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MULTISCALE MODELLING OF SOUND PROPAGATION THROUGH THE
LUNG PARENCHYMA ∗

Paul Cazeaux1 and Jan S. Hesthaven2

Abstract. In this paper we develop and study numerically a model to describe some aspects of
sound propagation in the human lung, considered as a deformable and viscoelastic porous medium
(the parenchyma) with millions of alveoli filled with air. Transmission of sound through the lung
above 1 kHz is known to be highly frequency–dependent. We pursue the key idea that the viscoelastic
parenchyma structure is highly heterogeneous on the small scale ε and use two–scale homogenization
techniques to derive effective acoustic equations for asymptotically small ε. This process turns out to
introduce new memory effects. The effective material parameters are determined from the solution of
frequency–dependent micro–structure cell problems. We propose a numerical approach to investigate
the sound propagation in the homogenized parenchyma using a Discontinuous Galerkin formulation.
Numerical examples are presented.

1991 Mathematics Subject Classification. 93A30, 35B27, 35B40, 74D05, 65M60.

Date: December 14, 2012.

Understanding the acoustic properties of the lungs is of great interest in a range of medical domains, from the
diagnostic of pathologies such as bronchitis and asthma to recently introduced imaging methods of breathing
sounds. Medical doctors have been commonly using the analysis of lung sounds for the diagnostic of pathologies,
mainly relying on the stethoscope, and have a good empirical understanding of the relationship between the
characteristics of lung sounds and underlying pathologies. However, far less is known about the detailed physical
mechanisms of sound generation and transmission in the respiratory system. More advanced models could also
explain lung contusions due to a blunt, high–velocity impact to the chest as well as exposure to explosions or,
for small mammals, to medical ultrasound.

There is extensive experimental data, both in vitro and in vivo, and a relatively good theoretical under-
standing of the propagation through lung tissue of relatively low–frequency sound, in the audible range. In the
frequency band between roughly a few Hz to 1 kHz, the two main components of the lung tissue, air and con-
nective tissue, are acoustically strongly coupled and the resulting mixture behaves like a homogeneous material
with high density of the tissue and high compressibility of the air filling. Acting as a highly dense gas, the tissue
produces a very low speed of sound of less than 50 m/s. As frequency increases above 1 kHz, the wavelength
approaches the size of the air pockets embedded in the lungs’ tissue, called alveoli, and the absorption increases
strongly such that no signal in the audible range is detectable through the human lungs above a frequency of
.5–1.5 kHz. Note that this low–pass behavior is unique among human organs. By contrast, the typical speed of
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sound or ultrasound in soft tissue is normally much higher, around 1500 m/s, comparable to the speed of sound
in water. For a review of experimental and theoretical studies on the subject, we refer to [28].

On the contrary, there are very few studies on the propagation of ultrasound through the lung tissue be-
tween 10 kHz and 10 Mhz, see v.g. [9]. Recently published studies indicate that the propagation properties of
ultrasound through the lung are far from understood. In particular, it seems that the effective behavior for in
vivo lung tissue is very different from the prohibitively high absorption previously measured at all ultrasound
frequencies in in vitro lung samples. According to [31], low–frequency ultrasound may permeate the human
lungs in situ for frequencies above 10 kHz, and propagation properties are highly dependent on the state of
inflation of the lung, or on obstructive pathologies in the patients’ lungs. An effective speed of sound above
1000 m/s was computed for these new ultrasound recordings, highlighting the difference in behavior with the
low–frequency models developed in v.g. [29]. Further development of theoretical models, possibly based on
more detailed tissue mechanics, could lead to an increased understanding of these experimental observations
and a better modeling of the lungs’ acoustical properties.

Elastic fibers are the basic constituent of the connective tissue forming the alveolar wall. At small strain, they
exhibit a predominantly elastic behavior with relatively small viscous losses. The remaining material consists
of blood vessels, cells and a hydrophilic gel [36]. The mechanical properties of composite tissue depend on the
relative amounts of their constituents, but also on their geometrical structure [10]. In the lungs, the elastic
fibers are arranged as a three–dimensional network.

In previous attempts to derive a law at the macroscopic scale fitting experimental results, the alveolar wall
was modeled as an homogeneous elastic or viscoelastic medium [2,27,34]. Here, we change this point of view and
try to investigate, theoretically and numerically, some macroscopic effects of the heterogeneity of the alveolar
material at the micro–scale. Indeed, the previous discussion suggests that we model the lungs as a foamy
material with microstructure, consisting of air bubbles separated by a heterogeneous viscoelastic medium which
contains elastic fibers mixed with a viscous gel.

We make some simplifying modeling assumptions. First, motivated by the space repetition of the alveoli,
we assume that the parenchyma consists of a periodic arrangement of pores with a small period ε > 0. We
furthermore assume that the heterogeneous matrix constituting the connective tissue obeys the law of linearized
viscoelasticity, and interacts with closed pockets filled with a compressible perfect gas modeling the air. Note
that this assumes that air does not communicate freely between neighbouring alveoli. This common modeling
assumption [12,29] has been validated by experimental studies [7,20] for frequencies above a few hundred hertz.

Once the model is set up, we employ a two–scale homogenization technique [1,26] to derive effective acoustic
equations for the composite tissue of the lungs by performing an asymptotic study as ε goes to zero. In
this limit, we obtain equations describing a homogeneous viscoelastic medium without microstructure. The
effective coefficients describing this homogenized medium are recovered from the given periodic micro–scale
structure. Note that the homogenization of a similar model, in the static case, was considered in [2]. As is
well–known [39], the homogenization of heterogeneous viscoelastic composites, by the interaction of temporal
and spatial variations of the coefficients in the differential equations of the model, gives rise to new memory
effects. Even when the original models present only instantaneous memories, long–term memories are induced
during the homogenization process [32,38].

Finally, we face the problem of computing numerical simulations based on our homogenized description of
the parenchyma. The appearance of the new memory effects by homogenization as a convolution term makes
the equation hard to use directly. It is standard [35] to modify the model so that the the convolution is
replaced by additional differential equations. We achieve this by approximating the viscoelastic behavior of
the homogenized medium by a generalized Maxwell model with n relaxation frequencies [3] and then propose
an efficient strategy based on a Discontinuous Galerkin method [15], which is a finite element method with
discontinuities at the interfaces of the elements. Discontinuous Galerkin methods have been widely studied
recently, as they combine many advantages, such as adaptativity to complex geometries, high parallelizability
and high–order approximation. We present here a high–order Discontinuous Galerkin discretization adapted to
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the integration of the viscoelastic system in the time domain, with an implicit–explicit time–stepping scheme
designed to minimize the computational cost of the method.

The paper is organized as follows. In Section 1, we describe the parenchyma model and we study theoretically
this fluid–structure interaction system. In particular, we sketch the homogenization procedure, which consists
of deriving the homogenized limit as ε goes to zero of the model (1.5) by the two–scale convergence framework,
and we obtain a macroscopic description involving new memory effects, which depend on the micro–structure
of the material.

Then, in Section 2, we propose a numerical method designed to efficiently solve the difficult viscoelastic
problem obtained by homogenization. We introduce an efficient approximation of the memory terms by the use
of Prony series and detail the discretization of the equations system by the Discontinuous Galerkin method.
Finally, in Section 3, we illustrate this study by some numerical results in two dimensions and discuss its
relevance to observations.

1. The viscoelastic homogenized model

1.1. The microscale model

Consider a system composed of a porous, inhomogeneous, incompressible viscoelastic frame perforated by
gaseous bubbles. Let the tissue sample be contained in Ω, a bounded domain in Rd, d = 2 or 3, which is supposed
to be stress–free as the reference configuration of the composite. Assume that ε denotes a characteristic length
of the pore size. We assume that the microscopic and macroscopic scale are well separated, meaning that the
parameter ε is small. To deal with the two different length scales associated with variations of the variables at
the micro– and macro–scale, we introduce, in addition to the global position vector x, a local position vector y
in a stretched coordinate system, which is related to x by

y = x/ε.

For example, if Eε(x) = E(x/ε) was to describe a coefficient appearing in the constitutive equations, then we
could suppose that it depends on the fast variable y as a constant in some component of the material and a
different constant in another part of the material to describe heterogeneity of the tissue at the micro–scale.

1.1.1. The microscale geometry.
Let us be more precise in our description of the material geometry. We restrict our attention to a periodic

setting. Let Z be a reference periodic array in Rd with a reference periodicity cell Y, normalized so that |Y| = 1.
The bounded domain Ω ⊂ Rd is filled with periodically distributed gaseous bubbles. The viscoelastic matrix
is assumed connected while the gaseous bubbles are isolated. The reference cell Y is therefore divided into
two parts: an open simply connected bubble YF , YF ⊂ Y̊ having a smooth boundary Γ and its complement
YS = Y \ YF representing the viscoelastic skeleton, see Figure 1. Hence, the viscoelastic material occupies the
domain Ωε obtained by ε–periodicity after excluding the bubbles strictly included in Ω:

Ωε =
⋃

k∈ZΩ
ε

ε (YS + k), ZΩ
ε = {k ∈ Z : ε(YF + k) ⊂ Ω} .

