∑
s

∑
s

1− πk
πk

1− πl
πl

Yk,d(t)Yl,d(r)

]
,

(10)

and we show in the next section that it is an uniformly consistent estimator of the variance

function. Replacing Yk(t) by Yk,d(t) in (8), yields the variance estimator γ̂∗H,d(r, t) based on

discretized values.

3 Asymptotic properties

All the proof are postponed in an Appendix.

3.1 Assumptions

To demonstrate the asymptotic properties, we must suppose that the sample size and pop-

ulation size become large. Therefore, we adopt the asymptotic approach of Hájek (1964),

assuming that d(π)→∞. Note that this assumption implies that n→∞ and N − n→∞.

We consider a sequence of growing and nested populations UN with size N tending to infinity

and a sequence of samples sN of size nN drawn from UN according to the sampling design

pN (sN ). The first and second order inclusion probabilities are respectively denoted by πkN
and πklN . For simplicity of notations and when there is no ambiguity, we drop the subscript

N . To prove our asymptotic results we need to introduce the following assumptions.

A1. We assume that lim
N→∞

n

N
= π ∈]0, 1[.

A2. We assume that min
k∈U

πk ≥ λ > 0, min
k 6=l

πkl ≥ λ∗ > 0 and

πkl = πkπl

{
1− (1− πk)(1− πl)

d(π)
[1 + o(1)]

}
.

A3. There are two positive constants C2 and C3 and β > 1/2 such that, for all N and for

all (r, t) ∈ [0, T ]× [0, T ],

1

N

∑
k∈U

(Yk(0))2 < C2 and
1

N

∑
k∈U

(Yk(t)− Yk(r))2 < C3|t− r|2β.
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A4. There are two positive constants C4 and C5 such that, for all N and for all (r, t) ∈

[0, T ]× [0, T ],

1

N

∑
k∈U

(Yk(0))4 < C4 and
1

N

∑
k∈U

(Yk(t)− Yk(r))4 < C5|t− r|4β.

A5. We assume that

lim
N→∞

max
(k1,l1,k2,l2)∈D4,N

|Ep [(1k1l1 − πk1πl1)(1k2l2 − πk2πl2)] | → 0

where 1kl is the sample membership of the couple (k, l) andD4,N is the set of all distinct

quadruples (i1, ..., i4) from UN .

Assumptions A1 and A2 are classical hypotheses in survey sampling and deal with the

first and second order inclusion probabilities. They are satisfied for many usual sampling

designs with fixed size (see for example Hájek (1981)). They directly imply that cn ≤ d(π) ≤

n, for some strictly positive constant c. The assumption A2 implies that lim sup
N→∞

nmax
k 6=l
|πkl−

πkπl| < C1 <∞. It also ensures that the Yates-Grundy variance estimator is always positive

since πkl ≤ πkπl.

Assumption A3 and A4 are regularity conditions on the individual trajectories. Even if

point-wise consistency, for each fixed value of t, can be proved without any condition on β,

these regularity conditions are required to get uniform convergence of the mean estimator

(see Cardot and Josserand (2011)). Note finally that assumption A5 is true for SRSWOR,

stratified sampling and rejective sampling (Boistard et al. (2012)). More generally, it also

holds for unequal probability designs with large entropy as shown in the following proposition.

Let us recall before the definition of the Kullback-Leibler divergence K(pN , prej),

K(pN , prej) =
∑
s

pN (s) ln

(
pN (s)

prej(s)

)
, (11)

which measures how a sampling distribution pN (s) is distant from a reference sampling

distribution, chosen here to be the rejective sampling prej(s) since it is the design with

maximum entropy for given first order inclusion probabilities. We can now state the following

proposition which gives an upper bound for the rates of convergence to zero of the quantity

in A4 in terms of Kullback-Leibler divergence with respect to the rejective sampling. We

consider a sampling design pN with the same first order inclusion probabilities as prej . We

have

Proposition 3.1. If d(π)→∞, then

max
(k1,l1,k2,l2)∈D4,N

|Ep [(1k1l1 − πk1πl1)(1k2l2 − πk2πl2)]| ≤ C

d(π)
+
√
K(pN , prej)/2

for some constant C.
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A direct consequence of Proposition 3.1 is that assumption A5 is satisfied for rejective

sampling as well as for the Sampford-Durbin design, whose Kullback-Leibler divergence, with

respect to the rejective sampling, tends to zero as the sample size n tends to infinity (see

Berger (1998b)). Note also that the Kullback-Leibler divergence has been approximated

asymptotically for other sampling designs such as Pareto sampling in Lundqvist (2007).

