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Abstract 

 

A steady state model of a trickle bed reactor is developed for the consecutive hydrogenation of 

1,5,9-cyclododecatriene on a Pd/Al2O3 catalyst. Various experiments have shown that the 

selectivity of this reaction towards the product of interest is much lower in co-current down-flow 

(trickle-bed) than in up-flow. This is due to uneven liquid distribution and to partial wetting of 

the catalyst surface at low liquid flow rates.  

The non-isothermal heterogeneous model proposed here takes into account the partial wetting of 

the catalyst, as well as the resistances to heat and mass transfer at the gas-liquid, liquid-solid and 

solid-gas interfaces. It assumes that the catalyst particles can be divided into two distinct 

concentration zones corresponding to the wetted and dry catalyst surfaces; mass transfer between 

these two zones is described by a simplified diffusion mechanism.  

Compared to previous models assuming a uniform concentration of liquid-phase components 

inside the catalyst particles, this model improves the prediction of the outlet concentrations of 

hydrogenation products. 

 

Keywords: Trickle-bed reactor; selective hydrogenation; trickle-bed modelling. 

 

 

1. Introduction 

 

Fixed-bed reactors with down-flow of gas and liquid (trickle-bed reactors) have been extensively 

studied and widely used in industrial practice for many years. In recent works, the performance 

of such reactors was studied for various operating conditions and several models were proposed 

for the studied reactions. 

Three phase catalytic reactions are most often carried out in trickle-bed reactors despite 

poor thermal control, uneven liquid distribution and, at low liquid flow rate, partial wetting of the 

catalyst. This phenomenon of partial wetting may have positive effects on the reaction rate when 

gas liquid mass transfer is the major rate limitation. Nevertheless it reduces selectivity as far as 

consecutive reactions are concerned. 

Models accounting for partial wetting are generally oversimplified due to two major problems. 

The first one arises through the poor knowledge of wetting, only quantified by an overall external 

wetting efficiency of the catalytic bed, which determination is highly questionable and which 

does not describe local features at the particle level : are all the pellets equally partially wetted or 

on the contrary does this wetting efficiency corresponds to the number fraction of pellets 

completely wetted, the remaining pellets being completely dry? The second point concerns the 

coupling of reaction and mass transfer inside the catalyst pores where complete internal wetting 

by capillarity is generally assumed. In the case of partially wetted pellets, the unsymmetrical 

conditions at the catalyst surface should lead to multidimensional diffusion equations which are 
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rarely taken into account in the modelling. Simplified expressions of the effectiveness factor are 

usually used, accounting only for concentration gradients of the limiting reactant. Tan and Smith 

(1980) compared those approximate solutions (weighting factor models, as reported in 

Ramachandran and Smith (1979)) to rigorous results for slab geometry with two faces of equal 

areas covered at different reactant concentrations (wetting factor  = 0.5) and cubic particle with 

one or more faces covered by liquid. They concluded that those simplified expressions give 

reasonably good results for a simple first-order (gas-limited) reaction.  

However concerning complex reactions and selectivity analysis only few works have been 

dedicated to the effects of partial wetting, although in any reactor modelling selectivity provides 

a very sensitive tool, with which no fitting parameter can be adjusted and may lead to possible 

misunderstanding of actual features. 

For wetting efficiency determinations a pseudo effective 1D diffusivity has sometimes been 

identified from tracer analysis or effective reaction rates but most often reactor models keep 

diffusion unchanged. In other words no comprehensive statement of the liquid reagent behaviour 

under the dry surface of the catalyst has been addressed up to now. 

Vergel (1993) studied the selective hydrogenation of butadiene in trickle-bed and flooded-bed 

reactors. He noticed that the selectivity remains stable in up-flow in a wide range of fluid 

velocities, but decreases in the trickle-bed at low velocities. The author proposed that the flow 

conditions inside the down-flow reactor can be represented by two parallel plug flow reactors of 

equal volume, receiving different fractions of the liquid and gas flow rates but completely 

wetted. 

Rajashekharam et al. (1998) investigated the hydrogenation of 2,4-dinitroluene in a trickle-bed 

reactor. They combined the contributions of stagnant liquid covered as well as unwetted zones on 

the catalyst surface, but neglected liquid-solid and intraparticle mass-transfer resistances for the 

liquid-phase components. 