1.1.2. The microscale model equations.
We will consider motions of the medium small enough to be governed by linearized equations and denote the

gaseous bubbles as Bkε = ε(YF + k) for k ∈ ZΩ
ε . Suppose that the closed gas bubbles behave like a perfect gas

experiencing adiabatic compression, so the relation between volume V k
ε (t) and pressure pkε of the k–bubble at

time t is given by the law
pkε (t)

(
V k
ε (t)

)γ
= Cst. ,
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Figure 1. Domain Ωε and unit fluid–structure cell Y

where γ is the specific heat ratio for the gas (about 1.4 for air). Let uε be the (small) displacement field of the
elastic media. Linearizing around an equilibrum state of atmospheric pressure pa and volume

∣∣Bkε ∣∣, the equation
governing the pressure inside the bubbles is [2]:

pkε − pa ≈
γpa
d |Bkε |

∫
∂Bk

ε

uε · nε, (1.1)

where nε is the unit normal to ∂Ωε, pointing into the gaseous bubbles.
The equation of motion for the incompressible viscoelastic structure is given by ρs

∂2uε
∂t2

= divσε + f ,

div uε = 0,
(1.2)

where ρs > 0 denotes the density of the alveolar wall, f is a volumic excitation force, and σε is the stress
tensor, which is related to ∇uε by the constitutive law of the inhomogeneous wall material. We wish to study
specifically the possible effects of the heterogeneity of the alveolar wall. In order to describe linear viscoelastic
behavior, we recover the stress response from the strain history input as follows:

σε(x, t) = −pε(x, t)Id +

∫ t

−∞
Eε(x, t− τ)

∂

∂τ
e(uε(x, τ)) dτ, (1.3)

where σε is the stress tensor,
pε is a Lagrange multiplier associated with the constraint div uε = 0,

Eε is the relaxation function, a fourth–order time–dependent tensor,

e(uε) = 1/2
(
∇uε +T ∇uε

)
is the strain tensor of the material.
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Note that pε is homogeneous to a pressure. At the boundary of the gaseous bubbles we have balance of the
forces, that is

nε · σε = (pa − pkε )nε = − γpa
d |Bkε |

(∫
∂Bk

ε

uε · nε

)
nε on each ∂Bkε . (1.4)

For simplicity, we suppose that the material is initially at rest at time t = 0 and we impose homogeneous
Dirichlet boundary conditions on the exterior boundary ∂Ω. We collect the equations for the structure (1.2)
and (1.3) as well as the boundary constraint describing the bubble response (1.4) to recover the following
microscale description of the model:

ρs∂ttuε − divσε = f , in Ωε,

σε = −pεId +

∫ t

0

Eε(x, t− τ)
∂

∂τ
e(uε(x, τ)) dτ, in Ωε,

div uε = 0, in Ωε,

nε · σε = − γpa
εdd |YF |

(∫
∂Bk

ε

uε · nε

)
nε, on ∂Bkε , ∀k ∈ ZΩ

ε ,

uε = 0 on ∂Ω,

uε(t = 0) = 0.

(1.5)

1.1.3. Heterogeneities.
Following [13], the relaxation function writes

Eε(x, t) = E∞(x/ε) +G(x/ε, t) = E∞(y) +G(y, t), (1.6)

where E∞ represents the elastic response of the material at equilibrium, while G denotes the memory properties
of the material. We suppose that E∞(y) andG(y, t) belong respectively to L∞(Y, Sym) and L1(R+; L∞(Y, Sym))
where Sym is the set of symmetric fourth–order tensors. Furthermore, we suppose that E∞ is uniformly definite
positive, meaning that there exists α > 0 such that for all y ∈ Y and any symmetric matrix ξ,∑

1≤i,j≤d

E∞,ijkl(y)ξijξkl ≥ α|ξ|2. (1.7)

In addition, the time–dependent tensor G is positive and satisfies the weak dissipativity condition [13]:

∑
1≤i,j≤d

∫ T

−∞

∫ t

−∞
Gijkl(t− s)ξij(s)ξkl(t) ≥ 0, (1.8)

for all smooth test functions with compact support ξ(t) in Sym and T > 0. Modeling the structure as a network
of elastic fibers coated with a viscous gel representing the ground substance, we expect the elastic coefficients
E∞ to dominate in the fibers while the viscous components G dominate in the gel. Other models are also
possible, such as modeling the gel as a purely Newtonian fluid and the fibers as a purely elastic medium (see
v.g. [11]) .

1.2. The mathematical homogenization method

In this section, we outline the mathematical homogenization procedure to derive equations for the macroscopic
motion of the medium. Clearly, it is not possible to solve (1.5) on a realistic geometry for more than a small
number of alveoli, and certainly not for the millions that are contained in the parenchyma. To derive effective
equations, the two–scale method of homogenization [26] is a widely used tool that has previously been applied
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to different models of the lung parenchyma by Owen and Lewis [27] as well as Siklosi et al. [34] for example.
The approach consists in modeling the parenchyma as an array of periodically repeating cells, representing
individual alveoli, and obtain equations governing the behavior of spatially averaged relevant quantities such as
deformation and pressure by separating the variations at the micro–scale and macro–scale. It is also possible
to deal with random inhomogeneities in the micro–structure [6], but the evaluation of the effective parameters
is more complicated.

1.2.1. Weak formulation, existence and uniqueness.
First, we study the existence and uniqueness of weak solutions to (1.5). For such viscoelastic problems this

has been proved in a slightly different context [10]. Define the Sobolev spaces Vε = H1
0(Ωε), Xε = L2(Ωε),

Mε = L2(Ωε), and V = H1
0(Ω), X = L2(Ω), M = L2(Ω). Let T > 0, the variational formulation associated

with (1.5) is as follows.
Find uε in L∞(0, T ;Vε), ∂tuε ∈ L∞(0, T ;Xε), q ∈ H−1(0, T ; Mε) such that for all vε ∈ Vε,

d

dt

∫
Ωε

ρs∂tuε · vε +
d

dt

∫
Ωε

(∫ t

0

G(x/ε, t− τ)e(uε(τ)) dτ

)
: e(vε)

−
∫

Ω

pεdiv(vε) +

∫
Ω

E∞(x/ε)e(uε) : e(vε)

+
γpa

d|YF |εd
∑
k∈ZΩ

ε

(∫
∂Bk

ε

uε · nε

)(∫
∂Bk

ε

vε · nε

)
=

∫
Ωε

f · vε,

div uε = 0, a.e. in Ωε,

uε(t = 0) = 0, a.e. in Ωε,

∂tuε(t = 0) = 0, a.e. in Ωε.

(1.9)

This formulation has to be understood in H−1(0, T ). Thanks to the positivity condition (1.7) we have the
following result, for which an idea of the proof is given in Appendix A:

Proposition 1.1. Assume that f ∈ L2(0, T ;X).
Then, there exists a unique uε ∈ L∞(0, T ;Vε)∩W1,∞(0, T ;Xε) and q ∈ H−1(0, T ; Mε) which satisfies (1.9).

Moreover, there exists a constant C which does not depend on ε such that:

‖∂tuε‖L∞(0,T ;Xε) + ‖uε‖L∞(0,T ;Vε) + ‖pε‖H−1(0,T ;Mε) ≤ C‖f‖L2(0,T ;Xε),

If the excitation force f satisfies a stronger regularity assumption, one obtains a better regularity for the
solution:

Proposition 1.2. Suppose that f ∈ H1(0, T ;X). Then, there exists uε in W2,∞(0, T ;Xε)∩W1,∞(0, T ;Vε) and
pε ∈ L∞(0, T ; Mε) which satisfies (1.9). Moreover, there exists a constant C which does not depend on ε such
that:

‖uε‖W2,∞(0,T ;Xε) + ‖uε‖W1,∞(0,T ;Vε) + ‖pε‖L∞(0,T ;Mε) ≤ C‖f‖H1(0,T ;Xε). (1.10)

The proof consists simply in differentiating the weak formulation in time and using the result of Proposition
1.1. The L∞–bound on the pressure is obtained thanks to an inf–sup condition uniform in ε, see Proposition
3.1 in [2].