3.2 Convergence of the estimated variance

Let us first recall Proposition 3.3 in Cardot and Josserand (2011) which states that the

estimator µ̂d is asymptotically design unbiased and uniform consistent under mild assump-

tion. More precisely, if assumptions (A1)-(A3) hold and if the discretization scheme satisfies

limN→∞maxi={1,..,dN−1} |ti+1 − ti|2β = o(n−1), then for some constant C

√
nEp

{
sup
t∈[0,T ]

|µ̂d(t)− µN (t)|

}
≤ C.

We can now state our first result which indicates that γ̂H,d is consistent pointwise and

the variance function estimator of the estimated mean trajectory is uniformly consistent.

Note that additional assumptions on the sampling design are required to obtained the rate

of convergence.

Proposition 3.2. Assume (A1)-(A5) hold and the sequence of discretization schemes satis-

fies limN→∞maxi={1,..,dN−1} |ti+1 − ti| = o(1). When N tends to infinity,

nEp {| γ̂H,d(r, t)− γp(r, t) |} → 0

for all (r, t) ∈ [0, T ]2 and

nEp

{
sup
t∈[0,T ]

| γ̂H,d(t, t)− γp(t, t) |

}
→ 0.

We can state the same result for the second variance estimator, γ̂∗H,d.

Proposition 3.3. Assume (A1)-(A5) hold and the sequence of discretization schemes satis-

fies limN→∞maxi={1,..,dN−1} |ti+1 − ti| = o(1). When N tends to infinity,

nEp
{
| γ̂∗H,d(r, t)− γp(r, t) |

}
→ 0

for all (r, t) ∈ [0, T ]2 and

nEp

{
sup
t∈[0,T ]

| γ̂∗H,d(t, t)− γp(t, t) |

}
→ 0.
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A sharper result can be stated for the particular case of rejective sampling for which

accurate approximations to the multiple inclusion probabilities are available (see Boistard

et al. (2012)).

Proposition 3.4. Suppose that the sample is selected with the rejective sampling design.

Assume (A1)-(A4) hold and the sequence of discretization schemes satisfies

limN→∞maxi={1,..,dN−1} |ti+1 − ti|2β = O(n−1). Then, for all (r, t) ∈ [0, T ]2

n3 Ep
[
(γ̂H,d(r, t)− γp(r, t))2

]
≤ C

for some positive constant C.

We can note in the proof, given in the Appendix, that the approximation error to the true

variance by the Hájek formula is asymptotically negligible compared to the sampling error.

3.3 Asymptotic normality and confidence bands

Let us assume that the Horvitz-thompson estimator satisfies a Central Limit Theorem for

real valued quantities with new moment conditions

A6. There is some δ > 0, such that N−1
∑

k∈UN
|Yk(t)|2+δ < ∞ for all t ∈ [0, T ], and

{γp(t, t)}−1/2 {µ̂(t)− µ(t)} → N (0, 1) in distribution when N tends to infinity.

Cardot and Josserand (2011) have shown that under the previous assumptions, the central

limit theorem also holds in the space of continuous functions. More precisely, if assumptions

(A1)-(A3) and (A6) hold and the discretization points satisfy

limN→∞maxi={1,..,dN−1} |ti+1 − ti|2β = o(n−1), we have

√
n(µ̂d − µ)→ Z in distribution in C[0, T ]

where Z is a Gaussian random function taking values in C[0, T ] with mean 0 and covariance

function γZ(r, t) = limN→∞ nγpN (r, t). This important result gives a theoretical justifica-

tion of the confidence bands built as follows. We examine now the asymptotic coverage of

confidence bands for µN of the form{[
µ̂d(t)± c

σ̂(t)√
n

]
, t ∈ [0, T ]

}
, (12)

where c is a suitable number and σ̂(t) =
√
nγ̂H,d(t, t).

Given a confidence level 1 − α ∈]0, 1[, one way to build such confidence bands, that

is to say one way to find an adequate value for cα, is to perform simulations of centered

Gaussian functions Ẑ defined on [0, T ] with mean 0 and covariance function nγ̂H,d(r, t) and

then compute the quantile of order 1−α of supt∈[0,T ]

∣∣∣Ẑ(t)/σ̂(t)
∣∣∣ . In other words, we look for
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a constant cα, which is in fact a random variable since it depends on the estimated covariance

function γ̂MA,d, such that

P
(
|Ẑ(t)| ≤ cα

σ̂(t)√
n
, ∀t ∈ [0, T ] | γ̂H,d

)
= 1− α. (13)

Next proposition provides a rigorous justification of this latter technique :

Proposition 3.5. Assume (A1)-(A6) hold and the discretization scheme satisfies

limN→∞maxi={1,..,dN−1} |ti+1 − ti|2β = o(n−1).

