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ABSTRACT 

The paper considers a Direct Method for the evaluation of the maximum load corresponding 

to pre-assigned limits on the nonlinear behaviour of the matrix and fibres in a laminate 

structure. This is achieved by combining a consistent micro-macro model for linear behaviour 

with an extension of the Linear Matching Method (LMM), previously extensively applied to 

Direct Methods in plasticity. The method is developed with assumptions that allow the 

methodology to be displayed in its simplest form. Applications to examples of laminate 

elements and a laminate plate containing a hole are described, assuming a matrix with a limit 

on ductility. 

Keywords: Composite materials; Micromechanics, Limit analysis; Linear Matching Method. 

 

1. Introduction 
 

This paper is concerned with methods for assessing the load bearing capacity of composite 

laminate structures, corresponding to appropriately defined micro failure criteria.  The 

conventional approach to the assessment of the maximum load on a structure first requires the 

formulation of constitutive equations for a material element, incorporating an understanding 

of deformation and failure modes within the composite microstructure. This is then followed 
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by a conventional step by step analysis to failure. The relationship between the critical micro 

structural failure mechanism and the allowable maximum load is understood through the 

structure of the constitutive relationships and detail can become lost. The work of this paper 

falls within the general field of Direct Methods [1], by which we mean computational or 

analytic methods that allow the direct evaluation of the load or load range corresponding to a 

pre assigned material or design constraint, such as a yield condition or a critical strain. In the 

case of laminates such Direct Methods may be applied to a constitutive model (see [22, 23]) 

although the behaviour of laminates may not be well described by elastic-perfect plasticity. 

Here we explore the possibility of developing a method whereby the maximum permissible 

load may be related directly to a particular strain condition or failure mode at any point in the 

structure, in any layer of the laminate and at any point in the microstructure, taking into 

account nonlinear behaviour of the composite material constituents. Such a proposal requires 

a degree of complexity which we wish to avoid in this first attempt.  We combine a 

kinematically consistent micromechanics model with significant elements of classical 

laminate theory [25] and a simple description of micro failure.   This first step then allows the 

methodology of such a Direct Method to be displayed in its simplest form.  

The history of the development of laminate failure criteria is well known. Since the work of 

Hill [2,3] and Tsai-Wu [4] a range of empirical and micromechanical failure criteria have 

been proposed which mathematically combine lamina mechanical properties into an assumed 

homogeneous laminate to attain idealized uniform strength and stiffness throughout the 

structure.  Failure theories, based on a micromechanics approach, were first developed by 

Hashin and Rotem [5,6]. Their method can be viewed as a macro approach based on micro 

mechanical issues that consider a failure criterion on the basis of observed failure modes. 

Another step forward was made by Chang, Scott and Springer [7, 8] by introducing other 

possibilities of failure: matrix cracking, fibre-matrix interface shearing, fibre breakage and 
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material property degradation. Other researchers [9-13] treated the failure of the matrix and of 

the fibre separately, making some simplified assumptions. These authors employ a Mohr-

Coulomb yield criterion for the matrix and assume that final failure is determined by the 

failure of the fibres.  Mayes and Hansen [14] introduced a theory in which micro-level 

stresses, evaluated considering constitutive behaviour of the components, are applied to 

different failure theories for both the fibres and matrix. This approach includes the effect of 

changes in the constitutive properties of the components. For instance, similar methods were 

used to predict non linear stress-strain relations and failure modes for metal and polymeric 

matrix composites. Since then a number of developments have taken place and the subject 

remains one of active research. It should be emphasised that the work in this paper is not 

concerned with the micromechanics of failure, rather the development of the structure of 

computational method that is capable of taking such micro failure mechanisms into account 

and directly relating them to the maximum load bearing capacity of a structure. Keeping in 

mind the needs to first display a simple theory, we restrict attention to non-linear behaviour of 

a ductile matrix, assuming failure occurs at a critical micro strain. This is described in detail 

in Section (3). To develop a complete method, capable of comparison with experimental data, 

it is necessary to incorporate into the theoretical structure described here a set of possible 

failure modes of both matrix and fibres and this awaits further development.  This is discussed 

further in the conclusions. 

The Linear Matching Method (LMM), the method applied here,  consists, essentially, of a 

programming method that allows a direct evaluation of the load corresponding to predefined 

kinematic restraints [15-21], following an iterative process.  The primary area of application 

has been the evaluation of limits appropriate for metallic structures subjected to severe 

thermo-mechanical loads. Methods have been developed for the life assessment of power 

plant at high temperature  and an entire set of such methods now form part of the UK Life 
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Assessment Method  R5 [17,18 ]. The work in this paper is a first attempt to develop an 

appropriate method of this type for composite materials.  