1.2.2. Asymptotic behavior.
Hereafter, we suppose that f ∈ H1(0, T ;X) for simplicity of exposition. We now study the properties of the

solution of the system as ε converges to zero. This procedure allows us to average out the microscale oscillations
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to understand the macroscale properties of the solution. We use here the notion of two–scale convergence
introduced by Nguetseng [26] and Allaire [1]. We denote by ·̃ the extension by zero in Ω \ Ωε and we adopt
the following convention: the index # denotes spaces of Y–periodic functions on Y or YS with null average, in
particular we set

H1
#(YS) =

{
v1 ∈ H1(YS ;Rd), v1 is Y–periodic and

∫
YS

v1 = 0

}
.

We extend naturally the definition of two–scale convergence to the time–dependent setting, as in [11] .
Definition 1.3. A sequence (uε(t,x))ε>0 in L2((0, T )×Ω) two–scale converges to u(t,x,y) in L2((0, T )×Ω×Y)

if for any v(t,x,y) in L2((0, T )× Ω, C#(Y)), one has:

lim
ε→0

∫ T

0

∫
Ω

uε(t,x) v(t,x,x/ε) dxdt =

∫ T

0

∫
Ω

∫
Y
u(t,x,y) v(t,x,y) dy dxdt.

Thanks to the compactness properties of the two–scale convergence (see v.g. [1]), it is well–known that the
a priori bounds (1.10) imply the existence of three functions u in H1(0, T ;V) with ∂tu in H1(0, T ;X), u1 in
H1(0, T ; L2(Ω,H1

#(YS))) and p ∈ L2((0, T )× Ω× YS) such that, up to a subsequence:
ũε → u(x)χS(y) in the two–scale sense,

∇̃uε → (∇xu +∇yu1)χS(y) in the two–scale sense,
p̃ε → pχS(y) in the two–scale sense,

(1.11)

where χS is the characteristic function of YS .
Remark 1.4. Note that the convergence results (1.11) are a rigorous expression of the heuristic argument that
the properties of the material can be expanded as an asymptotic expansion in powers of ε:

uε(x) ≈ u(x, ε) + εu1(x,x/ε) + ε2u2(x,x/ε) + . . .

We are now in a position to pass to the limit in the variational formulation (1.9). The idea is to use oscillating
test functions of the form

vε = v(x) + εv1(x,x/ε).

Thanks to the two–scale convergences (1.11) we can pass to the limit in most terms of the weak formulation (1.9).
We refer to [2] for details on the specific treatment of the term containing a non–local product of integrals
in (1.9). In the end, we obtain that u, u1 and p are solutions of the variational formulation, for all v ∈ V and
v1 ∈ L2(Ω,H1

#(YS)):

∫
Ω

∫
YS

ρs∂ttu · v

+

∫
Ω

∫
YS

(∫ t

0

G(y, t− τ)
(
ex(∂tu(τ)) + ey(∂tu

1(τ))
)

dτ

)
:
(
ex(v) + ey(v1)

)
−
∫

Ω

∫
YS

p
(
divx(v) + divy(v1)

)
+

∫
Ω

∫
YS

E∞(y)
(
ex(u) + ey(u1)

)
:
(
ex(v) + ey(v1)

)
+
|Y|γpa
|YF |d

∫
Ω

divxu

(
|YF |divxv −

∫
Γ

v1 · n
)

=

∫
Ω

∫
YS

f · v,

divxu + divyu
1 = 0, u(t = 0) = 0, ∂tu(t = 0) = 0, a.e. in Ωε.

(1.12)
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Proposition 1.5. The system (1.12) has a unique solution with u ∈ W1,∞(0, T ;V) ∩W2,∞(0, T ;X), u1 ∈
W1,∞(0, T ; L2(Ω,H1

#(YS)) and p ∈ L∞((0, T ) × Ω × YS). Also, the whole sequence (ũε, p̃ε)ε>0 two–scale con-
verges to u, u1 and p in the sense of (1.11).

Proof. The proof of this result follows that of Proposition 1.1, given that ‖ex(u) + ey(u1)‖L2(Ω×YS) is a norm
for the Hilbert space V× L2(Ω;H1

#(YS)) (Lemma 2.5 in [2]). Existence and uniqueness of the limit pressure p
can be proved using a two–scale inf–sup condition (Lemma 3.6 in [2]). �

1.3. The microcell problem

The two–scale homogenized system is too complicated to be used directly. We are going to eliminate the
micro–scale variables u1 and p to obtain the effective macro–scale equations. The system (1.12) is linear, and
admits a unique solution. Hence, because of the superposition principle, we seek to express formally u1(x,y, t)
and p(x,y, t) as expressions parameterized by the macro–scale displacement history (u(x, τ))τ≤t:

u1(t,x,y) =
∑

1≤i,j≤d

∫ t

0

χij(y, t− τ)ex(u)ij(x, τ) dτ,

p(t,x,y) =
∑

1≤i,j≤d

∫ t

0

ηij(y, t− τ)ex(u)ij(x, τ) dτ,

(1.13)

where χij(y, t) and ηij(y, t) are correctors to be determined as solutions of cell problems set on YS . Note
that χij and ηij are in general distributions in the time domain, and obtaining their precise expression from
the time–dependent two–scale problem (1.12) is possible but requires cumbersome calculations (see [10, 11] for
a similar derivation). To better understand the frequency–domain behavior of the effective medium, and to
simplify the analysis, we use the Fourier transform in the time variable to describe the local problems. For a
given integrable or square–integrable function ψ, we denote its (complex–valued) Fourier transform ψ̂ defined
for any ω ∈ R as

ψ̂(ω) =
1√
2π

∫ ∞
−∞

ψ(t)e−iωt dt.

If ψ is defined on (0, T ), we extend it by zero elsewhere. Taking the Fourier transform and setting v = 0

in (1.12), we obtain that the functions û1 and p̂ are solutions of the following variational problem parameterized
by ex(û) for any frequency ω: for all v1 ∈ H1

#(YS),
∫
YS

(
E∞ + iωĜ(ω)

)(
ex(û) + ey(û1)

)
: ey(v1)−

∫
YS

p̂divy(v1)− |Y|γpa
|YF |d

divxû

∫
Γ

v1 · n = 0,

divxû + divyû1 = 0.

Note that, by Stokes formula,
∫

Γ
v1 · n =

∫
YS

divyv
1. Substituting the two decompositions (1.13), we have,

collecting the terms in ex(û),
(∫
YS

(
E∞ + iωĜ(ω)

)
ey

(
pij + χ̂ij(ω)

)
: ey(v1)−

∫
YS

(
|Y|γpa
|YF |d

δij + η̂ij(ω)

)
divy(v1)

)
ex(û)ij = 0,(

δij + divyχ̂ij(ω)
)
ex(û)ij = 0,

where we have introduced the family of polynomials pij , 1 ≤ i, j ≤ d defined as:

pij(y) =
1

2

(
yie

j + yie
j
)
,
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which is chosen so that the family ey(pij) = 1
2

(
ei ⊗ ej + ej ⊗ ei

)
constitutes a basis of the set of symmetric

tensors.
Hence, it is natural to seek χ̂ij(ω,y) and η̂ij(ω,y) as solutions of mixed cell problems parameterized by ω:

−divyσ
ω
y

(
χ̂ij(ω), η̂ij(ω)

)
= divyσ

ω
y

(
pij ,
|Y|γpa
|YF |d

δij

)
, in YS ,

divyχ̂ij(ω) = −δij , in YS ,

σωy

(
χ̂ij(ω), η̂ij(ω)

)
n = −σωy

(
pij ,
|Y|γpa
|YF |d

δij

)
n, on Γ,

η̂ij(ω), χ̂ij(ω) Y–periodic,

(1.14)

where the local stress tensor σωy is defined for any ω ∈ R as

σωy (η,χ) = −ηId +
(
E∞ + iωĜ(ω)

)
ey(χ).

To ensure that this problem is well–posed, we make hereafter the assumption that for any frequency ω, there
exists a constant α(ω) > 0 such that∣∣∣(E∞(y) + iωĜ(y, ω)

)
ξ : ξ

∣∣∣ ≥ α(ω)|ξ|2 for any y ∈ YS and ξ ∈ Sym. (1.15)

Existence and uniqueness of the correctors χ̂ij(ω) ∈ H1
#(YS) and η̂ij(ω) ∈ L2

#(YS) as solutions of (1.14) is then
a consequence of the Lax–Milgram theorem.

Remark 1.6. The quantity E∞(y)+ iωĜ(y, ω) is called the complex relaxation modulus, and is the frequency–
domain equivalent of the relaxation function in the description of the viscoelastic material. Condition (1.15) is
satisfied in particular if the real or imaginary part of the complex relaxation modulus is positive definite. For
ω = 0 we recover the condition (1.7) satisfied by any solid material. For ω > 0, we know in general that the
dissipation condition (1.8) implies that the imaginary part ωRe

(
Ĝ(y, ω)

)
of the complex relaxation modulus

is always a positive tensor, and is positive definite for any truly dissipative viscoelastic material (see v.g. [13]).