Let Z be a Gaussian process with mean zero and covariance function γZ . Let (ẐN ) be

a sequence of processes such that for each N , conditionally on γ̂H,d defined in (10), ẐN is

Gaussian with mean zero and covariance nγ̂H,d. Then for all c > 0, as N →∞, the following

convergence holds in probability:

P
(
|ẐN (t)| ≤ c σ̂(t), ∀t ∈ [0, T ]

∣∣ γ̂H,d)→ P (|Z(t)| ≤ c σ(t), ∀t ∈ [0, T ]) ,

where σ̂(t) =
√
nγ̂H,d(t, t) and σ(t) =

√
γZ(t, t).

The proof of Proposition 3.5 is very similar to the proof of Proposition 3.5 in Cardot

et al. (2012c) and is thus omitted. As in Cardot et al. (2012a), it is possible to deduce from

previous proposition that the chosen value ĉα = cα(γ̂H,d) provides asymptotically the desired

coverage since it satisfies

lim
N→∞

P
(
µ(t) ∈

[
µ̂d(t)± ĉα

σ̂(t)√
n

]
, ∀t ∈ [0, T ]

)
= 1− α.

4 Example: variance estimation for electricity consumption

curves

In this section, we evaluate the performance of the estimators γ̂∗H,d(r, t) and γ̂H,d(r, t) of the

functional variance γp(r, t) of µ̂d(t). Simulation studies not reported here showed that the

estimators γ̂∗H,d(r, t) and γ̂H,d(r, t) conduct very similarly asymptotically. This is why we only

give below the simulation results for γ̂H,d(r, t).

We use the same data frame as in Cardot et al. (2012b). More exactly, we have a

population U of N = 15055 electricity consumption curves measured every half an hour

during one week, so that there are D = 336 time points. The mean consumption during the

previous week for each meter k, denoted xk, is used as an auxiliary variable. This variable is

strongly correlated to the consumption curve Yk(t) (the pointwise correlation is always larger

than 0.80) and is inexpensive to transmit.

We select samples s of size n drawn with inclusion probabilities πk proportional to the past

mean electricity consumption. This means that πk = n xk∑
U xk

. As mentioned in Deville and
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Tillé (2005), this kind of sampling may be viewed as a balanced sampling with the balancing

variable π = (π1, ..., πN ). The sample was drawn using the fast version (see Chauvet and

Tillé (2006)) of the cube algorithm (see Deville and Tillé (2004)). As suggested in Chauvet

(2007), a random sort of the population is made before the sample selection. The true mean

consumption curve observed in the population U and one estimation obtained from a sample

s′ of size n = 1500 are drawn in Figure 1.

The inclusion probabilities πkl being unknown, an empirical estimation of the covariance

function γp is given, from J = 10000 simulations, by

γemp(r, t) =
1

J − 1

J∑
j=1

(µ̂d,j(t)− µ̂d(t))(µ̂d,j(r)− µ̂d(r)) (14)

with µ̂d,j(t) = 1
N

∑
k∈sj

Yk,d(t)
πk

, µ̂d(t) = 1
I

∑J
j=1 µ̂d,j(t) and (r, t) ∈ [0, T ]. The empirical

variance function γemp (solid line) of estimator µ̂d, the Hájek approximation γH (dotted

line) and one estimation γ̂H,d (dashed line) obtained from the same sample s′ are drawn in

Figure 2.
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Figure 1: Mean consumption curve and its Horvitz-Thompson estimation obtained from

sample s′, with n = 1500.

To evaluate the performance of estimator γ̂H,d, we consider different sample sizes, n = 250,

n = 500 and n = 1500. The corresponding values of d(π) are d(π) = 241.2, d(π) = 464.7 and

d(π) = 1202.3.
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Figure 2: Empirical variance γemp (solid line), Hájek’s approximation γH (dotted line) and

variance estimation γ̂H,d (dashed line) obtained from sample s′, with n = 1500.

For each sample size, we draw I = 10000 samples and we compute the following quadratic

loss criterion

R(γ̂H,d) =
1

D

D∑
d=1

|γ̂H(td, td)− γemp(td, td)|2

γemp(td, td)2

'
∫ |γ̂H(t, t)− γemp(t, t)|2

γemp(t, t)2
dt. (15)

We also compute the relative mean squared error,

RMSE =
1

I

I∑
i=1

R(i)(γ̂H,d)

= RB(γ̂H,d)
2 +RV (γ̂H,d), (16)

where R(i)(γ̂H,d) is the value of R(γ̂H,d) computed for the ith simulation; RB(γ̂H,d) and

RV (γ̂H,d) are the relative bias, respectively the relative variance of estimator γ̂H,d. Note that

RB(γ̂H,d)
2 is given by

RB(γ̂H,d)
2 =

1

D

D∑
d=1

(
γ̂H,d(td, td)− γemp(td, td)

γemp(td, td)

)2

where γ̂H,d(td, td) =
∑I

i=1 γ̂
(i)
H,d(td, td)/I and γ̂(i)H,d(td, td) is the variance estimation obtained

with the ith simulation.