The elements are as follows. A structure is subjected to a load distribution iFλ where iF  is a 

chosen load distribution on FS  , part of the surface S , and λ  is a scalar multiplier. The 

objective of the method is to evaluate the value of λ  so that the strain field in the 

microstructure corresponds to a prescribed design condition, while all other conditions of the 

continuum problem are satisfied: equilibrium, compatibility and consistency with the material 

behaviour.  LMM is applicable to material behaviour where a convex strain potential exists, 

implying that a deformation theory of inelastic behaviour must be adopted.   A summary of 

the theoretical basis of the method, as required for this application, is given in the Appendix. 

For the case discussed here, the material behaviour is assumed to be either linearly elastic or 

elastic perfectly plastic, without unloading. The method is an iterative process where each 

iteration contains four stages. The process begins with the generation of a kinematically 

admissible strain field, conventionally by solving a linearly elastic problem for an arbitraryλ . 

This strain field is then scaled so that the design constraint is satisfied. The process then 

consists of the following stages; 

Stage1: A matching linear material is defined by choosing linear moduli (which are spatially 

varying) so that the linear material and the actual material give the same stress state for this 

initial strain field. The solution of the resulting linear problem produces a new strain field 

which reduced the potential energy of the structure. This is discussed in detail in the 

Appendix. 

Stage 2: The new strain field will generally not satisfy the design constraint and is scaled by a 

factor, to ensure that the design constraint is re-imposed. 
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Stage 3: The load parameter λ  is now changed so that the potential energy is a minimum for 

the new scaled strain field, amongst all such scaled strain fields. 

Stage 4: a lower static load factor is calculated that measures the degree of deviation of the 

equilibrium stress field in the linear solution from the actual material behaviour. The 

difference between the load factors evaluated in Stage 3 and Stage 4 indicates the deviation 

from convergence. 

For the material assumptions adopted here, the specific form of this process is discussed in 

detail in the following sections. A consistent relationship between stresses and strains in 

microstructure (i.e. the fibres and the matrix) and the ply stresses and strains is described. 

This allows the design constraint to be assigned to the properties of the materials of the 

microstructure. Conventional laminate theory then relates the ply stresses to those of the 

laminate. Although in this application no softening behaviour is allowed, in a recent study 

such methods have been applied to portal frames with softening elements, with the objective 

of evaluating the maximum loads associated with differing design limits [20, 21]. Hence the 

method described here is the first step towards evaluation of a maximum load where softening 

effects occur in the microstructure. Such possibilities are discussed further in the Conclusions. 

The outline of the paper is as follows. The constitutive assumptions of the interaction between 

the fibre and matrix are discussed in Section 2 and a simplified scheme of the failure modes 

for continuous fibre composite is reported. In Section 3 the micromechanics model for the 

evaluation of the stress and the strain at the micro level is presented. Section 4 concerns the 

application of the LMM for the evaluation of the peak load where a design failure criteria 

associated with the fibres and the matrix are taken into account. Numerical applications are 

reported in Section 5, followed by Conclusions in Section 6.  

 



  

6 
 

2. Constitutive assumptions of matrix and fibre 
 

 Perfect adhesion between fibre and interface is assumed. Interfacial damage (in 

particular, debonding) and fibre buckling are neglected.  We concentrate on two possible 

failure modes, cracking or strain exhaustion within the matrix, characterised by a maximum 

effective strain, and the failure of the fibres. The methodology is, however, capable of 

incorporating a much wider range of possible local failure modes. The local constitutive 

models for the matrix and fibres are illustrated in Figure 1 and described in the following. 

2.1Fibre: elastic-brittle behaviour 

 In the following the superscripts f and m refer to the fibres and the matrix in a layer 

of a unidirectional composite laminate. The 1 direction is in the direction of the fibre. The 

fibre reinforcement is considered to be longitudinally continuous, isotropic, elastic and 

perfectly brittle, with tensile behaviour limited by a maximum principal strain failure 

criterion. The fibre fails when the maximum longitudinal strain reaches a critical value, i.e.  

   *
1 f
fc

f εεε ≤≤−                              (1) 
 
where f

1ε  denotes the axial strain in the fibre. c
fε and *

fε denote failure values in compression 
and tension. 
 