Remark 1.7. It is well–known that the solutions of (1.14) depend continuously on the parameters. Since
G(y, t) belongs to L1(0, T ), its Fourier transform Ĝ(y, ω) is a continuous function of ω, hence the functions
ω 7→ χ̂ij(ω) and ω 7→ η̂ij(ω) are also continuous.

1.4. Effective equation and effective relaxation modulus

We have seen that for a given û, the local variables û1 and p̂ are determined by the formulae

û1(x,y, ω) =
∑

1≤i,j≤d

ex(û)ij(x, ω) χ̂ij(y, ω), p̂(x,y, ω) =
∑

1≤i,j≤d

ex(û)ij(x, ω) η̂ij(y, ω).

Applying the Fourier transform to the system (1.12) and taking v1 = 0, we obtain
∫

Ω

−ρs|YS |ω2u · v +

∫
Ω

ex(û)ij(x)

(∫
YS

(
E∞ + iωĜ(ω)

)
ey

(
pij + χ̂ij

))
: ex(v)

−
∫

Ω

ex(û)ij(x)

(∫
YS

η̂ij
)

divx(v) +
|Y|γpa
d

∫
Ω

divxû divxv =

∫
Ω

|YS |̂f · v.



10 MULTISCALE MODELLING OF SOUND PROPAGATION THROUGH THE LUNG PARENCHYMA

Hence the effective equation in the frequency domain for the displacement of the structure û takes the form

−ω2|YS |ρSû− div
(
Ĝhome(û)

)
= |YS |̂f , (1.16)

where the homogenized complex relaxation modulus of the material Ĝhom is obtained by averaging the correctors
in YS :

Ĝhomijkl (ω) = |YS |
(
E∞ + iωĜ(ω) +

|Y|γpa
|YS |d

Id

)
ijkl

+

(∫
YS

σωy

(
χ̂ij(ω), ηij(ω)

))
kl

. (1.17)

It is easily shown (see v.g. [1]) that Ĝhom satisfies the usual symmetry conditions, for any value of ω:

Ĝhomijkl = Ĝhomklij = Ĝhomijlk .

In addition, the data and coefficients in (1.14) are real when ω = 0, hence Ĝhom(0) is positive definite.

1.4.1. Decomposition of the relaxation modulus.
To come back to the time–domain, it is necessary to further decompose the complex relaxation modulus

Ĝhom. By analogy with (1.6), we introduce the homogenized equilibrium modulus Ehom∞ = Ĝhom(0) and write

Ĝhom(ω) = Ehom∞ + iωĜhom(ω). (1.18)

To compute the memory function Ghom, let us also decompose χ̂ij and η̂ij as

χ̂ij(ω) = χ̂ij(0) + iωφ̂ij(ω), η̂ij(ω) = η̂ij(0) + iωψ̂ij(ω).

By substraction in (1.14), the functions φ̂ij(ω) and ψ̂ij(ω) are solutions of the mixed problem:

−divyσ
ω
y

(
φ̂ij(ω), ψ̂ij(ω)

)
= divy

(
Ĝ(ω)

(
pij + χ̂ij(0)

))
in YS ,

divyφ̂
ij(ω) = 0 in YS ,

σωy

(
φ̂ij(ω), ψ̂ij(ω)

)
n = −

(
Ĝ(ω)ey

(
pij + χ̂ij(0)

))
n on Γ,

ψ̂ij , φ̂ij Y–periodic.

(1.19)

Now the effective memory function Ghom is defined by its Fourier transform as:

Ĝhomijkl (ω) =

∫
YS

Ĝijkl(ω) +

(∫
YS

Ĝ(ω)ey

(
χ̂ij(0)

)
+ σωy

(
φ̂
ij

(ω), ψij(ω)
))

kl

. (1.20)

1.5. Effective equations in the time domain

Let us now conclude this presentation of the homogenization process by describing the effective behavior of
the viscoelastic porous domain as a function of time. The macroscopic displacement is described by the variable
u(x, t), and combining (1.16) and (1.18), we obtain the homogenized system

|YS |ρS∂ttu(t)− div(σhom(t)) = |YS |f(t), in Ω,

σhom(t) = Ehom∞ e(u(t)) +

∫ t

0

Ghom(t− τ)e(∂tu(τ)) dτ, in Ω,

u = 0, on ∂Ω.

(1.21)
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Notice that the homogenized equations (1.21) have exactly the same form as the original ones (1.5) if the original
moduli E∞(x/ε) and G(x/ε, t) are replaced by the corresponding effective moduli Ehom∞ and Ghom(t). Hence
we have replaced a complicated problem, set on a perforated domain, by a classic viscoelastic problem without
microstructure.

However, this simplification comes at the cost of having to compute beforehand the values of the homogenized
moduli by solving cell problems. In particular, it is necessary to obtain the values of the memory function
Ghom(t) for every time t. Applying the inverse Fourier transform to (1.20) and (1.19), we recover Ghom(t) as

Ghomijkl (t) =

{∫
YS
Gijkl(t) +

(∫
YS
G(t)ey

(
χ̂ij(0)

)
+ σij(t)

)
kl
, for t > 0,

0, for t ≤ 0,

where the tensor σij(t) is defined as a function of φij(t), ψij(t) which are solutions of the following quasi–static
viscoelastic problem for t > 0:

−divyσ
ij(t) = divy

(
G(t)ey

(
pij + χ̂ij(0)

))
, in YS ,

σij(t) = −ψij(t)Id + E∞e(φ
ij(t)) +

∫ t

0

G(t− τ)e(∂tφ
ij(τ)) dτ, in YS ,

divyφ
ij = 0, in YS ,

σij(t)n = −
(
G(t)ey

(
pij + χ̂ij(0)

))
n, on Γ,

ψij , φij Y–periodic.

(1.22)

1.5.1. Memory effects.
An interesting aspect of the homogenization of viscoelastic materials is the appearance of new memory effects

caused by the coupling of spatial and temporal variations of the viscoelastic modulus of the material. It has been
argued by Tartar [38] that such long–term memory effects are induced by the spatial averaging in the solutions
of hyperbolic equations with coefficients oscillating in space. In particular, long–term memory effects have been
shown to appear when homogenizing two–phase media coupling an elastic matrix and a Newtonian fluid [11] [4],
a Voigt body [32], or a Maxwell body [37], even though each component exhibits only instantaneous memory.

The appearance of new memory effects depend directly on the inhomogeneity of the viscoelastic properties of
the material. Indeed, suppose that the dependence on the time and space variables of the material are separable,
in the sense that the relaxation function of the wall material is

E(y, t) = E∞(y) (1 + g(t)) or G(y, t) = E∞(y)g(t),

where g belongs to L1(R+). Then, thanks to (1.14),

divy

(
E∞ey

(
pij + χ̂ij(0)

))
= ∇η̂ij(0) in YS ,

and it is immediate from (1.22) that σij(t) = −g(t)η̂ij(0) for all times. Hence, the effective memory function is

Ghom(t) =

(
Ehom∞ − |Y|γpa

|YS |d
Id

)
g(t).

As a consequence, when the relaxation function is separable it is enough to solve the local problem only once.
The only new memory effect to appear is due to the coupling with the gas in the pores, which increases the
elastic bulk modulus but not its viscous counterpart.

On the other hand, if the dependance on space and time is not separable, it is necessary to compute the
effective relaxation function for all times or, equivalently, in the Laplace or Fourier transformed domain.
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2. Numerical offline/online strategy for the global dispersive problem

To further improve our understanding of the mechanics of the lungs, we now consider the numerical solution
of the effective equation (1.21). Our objective is to obtain a fast numerical method for the computation of
the solutions to the homogenized wave propagation problem (1.21). The strategy we propose consists in two
distinct parts:

• Computing the homogenized material parameters, based on a choice of parameters describing the mate-
rial at the microscopic level. This is a preliminary, offline step, independent of the macroscale geometry
or source data, and is described in Section 2.2.

• Integrating in time the propagation of the viscoelastic wave on a given macroscale geometry by an
efficient Discontinuous Galerkin method, presented in Section 2.3 and 2.4.