12



Sample Size RMSE RB(γ̂H,d)
2 R(γ̂H,d)

5% 1st quartile median 3rd quartile 95%

250 0.9473 0.0004 0.0188 0.0298 0.0446 0.0748 0.4326

500 0.3428 0.0002 0.0121 0.0191 0.0278 0.0456 0.3510

1500 0.1406 0.0003 0.006 0.0097 0.0144 0.0272 0.0929

Table 1: RMSE, RB(γ̂H,d)
2 and estimation errors according to criterion R(γ̂H,d) for different

sample sizes, with I = 10000 simulations.

The estimation errors are presented in Table 1 for the three considered sample sizes. We

first note that the values of relative bias RB(γ̂H,d) are very low, meaning that the Hájek’s

formula provides, in our relatively large sample context, a very good approximation to the

variance. The median error for R(γ̂H,d) is slightly larger but remains small (always less than

5%), even for moderate sample sizes (n=250). This means that the most important part of

the variance estimation error is due to the sampling error. We have drawn in Figure 3 the

approximation error γemp(t, r) − γH,d(t, r) and in Figure 4 the estimation error γemp(t, r) −

γ̂H,d(t, r) for t, r ∈ {1, . . . ,D}, corresponding to a sample of size n = 1500 with an estimation

error close to the median value of the global risk, R(γ̂H,d) = 0.0144. It appears that the

largest estimation errors for the variance occur when the level of consumption is high. We

can also observe in these Figures a kind of periodic pattern which can be related to the daily

electricity consumption behavior.

Nevertheless, we also note that the relative mean squared error RMSE, which is approxi-

mately equal to the relative variance of the estimator γ̂H,d, is rather high, especially for small

sample sizes (n = 250). Looking at the 95 % quantiles of R(γ̂H,d) in Table 1, we can deduce

that bad variance estimations only occur in rare cases but with very large errors. We can

note in Figure 5, which represents the distribution of the sampling weights at a logarithmic

scale, that there are many large outlying values, especially when the sample size is not very

large. The bad performance of the variance estimator, in terms of RMSE, is in fact due to a

few individuals in the population that have both a very small inclusion probability πk and a

consumption level Yk that can be very high at some instants of the period. Their selection

in the sample, which occurs rarely, leads to an overestimation of the mean curve and to a

large error R(γ̂H,d) when estimating the variance at these instants. One possible way to deal

with this issue and that will be explored in a another work would consist in correcting the

sampling weights of the most influential units of the sample (see e.g Beaumont and Rivest

(2009)) in order to get a more stable variance estimator.

13



Figure 3: Approximation error γemp − γH,d for a sample of size n = 1500.
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Figure 4: Estimation error γemp − γ̂H,d for a a sample of size n = 1500.
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Figure 5: Boxplot of log(1/πk) for different sample sizes, n = 250, 500 and 1500.

A Proofs

Throughout the proofs we use the letter C to denote a generic constant whose value may

vary from place to place. Let us also define ∆kl = πkl − πkπl and ∆kk = πk(1− πk).

A.1 Some useful lemmas

Lemma A.1. Assume (A4) hold. There is a constant ζ1 such that

1

N

∑
k∈U
|φk,k(t, r)|2 ≤ ζ1|t− r|2β

where φk,k(t, r) = Yk(t)Yk(t)− Yk(r)Yk(r).

Proof. We have

1

N

∑
k∈U
|φk,k(t, r)|2 ≤

2

N

{∑
U

|Yk(t)− Yk(r)|2|Yk(t)|2 +
∑
U

|Yk(t)− Yk(r)|2|Yk(r)|2
}

≤ 2

[(
1

N

∑
U

|Yk(t)− Yk(r)|4
)1/2(

1

N

∑
U

|Yk(t)|4
)1/2

+

(
1

N

∑
U

|Yk(t)− Yk(r)|4
)1/2(

1

N

∑
U

|Yk(r)|4
)1/2]

.
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Under assumption (A4), we get that, for some constant ζ1

1

N

∑
k∈U
|φk,k(t, r)|2 ≤ ζ1|t− r|2β.

Lemma A.2. Assume (A3) hold. There is a constant ζ2 such that(
1

N2

∑
k∈U

∑
l∈U
|φk,l(t, r)|

)2

≤ ζ2|t− r|2β

where φk,l(t, r) = Yk(t)Yl(t)− Yk(r)Yl(r).

Proof. The demonstration is similar to the proof of Lemma A.1 and is thus omitted.