2.2 Matrix: non linear behaviour. 
 
 We concentrate on non-linear properties appropriate for epoxy resins. For simplicity 

we ignore the pressure dependence of the yield condition and assume that the matrix satisfies 

a von Mises yield criterion.  Hence, the matrix failure depends on the deviatoric stress and is 

independent of the applied hydrostatic (or mean) stress.  The material is assumed to be elastic-

perfectly-plastic with uniaxial yield stress Yσ  and satisfies the von Mises yield condition:  

0)()( =−′= Y
m

ijijf σσσσ ,    where ij
m

h
m
ij

m

ij δσσσ −='  and  m
kk

m
h σσ

3
1=   (2) 
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where m
ijσ ′ is the deviatoric component of stress and  

m

ij

m

ij
m

ij
''

2
3

)( σσσσ =′  is the von Mises 

effective stress .  Plastic strains at yield are given by the Prandl-Reuss associated flow rule: 

     m
ij

pm
ij σαε ′= ��  and  0=pm

kkε�      (3a) 
 
where α� denotes a scalar multiplier.  We assume a deformation theory where total plastic 

strain is obtained at constant stress at yield; 

  
m

ij
pm

ij σαε ′=         (3b) 

The total strain tensor may be written as the sum of a deviatoric part 
m

ij
'ε  and a volumetric 

part m
kkε : 

   pm
ij

m

ij
m

m
ij G

εσε +=′ '

2
1   ,     

m

m
kkm

kk K
σε =  and   ij

m
kk

m

ij
m
ij δεεε += '     (4)      

 
where mG is the elastic shear modulus of the matrix and mK is the elastic bulk modulus. 

Hence the effective strain of the matrix ( ) m

ij

m

ij
m

ij
''

3
2 εεεε =′  is related to the effective stress, 

by,
     

σαε ��
�

�
��
�

�
+= 2

1
3
1

mG
       (5) 

Note that for a known α  the non-linear behaviour of the matrix may be represented by a 

linear relationship; 

   
σε

mG
~

3
1=   , α2

1
~
1 +=

mm GG
     (6) 

 with a spatially varying shear modulus mG
~

and a constant elastic bulk modulus mK . This 

form provides the basis of the application of the LMM in this case. 

 
3. The Micromechanics model 

 In the application of the LMM only linear analysis is required where  mG
~

 (and 

associated Young’s modulus mE
~

) replaces the non-linear properties of the matrix. In classical 
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theory, the relationships for overall linear ply properties are given by the Halphen-Tsai [24] 

equations in terms of the elastic properties of the fibres and matrix. These semi empirical 

relationships provide a close fit to both experimental data and the predictions of  Eshelby 

theory, [24,25]. However they do not correspond to a consistent micromechanical model; it is 

not possible to find a consistent set of relations that allow the behaviour at the micro level to 

be evaluated from behaviour of the ply. As a result we adopt a simpler and less exact model, 

consistent with a set of micro mechanical assumptions. This allows the evaluation of 

micromechanical properties from macro properties and vice versa.  

 In the following, as before, quantities with a superscript, either f or m, refer to values 

in the fibre and matrix. Quantities with no such superscript refer to ply quantities. Consider 

the behaviour of a single ply, where the direction 1 corresponds to the direction of the fibres 

and 2 is in the plane of the ply. The most prominent assumptions are: fibre and matrix are 

uniformly distributed through the thickness of the ply and the ply is in a plane stress 

condition; strains in the fibre direction are the same in the fibres and in the matrix. Moreover, 

the same transverse stress, 2σ , and shearing stresses, 12τ , are assumed to be applied to both 

the fibre and the matrix so that equilibrium of adjacent elements in the composite material 

must occur.  

These assumptions are summarized as follow:  

         fm
111 εεε == ,    fm

222 σσσ == ,   fm
121212 τττ ==     (7) 

     
By considering  Eqs. (7), standard arguments lead to the well-know relationships for ply  
 
elastic properties [25] as follows: 

 ( ) mfff EVVEE −+= 11  ,    
( ) 1

2

1
−

�
�
�

	





�

� −
+=

m

f

f

f

E

V

E

V
E     (8) 
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−

�
�
�

	





�
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+=
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f

f

f
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21
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12
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where fV  denotes the fibre volume fraction and ν  denotes Poisson’s ratio. Hence for ply 
stresses and strains, 
 

 { }2211
2112

1
1 1

ενε
νν

σ +
−

=
E

,   { }1122
2112

2
2 1

ενε
νν

σ +
−

=
E

   (9) 

 
Assuming  Eqs. (7), the strain m

1ε  in the matrix can be written as follows: 
 

 ( ) ( )2121111
11 σνσσνσεεε m

m

m

m
m

m

m

fm

EE
−=−=== .    (10)            

       
Hence, from (10):   
 
 211 σνεσ mm

m E += .                               (11) 
 
The same consideration can be done for the strain 2ε : 
 

 ( )m
m

m

m

m

E 122
1 σνσε −=                             (12) 

 
Substituting (11) into Eq. (12) and considering the assumption Eq. (7), relation (12) can be 
written as follows: 

  
( )

12

2

2

1 ενσνε m
m

mm

E
−

−
=                             (13) 

 
For m

12γ , considering the hypothesis of Eq. (7), the following is true: 

 

  1212
1 τγ

m

m

G
=                      (14) 

 
The same consideration may be applied to the fibres. The stress and strain in the matrix and 

fibres in terms of the ply stresses and strains are summarized in Table 1. 