2.1. Evaluation of the convolution integral

Several numerical methods have been developed to solve the initial boundary problem associated with the
equations of elasticity or viscoelasticity, with notable applications to propagation of seismic waves or to the
determination of the elastic parameters of soft tissue by MRI measurements. The treatment of the convolution
term in (1.21) is an important factor in the choice of the method. One specific model and widely used model
is the Zener or Standard Linear Solid model, for which the complex modulus is represented with a Debye–type
relaxation function:

Ê(ω) = E0 +
E∞ − E0

1 + iωτ0
, (2.1)

where E∞ is the relaxed elastic modulus, E0 is the instantaneous elastic modulus and τ0 is the relaxation time.
If E∞ reduces to zero we obtain the popular Maxwell model. The inverse Fourier transform of (2.1) is an
exponential function

E(t) = E0 + (E∞ − E0)

(
1− exp

(
− t

τ0

))
,

and this key characteristic has led to the development of several computationally efficient algorithms for incor-
porating Standard Linear Solids into Finite Element or Finite Difference codes [35]. The algorithms take the
form of simple recursion relations, or auxiliary difference equations that are updated along with the standard
elastic wave equation, by adding an additional internal variable.

The Zener model is a poor model of viscoelastic behavior for most materials over wide frequency ranges.
However because the Fourier transform of most non–Zener models are not exponential functions, they cannot
be incorporated directly into Finite Elements or Finite Difference codes using recursion relations or auxiliary
difference equations. This is in particular the case of the homogenized model we have obtained. Historically,
it was proposed that the integral may be simply discretized by a trapezoidal method. However, this proves
too costly in practice since the convolution must be reevaluated at each time step, so the entire history of the
deformation must be kept in memory.

An approach used by many investigators is to approximate the complex relaxation modulus using a Prony
series expansion of the form

E(t) ≈ E0 −
n∑
i=1

Ei

(
1− e−t/τi

)
= E∞ +

n∑
i=1

Eie
−t/τp , (2.2)

where n is the total number of functions, Ei the relaxation modulus and τi the relaxation time of the i–th
function. This model is called the Generalized Maxwell or Wiechert model. Most of the algorithms developed
for Zener or Maxwell models can efficiently incorporate multiple relaxation mechanisms as a way to accomodate
models with a non–exponential relaxation function. Indeed, in this case, we may transform the convolution
integral appearing in the evolution equation (1.21) by introducing additional internal variables to the original
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set of unkowns. Denoting by e(t) the strain tensor e(u), we have the relation:∫ t

0

E(t− τ)∂te(τ) dτ = E0e(t)− Eiei, (2.3)

where we have introduced n internal variables ei, defined by

ei =

∫ t

0

∂te(τ)
(

1− e(τ−t)/τi
)

dτ for i = 1, . . . , n,

or alternatively satisfying ei(0) = 0 and the additional ordinary differential equation

τi∂tei + ei = e.

Hence, the use of the Wiechert model to describe the homogenized material enables us to replace the expensive
computation of the convolution, at the cost of introducing additional internal variables.

2.2. Computation and fitting of the dispersive curve

Next, we present a method for computing the viscoelastic complex modulus of the homogenized material and
its Prony series representation (2.2). This is the first, offline step of the numerical method and can be done
ahead of the time–domain computation, with no knowledge of the macroscopic geometry or of the wave data.
This computation of the homogenized parameters can be quite expensive, but it has to be done only once for
each set of micro–scale parameters.

In this paper, we chose to obtain the coefficients of the Prony series approximating the homogenized relaxation
function using the method of nonlinear least–squares. This approach yields good results and can be implemented
using standard routines. The approach is to sample the homogenized coefficients and fit the complex modulus
with a Prony series by fitting both real and imaginary parts at the same time:

Re
(
Êhom(ω)

)
= Ehom∞ +

Np∑
p=1

Ep

(
1

1 + ω2τ2
p

)
,

1

ω
Im
(
Êhom(ω)

)
= Re

(
Ĝhom(ω)

)
=

Np∑
p=1

Ep

(
τp

1 + ω2τ2
p

)
.

Remark 2.1. We note that a similar problem arises in the modeling of electromagnetic waves in dispersive
media. In this case, the model corresponding to the frequency dependence in (2.1) is called the Debye equation.

Remark 2.2. In [39], it was proposed to fit the modulus in the (real) Laplace transformed domain, but the
results were found not to be very stable when comparing the complex moduli in the Fourier frequency domain.

2.2.1. Solution of the cell problems.
To implement the least-squares method, we sample the complex modulus at a large number of frequencies

covering the range of interest. This is achieved by solving the complex elliptic problems (1.14) to compute
the frequency–dependent complex correctors χ̂ij(y, ω). The numerical solution of the cell problems (1.14) is
obtained by standard Finite Element methods for a given set of parameters modeling the microscale parenchyma
tissue.

Remark 2.3. Note that this step can be quite costly, as it potentially requires solving a large number of
independent highly resolved cell problem. However, this work is done offline, and can be trivially parallelelized.

If the cell problems are further parameterized by another parameter, for example by dependence of the
coefficients or the cell geometry on the slow variable x, then this computation has also to be done for every
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point in the macroscopic domain. In this case it would be interesting to consider methods of reduced complexity
for solving repeatedly the parameterized cell problems (1.14), v.g. the reduced order basis method as proposed
in [5]. The reduced basis method has been applied for such computations in v.g. [24, 25].

2.3. Discontinuous Galerkin discretization

Assume now that we have a distribution (Ei, τi) of relaxation mechanisms describing the viscoelastic complex
modulus of the homogenized medium as in (2.2). To solve the problem (1.21), we express the equation system
in the first–order velocity–strain formulation. To this end, we introduce the velocity vector v = ∂tu, and denote
the tensorial product of two vectors a, b in Rd as a⊗ b in Rd×d with

(a⊗ b)ij = aibj .

Then, using the equation of motion (1.21) and the relation (2.3), we formulate the pseudo–conservative system of
viscoelastic wave equations in the form of a multi–dimensional conservation law complemented with n relaxation
laws on Ω, for t ≥ 0: 

ρS |YS |∂tv − div
(
Ehom0 e− Ehomi ei

)
= f ,

∂te− div

(
v ⊗ ej + ej ⊗ v

2

)
= 0,

τ1∂te1 + e1 = e,

...
...

τn∂ten + en = e,

(2.4)

with zero initial and boundary conditions.
Note that each additional relaxation mechanism adds a further 3 variables in dimension two and 6 in dimension

three, one for each strain component of the additional internal variable. Therefore, the system consisting of 5
or 9 equations in the purely elastic case is complemented by an additional 3n or 6n equations (depending on
the dimension) in the viscoelastic case when we use n relaxation mechanisms.

We denoteW = (v, e) as the vector composed by the velocity and the strain components andM = (e1, . . . , en)
as the vector composed by the internal strain variable components. The system (2.4) can be rewritten in compact
form {

∂tW − div (A1W −A2M) = f ,

T ∂tM + M = BW,
(2.5)

where we define, using the block–matrix notation, the matrices

A1 = (ρS |YS |)−1

 0
ei ⊗ ej + ej ⊗ ei

2

Ehom0 0

 , A2 = (ρS |YS |)−1 [Ehom1 . . . Ehomn

]
,

T =
[
τ1Id . . . τnId

]
, B =

[[
0
Id

]
. . .

[
0
Id

]]T
.

Note that the dimension of the vector M and of the matrices A2, T and B depends on the chosen number n of
the relaxation mechanisms.

We assume that the computational domain Ω is composed of K non–overlapping elements (v.g. triangles in
dimension two, tetrahedra in dimension three)

Ω =

K⋃
k=1

Dk,
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and that the solution in each subdomain Dk is well approximated by the local polynomial of degree p

Wk(x, t) = Wk(xki , t) Lki (x) = Wk
i (t)Lki (x),

Mk(x, t) = Mk(xki , t) Lki (x) = Mk
i (t)Lki (x),

where xki are the N grid points in the k–th element and Lki (x) is the two– or three–dimensional multivari-
ate Lagrange polynomial based on these points (we refer to [15] for a detailed account of the nodal spatial
discretization). Note that

N =
(p+ 1)(p+ 2)

2
in 2D, N =

(p+ 1)(p+ 2)(p+ 3)

6
in 3D.

The physical flux is approximated locally as

Fk
(
Wk,Mk

)
=
(
A1W

k
i −A2M

k
i

)
Lki (x). (2.6)

We implement a Galerkin projection approach and integrate (2.4) against the N local test functions Lik(x) for
each element. After integration by parts, we obtain the semi–discrete form of the scheme

∫
Dk

(
∂tW

k − divFk
)
Lki (x) =

∫
∂Dk

(
Fk −F∗

)
Lki (x)n +

∫
Dk

f(x, t)Lki (x),

T ∂tMk + Mk = BWk.

(2.7)

As numerical flux we use the local Lax–Friedrichs flux [21]

F∗ = F∗
(
W+,M+,W−,M−

)
= A1

W+ + W−

2
−A2

M+ + M−

2
− c

2

(
W+ −W−) ,

where W−, M− refers to the local solution, W+, M+ refers to the neighboring solutions, and c is the maximum
eigenvalue of the flux Jacobian A1, which here is the maximum wave speed in the unrelaxed elastic medium.