Lemma A.3. Assume (A1) and (A2) hold.

Ep((d̂(π)− d(π))2) ≤
(

1

λ
+

maxk 6=l |∆kl|
λ2

d(π)

)
d(π).

Proof. Under assumptions (A1) and (A2),

Ep((d̂(π)− d(π))2) =
∑
U

∑
U

πkl − πkπl
πkπl

πk(1− πk)πl(1− πl)

≤ 1

λ

∑
U

π2k(1− πk)2 +
maxk 6=l |∆kl|

λ2

(∑
U

πk(1− πk)

)2

≤
(

1

λ
+

maxk 6=l |∆kl|
λ2

d(π)

)
d(π).

A.2 Proof of proposition 3.1

We first consider the case of the rejective sampling prej(s) and show that A5 is true if d(πN )

tends to infinity. By Theorem 1 in in Boistard et al. (2012) and hypothesis A2, we have

Ep (1k1k2l1l2)− πk1πk2πl1πl2 = O(d(π)−1)

uniformly for (k1, l1, k2, l2) ∈ D4,N . Since πk1πk2 − πk1k2 = O(d(π)−1) and πl1πl2 − πl1l2 =

O(d(π)−1) uniformly for (k1, l1, k2, l2) ∈ D4,N , we directly obtain that, for rejective sampling

max
(k1,l1,k2,l2)∈D4,N

|Ep [(1k1l1 − πk1πl1)(1k2l2 − πk2πl2)]| ≤ C

d(π)
,

for some constant C.
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If we consider now a different sampling design pN (s), we have with Pinsker inequality

(see Theorem 6.1 in Kemperman (1969)) and the property of the total variation distance,

sup
A∈AN

|pN (A)− prej(A)| ≤
√
K(pN , prej)/2

whereAN is the set of all partitions of UN . Considering the particular casesA = {(k1, l1, k2, l2) ∈

D4,N}, and denoting by πk1k2l1l2 = pN (A) and by πrejk1k2l1l2
= prej(A), we directly get that

sup
(k1,l1,k2,l2)∈D4,N

∣∣∣πk1k2l1l2 − πrejk1k2l1l2

∣∣∣ ≤√K(pN , prej)/2

and the proof is complete.

A.3 Proof of Proposition 3.2 (consistency of the covariance and the vari-

ance functions)

The proof follows the same steps as in Cardot et al. (2012c). We show first that for all

t, r ∈ [0, T ], the estimator of the covariance function γ̂H,d(r, t) is consistent for γp(r, t) and

then, that the random variable n(γ̂H,d(t, t) − γp(t, t)) converges in distribution to zero in

the space C([0, T ]). By definition of the convergence in distribution in C([0, T ]) and the

boundedness and continuity of the sup functional, we then directly obtain the announced

result. As in Cardot et al. (2012c), in order to obtain the convergence in distribution of

n(γ̂H,d(t, t) − γp(t, t)), we first show the pointwise convergence, which clearly implies the

convergence of all finite linear combinations, and then check that the sequence is tight.

Step 1. Pointwise convergence

We want to show, that for each (t, r) ∈ [0, T ]2, we have

nEp {| γ̂H,d(r, t)− γp(r, t) |} → 0, when N →∞.

Let us decompose

n(γ̂H,d(r, t)− γp(r, t)) = n(γ̂H,d(r, t)− γ̂H(r, t)) + n(γ̂H(r, t)− γp(r, t))

and study separately the interpolation and the estimation errors.

Interpolation error

Let us suppose that t ∈ [ti, ti+1[, r ∈ [ti′ , ti′+1[ and bound

n|γ̂H,d(r, t)− γ̂H(r, t)| ≤ n

N2

d̂(π)

d(π)

∑
U

1− πk
π2k

|Yk,d(t)Yk,d(r)− Yk(t)Yk(r)|

+
n

N2

1

d(π)

∑
U

∑
U

1− πk
πk

1− πl
πl
|Yk,d(t)Yl,d(r)− Yk(t)Yl(r)|.

18



Let us define M = max
πk 6=1

πk. Noting that d̂(π) ≤ 1
λd(π), 1

d(π) ≤
1

Nλ(1−M) and

|Yk,d(t)Yl,d(r)− Yk(t)Yl(r)| ≤ |Yk(ti)− Yk(t)||Yl(ti′)|+ |Yl(ti′)− Yl(r)||Yk(t)|

+ |Yk(ti+1)− Yk(ti)| [|Yl(ti′+1)|+ 2|Yl(ti′)|] + |Yk(ti)||Yl(ti′+1)− Yl(ti′)|

we can bound, under assumptions (A1)-(A4),

n|γ̂H,d(r, t)− γ̂H(r, t)| ≤
(
n

N

1

λ
+

n

d(π)

)
C

λ2
[|ti − t|β + |ti′ − r|β + |ti′+1 − ti′ |β + 3|ti+1 − ti|β]

≤ 2

(
n

N

1

λ3
+

n

d(π)

)
C

λ2
[|ti+1 − ti|β + |ti′+1 − ti′ |β]. (17)

Thus, under the assumption on the grid of discretization points,

n|γ̂H,d(r, t)− γ̂H(r, t)| = o(1).

Consider now the following decomposition

| γ̂H(r, t)− γp(r, t) | ≤| γ̂H(r, t)− γH(r, t) | + | γH(r, t)− γp(r, t) | (18)

and study separately these two types of error.

Approximation error

We first show that, for each (r, t) ∈ [0, T ]2,

n | γH(r, t)− γp(r, t) | = o(1).

By introducing approximation (5)

πkl − πkπl = −πkπl
(1− πk)(1− πl)

d(π)
+

ckl
d(π)

(19)

where maxk,l |ckl| → 0, in the covariance function (4), we get

γp(r, t) =
1

2

1

d(π)N2

∑
k∈U

∑
l∈U

[πkπl(1− πk)(1− πl)− ckl]
(
Yk(r)

πk
− Yl(r)

πl

)(
Yk(t)

πk
− Yl(t)

πl

)
= γH(r, t)− 1

2

1

N2

∑
k∈U

∑
l∈U

ckl
d(π)

(
Yk(r)

πk
− Yl(r)

πl

)(
Yk(t)

πk
− Yl(t)

πl

)
.

Thus, we directly get with assumptions (A1)-(A3) that

d(π) |γH(r, t)− γp(r, t)| = o(1). (20)
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Sampling error

To establish the convergence of n(γ̂H(r, t)− γH(r, t)) to zero in probability as N →∞, it is

enough to show that, for all (r, t) ∈ [0, T ]2

n2Ep
[
(γ̂H(r, t)− γH(r, t))2

]
→ 0, when N →∞.

Noting that

n|γ̂H(r, t)− γH(r, t)| ≤ n

N2

∣∣∣∣∣∑
U

(
d̂(π)

d(π)
− 1

)
1k

π2k
(1− πk)Yk(t)Yk(r)

∣∣∣∣∣
+

n

N2

∣∣∣∣∣∑
U

(
1k

πk
− 1

)
1− πk
πk

Yk(t)Yk(r)

∣∣∣∣∣
+

n

N2

1

d(π)

∣∣∣∣∣∑
U

∑
U

(
1kl

πkπl
− 1

)
(1− πk)(1− πl)Yk(t)Yl(r)

∣∣∣∣∣
:= B1(r, t) +B2(r, t) +B3(r, t), (21)

we get

n2Ep
[
(γ̂H(r, t)− γH(r, t))2

]
≤ 3Ep(B1(r, t)

2) + 3Ep(B2(r, t)
2) + 3Ep(B3(r, t)

2). (22)

Let us show now that Ep(B1(r, t)
2)→ 0 when N →∞. Let us defineM = max

πk 6=1
πk. Under

assumptions (A1), (A2) and (A4) and using lemma A.3 and the inequality 1
d(π) ≤

1
Nλ(1−M) ,

we have

Ep(B1(r, t)
2) ≤ n2

d(π)2
1

N2
Ep

[
(d̂(π)− d(π))2

][
1

λ4N

∑
U

|Yk(t)|2|Yk(r)|2
]

≤
[

1

N(1−M)

n2

N2
+ n max

k 6=l,k,l∈U
|∆kl|

n

N

1

N

]
1

λ6

(
1

N

∑
U

|Yk(t)|4
)1/2(

1

N

∑
U

|Yk(r)|4
)1/2

≤ 1

N
C

so that Ep(B1(r, t)
2)→ 0 when N →∞.

Under assumptions (A1), (A2) and (A4), we can bound

Ep(B2(r, t)
2) ≤ n2

N4

∑
U

∑
U

|∆kl|
πkπl

1− πk
πk

1− πl
πl
|Yk(t)Yk(r)Yl(t)Yl(r)|

≤ 1

λ3
1

N

(
n2

N2
+
n2 maxk 6=l,k,l∈U |∆kl|

Nλ

)(
1

N

∑
U

|Yk(t)|4
)1/2(

1

N

∑
U

|Yk(r)|4
)1/2

≤ 1

N
C
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so that Ep(B2(r, t)
2)→ 0 when N →∞. For the third term, we have

Ep(B3(r, t)
2) = n2Ep

[
1

N4

1

d(π)2

∑
k,l∈U

∑
k′,l′∈U

(
1kl

πkπl
− 1

)(
1k′l′

πk′πl′
− 1

)

.(1− πk)(1− πl)(1− πk′)(1− πl′)Yk(t)Yl(r)Yk′(t)Yl′(r)

]

≤ n2

N4

1

d(π)2

∑
k∈U

∑
k′∈U

∣∣∣∣Ep [(1kπ2k − 1

)(
1k′

π2k′
− 1

)]∣∣∣∣ |Yk(t)||Yk(r)||Yk′(t)||Yk′(r)|
+

2n2

N4

1

d(π)2

∑
k∈U

∑
k′ 6=l′∈U

∣∣∣∣Ep [(1kπ2k − 1

)(
1k′l′

πk′πl′
− 1

)]∣∣∣∣ |Yk(t)||Yk(r)||Yk′(t)||Yl′(r)|
+
n2

N4

1

d(π)2

∑
k 6=l∈U

∑
k′ 6=l′∈U

∣∣∣∣Ep [( 1kl

πkπl
− 1

)(
1k′l′

πk′πl′
− 1

)]∣∣∣∣ |Yk(t)||Yl(r)||Yk′(t)||Yl′(r)|
:= v1 + v2 + v3

Under assumptions (A1), (A2) and (A4) and the inequality πkl ≤ πkπl, we get

v1 ≤
n2

N4d(π)2

∑
k∈U

∣∣∣∣Ep [1kπ4k − 2
1k

π2k
+ 1

]∣∣∣∣ |Yk(t)|2|Yk(r)|2
+
n2

N4

1

d(π)2

∑
k∈U

∑
k′ 6=k∈U

∣∣∣∣Ep [ 1kk′π2kπ
2
k′
− 1k

π2k
− 1k′

π2k′
+ 1

]∣∣∣∣ |Yk(t)||Yk(r)||Yk′(t)||Yk′(r)|
≤ n2

N2

1

d(π)2

[
1

N

(
1

λ3
+

2

λ
+ 1

)
+

(
1

λ2
+

2

λ
+ 1

)](
1

N

∑
k∈U

Yk(t)
4

)1/2(
1

N

∑
k∈U

Yk(r)
4

)1/2

.

(23)

Since d(π)→∞ when N →∞ we have that v1 → 0. Under assumptions (A1), (A2), (A4)

and (A5)

v3 ≤
C

N
+

n2

N4d(π)2
1

λ4
max

(k,l,k′,l′)∈D4,N

|Ep [(1kl − πkπl) (1k′l′ − πk′πl′)]|
∑

(k,l,k′,l′)∈D4,N

|Yk(t)||Yl(r)||Yk′(t)||Yl′(r)|

≤ C

N
+

n2

λ4d2(π)
max

(k,l,k′,l′)∈D4,N

|Ep [(1kl − πkπl) (1k′l′ − πk′πl′)]|

(
1

N

∑
k∈U
|Yk(t)|2

)(
1

N

∑
l∈U
|Yl(r)|2

)
.

(24)

Hence v3 → 0 when N → ∞. By the Cauchy-Schwarz inequality, we have v2 → 0 when

N →∞. Finally, we have for all (r, t) ∈ [0, T ]2,

nEp(|γ̂H(r, t)− γp(r, t)|)→ 0, when N →∞. (25)

and consequently,

nEp {| γ̂H,d(r, t)− γp(r, t) |} → 0, when N →∞.
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Step 2. Tightness

To check the tightness of n(γ̂H(t, t) − γH(t, t)) in C[0, T ], we use the Theorem 12.3 from

Billingsley (1968). Since the pointwise consistency of n(γ̂H − γH) implies that n(γ̂H(0, 0)−

γH(0, 0)) is tight, to get the announced result, it remains to study the increments of n(γ̂H −

γH) between two instants t and r. Considering

d2γ(t, r) = n2Ep(|γ̂H(t, t)− γH(t, t)− γ̂H(r, r) + γH(r, r)|2)

we only need to prove that

d2γ(t, r) ≤ C|t− r|2β,

for some positive constant C and all (r, t) ∈ [0, T ]2. Since β > 1/2, the above inequality

implies that the sequence n(γ̂H − γH) is tight in C([0, T ]).

Using (21), we can decompose d2γ(t, r) into 3 parts,

d2γ(r, t) ≤ 3
(
Ep
(
[B1(t, t)−B1(r, r)]

2
)

+ Ep
(
[B2(t, t)−B2(r, r)]

2
)

+ Ep
(
[B3(t, t)−B3(r, r)]

2
))

:= 3
(
d2B1

+ d2B2
+ d2B3

)
.

Using Lemma A.1 and Assumptions (A1)-(A2), we obtain

d2B1
=

n2

N4
Ep

(∑
k

d̂(π)− d(π)

d(π)

1k

πk

1− πk
πk

φk,k(t, r)

)2


≤ n2

N2

(
1

λ
− 1

)2 1

λ4

(
1

N

∑
U

φk,k(t, r)

)2

≤ n2

N2

(
1

λ
− 1

)2 1

λ4
ζ1|t− r|2β

≤ C|t− r|2β. (26)

With assumptions (A1), (A2) and (A6) and Lemma A.1, we get

d4B2
≤ 1

λ3

(
n2

N3
+
n2 maxk 6=l |∆kl|

N2λ

)
1

N

∑
U

|φk,k(t, r)|2

≤ C|t− r|2β. (27)
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Finally,

d4B3
≤ n2

N4

1

d(π)2

∑
k

∑
k′

∣∣∣∣Ep [(1kπ2k − 1

)(
1k′

π2k′
− 1

)]∣∣∣∣ |φk,k(t, r)||φk′,k′(t, r)|
+

2n2

N4

1

d(π)2

∑
k

∑
k′ 6=l′

∣∣∣∣Ep [(1kπ2k − 1

)(
1k′l′

πk′πl′
− 1

)]∣∣∣∣ |φk,k(t, r)||φk′,l′(t, r)|
+
n2

N4

1

d(π)2

∑
k 6=l

∑
k′ 6=l′

∣∣∣∣Ep [( 1kl

πkπl
− 1

)(
1k′l′

πk′πl′
− 1

)]∣∣∣∣ |φk,l(t, r)||φk′,l′(t, r)|
:= b1 + b2 + b3.

Thanks to Lemma A.1 and under assumptions (A1),(A2) and (A4) we get

b1 ≤
n2

N2

1

d(π)2

[
1

N

(
1

λ3
+

2

λ
+ 1

)
+

(
1

λ2
+

2

λ
+ 1

)]
1

N

∑
k

|φk,k(t, r)|2

≤ C|t− r|2β. (28)

Under assumptions (A1),(A2), (A4) and (A5) and using Lemma A.2, we have

b3 ≤
C|t− r|2β

N
+

n2

d2(π)λ4
max

(k,l,k′,l′)∈D4,N

|Ep [(1kl − πkπl) (1k′l′ − πk′πl′)]|

 1

N2

∑
k,l

|φk,l(t, r)|

2

≤ C|t− r|2β. (29)

Using the Cauchy-Schwarz inequality together with bounds (28) and (29), we get that b2 ≤

C|t− r|2β so that

d2B3
≤ C|t− r|2β. (30)

Finally, we deduce, with inequalities (26), (27) and (30) that

d2γ(r, t) ≤ C|t− r|2β. (31)

A.4 Proof of Proposition 3.3

Under assumptions (A1) and (A2), it is clear that d̂(π)/d(π) = 1 + op(1). The pointwise

convergence of nγ̂∗H,d(r, t) is then a direct consequence of Proposition 3.2 and the fact that

γ̂∗H,d(r, t) =
d(π)

d̂(π)
γ̂H,d(r, t). Furthermore, we may write

n(γ̂∗H,d − γH) = n
d(π)

d̂(π)
(γ̂H,d − γH) + n

(
d(π)

d̂(π)
− 1

)
γH .

By Slutsky’s theorem, the first term at the righthand-side of previous equation converges

in distribution to zero in C([0, T ]) while the second term goes to zero in probability since

sup(r,t)∈[0,T ]2 |nγH(r, t)| <∞ and d(π)

d̂(π)
−1 = op(1). Hence, the sequence n(γ̂∗H,d−γH) converges

in distribution to zero in C([0, T ]).

23



A.5 Proof of Proposition 3.4

We first note that the interpolation error, bounded in (17), satisfies

n3/2|γ̂H,d(r, t)− γ̂H(r, t)| = O(1) (32)

provided that limN→∞maxi={1,..,dN−1} |ti+1 − ti|2β = O(n−1).We then use the fact (see The-

orem 1 in Boistard et al. (2012)) that for rejective sampling the terms ckl defined in (19)

satisfy, for some constant C,

max
k,l
|ckl| ≤ Cd(π)−1.

Thus, bound (20) is now

d(π)2 |γH(r, t)− γp(r, t)| = O(1). (33)

If we examine now the sampling error, we can check that the terms B1 and B2 are of order

n−1. Concerning the term B3, it is bounded by the sum v1 + v2 + v3 with v1 = O(d−2(π))

and v2 ≤
√
v1v3. Thanks to Proposition 3.1, we get that the term v3 satisfies v3 = O(d−1(π))

and consequently, Ep(B3(r, t)
2) = O(n−1). Thus,

n2Ep
[
(γ̂H(r, t)− γH(r, t))2

]
= O(n−1)

and the proof is complete.
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