 The equations in Table 1 allow the evaluation of stresses and strains in the fibres and 

matrix from the ply stresses and strains by assumptions that are consistent with the  evaluation 

of  ply elastic properties from those of the constituent parts, equations (9). These relationships 

are only valid for linear constitutive behaviour. The remainder of the laminate analysis 

follows classical laminate analysis, where the linear relationships for each ply are transformed 

onto a common set of axes and incorporated into the laminate kinematic conditions (see, for 
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example Hull and Clyne [25]). Hence the primary analysis procedure is identical to 

procedures already incorporated into commercial FE systems (in the case of the results of this 

paper, into ADINA). This is a common and important property of all LMM procedures. 

STRESS IN MATRIX STRESS IN FIBRE 
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�
�
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 Table.1 Stress-strain relations in fibre and matrix. 
 
4. Linear Matching Method (LMM) for the evaluation of the peak load 
 

The LMM consists of the evaluation a sequence of linear solutions with a spatially varying 

shear modulus mG
~

 in the matrix. At each iteration, kinematic and static bounds to the load 

parameter λ  are evaluated which become equal at convergence. In summary, the matching 

process is shown in Figure  (2) for the matrix material behaviour in Figure (1a).  At each 

iteration, the modulus 1~ +k
mG  is evaluated so that the current computed matrix stresses k

mσµ  are 

brought onto the yield surface at a fixed scaled strain distribution k
mµε  (Fig. 2). The scaling 

factor µ  is chosen so that the design criterion is satisfied at the micro scale. The ply and 

laminate properties are then computed at each point of the body of volume V, in practice at 

each Gauss point (GP) of each finite element (FE) of the discretized domain V.  

4.1 Iterative procedure 

The iterative process begins with an initial arbitrary value of the load iF0λ  and linear elastic 

material properties. A sequence of linear analyses is then conducted where the fibres retain 
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their elastic properties but the matrix shear modulus k
mG

~
is iteratively changed. There are three 

aspects to this process: the scaling of the current strain solution so that the design criterion is 

satisfied; the evaluation of a new load parameter and the determination of a new shear 

modulus 1~ +k
mG  distribution. These are discussed in turn in the following. 

 

 

 

 

 

 

Figure 1 Constitutive properties of the matrix and fibres. 

4.2 The Scaling Factor µ  

The objective is to evaluate the maximum load without failure on the micro scale so that, in 

the matrix, *
mεε ≤  and in the fibres *

f
fc

f εεε ≤≤−   throughout the structure. These 

conditions are regarded as design criteria. Hence for the current kth solution, for which the 

strain values fk
1ε  and mkε that do not generally satisfy the design restrictions, scaling factors 

mµ and fµ  may be defined as follows so that the scaled strain fields satisfy each of the 

 

 

 

 

 

conditions: 

k
mσµ

 

σ
 

1~
3 +k

mG
 k

mε
 

mε
 k

mεµ
 

k
mσ

 

Figure 2 Definition of matching linear modulus for the matrix 
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 ( )ε
ε

µ
max

*
m

m =     ,              ( )f
f

f
1

*
*

max ε

ε
µ =      and      ( )f

c
fc

f
1min ε

ε
µ =          (15) 

 
where the maximum and minimum are evaluated over all plies, and a value only accepted if it 

is positive. The choice of µ  as the minimum of mµ , 
*
fµ  and c

fµ  ensures the design condition 

is satisfied.  In the numerical examples only yielding of the matrix is observed, hence the 

scaling parameter mµµ = .  

4.3 Evaluation of the Load Parameter λ   

Corresponding to this scaled solution, a corresponding load is evaluated by the following 

kinematic relationship: 

 ( ) u
S

k
ii

k
i

V

k
i

c
i

k
KIN dSuFdV

F

= µµεµεσλ /                        (16) 

where c
iσ  represents the stress components that correspond to the scaled strains k

iµε  via the 

material properties of the matrix and fibres. The integral over the volume represents 

summation over the matrix and fibres for all plies, and integration over the laminate. Equation 

(16) is derived, in general terms, in the appendix and ensures that the scaled strain field lies at 

the minimum of the total potential energy of the structure amongst all such scaled strain 

fields. 