To show the stability of this semi–discrete scheme, we note that the additional equation appearing in the
system (2.7) does not involve any spatial operator as T is a diagonal matrix and corresponds to a damping of
the solution. Hence the stability of the semi–discrete scheme (2.7) follows from the stability of the semi–discrete
scheme for the wave equation when one uses a monotone flux such as the Lax–Friedrichs flux.

2.4. Implicit–explicit time–stepping scheme

We will integrate in time using a high–order Runge–Kutta scheme. It is possible to use a fully explicit time–
integration scheme, which is simple to implement and the most efficient for low levels of stiffness, but imposes
a stability–based time–step restriction. Considering the scheme (2.7), we note that there are two different
mechanisms potentially controlling the maximum possible time–step:

• the usual Courant–Friedrichs–Levy condition, induced by the discretization of a first–order operator
and which is controlled by the geometry of the spatial discretization and the wave speed,

• the characteristic times τi associated with the relaxation mechanisms, which a priori may be arbitrarily
small. Indeed the range of relaxation times can be very wide, even as large as 1010 for a Maxwell
system [35], and a suitable time integrator shoud be both stable and accurate for small and large values
of the relaxation time.

To adress this second limitation, we implement an implicit–explicit Runge–Kutta method proposed by Kennedy
and Carpenter [18], see also [16]. This allows us to keep the efficiency of the explicit approach and avoid solving
the large, non–stiff linear system associated with the wave equation discretized by the first equation in (2.7). At
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the same time, it integrates implicitly and accurately the system of ODEs formed by the second equation of the
problem, which effectively forms a diagonal linear system which is trivial to solve. Let us write the system (2.7)
as 

d2W

dt2
= Fex (W,M, t) ,

d2M

dt2
= Fim (W,M, t) .

Then the time–stepping scheme writes as follows. To compute W(t+∆t) = W(n+1) with an s–stage IMEX–RK
method, 

W(i) = W(n) + ∆t

s∑
j=1

aexij F
ex
(
W(j),M(j), t(n) + cj∆t

)
,

M(i) = M(n) + ∆t

s∑
j=1

aimij Fim
(
W(j),M(j), t(n) + cj∆t

)
,

W(n+1) = W(n) + ∆t

s∑
j=1

biF
ex
(
W(i),M(j), t(n) + ci∆t

)
,

M(n+1) = M(n) + ∆t

s∑
j=1

biF
im
(
W(i),M(j), t(n) + ci∆t

)
,

where W(i) = W
(
t(n) + ci∆t

)
, and the fixed scalar coefficients aexij , aimij , bj and ci determine the accuracy and

stability of the given RK scheme.
The matrix Aex is characteristic of a fully explicit Runge–Kutta scheme, usually referred to as an ERK

scheme. The matrix Aim is associated with a singly diagonally implicit Runge–Kutta scheme, or ESDIRK
scheme. Note that the two schemes are coupled through the nodes ci and the weights bj . The precise values of
the coefficients for different IMEX schemes can be found in v.g. [18].

Coupling the two parts of the scheme is straightforward: at each stage of the RK computation, the explicit
variable W (displacement and stress) is integrated to obtain W(i), and then the implicit variable M (internal
variables) are integrated using the explicitly computed stress as a source term.

3. Numerical results

In this section, we present the results of numerical experiments in a two–dimensional setting. First, we solve
the cell problems (1.14) on a few examples of cell geometries and parameters using the Finite Elements software
FreeFem++ [14]. Then, we use the C++ Least–Squares library levmar [23] to fit the computed dispersion curve
to a Prony series. Finally, we implement the numerical scheme (2.7) using the Discontinuous Galerkin solver
Hedge [19].

3.1. Effective viscoelastic modulus computation

To show that the inhomogeneity of the material at the microscale results in interesting effects, we compute the
effective viscoelastic complex modulus for a two–dimensional test micro–scale geometry. The chosen periodicity
cell is the unit square. Note that this choice has significant effects on the resulting properties of the homogenized
material, as will become clear from the wave propagation simulations.To model the connective tissue of the
parenchyma, we propose to study a periodic, connected, elastic skeleton presenting inclusions filled with a viscous
material, modeling respectively the network of elastic fibers sustaining the lungs and the ground substance and
fluids contained in the parenchyma.
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Remark 3.1. It is not possible in this two–dimensional setting to model both phases of the material as
connected, even though both the elastic fiber network and the blood capillary network are connected in the real
lung parenchyma.

In our model, the domain YS is divided into two distinct parts, noted YfS and YvS , on which the material’s
parameters E∞(y) (relaxed elastic modulus) and G(y, t) (memory function), defined by (1.6), are constant with
respect to the space variable, see Figure 2. We further assume that YfS is connected. Assuming that the material
is locally isotropic, the mechanical properties of the elastic substance, dominated by the purely elastic reponse,
are given by the relations

E∞ = µId and G ≈ 0, (3.1)

where µ is the shear modulus of the elastic substance. Several choices are possible for the viscous filling, and
we show results for a Kelvin–Voigt body, satisfying the relations

E∞ ≈ 0 and G = νδ(t), (3.2)

where ν is an effective viscosity and δ the Dirac distribution. We consider physiologically relevant values for
the parameters, as discussed in v.g. [27]. Let us note that there are very few available studies of the detailed
mechanics of the constituents of the alveolar wall, see v.g. [30].

Parameter Description Estimate

µ Shear Modulus of the Elastic Fibers 105 Pa
ν Shear viscosity of the Ground Substance 103 Pa · s
ρs Density of the Alveolar Wall 103 Kg ·m−3

pa Atmospheric pressure 105 Pa

Table 1. Parameter estimates for the fluid–structure model (1.5)

Remark 3.2. We consider a domain YS symmetric with respect to the axis OX and OY , so it is possible to
use only a quarter of the cell as the computational domain. Moreover, the six values in Êhom reduces to three
different values in this case.

Figure 3 shows the results. We observe that the homogenized viscoelastic properties of the material are
very different from the behavior of either the elastic, viscous or gas component. In particular, the behavior
of pressure waves can be predicted by analyzing the diagonal components of the viscoelastic tensor Ghom1111 and
Ghom1122 . One observation is that the effective stiffness of the homogenized material goes from the value of the
gas compressibility at low frequencies, equal to γpa ≈ 1.4 · 105Pa, as predicted by the Rice model [29], to a
much higher value for frequencies above 10 kHz. This result is consistent with experimental observations [31],
although it would be necessary to study numerically more realistic 3D geometries to quantitatively verify this
assertion. Hence, it seems that the low–frequency limit is not very dependent on the microstructure, as it
depends mainly on the compressibility of the gas content. On the other hand, the high–frequency behavior
of the homogenized material is significantly affected by the geometric configuration of the microstructure as
well as the relaxation moduli of the various components of the parenchyma. Another observation is that the
loss factor, defined as the ratio between the imaginary part and the real part of the compressibility, peaks at
a frequency of a few kHz, which indicates a very high attenuation of the pressure waves in the medium in a
band of frequencies around this peak. Again, this is consistent with the experimental observation that there is
extreme attenuation of sound waves in the audible range through the lungs’ parenchyma above 1.5 kHz.



18 MULTISCALE MODELLING OF SOUND PROPAGATION THROUGH THE LUNG PARENCHYMA

Figure 2. Computational mesh representing the test geometry

3.2. Fitting the dispersion curve

The next step consists in the fitting of the curve obtained by a Prony series using the Least–Squares method.
We adjust the coefficients (Ep, τp) in the expansion (2.2) using a nonlinear least–squares procedure as discussed
in [3]. Note that for the stability of the time–domain integration method, the coefficients τp and Ep should be
positive, and this must be incorporated as a constraint in the least–squares algorithm. To show the effect of
the number of terms in the Prony series approximation, the number n of relaxation mechanisms is varied by 1,
2, 5 and 9 and the best results are shown in Figure 4 for the first coefficient Ghom1111 . The choice of the number
of relaxation modes is important. We have seen that each additional relaxation mode increases significantly
the number of degrees of freedom involved for solving the homogenized problem (1.21) in the time domain and
hence the associated memory cost, since we need 5 + 3n degrees of freedom in 2D and 9 + 6n in 3D for each
grid point in the mesh. Hence, it is highly desirable to keep the number of relaxation modes as low as possible
to ensure both reasonable memory costs and an acceptable error level. To achieve this, it is best not to preset
the relaxation times τp, as proposed in [33], but to optimize their distribution.

The frequency range considered covers 8 orders of magnitude, and we see that 9 relaxation mechanisms
are necessary to capture precisely the behavior of the homogenized material. Note that above this number,
the residual error levels off. For practical purposes, it may be necessary to reduce the frequency range of
the optimization procedure and hence the number of relaxation frequencies to avoid using excessive computer
memory.