In this work the selective hydrogenation of 1,5,9-cyclododecatriene (CDT) to cyclododecene on 

a shell-type Pd/Al2O3 catalyst was investigated for being a complex and highly exothermic 

reaction of industrial interest. The consecutive hydrogenation steps result in the formation of the 

following products: CDD (cyclododecadiene), CDE (cyclododecene), and CDA (cyclododecane). 

Julcour et al. (2001) worked on the same reaction and same reactor as in the present study 

(diluted bed). The authors observed a poor heat transfer and a low selectivity in the down-flow 

mode. A classical model assuming a uniform catalyst wetting but including direct gas-solid mass 

transfer to the dry catalyst fraction was proposed. The concentration gradients of the liquid-phase 

components inside the catalyst were also neglected. This model could fit the overall conversion, 

but not the selectivity due to heterogeneities of liquid flow and partial wetting. 

Chaudhari et al. (2002) investigated the same reaction in a smaller bench-scale reactor. In their 

short and non-diluted trickle-bed, channeling of liquid flow being not significant, the model of 

Rajashekharam et al. (1998) satisfactorily described the behavior of the reactor. 

 

2. Experimental set-up 

 

The experimental set-up that was used is presented elsewhere: Julcour (1999) and Julcour et al. 

(2001).  

The reactor consists of a jacketed packed-bed column with an inner diameter of 0.026 m and a 

bed height of 1.2 m. The tube is filled with a mixture of 1/6 of catalyst pellets (0.5% Pd on 

alumina from Degussa) and 5/6 of inert alumina pellets of the same shape. The liquid reactant is 

also diluted, as previous experiments have shown that hot spots could not be avoided otherwise 

(Julcour, 1999): a 15 wt % solution of CDT in isododecane is used as feedstock. 

Before entering the reactor gas and liquid phases are mixed in an inert fixed bed in order to 

homogenize the temperature and to achieve gas-liquid equilibrium. 
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Five automatic valves commanded simultaneously by a switch are placed along the gas and 

liquid circuits in order to manage the fluid circulation mode (up- and down-flow). Seven 

temperature probes and six liquid sampling valves are located along the reactor in order to 

measure axial temperature and concentration profiles.  

The control of the reactor temperature is achieved by a fast flowing of thermal oil (Marlotherm) 

in the jacket at a nearly constant temperature.  

 

  
Liquid velocity 

(m/s) 
Gas velocity 

(m/s) 

Marlotherm 
temperature 

(°C) 

Hydrogen 
pressure 

 (bar) 

Exp 1 0.00068 0.015 120 4 

Exp 2 0.00068 0.080 120 4 

Exp 3 0.00068 0.035 120 4 

Exp 4 0.00098 0.035 120 4 

Table 1. Operating conditions. 

 

3. Modelling 

 

3.1. Model (I): Uniform catalyst wetting, and uniform concentrations in liquid-phase 

components inside the catalyst (classical model) 

 

First of all, the model used by Julcour et al. (2001) was applied. This model assumes that the 

surface of the catalyst pellet can be divided into two zones (fig. 1): a dry zone where the gaseous 

reactant is in direct contact with the catalyst, and a wetted zone where hydrogen is transferred 

through the liquid phase. The organic compounds are supplied to the catalyst though the wetted 

zone only. 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Classical model of a partially wetted particle. 

 

The assumptions of the model are the following ones: 

- gas and liquid are in plug flow; 

- gas and liquid are considered as a pseudo homogeneous fluid for the energy balance; 

- the liquid-phase reactant is non-volatile;  

- internal diffusion limitations (intraparticle resistance for H2) are taken into account 

through an apparent kinetics; 

- complete internal wetting is achieved due to capillary forces; 

- the catalyst temperature is uniform; 

- the contribution of stagnant liquid covered zones is negligible; 

- the liquid-phase reactant is in large excess with respect to the gaseous reactant so that 

concentration gradients of the liquid-phase components inside the catalyst may be 

ignored; 
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- severe intraparticle gradients are expected for H2 which is consumed within a very thin 

zone close to the catalyst surface; 

- the catalyst wetted fraction is the same for all pellets (fw). 

 

The equations of the model are : 

Mass balances 

 

• Liquid phase (plug flow) 

� Hydrocarbons (k) 

( ) ( )kS,kL,kLScw
kL,

CCkaf
z

F
0 −−

∂

∂
−=        (1) 

k = CDT,CDD, CDE, CDA 
 

� H2 

( ) ( ) ( )H2L,H2L,LH2Sw,H2L,H2LScw
H2L,

CCakCCkaf
z

F
0 −+−−

∂

∂
−= ∗    (2) 

 

• Catalytic phase 

� Hydrocarbons (k) 

( ) ( ) ( ) ( ) ( )( )SH2Sd,mS,di,wSH2Sw,mS,wi,w

i

ikBkS,kL,kLScw T,C,C'rf1T,C,C'rfCCkaf0 −+νρ+−= ∑

             (3) 

k = CDT, CDD, CDE, CDA          

m = {CDT, CDD, CDE} 
 

� H2 

- wetted part 

( ) ( ) ( )∑νρ+−=
i

wi,wiH2BH2Sw,H2L,H2LScw 'rfCCkaf0      (4) 

- dry part 

( ) ( ) ( ) ( )( )di,w

i

iH2BH2Sd,H2L,H2GScw 'rf1CCkaf-10 −νρ+−= ∑
∗     (5) 

 

Energy balances 

 

• Fluid phase (gas + liquid) 

( )( )
( ) ( )W1F

R

1w
FSFSc

F TT
V

Ah
TTha

z

Fh
0 −−−+

∂

∂
−=      (6) 

  

• Catalyst phase 

( ) ( )( )di,wwi,w

i

RiBFSFSc 'rf1'rfHTTha0 −+∆ρ−−−= ∑      (7) 

 

• Cooling oil (Marlotherm) 

( )( ) ( )MW1
an

12
M TT

V

Ah
Fh

z
0 −+

∂

∂
−=  ( ( ) ( )MW112W1F1w TTAhTTAh0 −−−= ) (8) 
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3.1.1 Model parameters  

 

Model (I) involves around 20 parameters representing complex kinetics, heat and mass transfer. 

The parameters of the apparent kinetics were identified form batch experiments carried out with 

the 3.1 mm diameter pellets.  

A Eley-Rideal model was selected:  

∑
=

+

=

α

3

1j

jj

Hjji

i

CK1

CCKk
'r

i

2      Parameters can be found in Julcour (1999).   (9) 

where i is the reaction number, and j is the component number ( j = 1: CDT, 2: CDD, 3: CDE). 

This model has been first assessed for up-flow mode, using a wetting efficiency equal to unity 

and empirical correlations established by Stüber (1995). It can conveniently predict the axial 

concentration and temperature profiles (cf. figure 2). 

Fig 2. Axial concentration profiles in up-flow mode. 

(P = 4 bars, TWall = 100°C, uLe = 0.53×10
-3

 m/s, uGe = 0.042 m/s). 

 

(where the relative molar fraction (or %) of CDT is given as the ratio of CDT concentration to 

the sum of CDT, CDD, CDE and CDA concentrations). 

 

In down-flow mode, coefficients kLa, kLS  for H2, kLS for hydrocarbons, kGS , hFS, and hw are 

calculated by correlations from the literature (Fukushima and Kusaka (1977), Tan and Smith 

(1982), Satterfield, Van Eek and Bliss (1978), Dwidedi and Upadhyay (1977), Whitaker (1972), 

Specchia and Baldi (1979)). 

Only the wetting efficiency (fw) has been used as a fitting parameter. 

In the investigated range of fluid velocities, the correlation of El-Hisnawi et al. (1982) gives a 

value around 0.7 for the catalyst wetting efficiency, but as shown in fig. 3, a small deviation in 

the estimation of this factor results in dramatically different predictions of the outlet 

concentrations. However, in the particular case investigated fig.3, this parameter fw was found to 

have a low influence on the concentration of CDE. In fact as severe hydrogen limitations are 

governing the reaction rates increasing the dry fraction accelerates similarly all reactions. In any 

case CDT concentration should decrease and CDA increase, but the behaviour of intermediates 

depends on the overall hydrogenation advancement.  
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As the same catalytic bed was used for many runs, a deactivation factor (deact) is also introduced 

in the model to correct the rate equations measured with fresh catalyst (r’i,actual = deact × r’i ). 

However the catalyst activity was found to decrease very steeply during the first runs after its 

loading and then only very gradually (Stüber, 1995). The four previous (consecutive) 

experiments were performed in the latter conditions, so that a constant deactivation factor could 

be used: deact = 0.85. 

 

Fig 3 . Influence of the catalyst wetting efficiency. 

 

 (where reaction advancement is calculated by: 
3

3.X2.XX CDACDECDD
 H2

++
=Ω , while 

selectivity S is defined as the ratio the considered product to the sum of all the reaction products 

(CDD, CDE, CDA)). 

 

3.1.2. Results 

Based on the following criteria: ( )2

∑ −=
i

iCiE XXC  (i = CDT, CDD, CDE, CDA), values of the 

wetting efficiency were identified for the four experiments: 

 

  fw Criteria 

Exp 1 0,7 0,0325 

Exp 2 0,55 0,0068 

Exp 3 0,7 0,0349 

Exp 4 0,7 0,0318 

Table 2. Identified values for wetting efficiency. 

 

The catalyst wetting efficiency is approximately 0.7, as expected by the correlation of El-

Hisnawi. Nevertheless, in the case of high gas flow rate, predictions can meet experimental 

hydrogenation rates only for a lower value. This can be explained by the fact that the correlation 

for fw does not account for gas flow rate variations.  

Even though the model can predict the overall hydrogenation rate, it can never fit the selectivity 

values for CDE (see fig. 4). One reason may be that the model assumes the hydrocarbon 

concentrations inside the catalyst pellets to be uniform. In fact, it seems obvious that the 

concentrations of the liquid-phase components are not the same everywhere inside the catalyst 

because hydrogen transfer is greater to the dry surface than to the wetted surface and a diluted 

reactant is used. This can have in return some effects on the reaction rates, especially when a zero 

order with respect to hydrocarbons is not still verified. 
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It is then necessary to differentiate inside the catalyst particle two concentration zones for 

hydrocarbons corresponding respectively to the wetted and dry surfaces. 

Moreover in model (I) the wetting efficiency is supposed to be the same for all the pellets, while 

in fact channeling of liquid flow has every chance to occur in this long reactor at low liquid 

velocities, leading to an heterogeneity of the wetting at the bed scale.  

 

        

 

   

 

 

 

 

 

 

 

 

 

 

 

Fig 4. Distribution of products obtained experimentally and predicted by model (I). 

 

 

3.2 Model (II): Reactor split into two portions operating in parallel under different flow 

conditions  

 

To account for wetting heterogeneitites at the reactor scale, a very simple model was derived 

from model (I), assuming the reactor to be a linear combination of two reactors working in 

parallel under different wetting conditions: one (volume fraction k) in which the catalyst is 

totally wetted (wetting efficiency = 1) and the other one (volume fraction (1- k)) in which the 

wetting efficiency value is ranging between 0.5 and 0.8. 

After a trial and error procedure, the following results have been obtained, showing that model 

(II) predictions can be closer to experimental data, especially when regarding the outlet 

concentration of the final product CDA. This is due to lower values of the wetting efficiency 

used in the partially wetted section: in this part, the reaction proceeds quickly leading to 

complete hydrogenation. However the gaps for CDD and CDE are still significant (fig. 5). 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Results of the model with two parallel reactors. 
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3.3 Model (III): Uniform catalyst wetting, concentration heterogeneities in the particle for 

liquid-phase compounds 

 

As the previous models could not predict the selectivity values, a new model was derived to 

improve the description of the catalyst scale phenomena under partial wetting conditions. 

As the first model, model (III) assumes that the external wetted fraction is the same for all the 

pellets, but it accounts for concentration heterogeneities of the liquid-phase components inside 

the catalyst: each particle is divided into two distinct concentration zones corresponding 

respectively to the wetted and dry catalyst surfaces (see fig. 6). 

 

Hydrocarbons are supplied to the catalyst through the wetted surface only, while hydrogen passes 

both through the liquid phase and directly at the dry surface. 

Mass transfer between these two zones is described by a simplified diffusion mechanism, using 

arbitrarily the dry surface as a reference: 

( ) ( )iSdiSw
cd

Li
cwi CC

L
DafF ,,1 −−=   for i = CDT, CDD, CDE, CDA, H2 

where Lcd is the diffusional characteristic length. 

These considerations lead to modify equations (3), (4) and (5): two zones (wetted and dry) and 

thus two sets of concentration are now considered for hydrocarbons and the exchange term 

between the two zones is also added. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. New model involving different hydrocarbon concentrations in the two zones  

(wetted and dry). 

 

3.3.1 Influence of model parameters 

 

This model involves one more parameter than model (I): the diffusion characteristic length Lcd. 

As in model (I), the wetting factor has a significant effect on the overall hydrogenation rate and 

on the selectivity.  

The increase of the diffusional characteristic length reduces the reaction rate because it reduces 

the hydrocarbon fluxes towards the catalyst dry zone. This parameter has thus a major effect on 

selectivity (fig. 7). 
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Fig. 7. Influence of the diffusional characteristic length on the product distribution. 

 

3.3.2 Optimal parameters 

 

Table 3 shows the optimised values of the wetting efficiency and diffusional characteristic length 

for the new model. 

 

  fw Lcd (mm) Criteria 

Exp 1 0,65 1,16 0,0078 

Exp 2 0,55 0,44 0,0034 

Exp 3 0,6 0,96 0,0044 

Exp 4 0,65 1,20 0,0038 

Table 3. Optimised values for wetting efficiency and diffusional characteristic length. 

 

As expected, the wetting efficiency was found to increase with the liquid flow rate, and less 

obviously to decrease with the gas flow rate. Its order of magnitude is near to the one predicted 

by the correlation of El-Hisnawi.  

For a constant liquid velocity, the diffusional characteristic length decreases when the gas flow 

rate increases. An increase of the gas flow rate should result in a better spreading of the liquid at 

the catalyst surface so that the catalyst dry fraction would not correspond to a single region, but 

to several ones. The real exchange surface between dry and wetted zones increasing, this leads in 

the model to a decrease of the diffusional characteristic length.   

On the other hand increasing the liquid flow rate would result in less dry zones then in higher 

diffusional characteristic length.   

 

3.3.3 Results 

 

This model predicts the molar fractions of CDE and CDA correctly, but there are still small 

differences for CDT and CDD. Nevertheless, this model predictions are very close to the 

experimental values (fig. 8). 
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Fig. 8. Distribution of the products predicted by the model (III) and obtained by experiments. 

 

 

4 Comparison of the different models 

 

The following graphs (fig. 9) compare the different models for each experiment. The model with 

two parallel reactors always predicts the fraction of CDT and CDA at the outlet of the reactor 

correctly, but model (III) fits the experimental results more precisely. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Distribution of products predicted by the three models and obtained experimentally. 
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Notation 

A1 =  inner wall reactor surface, m
2
 

ac  = catalyst external area per reactor volume unit, 1/m 

C  = concentration, mol/m
3
  

C
*

L,H2 = hydrogen solubility concentration, mol/m
3 

DLi  = liquid diffusion coefficient of  compound i, m
2
/s 

F  = molar flow per surface unit, mol/(s.m
2
) 

Fh = enthapy flux per surface unit, W/m
2
 

fw  = external wetting efficiency 

hFS  = fluid to solid heat transfer coefficient, W/(m
2
.K) 

hw  = bed to wall heat transfer coefficient, W/(m
2
.K) 

kGS  = gas-solid mass transfer coefficient, m/s 

kLa  = gas-liquid volumetric mass transfer coefficient, s
-1

 

kLS  = liquid-solid mass transfer coefficient, m/s 

Lcd = diffusional characteristic length, m 

i'r  = apparent reaction rate per catalyst weight, mol/(s.kg) 

S = selectivity 

T = temperature, °K 

VR = reactor volume, m
3
  

X = molar fraction (based on the sum of the four hydrocarbons: CDT, CDD, CDE, CDA) 

 z  =  reactor length, m  

∆HR  = heat of reaction, J/mol 

ρB  = density of catalyst bed, kg/m
3
 

ν  = stoichiometric coefficient 

ΩH2    = overall hydrogenation advancement 

 

Subscripts and abbreviations: 

C = calculated; d = dry; E = experimental; F = fluid; G = gas; L = liquid; M = Marlotherm; S = 

solid; W = wetted; W1= inner reactor wall. 
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