 At each iteration a corresponding static approximation to the maximum load can be 

found by scaling the stresses k
iσµ  , where k

iσ  is in equilibrium with loads i
k
KIN F1−λ  , so that for 

the largest possible value of k
LBλλ =  the scaled stresses lie on or below the stress-strain 

relation of Fig. (1a), i.e.  ( )k
i

c
i

k
i µεσσµ ≤    (17) 

As the stresses k
iσ  are in equilibrium with i

k
KIN F1−λ , the scaled stresses are in equilibrium with 

i
k
ST Fλ , given by, 

  1−= k
KIN

k
ST λµλ          (18) 
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The values of  k
STλ  and k

KINλ  converges to the exact solution when all conditions of the 

problem are satisfied: equilibrium, compatibility, consistency with the material behaviour and 

the design criterion.  

4.4 Evaluation of  1~ +k
mG  

For the deviatoric components of the matrix stresses it is sufficient to consider the effective 

values. Two differing expressions correspond to the two regions as shown in Figure (1), 

 mk
m

mc G εµσ 3=    for    mmc εεµ ˆ<  

 y
mc σσ =      for    *ˆ m

mcm εεµε <<                      (19) 

Where mG  is the matrix elastic shear modulus.  At each iteration the matching shear modulus 

1~ +k
mG  is updated so that stress σµ  associated with kεµ  coincides with mcσ  as shown in 

Figure 2, 

 
mk

Yk
m

m
k
m

G

GG

εµ
σ

3
~

~

1

1

=

=

+

+

              
*ˆ

ˆ

m
mkm

mmk

εεµε
εεµ

≤<

≤
                     (20) 

A new linear solution with the load Fk
KINλ  and the new matching linear material with shear 

moduli distribution 1~ +k
mG  (Eqs. 20) is performed.  Expressions for the Young’s modulus 

1~ +k
mE and Poisson ratio  1~ +k

mν  consistent with 1~ +k
mG  and the elastic bulk modulus mK  are then 

given by;. 

 

       �
�
�

�
�
�
�

�
+=

mmm KGE 9
1

~
3

1
~
1

   , ��
�

�
��
�

�
−=

mmm

m

KGE 9
1

~
6

1
~
~ν

                (21) 

 
Hence from (21) at the k+1 iteration: 
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4.5 Summary of the iterative process 
 
The iterative procedure has been implemented within a finite element scheme where each 

element contains Z  ply layers, 1=L to Z .  This consists of the following major steps. 

 
1. Initialization: Specify elastic parameters of the constituents -fibre and matrix- 

mmm GE ν,,  and fff GE ν,,  . The elastic parameters of  each ply LLLL GEE 121221 ,,, ν  are evaluated 

through eqs. (8), leading to the elastic properties of the laminate. Here L indicates the number 

of the ply layer, L=1... Z . 

2. First iteration: Set k=1 and 101 ==−
KIN

k
KIN λλ . The value of the first kinematic multiplier 

is arbitrary as the resulting micro strains are scaled to satisfy the design criterion. 

3. Perform a linear analysis with a load Fk
KIN

1−λ  and the ply elastic parameters 

L
j

L
j

L
j

L
j GEE 121221 ,,, ν  where the suffix j indicates the Gauss points (GP) in the model.  

4. kth iteration.  Results of the (k-1)th linear solution are expressed in terms of ply 

stresses and strains ( )1−kL
jσ and 

( )1−kL
jε  , and nodal displacements ( )1−k

iu  where the load is 

applied and where i denotes the nodes. Evaluate the ply stresses and strains and hence the 

micro stresses and strains of the matrix and the fibres using the relations summarized in Table 

1 at each layer, for each element and at each GP. 

5.  Scaling. Perform linear scaling ( by µ ) so that constraints are satisfied at each GP and 

ply layer. 

6.  Linear Matching . Apply the matching process of the LMM considering the scaled 

strains L
jµε  to find the new linear  parameters: ( ) ( ) ( ) ( )k

j
Lk

j
Lk

j
Lk

j
L GEE 121221

~,
~

,
~

,
~ ν , Eq. (8), again at 

each Gauss point and layer. 

7. Evaluate the kinematic and static approximations through (16) and (18): k
KINλ , k

STλ . 
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8.  Check for convergence, i.e     TOLERANCEk
ST

k
KIN ≤− λλ . 

The process continues until convergence occurs. In the numerical examples convergence 

occurs after less than eight iterations. 

5. Numerical applications  
 

As a first attempt to apply this method we take the simplifying assumption that the composite 

fails by yielding strain exhaustion of the matrix. At point 5 of the iterative procedure in 

Section 4.5, the scaling factor is mµµ = . Hence it is assumed that the design limit is 

dominated by the ductility of the matrix.  

 The examples concern multilayer laminate plates with symmetric layups under 

conditions of plane stress. The constituent material properties and parameters, typical of a 

Glass-Epoxy system, are shown in Table 2. All the FE analyses were performed with the 

ADINA code [26,27],  interfaced with a FORTRAN main program which controls the 

iterative procedure. In the first example, triangular elements with one Gauss point each are 

utilized. In the subsequent composite plate, model isoparametric 4 noded elements with 4 

Gauss points were adopted. 

Fibre  Matrix Ply  
     74=fE  10=mE  62.351 =E , 28.152 =E  

  8.30=fG  7.3=mG     11.11=mK    70.512 =G  

    2.0=fν  35.0=mν  29.012 =ν  

4.0=fV  1.0=Yσ      06.0* =mε   

  

Table 2.    Material properties GPa (Glass-Epoxy). 

5.1 Example 1: Laminate Elements 

Consider a 4-layered square plate of side L and area A, with material parameters given in 

Table 2. The first example concerns the behaviour of a four layer symmetric [+45/-45]s 

laminate. Figure 3(a) shows the element structure and boundary conditions. Figure 3(b) shows 
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the kinematic and static multipliers as a function of the number of iterations. In a single 

iteration KINλ  and STλ converge to the maximum load factor.  

 

a) 

 

 (b)  
�

���

�

���

�

���

� � � �

STλ

KINλ
MAXλ

iterations   (c)

�����

�����

�����

����	

����


� ��� ��� ��� ��
 � ���

STλ

KINλMAXλ

iterations  

Figure 3    Laminate with [+45/-45]s lay-up, under uniform uniaxial tension. (a)Element 
structure, (b) convergence for properties of Table (2),  (c) Convergence for stiffened fibres. 

 
 The first static bound 1

STλ (eq. 17) represents the elastic limit  when yield initially 

occurs in the matrix; a comparison between the first static bound 1
STλ and the converged 

maximum load factor MAXλ shows how much the load can be increased beyond first yield 

before the matrix exhausts its ductility. In this case the first static bound 090.11 =STλ is very 

close to the max load 147.1=MAXλ and hence the first yield load is almost coincident with the 

ductility exhaustion load due the fact that the load is mainly carried by the fibres. It is useful 

to consider a further case where a simple analytic result exists. The fibres are made 

considerably stiffer than the matrix in such a way the entire load is carried by the fibre 

( GPaE f 740= , GPaEm 1.0= , GPaY 0239.0=σ ). For this case the analytic solution 

provides 0276.0=λ .  In Fig.3(c) the results of the procedure shows that for the first iteration 

the kinematic and static bound coincide giving the exact value. These solutions are typical of 

o 45
o 45−

o 45−
o 45

o 45
o 45−

o 45−
o 45

L=10cmL=10cm

 

GPa1.0=σ
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the behaviour of the method when applied at the laminate element level. Convergence occurs 

at the first iteration, with the kinematic load factor reducing and the static load factor 

increasing to the converged value.  

5.2 Example 2: Laminate Structure 

Figure 4(a) shows a plate with a hole of radius 5cm. Due to symmetry only a quarter of the 

plate need be studied. The material axes 1-2 coincide with y-z axes. The FE model of the plate 

consists of 1000 multilayer shell elements with 4 nodes and 4 Gauss points per element 

(Figure 8). The simplest layup [0°/0°] is considered with, again, the material characteristics in 

Table.2. The initial applied load is given as a distributed load of 1 GPa. Hence values of λ  

correspond to applied stress levels in GPa. 

 The interest in this problem arises from the characteristic that the load applied in the 

central section of the plate edge must be transferred to the fibres at the hole edges through 

shear stresses transmitted through the matrix. Table 3 compares the elastic limit  

Lay-up  [0,0] First yield  1
STλ  MAXλ  

1σ  0.356 1.865 

12τ  0.0577 0.0577 

 

Table 3. Comparison between stresses first yield 1
STλ and MAXλ for material  

 element of plate under tension and shear in GPa. 

and the maximum load for a material element under stress in the direction of the fibre and 

subject to shear , emphasising the weakness of the composite under pure shear. If the 

restriction on the ductility of the matrix is removed, the ultimate load is given by shearing in 

the matrix along lines parallel to the plate edges tangential to the edges of the hole. Hence, the 

maximum possible load ultλ , without constraint on the strain in the matrix , is given by   

yyult στλ 310305 == ,  i.e.  346.0=ultλ  

1σ  
12τ   
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L=30cm

W=10cm
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���
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���

� � � 	

STλ

KINλ

MAXλ

iterations   

(a)       (b) 

 

     (c) 

Figure 4.   Plate with hole. (a) Uniform plate of [0,0] laminate with central hole and 
uniform tension,(b) convergence of kinematic and static load factors, (c) Distribution of 
engineering shear strain in laminate. The star indicates the position of maximum strain. 

 

 The results in term of kinematic and static load factors are shown in Fig. 4(b). Note 

that the kinematic result does not monotonically decrease but the difference between the two 

estimates monotonically reduces. The value of the elastic limit, the first static bound 1
STλ = 

0.125 = 0.361 ultλ is about 50% of the converged maximum load MAXλ = 0.233 = 0.673 ultλ  

carried by the plate. This result means that the load can be increased significantly beyond the 

first yield value before the ductility exhaustion of the matrix occurs and provides a more 

meaningful limit than the ultimate load.   

y 

z 

Engineering shear strain yzγ  

y 

z 
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 The significance of this example is its ability to show the usefulness of the procedure 

to deal with the effect of the ductility of the matrix on the maximum load.  The total 

engineering shear strain γ plot in Fig.4(c) provides a visualisation of the deformation pattern. 

The maximum value of γ occurs at the edge of the hole. If we assume that the strain in the 

matrix is dominated by shear strain, then the total strain at initial yield is given by; 

 fm γγγ 4.06.0 += ,  7.3/ym τγ = ,  8.30/yf τγ = ,  hence 0101.0=γ  
 
Similarly the shear strain at the maximum load MAXλ  is given by 6323.0=mγ . Hence the 

region where the strain in the matrix exceeds the elastic limit and is less than the limit value is 

given by elements coloured mid to dark green and blue. Over most of this region the shear 

strain is significantly less than the ultimate value. The limit value 6323.0=mγ is achieved 

only within a very limited region. Hence this solution demonstrates that insight into the 

behaviour can be gained from this method in a direct and informative manner that is distinct 

from that given by other analysis methods.      

6. Conclusions 
 
 The method described in this paper is a first attempt to develop a Direct Method for 

composite materials and structures, based upon a micromechanics of failure. The objective is 

to seek the maximum load corresponding to a set of micromechanics material and kinematic 

assumptions. Here the micromechanical model is merely an adaption of classical laminate 

analysis where the Halphen-Tsai relationships are replaced by relationships that correspond to 

well defined micro mechanics assumptions, allowing the matrix and fibre stresses to be 

evaluated from ply stresses and strains and vice versa. Through the solution of a sequence of 

linear matching problems with an appropriate kinematic load factor, an iterative process 

converges to a solution for the maximum load where a design limit, expressed as a constraint 

on the matrix and ply properties, is satisfied. A static load factor gives a measure of the 
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deviation from the converged solution.  The method is first applied at the laminate element 

level and convergence occurs in very few iterations. The method is then applied to a plate 

problem under tension with a central hole. In this case the solution converged in seven 

iterations. The solution to this problem  demonstrates the ability of the method to define a 

useful and meaningful design limit, within the constraints of the mechanics model.  

 Despite the simplicity of both the model and the examples, the solutions here 

presented demonstrate the potential of such methods in design. The methodology itself is not 

overly constrained by the details of either a consistent micromechanical model or the design 

criterion. The essential theoretical structure does, however, place restrictions on the model. 

Deformation theory is assumed. Hence any failure criterion must be expressible in terms of 

the strain field and independent of precise details of the previous strain rate history. Any 

design constraint may be introduced provided it may be satisfied by linear scaling of the 

micro kinematic solutions. These properties are not regarded as overly restrictive when 

considering the failure modes discussed in the literature. Hence the method, here applied in 

very simple circumstances, is capable of being developed into a method where matrix 

cracking and fibre failure may be incorporated. For realistic modelling of the maximum 

attainable load, local softening will occur, particularly when interfacial failure between matrix 

and fibre is taken into account. Indeed, in the numerical example discussed in Section (5) final 

failure may be expected to occur because of matrix cracking emanating from the stress 

concentrations  at the hole edge, resulting in loss of strength in the matrix. Exploration of such 

methods where softening behaviour is allowed has been theoretically explored and applied to 

portal frames, producing convergent solutions [18].  When softening is included, the search 

for strain fields that satisfy the design criterion by scaling needs to be augmented  with  tests 

for stability [18] as unstable solutions, corresponding to a reducing load can occur. Such 

solutions corresponding to a strain rate field that deviate from the class of scaled strain fields. 
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With this extension, stable solutions were obtained with conditions of extreme softening. An 

exploration of such a methodology and comparisons with experimental data for laminates 

await further developments, but the results of this paper demonstrate that relatively simple 

direct methods of this type have the potential for delivering analysis methods for direct use in 

design. 
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Appendix – The Linear Matching Method for Strain Potential Material 

Consider a material described by a convex strain potential )( ijεΩ : 

  
ij

ij
ij ε

ε
σ

∂
Ω∂

=
)(

,   =Ω
ij

ijijij d
ε

εσε
0

)(    (A1) 

Consider a body with volume V  and surface S , subject to a load iFλ  applied over TS , part of 

S and displacement 0=iu over the remainder of S , uS . Here iF  is a prescribed load 

distribution and λ  is a positive scalar multiplier.  Consider a class of kinematically 

admissible (KA) strains c
ijε that satisfy compatibility with corresponding displacements 

0=c
iu  on uS . 
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The solution to the stated problem is given by the minimum of the total potential energy 

),( λε c
ijPE of the body with respect to c

ijε ,  

  dSuFdVPE
V S

c
iji

c
ij

c
ij

t

 −Ω= λελε )(),(     (A2) 

The objective of the Linear Matching Method is to obtain a solution ),( λε c
ij so that 

c
ijε satisfies a design constraint, expressed as a limit to the magnitude of c

ijε , and a 

corresponding value of λ , i.e. a solution ),( λε c
ij  that minimises ),( λε c

ijPE subjected to the 

design constraint. 

The objective is achieved in a four stage iterative process. In the first stage the value of   

),( λε c
ijPE is reduced for constant λ . In the second stage the resulting strain field is scaled so  

the design constraint is satisfied.  In the third stage λ  is adjusted so that ),( λε c
ijPE is at a 

minimum value for the new scaled strain field amongst all such scaled strain fields. In the 

fourth stage a lower static value of λ  is evaluate as a measure of the deviation from 

convergence. 

Stage 1: In the first stage we assume we possess a KA strain distribution k
ijε that satisfies the 

design constraint and a corresponding kλ . A linear material is now defined so that the actual 

material and this linear material yield the same stress for k
ij

c
ij εε = , i.e.  

   k
rsijrsk

ij

k
ijk

ij L ε
ε
ε

σ =
∂
Ω∂

=
)(

    (A3) 

where ijrsL is the tensor of linear coefficients, which satisfies the usual symmetry conditions.  

In addition, if 1+k
ijε is an arbitrary strain, the following inequality must always be satisfied, 
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  )()()()( 11 k
ij

k
ij

k
ij

Lk
ij

L εεεε Ω−Ω≥Ω−Ω ++    (A4) 

where superscript L refers to the linear material. When the potentials can be expressed in 

terms of effective strains, inequality (A4) implies that the effective stress-effective strain 

curve for the non-linear material has a reducing slope for increasing strain. This condition is 

satisfied for the chosen material model discussed in the text. Hence for constant kλ , 

inequality (A4) gives the following relationship between the potential energies for the two 

materials; 

  ),(),(),(),( 11 kk
ij

kk
ij

kk
ij

Lkk
ij

L PEPEPEPE λελελελε −≥− ++   (A5) 

If 1+k
ijε is now chosen as the solution of the linear problem, i.e. ),( kc

ij
LPE λε is minimised by 

1+= k
ij

c
ij εε  then,  ),(),( 1 kk

ij
Lkk

ij
L PEPE λελε ≤+  and hence, 

    ),(),( 1 kk
ij

kk
ij PEPE λελε ≤+     (A6) 

Stage 2: This new KA strain field 1+= k
ij

c
ij εε  has reduced the potential energy but may not 

satisfy the design constraint. We assume that a value of a scalar ck µµ =+1 may be found so 

that the design constraint is satisfied by 11 ++ k
ij

k εµ . The value of λ  is now adjusted so that for 

11 ++ k
ij

k εµ and 1+kλ  the potential energy is at a minimum amongst the class of strains 1+k
ijεµ  

and hence the first variation is zero; 
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and hence;   
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where c
ijσ  denotes the stress corresponding to 1+k

ijµε given by (A1). The new values 1+kλ  and 

1+k
ijµε now enter into Stage 1. 

The linear solution 1+Lk
ijσ satisfies equilibrium internally and with load kλ but will generally 

not equal the stress c
ijσ in the actual material corresponding to 1+k

ijε . However it is possible to 

find a lower value of k
st

k λλ = so that  
��

�
�
�

��

�
�
�

= ++

++

11

11

min k
ij

Lk
ij

k
ij

k
ijkk

st εσ
εσ

λλ  where the minimum is sought 

over the entire volume V . It may be shown that kk
st λλ ≤ and convergence has occurred when 

kk
st λλ = . 

In summary, the Linear Matching Method for this class of problems consists of a procedure 

for reducing the potential energy of a structure composed of a non linear material through the 

solution of a linear problem where the linear properties are matched to those of the non-linear 

material for an initial strain field. This is coupled with the assertion of a design restriction 

expressed in terms of the strain field and attainable through scaling.   The evaluation of a load 

corresponding to such a scaled strain field ensures that the potential energy is a local 

minimum amongst the scaled strain fields. In the application to composites, the theory applies 

provided the relationship between laminate stresses, ply stresses and micro stresses conform 

to conditions of equilibrium and compatibility for the class of matching linear problems 

solved in the iterative process. 