While a good fit can be obtained by a simple Least–Square approach, our experiences shows that the results
depend considerably on the chosen initial distribution of relaxation times. To show the effect of the initial
distribution, we have computed the Least–Squares fit obtained for 500 initial random distributions of relaxation
times for values of n between 0 and 15. The results are shown in Figure 4. In particular, it appears that the
best possible fit can be obtained with n = 9. Using more relaxation mechanisms makes it easier to find the
correct fit but does not increase the precision of the method.

Remark 3.3. It may be interesting, in order to obtain a fully automated computational method, to use more
advanced fitting techniques. For example, genetic algorithms have been proposed in v.g. [8], as well as hybrid
particle swarm–least squares optimization in [17], for the similar problem of fitting the frequency–dependent
permittivity of a dielectric material to a Debye series.
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Ĝh
om

11
11

 (
in

 P
a
)

real part

imaginary part

100 101 102 103 104 105 106 107

frequency (in Hz)

10-3

10-2

10-1

100

lo
ss

fa
ct

o
r

100 101 102 103 104 105 106 107

frequency (in Hz)

101

102

103

104

105

106

107

Ĝh
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Figure 3. The three nonzero complex coefficients of the viscoelastic homogenized tensor (in
Pa) as a function of frequency (in Hz) obtained by the formula (1.17). On the left we plot the
real and imaginary parts, and on the right the loss factor which is the quotient of the imaginary
over the real part of the coefficient.
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Figure 4. Effect of the number of fitting terms.

3.3. Wave propagation computations

Finally, we have implemented the Discontinuous Galerkin numerical scheme for the time–dependent homog-
enized problem (1.21) described in Sections 2.3 and 2.4. To probe the frequency–dependent attenuation of the
homogenized material, we have computed the propagation of a two–dimensional pulse in the disk–shaped domain
at various frequencies. We introduce a small volumic source at the center of the disk by setting f = s(t)e−|x|

2/δ2

x,
where δ is a small parameter and s(t) is a Ricker function given by s(t) =

(
1− (ω0t− β)

2
)

exp
(
(ω0t− β)2

)
with β = 3 as a phase delay parameter and ω0 the dominant frequency of the pulse. Initial conditions for
the system are v = 0 and e, e1, . . . , en = 0. We compare the behavior of the viscoelastic medium obtained by
homogenization, and approximated by the Prony series, to that of a purely elastic medium presenting the same
instantaneous elastic coefficients at the chosen frequency.
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t = .15 s t = .28 s t = .4 s

(a) Propagation in the viscoelastic homogenized medium with coefficients as in Figure 3.

t = .15 s t = .28 s t = .4 s

(b) Propagation in a purely elastic reference medium with the same elastic coefficients
at frequency 10 Hz.

Figure 5. Instantaneous snapshots of the propagation of a wave of frequency 10 Hz as de-
scribed in Section 3.3. The plots present the first component of the velocity at three different
instants. The same color scale is used for all six snapshots.

Figure 5 shows three wavefield snapshots at increasing times of the simulation for ω0 = 10 Hz, which
corresponds to a low–frequency regime. There is a slight decrease in amplitude in the viscoelastic medium
compared to the purely elastic medium, due to absorption, but the signal is shown to propagate without
significant distortion.

Figure 6 also shows three snapshots at increasing times of the simulation for ω0 = 2000 Hz, which corresponds
to a mid–frequency regime. Now there is a significant difference in the wave propagation in the homogenized
medium compared to the reference elastic medium. In the former, the higher frequency content of the pulse
is dissipated almost immediately, leading to a drop in amplitude of the signal by a factor of 200 after just a
few wavelengths. In this range of frequencies, the homogenized medium does not propagate the signal which
is absorbed extremely quickly. We note also that the behavior is markedly anisotropic in both the viscoelastic
and elastic media.

3.4. Orthotropic and isotropic behavior

An important observation is that the homogenized behavior is highly anisotropic at higher frequencies, with
waves propagating almost exclusively along the axis OX and OY . This results from the symmetry properties
of the square periodicity cell, which ensure that the homogenized material is orthotropic, but not necessarily
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color scale upscaled by 200 color scale upscaled by 200

t = .6 ms t = 1.4 ms t = 2 ms

(a) Propagation in the viscoelastic homogenized medium with coefficients as in Figure 3.

t = .6 ms t = 1.4 ms t = 2 ms

(b) Propagation in a purely elastic reference medium with the same elastic coefficients
at 2000 Hz.

Figure 6. Instantaneous snapshots of the propagation of a wave of frequency 2000 Hz as
described in Section 3.3. The plots present the first component of the velocity at three different
instants. In the two last frames of the first row, the color scale for the velocity has been upscaled
by a factor of 200.

invariant with respect to rotations. Hence, this is an artefact of the periodicity we have imposed on the material,
whereas the real parenchyma does not have preferred directions for sound propagation.

To recover a more realistic isotropic behavior, several options are possible. In 2D, we can recover isotropic
behavior by using a hexagonal periodicity cell instead of a square cell. However, this results from a very
particular choice of microstructure model, and there is no equivalent result in 3D. In [27], the homogenized
coefficients were averaged directly under an assumption of macroscopic isotropy of the homogenized material,
while in [34], the authors used experimental values of Young’s modulus and Poisson’s ratio for the elastic part
of their homogenized parenchyma model.

We show here the effect of introducing random rotations inside each element of the discretization, mimicking
the random arrangement of the alveoli in the real tissue. This has the effect of a global numerical averaging of
the preferred directions of the homogenized material as the preferred axis now have a random orientation inside
each element. The results are shown in Figure 7. Although a significant scattering of the wavefield is induced
by the randomness of the media, we observe that the behavior is now isotropic, and the signal propagates with
no preferred direction. Moreover, note that the artificial randomness does not induce much more dissipation
than in the reference homogenized case.
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(a) Propagation in the anistropic homogenized medium.

color scale upscaled by 50 color scale upscaled by 100

t = .6 ms t = 1.4 ms t = 2 ms

(b) Propagation in the same homogenized medium with random local rotations of the
reference frame.

Figure 7. Instantaneous snapshots of the propagation of a wave of frequency 2000 Hz with
and without local random rotations of the reference frame as described in Section 3.3. The
plots present the magnitude of the velocity at three different instants. The color scale for the
velocity has been upscaled by a factor of 50 and 100 respectively in the two frames to the right.

Conclusion

We have presented a homogenized model for viscoelastic porous media such as the lung. This model has
enabled us to investigate theoretically and numerically some macroscopic properties of the tissue resulting from
the alveolar structure at the microscopic level. The resulting homogenized material has a viscoelastic behavior
with new memory effects which have been discussed in detail. Numerical results in 2D show that the material
has a band–pass filter behavior. This is in line with recent physiological observations [31], which is interesting
given the serious simplifications our model is based on.

Subsequently, a new Discontinuous Galerkin method was developed to deal with the specific numerical issues
associated with the presence of the memory effects. We have shown the effectiveness and robustness of this
method in 2D wave propagation simulations.



24 MULTISCALE MODELLING OF SOUND PROPAGATION THROUGH THE LUNG PARENCHYMA

References

[1] G. Allaire. Homogenization and two–scale convergence. SIAM J. Math. Anal., 23(6):1482–1518, 1992.
[2] L. Baffico, C. Grandmont, Y. Maday, and A. Osses. Homogenization of elastic media with gaseous inclusions. Multiscale Model.

Simul., 7(1):432–465, 2008.
[3] M. Baumgaertel and H. H. Winter. Determination of discrete relaxation and retardation time spectra from dynamic mechanical

data. Rheologica Acta, 28:511–519, 1989.
[4] A. Blasselle and G. Griso. Mechanical modeling of the skin. Asymptotic Analysis, 74(3):167–198, January 2011.
[5] S. Boyaval. Reduced–basis approach for homogenization beyond the periodic setting. Multiscale Modeling & Simulation,

7(1):466–494, 2008.
[6] R. Burridge and J. Keller. Biot’s poroelasticity equations by homogenization. In Macroscopic Properties of Disordered Media,

volume 154 of Lecture Notes in Physics, pages 51–57. Springer, 1982.
[7] J. P. Butler, J. L. Lehr, and J. M. Drazen. Longitudinal elastic wave propagation in pulmonary parenchyma. J. Appl. Phys.,

62(4):1349–1355, 1987.
[8] J. Clegg and M. P. Robinson. A genetic algorithm used to fit Debye functions to the dielectric properties of tissues. 2010 IEEE

Congress on Evolutionary Computation (CEC), pages 1–8, 2010.
[9] F. Dunn. Attenuation and speed of ultrasound in lung: Dependence upon frequency and inflation. J. Acoust. Soc. Am.,

80:1248–1250, 1986.
[10] M. Fang, R. P. Gilbert, and X. Xie. Deriving the effective ultrasound equations for soft tissue interrogation. Comput. Math.

Appl., 49(7-8):1069–1080, 2005.
[11] R. P. Gilbert and A. Mikelić. Homogenizing the acoustic properties of the seabed. I. Nonlinear Anal., 40(1-8, Ser. A: Theory,

Methods):185–212, 2000.
[12] Q. Grimal, A. Watzky, and S. Naili. A one–dimensional model for the propagation of transient pressure waves through the

lung. Journal of Biomechanics, 35(8):1081–1089, 2002.
[13] A. Hanyga. Viscous dissipation and completely monotonic relaxation moduli. Rheologica Acta, 44:614–621, 2005.
[14] F. Hecht. FreeFem++ manual, 2012.
[15] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods, volume 54 of Texts in Applied Mathematics.

Springer, New York, 2008.
[16] A. Kanevsky, M. H. Carpenter, D. Gottlieb, and J. S. Hesthaven. Application of implicit-explicit high order Runge-Kutta

methods to discontinuous-Galerkin schemes. J. Comput. Phys., 225(2):1753–1781, 2007.
[17] D. F. Kelley, T. J. Destan, and R. J. Luebbers. Debye function expansions of complex permittivity using a hybrid particle

swarm-least squares optimization approach. Antennas and Propagation, IEEE Transactions on, 55(7):1999–2005, 2007.
[18] C. A. Kennedy and M. H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer.

Math., 44(1-2):139–181, 2003.
[19] A. Kloeckner. Hedge: Hybrid and Easy Discontinuous Galerkin Environment. http://www.cims.nyu.edu/~kloeckner/, 2010.
[20] S. S. Kraman. Speed of low-frequency sound through lungs of normal men. J. Appl. Phys., pages 1862–1867, 1983.
[21] R. J. LeVeque. Numerical methods for conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel,

1990.
[22] J.-L. Lions and E. Magenes. Problèmes aux limites non homogènes et applications. Vol. 1. Travaux et Recherches Mathéma-

tiques, No. 17. Dunod, Paris, 1968.
[23] M. Lourakis. levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++.

http://www.ics.forth.gr/~lourakis/levmar/, 2004.
[24] Y. Maday, N. Morcos, and T. Sayah. Reduced basis numerical homogenization for scalar elliptic equations with random

coefficients: application to blood micro-circulation. Submitted to SIAM J. Appl Math., 2012.
[25] N. Morcos. Modélisation mathématique et simulation de systèmes microvasculaires. PhD thesis, Université Pierre et Marie

Curie, June 2011.
[26] G. Nguetseng. A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal.,

20(3):608–623, 1989.
[27] M. R. Owen and M. A. Lewis. The mechanics of lung tissue under high-frequency ventilation. SIAM J. Appl. Math., 61(5):pp.

1731–1761, 2001.
[28] H. Pasterkamp, S. S. Kraman, and G. R. Wodicka. Respiratory sounds. advances beyond the stethoscope. American journal

of respiratory and critical care medicine, 156(3):974, 1997.
[29] D. A. Rice. Sound speed in pulmonary parenchyma. J. Appl. Physiol., 54(1):304–308, 1983.
[30] E. Roan and M. W. Waters. What do we know about mechanical strain in lung alveoli? Am. J. Physiol. Lung Cell Mol.

Physiol., 301(5):625–635, 2011.
[31] D. Rueter, H. P. Hauber, D Droeman, P. Zabel, and S. Uhlig. Low-frequency ultrasound permeates the human thorax and

lung: a novel approach to non-invasive monitoring. Ultraschall Med., 31(1):53–62, 2010.
[32] E. Sanchez-Palencia. Vibration of mixtures of solids and fluids. In Non-Homogeneous Media and Vibration Theory, volume

127 of Lecture Notes in Physics, pages 158–190. Springer, 1980.



MULTISCALE MODELLING OF SOUND PROPAGATION THROUGH THE LUNG PARENCHYMA 25

[33] R. A. Schapery. A simple collocation method for fitting viscoelastic models to experimental data. GALCIT SM, 63:23, 1961.
[34] M. Siklosi, O. E. Jensen, R. H. Tew, and A. Logg. Multiscale modeling of the acoustic properties of lung parenchyma. ESAIM:

Proc., 23:78–97, 2008.
[35] J. Sorvari and J. Hämäläinen. Time integration in linear viscoelasticity—a comparative study. Mechanics of Time-Dependent

Materials, 14:307–328, 2010.
[36] B. Suki, S. Ito, D. Stamenović, K. R. Lutchen, and E. P. Ingenito. Biomechanics of the lung parenchyma: critical roles of

collagen and mechanical forces. J. Appl. Physiol., 98(5):1892–1899, 2005.
[37] P. Suquet. Linear problems. In Enrique Sanchez-Palencia and André Zaoui, editors, Homogenization Techniques for Composite

Media, volume 272 of Lecture Notes in Physics, pages 209–230. Springer, 1987.
[38] L. Tartar. The general theory of homogenization, volume 7 of Lecture Notes of the Unione Matematica Italiana. Springer,

2009. A personalized introduction.
[39] Y.-M. Yi, S.-H. Park, and S.-K. Youn. Asymptotic homogenization of viscoelastic composites with periodic microstructures.

Internat. J. Solids Structures, 35(17):2039–2055, 1998.



26 MULTISCALE MODELLING OF SOUND PROPAGATION THROUGH THE LUNG PARENCHYMA

Appendix A. Proof of Proposition 1.1

In this Appendix, we give an idea of the proof of the well–posedness of the microscopic problem, Proposition
1.1.

Proof. The proof of this proposition employs classic tools, presented in [22] for example. Let us sketch the main
steps. First, we obtain uε as the solution of an auxiliary weak formulation without the pressure, obtained by
taking divergence–free test functions and following Galerkin’s method:

• Choose an orthonormal basis of Vinc
ε = {vε ∈ Vε : div vε = 0 a.e. in Ωε}, and define finite–dimensional

Galerkin spaces of approximation;
• Solve the ODE initial value problems obtained by reduction of the auxiliary weak formulation to the

finite–dimensional Galerkin spaces, in which existence and uniqueness hold,
• Bound the sequence of Galerkin approximations using energy estimates to obtain their weak convergence,
• Pass to the weak limit and prove that it satisfies the variational formulation (1.9) for any divergence–free

test function,
• Prove uniqueness by studying the difference between two solutions in the weak formulation.

In the end, we obtain uε ∈ L∞(0, T ;Vinc
ε )∩W1,∞(0, T ;Xε) as solution of the auxiliary variational formulation

which reflects (1.9) with only divergence–free test functions. To proceed in the homogenization process, it is
crucial to obtain a priori estimates with constants that do not depend on Ωε. Taking formally ∂tuε as a test
function in (1.9) (this can be rigorously justified by passing to the limit with the Galerkin approximations), we
obtain the following energy estimates:

1

2

d

dt

(∫
Ωε

ρs∂tuε · ∂tuε +

∫
Ω

E∞(x/ε)e(uε) : e(uε)

+
γpa

d|YF |εd
∑
k∈ZΩ

ε

(∫
∂Bk

ε

uε · nε

)(∫
∂Bk

ε

uε · nε

)
+

∫
Ωε

(∫ t

0

G(x/ε, t− τ)e(∂tuε(τ)) dτ

)
: e(∂tuε) =

∫
Ωε

f · ∂tuε.

We integrate in time and use Young’s inequality and the coerciveness and dissipativity conditions (1.7), (1.8).
Since the energy of the domain is zero at the initial time, we obtain a.e. t ∈ [0, T ]:

ρs‖∂tuε(t)‖2Xε
+ α‖e(uε(t))‖2L2(Ωε) ≤

∫ t

0

(
‖f‖2Xε

+ ‖∂tuε‖2Xε

)
.

It is well–known that in perforated domains such as Ωε, the Korn and Poincaré inequality holds with a constant
independent of ε (see for example [2, 11] ): there exist constants K and γ, depending only on Ω and YS , such
that for all vε ∈ Vε, we have

‖∇uε‖L2(Ωε) ≤ K‖e(uε)‖L2(Ωε), ‖uε‖Vε
≤ γ‖∇uε‖L2(Ωε).

Thus Gromwall’s inequality (in the integral form) yields the estimate,

‖∂tuε(t)‖2Xε
+ ‖uε(t)‖2Vε

≤ C
∫ T

0

‖f‖2Xε
, a.e. t ∈ [0, T ],

where C does not depend on ε. Finally, existence, uniqueness and an a priori estimate for the pressure pε are
obtained from (1.9), following the proof of Theorem 1 in [4]. �


