
HAL Id: hal-00736278
https://hal.science/hal-00736278v1

Submitted on 28 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unsupervised Network Intrusion Detection Systems:
Detecting the Unknown without Knowledge
Pedro Casas Hernandez, Johan Mazel, Philippe Owezarski

To cite this version:
Pedro Casas Hernandez, Johan Mazel, Philippe Owezarski. Unsupervised Network Intrusion Detection
Systems: Detecting the Unknown without Knowledge. Computer Communications, 2012, 35 (7),
pp.772-783. �hal-00736278�

https://hal.science/hal-00736278v1
https://hal.archives-ouvertes.fr

Unsupervised Network Intrusion Detection Systems:

Detecting the Unknown without Knowledge

Pedro Casasa,b,∗, Johan Mazela,b, Philippe Owezarskia,b

aCNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France
bUniversité de Toulouse; UPS, INSA, INP, ISAE; UT1, UTM, LAAS; F-31077 Toulouse Cedex 4, France

Abstract

Traditional Network Intrusion Detection Systems (NIDSs) rely on either specialized signatures of previously seen attacks,
or on expensive and difficult to produce labeled traffic datasets for user-profiling to hunt out network attacks. Despite
being opposite in nature, both approaches share a common downside: they require the knowledge provided by an external
agent, either in terms of signatures or as normal-operation profiles. In this paper we present UNIDS, an Unsupervised
Network Intrusion Detection System capable of detecting unknown network attacks without using any kind of signatures,
labeled traffic, or training. UNIDS uses a novel unsupervised outliers detection approach based on Sub-Space Clustering
and Multiple Evidence Accumulation techniques to pin-point different kinds of network intrusions and attacks such as
DoS/DDoS, probing attacks, propagation of worms, buffer overflows, illegal access to network resources, etc. We evaluate
UNIDS in three different traffic datasets, including the well-known KDD99 dataset as well as real traffic traces from two
operational networks. We particularly show the ability of UNIDS to detect unknown attacks, comparing its performance
against traditional misuse-detection-based NIDSs. In addition, we also evidence the supremacy of our outliers detection
approach with respect to different previously used unsupervised detection techniques.

Keywords: NIDS, Unsupervised Machine Learning, Sub-Space Clustering, Evidence Accumulation, Outliers Detection,
Network Attacks, DDoS, Buffer Overflows.

1. Introduction

The detection of network attacks is a paramount task
for network operators in today’s Internet. Botnets, Mal-
wares, Distributed Denial of Service attacks (DDoS), buffer
overflow attacks, network-scanning activities, and spread-
ing worms or viruses are examples of the different threats
that daily compromise the integrity and normal opera-
tion of the network. The principal challenge in automati-
cally detecting network attacks is that these are a moving
and ever-growing target [1, 2]. Network Intrusion Detec-
tion Systems (NIDSs) are the war-horses of network se-
curity. Two different approaches are by far dominant in
the research literature and commercial IDS security de-
vices: signatures-based or misuse detection (detect what
I know) and anomaly detection (detect what it is differ-
ent from what I know).

Misuse detection is the de-facto approach used in most
IDSs. When an attack is discovered, generally after its oc-
currence during a diagnosis phase, the associated malicious
pattern is coded as a signature by human experts, which is
then used to detect a new occurrence of the same attack.

∗Corresponding author. Telephone: +33 (0)5 61 33 68 05 - Fax:
+33 (0)5 61 33 64 11

Email addresses: pcasas@laas.fr (Pedro Casas),
jmazel@laas.fr (Johan Mazel), owe@laas.fr (Philippe Owezarski)

To avoid costly and time-consuming human intervention,
signatures can also be constructed by supervised machine-
learning techniques, using instances of the discovered at-
tack to build a detection model for it. Misuse detection
systems are highly effective to detect those attacks which
they are programmed to alert on. However, they cannot
defend the network against new attacks, simply because
they cannot recognize those attacks which do not match
their lists of signatures. Indeed, networks protected by
misused detection systems suffer from long periods of vul-
nerability between the diagnosis of a new attack and the
construction of the new signature.

On the other hand, anomaly detection uses instances
of normal-operation traffic to build normal-operation pro-
files, detecting anomalies as activities that deviate from
this baseline. Such methods can detect new kinds of net-
work attacks not seen before. Nevertheless, they require
training to construct profiles, which is time-consuming
and depends on the availability of anomaly-free traffic in-
stances. In addition, it is not easy to maintain an ac-
curate and up-to-date normal-operation profile, which in-
duces high false-alarm rates.

Despite being opposite in nature, both misuse detec-
tion and anomaly detection share a common downside:
they require the knowledge provided by an external agent
to achieve their goal, either in terms of attack-signatures
or as normal-operation profiles. As such, current network

Preprint submitted to Elsevier August 30, 2011

.

.

Network Traffic
Capturing Multi

Resolution
Flow

Aggregation

Computation of Features

SSC

Evidence
Accumulation

&
Outliers
Ranking

Density-based
Clusteing

Change Detection

Network
Anomalies

Detection Threshold

X

Y

Z
l1

t

Z
l2

t

Z
l9

t

1

2

3

4

n

Th

F(Z
li

t
)

X1 X2 XN

P1

P2

PN

Figure 1: High-level description of the Unsupervised Network Intru-
sion Detection System (UNIDS).

security looks more like a reactive countermeasure than a
proactive prevention mechanism. Over the past years we
have, however, witnessed an increased interest within the
network security community in shifting away from reactive
defense towards more proactive security systems [3]. Our
thesis behind this work is that reactive, knowledge-based
approaches are not sufficient to tackle the network security
problem, and that a holistic solution should also include
proactive, knowledge-independent analysis techniques.

Armed with these ideas in mind, we present an Unsu-
pervised Network Intrusion Detection System (UNIDS) ca-
pable of detecting network attacks without relying on sig-
natures, training, or labeled traffic instances of any kind.
Based on the observation that network attacks, and par-
ticularly the most difficult ones to detect, are contained in
a small fraction of traffic instances with respect to normal-
operation traffic [4] (we show that this hypothesis can al-
ways be verified by using traffic aggregation), their unsu-
pervised detection consists in identifying outliers, i.e. in-
stances that are remarkably different from the majority.
UNIDS relies on robust clustering techniques based on
Sub-Space Clustering (SSC) [17], Density-based Cluster-
ing [22], and Evidence Accumulation (EA) [21] to blindly
extract the traffic instances that compose an attack.

UNIDS runs in three consecutive steps, analyzing pack-
ets captured in contiguous time slots of fixed length. Fig-
ure 1 depicts a modular, high-level description of this sys-
tem. The first step consists in detecting an anomalous time
slot in which the clustering analysis will be performed. For
doing so, captured packets are first aggregated into multi-

resolution traffic flows. Different time-series are then built
on top of these flows, and any generic change-detection
algorithm based on time-series analysis is finally used to
flag an anomalous change. The second step takes as in-
put all the flows in the time slot flagged as anomalous. At
this step, outlying flows are identified using a robust multi-
clustering algorithm, based on a combination of Sub-Space
Clustering (SSC) [17], Density-based Clustering [22], and
Evidence Accumulation Clustering (EAC) [21] techniques.

The knowledge provided by this clustering algorithm is
used to rank the degree of abnormality of all the identified
outlying flows, building an outliers ranking. In the third
and final step, the top-ranked outlying flows are flagged as
anomalies, using a simple thresholding detection approach.
As we will show through out the paper, the main contri-
bution provided by UNIDS relies on its ability to detect
unknown attacks in a completely unsupervised fashion.

The remainder of the paper is organized as follows.
Section 2 presents a brief state of the art in the super-
vised and unsupervised attacks detection field, describing
our main contributions. Section 3 describes the multi-
resolution traffic aggregation and change-detection proce-
dures used in the first step of the UNIDS system. Section
3 describes the core of UNIDS, presenting an in depth
description of the different clustering techniques used to
construct the outliers ranking. Section 6 presents the val-
idation of our U-NIDS in real traffic traces obtained from
two different networking datasets: the public MAWI traffic
repository of the WIDE project [25], and the METROSEC
project dataset [26]. In this section we also compare the
performance of UNIDS against previous proposals for un-
supervised detection of attacks available in the literature.
Section 7 evaluates the ability of this system to detect un-
known attacks in the well-known KDD99 network attacks
dataset, comparing its performance with that obtained by
an extensively investigated misuse NIDS based on decision
trees. Finally, section 10 concludes the paper.

2. Related Work & Contributions

The problem of network attacks and intrusions detec-
tion has been extensively studied in the last decade. Most
NIDS are based on misuse-detection techniques, being Bro
[27] and SNORT [28] the two most celebrated open-source
systems in the literature. Most of the different techniques
used in the NIDS field are summarized in [5, 6]. A particu-
larly studied approach in recent years for misuse-detection
that we shall use in the paper consists in the use of deci-
sion trees [7, 8]. Decision trees are one of the most power-
ful and simple data mining methods for decision-making;
a decision tree uses a tree-like graph consisting of branch
nodes that represent a choice among different alternatives,
and leaves representing a class for the evaluated data (i.e.
attack or normal traffic).

The problem of network anomaly detection has been
extensively studied during the last decade. Most approaches
analyze statistical variations of traffic volume descriptors
(e.g., no. of packets, bytes, or new flows) and/or par-
ticular traffic features (e.g., distribution of IP addresses
and ports), using either single link measurements or net-
work wide data. A non-exhaustive list of standard meth-
ods includes the use of signal processing techniques (e.g.,
ARIMA modeling, wavelets-based filtering) on single-link
traffic measurements [9], Kalman filters [12] for network-
wide anomaly detection, and Sketches applied to IP-flows
[14, 15].

2

Our approach falls within the unsupervised anomaly
detection domain. The vast majority of the unsupervised
detection schemes proposed in the literature are based on
clustering and outliers detection, being [18, 19, 20] some
relevant examples. In [18], authors use a single-linkage
hierarchical clustering method to cluster data from the
KDD99 data-set, based on the standard Euclidean dis-
tance for inter-patterns similarity. Reference [19] reports
improved results in the same data-set, using three dif-
ferent clustering algorithms: Fixed-Width clustering, an
optimized version of k-NN, and one class SVM. Refer-
ence [20] presents a combined density-grid-based cluster-
ing algorithm to improve computational complexity, ob-
taining similar detection results. PCA and the sub-space
approach is another well-known unsupervised anomaly de-
tection technique, used in [10, 11] to detect network-wide
traffic anomalies in highly aggregated traffic flows, and
more recently in [13] for anomaly detection in single-router
traffic metrics.

UNADA presents several advantages with respect to
current state of the art. First and most important, it
works in a completely unsupervised fashion, which means
that it can be directly plugged-in to any monitoring sys-
tem and start to work from scratch, without any kind of
calibration and/or training step. Secondly, it uses a ro-
bust density-based clustering technique to avoid general
clustering problems such as sensitivity to initialization,
specification of number of clusters, detection of particu-
lar cluster shapes, or structure-masking by irrelevant fea-
tures. Thirdly, it performs clustering in very low dimen-
sional spaces, avoiding sparsity problems when working
with high-dimensional data [16]. Finally, we show that
UNADA clearly outperforms previously proposed meth-
ods for unsupervised anomaly detection in real network
traffic.

3. Multi-resolution Flow Aggregation & Change-

Detection

UNADA performs unsupervised anomaly detection on
single-link packet-level traffic, captured in consecutive time
slots of fixed length ∆T and aggregated in IP flows (stan-
dard 5-tuples). IP flows are additionally aggregated at
different flow-resolution levels, using 9 different aggrega-

tion keys li. These include (from coarser to finer-grained
resolution): traffic per Time Slot (l1:tpTS), source Net-

work Prefixes (l2,3,4: IPsrc/8, /16, /24), destination Net-

work Prefixes (l5,6,7: IPdst/8, /16, /24), source IPs (l8:
IPsrc), and destination IPs (l9: IPdst). The 7 coarsest-
grained resolutions are used for change-detection, while
the remaining 2 are exclusively used in the clustering step.

To detect an anomalous time slot, time-series Z li
t are

constructed for simple traffic metrics such as number of
bytes, packets, and IP flows per time slot, using aggre-
gation keys i = 1, . . . , 7. Any generic change-detection
algorithm F(.) based on time-series analysis is then ap-
plied to Z li

t . At each new time slot, F(.) analyses the

Time Slot Time Slot

Time Slot Time Slot

8

6

4

2

0

6

4

2

0
0 50 100 150

0 50 100 150

0

4000

3000

2000

1000

0

6000

4000

2000

x 10
4

x 10
4

0 50 100 150

0 50 100 150

#
p
k
ts

#
p
k
ts

∆
(#

p
k
ts
)

∆
(#

p
k
ts
)

Figure 2: Low-intensity anomalies might be hidden inside highly
aggregated traffic, but are visible at finer-grained aggregations. The
DDoS attack is evident at the victim’s network.

different time-series associated with each aggregation key,
going from coarser (l1) to finer resolution (l7). Time slot
t0 is flagged as anomalous if F(Z li

t0
) triggers an alarm for

any of the traffic metrics at any of the 7 aggregation levels.
Tracking anomalies at multiple aggregation levels provides
additional reliability to the change-detection algorithm,
and permits to detect both single source-destination and
distributed anomalies of very different intensities.

Figure 2 shows how a low intensity DDoS attack might
be dwarfed by highly-aggregated traffic. The time-series
associated with the number of packets, namely Zt = #pktst,
does not present a perceptible change ∆(#pktst) at tpTS
aggregation (left); however, the attack can be easily de-
tected using a finer-grained resolution, e.g., at the victim’s
network (IPdst/24 aggregation, on the right).

4. Unsupervised Anomaly Detection through Clus-

tering

The unsupervised anomaly detection step takes as in-
put all the IP flows in the flagged time slot. At this step
UNADA ranks the degree of abnormality of each flow, us-
ing clustering and outliers analysis techniques. For doing
so, IP flows are analyzed at two different resolutions, us-
ing either IPsrc or IPdst aggregation key. Traffic anomalies
can be roughly grouped in two different classes, depend-
ing on their spatial structure and number of impacted IP
flows: 1-to-N anomalies and N-to-1 anomalies. 1-to-N

anomalies involve many IP flows from the same source
towards different destinations; examples include network
scans and spreading worms/virus. On the other hand, N-
to-1 anomalies involve IP flows from different sources to-
wards a single destination; examples include DDoS attacks
and flash-crowds. 1-to-1 anomalies are a particular case
of these classes, while N-to-N anomalies can be treated as

3

multiple N-to-1 or 1-to-N instances. Using IPsrc key per-
mits to highlight 1-to-N anomalies, while N-to-1 anoma-
lies are more easily detected with IPdst key. The choice of
both keys for clustering analysis ensures that even highly
distributed anomalies, which may possibly involve a large
number of IP flows, can be represented as outliers. With-
out loss of generality, let Y = {y1, . . . ,yn} be the set
of n aggregated-flows (at IPsrc or IPdst) in the flagged
slot. Each flow yi ∈ Y is described by a set of m traf-
fic attributes or features, like num. of sources, destination
ports, or packet rate. Let xi ∈ R

m be the vector of traffic
features describing flow yi, and X = {x1, . . . ,xn} ∈ R

n×m

the complete matrix of features, referred to as the feature

space.
UNADA is based on clustering techniques applied toX.

The objective of clustering is to partition a set of unlabeled
samples into homogeneous groups of similar characteristics
or clusters, based on some measure of similarity. Samples
that do not belong to any of these clusters are classified as
outliers. Our particular goal is to identify those outliers
that are remarkably different from the rest of the samples,
additionally ranking how much different these are. The
most appropriate approach to find outliers is, ironically,
to properly identify clusters. After all, an outlier is a sam-
ple that does not belong to any cluster. Unfortunately,
even if hundreds of clustering algorithms exist [16], it is
very difficult to find a single one that can handle all types
of cluster shapes and sizes. Different clustering algorithms
produce different partitions of data, and even the same
clustering algorithm provides different results when using
different initializations and/or different algorithm parame-
ters. This is in fact one of the major drawbacks in current
cluster analysis techniques: the lack of robustness.

To avoid such a limitation, we have developed a di-
vide & conquer clustering approach, using the notions of
clustering ensemble and multiple clusterings combination.
The idea is novel and appealing: why not taking advantage
of the information provided by multiple partitions of X
to improve clustering robustness and identification of out-
liers? A clustering ensemble P consists of a set of multiple
partitions Pi produced for the same data. Each partition
provides an independent evidence of data structure, which
can be combined to construct a new measure of similarity
that better reflects natural groupings and outliers. There
are different ways to produce a clustering ensemble. We
use Sub-Space Clustering (SSC) [17] to produce multiple
data partitions, doing Density-based clustering in N dif-
ferent sub-spaces Xi of the original space (see figure ??).

4.1. Clustering Ensemble and Sub-Space Clustering

Each of the N sub-spacesXi ⊂ X is obtained by select-
ing k features from the complete set of m attributes. To
deeply explore the complete feature space, the number of
sub-spaces N that are analyzed corresponds to the num-
ber of k-combinations-obtained-from-m. Each partition
Pi is obtained by applying DBSCAN [22] to sub-space Xi.

DBSCAN is a powerful clustering algorithm that discov-
ers clusters of arbitrary shapes and sizes [16], relying on a
density-based notion of clusters: clusters are high-density
regions of the space, separated by low-density areas. This
algorithm perfectly fits our unsupervised traffic analysis,
because it is not necessary to specify a-priori difficult to
set parameters such as the number of clusters to identify.
Results provided by applying DBSCAN to sub-space Xi

are twofold: a set of p(i) clusters {Ci
1, C

i
2, .., C

i
p(i)} and

a set of q(i) outliers {oi1, o
i
2, .., o

i
q(i)}. To set the number

of dimensions k of each sub-space, we take a very useful
property of monotonicity in clustering sets, known as the
downward closure property: if a collection of elements is
a cluster in a k-dimensional space, then it is also part of
a cluster in any (k − 1) projections of this space. This di-
rectly implies that, if there exists any interesting evidence
of density in X, it will certainly be present in its lowest-
dimensional sub-spaces. Using small values for k pro-
vides several advantages: firstly, doing clustering in low-
dimensional spaces is more efficient and faster than clus-
tering in bigger dimensions. Secondly, density-based clus-
tering algorithms such as DBSCAN provide better results
in low-dimensional spaces [16], because high-dimensional
spaces are usually sparse, making it difficult to distinguish
between high and low density regions. Finally, cluster-
ing multiple low-dimensional sub-spaces provides a finer-
grained analysis, which improves the ability of UNADA to
detect anomalies of very different characteristics. We shall
therefore use k = 2 for SSC, which gives N = m(m− 1)/2
partitions.

4.2. Ranking Outliers using Evidence Accumulation

Having produced the N partitions, the question now is
how to use the information provided by the multiple clus-
ters and outliers identified by density-based clustering to
detect traffic anomalies. A possible answer is provided in
[21], where authors introduced the idea of Evidence Ac-
cumulation Clustering (EAC). EAC uses the clustering
results of multiple partitions Pi to produce a new inter-
samples similarity measure that better reflects their natu-
ral groupings.

UNADA implements a particular algorithm for Evi-
dence Accumulation, called Evidence Accumulation for
Ranking Outliers (EA4RO): instead of producing a sim-
ilarity measure between the n different aggregated flows
described in X, EA4RO constructs a dissimilarity vector
D ∈ R

n in which it accumulates the distance between the
different outliers oij found in each sub-space i = 1, .., N
and the centroid of the corresponding sub-space-biggest-
cluster Ci

max. The idea is to clearly highlight those flows
that are far from the normal-operation traffic at each of
the different sub-spaces, statistically represented by Ci

max.
Algorithm 1 presents a pseudo-code for EA4RO. The

different parameters used by EA4RO are automatically set
by the algorithm itself. The first two parameters are used
by the density-based clustering algorithm: nmin specifies

4

Algorithm 1 Evidence Accumulation for Ranking Out-
liers (EA4RO)

1: Initialization:

2: Set dissimilarity vector D to a null n× 1 vector
3: Set smallest cluster-size nmin = α . n
4: for i = 1 : N do

5: Set density neighborhood δi for DBSCAN
6: Pi = DBSCAN (Xi, δi, nmin)

7: Update D(j), ∀ outlier oij ∈ Pi:

8: wi ←
n

(n− nmaxi
) + ε

9: D(j)← D(j) + dM(oij , C
i
max)wi

10: end for

11: Rank flows: Drank = sort(D)
12: Set anomaly detection threshold: Th = find-slope-

break(Drank)

the minimum number of flows that can be classified as a
cluster, while δi indicates the maximum neighborhood dis-
tance of a sample to identify dense regions. nmin is set at
the initialization of the algorithm, simply as a fraction α of
the total number of flows n to analyze (we take α = 5% of
n). δi is set as a fraction of the average distance between
flows in sub-space Xi (we take a fraction 1/10), which is
estimated from 10% of the flows, randomly selected. This
permits to fast-up computations. The weighting factor wi

is used as an outlier-boosting parameter, as it gives more
relevance to those outliers that are “less probable”: wi

takes bigger values when the size nmaxi
of cluster Ci

max is
closer to the total number of flows n. Finally, instead of
using a simple Euclidean distance as a measure of dissim-
ilarity, we compute the Mahalanobis distance dM between
outliers and the centroid of the biggest cluster. The Maha-
lanobis distance takes into account the correlation between
samples, dividing the standard Euclidean distance by the
variance of the samples. This permits to boost the de-
gree of abnormality of an outlier when the variance of the
samples is smaller.

In the last part of EA4RO, flows are ranked accord-
ing to the dissimilarity obtained in D, and the anomaly
detection threshold Th is set. The computation of Th is
simply achieved by finding the value for which the slope
of the sorted dissimilarity values in Drank presents a ma-
jor change. In the evaluation section we explain how to
perform this computation with an example of real traffic
analysis. Anomaly detection is finally done as a binary
thresholding operation on D: if D(i) > Th, UNADA flags
an anomaly in flow yi.

5. Experimental Evaluation of UNADA

We evaluate the ability of UNADA to detect differ-
ent attacks in real traffic traces from the public MAWI
repository of the WIDE project [25]. The WIDE opera-
tional network provides interconnection between different

−4 −2 0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6

8

10

−4 −2 0 2 4 6 8 10 12
−4

−2

0

2

4

6

8

10

(a) (b)

0 2 4 6 8 10 12 14 16 18

−100

0

100

200

300

400

500

600

700

800

900

1000

E

M

0 2 4 6 8 10 12 14 16 18

−100

0

100

200

300

400

500

600

700

800

900

1000

E

M

(c) (d)

Figure 3: Evidence Accumulation for Ranking Outliers.

research institutions in Japan, as well as connection to dif-
ferent commercial ISPs and universities in the U.S.. The
traffic repository consists of 15 minutes-long raw packet
traces daily collected for the last ten years. The traces
we shall work with consist of traffic from one of the trans-
pacific links between Japan and the U.S.. MAWI traces
are not labeled, but some previous work on anomaly de-
tection has been done on them [15, 24]. In particular, [24]
detects network attacks using a signature-based approach,
while [15] detects both attacks and anomalous flows us-
ing non-Gaussian modeling. We shall therefore refer to
the combination of results obtained in both works as our
ground truth for MAWI traffic.

We shall also test the true positive and false positive
rates obtained with UNADA in the detection of flood-
ing attacks in traffic traces from the METROSEC project
[26]. These traces consist of real traffic collected on the
French RENATER network, containing simulated attacks
performed with well-known DDoS attack tools. Traces
were collected between 2004 and 2006, and contain DDoS
attacks that range from very low intensity (i.e., less than
4% of the overall traffic volume) to massive attacks (i.e.,
more than 80% of the overall traffic volume). In addition,
we compare the performance of UNADA against some pre-
vious methods for unsupervised anomaly detection pre-
sented in section 2.

5.1. Features Selection for Detection of Attacks

The selection of the m features used in X to describe
the aggregated flows in Y is a key issue to any anomaly
detection algorithm, but it becomes critical and challeng-
ing in the case of unsupervised detection, because there is
no additional information to select the most relevant set.
In general terms, using different traffic features permits

5

to detect different types of anomalies. In this paper we
shall limit our study to detect well-known attacks, using
a set of standard traffic features widely used in the litera-
ture. However, the reader should note that UNADA can
be extended to detect other types of anomalies, consider-
ing different sets of traffic features. In fact, more features
can be added to any standard list to improve detection
results. For example, we could use the set of traffic fea-
tures generally used in the traffic classification domain [23]
for our problem of anomaly detection, as this set is gener-
ally broader; if these features are good enough to classify
different traffic applications, they should be useful to per-
form anomaly detection. The main advantage of UNADA
is that we have devised an algorithm to highlight outliers
respect to any set of features, and this is why we claim
that our algorithm is highly applicable.

In this paper we shall use the following list of m = 9
traffic features: number of source/destination IP addresses
and ports (nSrcs, nDsts, nSrcPorts, nDstPorts), ratio of
number of sources to number of destinations, packet rate
(nPkts/sec), fraction of ICMP packets (nICMP/nPkts)
and SYN packets (nSYN/nPkts), and average packet size
(avgPktsSize). According to previous work on signature-
based anomaly characterization [24], such simple traffic
descriptors permit to describe standard network attacks
such as DoS, DDoS, scans, and spreading worms/virus.

Table 1 describes the impacts of different types of at-
tacks on the selected traffic features. All the thresholds
used in the description are introduced to better explain the
evidence of an attack in some of these features. DoS/DDoS
attacks are characterized by many small packets sent from
one or more source IPs towards a single destination IP.
These attacks generally use particular packets such as TCP
SYN or ICMP echo-reply. echo-request, or host unreach-
able packets. Port and network scans involve small packets
from one source IP to several ports in one or more desti-
nation IPs, and are usually performed with SYN packets.
Spreading worms differ from network scans in that they are
directed towards a small specific group of ports for which
there is a known vulnerability to exploit (e.g. Blaster on
TCP port 135, Slammer on UDP port 1434, Sasser on TCP
port 455), and they generally use slightly bigger packets.
Some of these attacks can use other types of traffic, such as
FIN, PUSH, URG TCP packets or small UDP datagrams.

5.2. Detecting Attacks in MAWI traffic

We begin by analyzing the performance of UNADA
to detect network attacks and other types of anomalies
in one of the traces previously analyzed in [15]. IP flows
are aggregated with IPsrc key. Figure 4.(a) shows the or-
dered dissimilarity values in D obtained by the EA4RO
method, along with their corresponding manual classifi-
cation. The first two most dissimilar flows correspond to
a highly distributed SYN network scan (more than 500
destination hosts) and an ICMP spoofed flooding attack
directed to a small number of victims (ICMP redirect traf-
fic towards port 0). The following two flows correspond to

5 10 15 20 25
0

0.5

1

1.5

2

2.5

x 10
5

Ranking

R
an

ke
d

D
is

si
m

ila
rit

y

Dissimilarity Score

Normal traffic

SYN network scan

ICMP spoofed flooding

Very-high rate of HTTP requests

Very-high rate of DNS traffic

threshold Th2

threshold Th1

(a) Unsupervised detection of network attacks and elephant flows.

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nDsts

nS
Y

N
/n

P
kt

s

Cluster 1
Cluster 2
Anomalous Flows
Outliers

very-high rate of DNS traffic

ICMP spoofed flooding

very-high rate of HTTP requests

SYN network scan

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

nICMP/nPkts

nP
kt

s/
se

c

Cluster 1
Anomalous Flows
Outliers

very-high rate of HTTP requests

very-high rate of DNS traffic

ICMP spoofed flooding

SYN network scan

(b) Scan and flooding attacks (1/2)(c) Scan and flooding attacks (2/2)

Figure 4: Detection and analysis of network attacks in WIDE.

unusual large rates of DNS traffic and HTTP requests;
from there on, flows correspond to normal-operation traf-
fic. The ICMP flooding attack and the two unusual flows
are also detected in [15]; the SYN scan was missed by
their method, but it was correctly detected with accurate
signatures [24]. Setting the detection threshold according
to the previously discussed approach results in Th1

. In-
deed, if we focus on the shape of the ranked dissimilarity
in figure 4.(a), we can clearly appreciate a major change
in the slope after the 5th ranked flow. Note however that
both attacks can be easily detected and isolated from the
anomalous but yet legitimate traffic without false alarms,
using for example the threshold Th2

on D.
Figures 4.(b,c) depict the corresponding four anoma-

lies in two of the N partitions produced by the EA4RO
method. Besides showing typical characteristics of the at-
tacks, such as a large value of nPkts/sec or a value 1 for
attributes nICMP/nPkts and nSYN/nPkts respectively,
both figures permit to appreciate that the detected attacks
do not necessarily represent the largest elephant flows in
the time slot. This emphasizes the ability of UNADA to
detect attacks of low intensity, even of lower intensity than
normal traffic.

5.3. Detecting Attacks with Ground Truth

Figure 5.3 depicts the True Positives Rate (TPR) as a
function of the False Positives Rates (FTR) in the detec-
tion of different attacks in MAWI and METROSEC. Fig-
ure 5.3.(a) corresponds to the detection of 36 anomalies in
MAWI traffic, using IPsrc as key. These anomalies include
network and port scans, worm scanning activities (Sasser
and Dabber variants), and some anomalous flows consist-
ing on very high volumes of NNTP traffic. Figure 5.3.(b)

6

Type of Attack Class Agg-Key Impact on Traffic Features

DoS (ICMP/SYN) 1-to-1 IPdst
nSrcs = nDsts = 1, nPkts/sec > λ1, avgPktsSize < λ2, nICMP/nPkts > λ3,
nSYN/nPkts > λ4.

DDoS (ICMP/SYN) N-to-1 IPdst
nDsts = 1, nSrcs > α1, nPkts/sec > α2, avgPktsSize < α3, nICMP/nPkts > α4,
nSYN/nPkts > α5.

Port scan 1-to-1 IPsrc nSrcs = nDsts = 1, nDstPorts > β1, avgPktsSize < β2, nSYN/nPkts > β3.

Network scan 1-to-N IPsrc nSrcs = 1, nDsts > δ1, nDstPorts > δ2, avgPktsSize < δ3, nSYN/nPkts > δ4.

Spreading worms 1-to-N IPsrc nSrcs = 1, nDsts > η1, nDstPorts < η2, avgPktsSize < η3, nSYN/nPkts > η4.

Table 1: Features used by UNADA in the detection of DoS, DDoS, network/port scans, and spreading worms. For each type of attack, we
describe its impact on the selected traffic features.

also corresponds to anomalies in MAWI traffic, but using
IPdst as key. In this case, there are 9 anomalies, including
different kinds of flooding DoS/DDoS attacks. Finally, fig-
ure 5.3.(c) corresponds to the detection of 9 DDoS attacks
in the METROSEC data-set. From these, 5 correspond
to massive attacks (more than 70% of traffic), 1 to a high
intensity attack (about 40%), 2 are low intensity attacks
(about 10%), and 1 is a very-low intensity attack (about
4%). The detection is performed using traffic aggregated
with IPdst key. In the three evaluation scenarios, the ROC
plot is obtained by comparing the sorted dissimilarities in
Drank to a variable detection threshold.

We compare the performance of UNADA against three
previous approaches for unsupervised anomaly detection:
DBSCAN-based, k-means-based, and PCA-based outliers
detection. The first two consist in applying either DB-
SCAN or k-means to the complete feature space X, iden-
tify the largest cluster Cmax, and compute the Mahalanobis
distance of all the flows lying outside Cmax to its centroid.
The ROC is finally obtained by comparing the sorted dis-
tances to a variable detection threshold. These approaches
are similar to those used in previous work [18, 19, 20]. In
the PCA-based approach, PCA and the sub-space meth-
ods [10, 11] are applied to the complete matrix X, and
the attacks are detected by comparing the residuals to a
variable threshold. Both the k-means and the PCA-based
approaches require fine tuning: in k-means, we repeat the
clustering for different values of clusters k, and take the
average results. In the case of PCA we present the best
performance obtained for each evaluation scenario.

Obtained results permit to evidence the great advan-
tage of using the SSC-Density-based algorithm in the clus-
tering step with respect to previous approaches. In partic-
ular, all the approaches used in the comparison generally
fail to detect all the attacks with a reasonable false alarm
rate. Both the DBSCAN-based and the k-means-based al-
gorithms get confused by masking features when analyzing
the complete feature space X. The PCA approach shows
to be not sensitive enough to discriminate different kinds
of attacks of very different intensities, using the same rep-
resentation for normal-operation traffic.

6. Experimental Evaluation in KDD99

In this section we evaluate the performance of the U-
NIDS to detect network attacks in the well-known and
widely used KDD99 network attacks dataset [?]. In ad-
dition, we compare its performance with that obtained by
an extensively investigated misuse NIDS based on decision
trees, as well as against some other methods for unsuper-
vised detection available in the literature.

The KDD99 dataset contains a wide variety of intru-
sions simulated in a military network environment. Traf-
fic consists of packets aggregated into connections, being
a connection a flow of TCP packets between a source and
a destination IP address. Simulated attacks include DoS
attacks, unauthorized access from a remote machine - R2L
attacks (e.g. password guessing), unauthorized access to
super-user privileges - U2R attacks (e.g. buffer overflows),
and probing attacks (e.g. port scanning). Each connec-
tion or flow is described by a set of m = 41 features (e.g.
number of bytes, TCP flags, failed remote-login attemps,
etc.) and a label indicating either the name of the attack
or if the flow corresponds to normal-operation traffic.

The KDD99 dataset has become widely discredited.
This letter is intended to briefly outline the problems that
have been cited with the KDD Cup’99 dataset, and dis-
courage its further use. Pero como lo nico que hacemos es
comprar uno contra el otro, de ltima no pasa nada. Adems
es mas evidencia de que funciona.

In order to compare the performance of the unsuper-
vised system against a decision-tree-based NIDS we take
two different data sub-sets, the first used for training is-
sues and the second one for testing. The testing dataset
corresponds to instances of different attacks that are not
present in the training dataset, which will permit us to evi-
dence the paramount advantage of doing unsupervised de-
tection when new attacks arise. DoS and probing attacks
in KDD99 are represented by a large number of flows, in
some cases even more flows than those corresponding to
normal-operation traffic. While this issue limits the use of
the outliers detection technique (i.e. the attack is not an
outlier in those cases), we shall see in the following sec-
tion that real network traffic can be aggregated either at

7

0 5 10 15 20 25 30 10x
−30.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FPR

T
P

R

UNADA
DBSCAN Outliers Detection
k−means Outliers Detection
PCA Outliers Detection

(a) MAWI, IPsrc key.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

UNADA
DBSCAN Outliers Detection
k−means Outliers Detection
PCA Outliers Detection

(b) MAWI, IPdst key.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

UNADA
DBSCAN Outliers Detection
k−means Outliers Detection
PCA Outliers Detection

(c) METROSEC, IPdst key.

Figure 5: True Positives Rate vs False Alarms in MAWI and METROSEC.

source or destination IP address to dramatically reduce the
number of flows that compose a highly distributed and/or
large volume attack. In order to avoid this limitation in
the already processed flows of KDD99 (which can not be
aggregated because we do not have the corresponding IP
addresses), we shall select only a small fraction of flows
for both DoS and probing attacks in our training and test-
ing datasets. The training dataset has 950 normal flows
and 255 attacks, while the testing dataset consists of 950
normal flows and 162 attacks.

Let us first evaluate the detection properties of the
EA4RO-based detection algorithm used by the U-NIDS
when changing the detection threshold Th. Figure 6 de-
picts the True Positives Rate as a function of the False
Positives Rates (i.e., the ROC curve) for both training
and testing datasets. Figure 6.(a) shows the results ob-
tained by applying the U-NIDS to the training dataset,
while figure 6.(b) shows the results obtained when analyz-
ing the testing dataset. In both cases we can appreciate
that the EA4RO detection algorithm is able to detect a
large fraction of attacks (more than 90%) with very low
false positive rates (less than 1% and 3.5% respectively).

Figure 6 additionaly compares the detection perfor-
mance obtained with EA4RO against three previous ap-
proaches for unsupervised anomaly detection proposed in
the literature: DBSCAN-based, k-means-based, and PCA-
based outliers detection. The first two consist in applying
either DBSCAN or the celebrated k-means clustering al-
gorithm [16] to the complete feature space X, identify the
largest cluster Cmax, and compute the Mahalanobis dis-
tance of all the flows lying outside Cmax to its centroid.
The ROC is finally obtained by comparing the sorted dis-
tances to a variable detection threshold. These approaches
are similar to those used in previous work [18, 19, 20]. In
the PCA-based approach, PCA and the sub-space meth-
ods [10, 11] are applied to the complete matrix X, and
the attacks are detected by comparing the residuals to a
variable threshold. Both the k-means and the PCA-based
approaches require fine tuning: in k-means, we repeat the
clustering for different values of clusters k, and take the av-

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

EA4RO Detection
DBSCAN Outliers Detection
k−means Outliers Detection
PCA Outliers Detection

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

EA4RO Detection
DBSCAN Outliers Detection
k−means Outliers Detection
PCA Outliers Detection

(a) Training dataset (b) Testing Dataset

Figure 6: True Positives Rate vs False Alarms in KDD99.

erage results. In the case of PCA we present the best per-
formance obtained for each evaluation scenario. In both
cases we can appreciate the outperforming ability of the
EA4OR detection algorithm w.r.t. these traditional ap-
proaches, which fail to detect as many attacks as EA4OR
with a reasonable false alarms rate.

Now that we have shown the detection properties of the
algorithms used in the U-NIDS, we shall compare its per-
formance with a largely studied misuse-based NIDS built
through decision trees. We shall build a different deci-
sion tree for each of the four different categories of attacks
(DoS, probe, R2L, and U2R), using the training dataset
and standard C4.5 decision trees [7, 8]. To train each of
the trees for each different category of attacks, we consider
that the flows belonging to the rest of the categories of at-
tacks as well as the normal operation flows correspond to
the “negative” class (there is no attack of the correspond-
ing category). For example, let us suppose that we want
to build a decision tree to detect R2L attacks; in that case,
all the flows in the trainig dataset which belong to the R2L
category belong to the “positive” class (there is a R2L at-
tack), while the normal-operation flows as well as the DoS,
probe, and U2R flows compose the negative class.

We shall compare the ability of the U-NIDS to detect
unknown attacks with respect to a traditional misused-
detection NIDS based on decision trees. Decision trees

8

DOS PROBE R2L U2R
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n
A

cc
ur

ac
y

Misuse−based NIDS U−NIDS

DOS PROBE R2L U2R
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n
A

cc
ur

ac
y

Misuse−based NIDS U−NIDS

(a) Training dataset (b) Testing Dataset

Figure 7: U-NIDS vs Misuse-based NIDS in KDD99.

guess_pass imap phf multihop warem. warec. spy
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n
A

cc
ur

ac
y

Misuse−based NIDS U−NIDS

named xlock xsnoop sendmail httptunnel worm
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n
A

cc
ur

ac
y

Misuse−based NIDS U−NIDS

(a) Training dataset (b) Testing Dataset

Figure 8: U-NIDS vs Misuse-based NIDS - R2L attacks.

permit to construct comprehensive signatures for network
attacks in the form of multiple filtering-rules, using a graph
structure.

Figure 7 presents the detection accuracy (number of
correctly detected attacks) obtained either with the U-
NIDS or with the misuse-based NIDS previously described
in both the training and testing datasets. Results are in-
dividually presented for each of the four categories of at-
tacks. As expected, results obtained by both systems are
very similar in the training dataset: for the case of U-
NIDS, we have already shown in figure 6 that more than
90% of the attacks can be correctly detected; in the case of
the misuse-based NIDS, it is quite obvious that using the
system to detect the attacks which has been programmed
to alert on shall provide performant results. What it is
interesting to appreciate is what happens with both sys-
tems when we try to detect unknown attacks. Figure 7.(b)
evidences the limitations of misuse-based NIDS to detect
unknown attacks, and more importantly, the paramount
advantage of using our U-NIDS for detecting new previ-
ously unseen attacks. We refer the reader to figures 8, 9,
10, and 11 to appreciate the detection accuracy obtained
with both systems for the different attacks on each of the
four different categories.

7. Detecting Attacks in Real Traffic Traces

Let us now evaluate the ability of the U-NIDS to de-
tect different attacks in real traffic traces from the public

neptune pod land back
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n
A

cc
ur

ac
y

Misuse−based NIDS U−NIDS

apache2 udp_storm process_table
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n
A

cc
ur

ac
y

Misuse−based NIDS U−NIDS

(a) Training dataset (b) Testing Dataset

Figure 9: U-NIDS vs Misuse-based NIDS - DoS attacks.

portsweep ipsweep nmap
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

et
ec

tio
n

A
cc

ur
ac

y

Misuse−based NIDS U−NIDS

saint mscan
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n
A

cc
ur

ac
y

Misuse−based NIDS U−NIDS

(a) Training dataset (b) Testing Dataset

Figure 10: U-NIDS vs Misuse-based NIDS - Probing attacks.

buffer_over load_mod perl rootkit
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n
A

cc
ur

ac
y

Misuse−based NIDS U−NIDS

xterm ps sqlattack
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n
A

cc
ur

ac
y

Misuse−based NIDS U−NIDS

(a) Training dataset (b) Testing Dataset

Figure 11: U-NIDS vs Misuse-based NIDS - U2R attacks.

9

MAWI repository of the WIDE project [25]. The WIDE
operational network provides interconnection between dif-
ferent research institutions in Japan, as well as connection
to different commercial ISPs and universities in the U.S..
The traffic repository consists of raw packet traces daily
collected for the last ten years. The traces we shall work
with consist of traffic from one of the trans-pacific links
between Japan and the U.S.. MAWI traces are not la-
beled, but some previous work on anomaly detection has
been done on them [15, 24]. In particular, [24] detects
network attacks using a signature-based approach, while
[15] detects both attacks and anomalous flows using non-
Gaussian modeling. We shall therefore refer to the com-
bination of results obtained in both works as our ground

truth for MAWI traffic.
We shall also test the true positive and false posi-

tive rates obtained in the detection of flooding attacks in
traffic traces from the METROSEC project [26]. These
traces consist of real traffic collected on the French RE-
NATER network, containing simulated attacks performed
with well-known DDoS attack tools. Traces were collected
between 2004 and 2006, and contain DDoS attacks that
range from very low intensity (i.e., less than 4% of the
overall traffic volume) to massive attacks (i.e., more than
80% of the overall traffic volume). In addition, we compare
the performance of the U-NIDS against the same unsuper-
vised detection approaches presented in previous section.

In the following evaluations, we aggregate traffic either
at source or destination IP address to show that the hy-
pothesis of having a reduced number of flows as attacking
flows is valid even in the case of distributed attacks. For
example, if we define a flow as all the packets that are di-
rected towards a single destination IP address, then this
flow will be an outlier in the case of a DDoS, in which
many different attackers send traffic to the same victim.
As traffic features, we shall use in these evaluations basic
traffic descriptors such as number of sources and destina-
tions, number of source and destination ports, packet rate,
fraction of SYN and ICMP packets, etc.

Figure 12 depicts the ROC curves obtained in the de-
tection of different attacks in MAWI and METROSEC.
Figure 12.(a) corresponds to the detection of 36 anoma-
lies in MAWI traffic, using packets aggregated at source
IP address. These anomalies include network and port
scans, worm scanning activities (Sasser and Dabber vari-
ants), and some anomalous flows consisting on very high
volumes of NNTP traffic. Figure 12.(b) corresponds to the
detection of 9 DDoS attacks in the METROSEC dataset,
using packets aggregated at destination IP address. From
these, 5 correspond to massive attacks (more than 70% of
traffic), 1 to a high intensity attack (about 40%), 2 are low
intensity attacks (about 10%), and 1 is a very-low intensity
attack (about 4%).

As before, obtained results permit to evidence the great
advantage of using the EA4RO algorithm in the cluster-
ing step with respect to previously proposed approaches.
In particular, all the approaches used in the comparison

0 5 10 15 20 25 30 10x
−30.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FPR

T
P

R

UNADA
DBSCAN Outliers Detection
k−means Outliers Detection
PCA Outliers Detection

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

UNADA
DBSCAN Outliers Detection
k−means Outliers Detection
PCA Outliers Detection

(a) MAWI, IP source flows. (b) METROSEC, IP dest. flows.

Figure 12: True Positives Rate vs False Alarms in MAWI and MET-
ROSEC.

generally fail to detect all the attacks with a reasonable
false alarm rate. Both the DBSCAN-based and the k-
means-based algorithms get confused by masking features
when analyzing the complete feature space X. The PCA
approach shows to be not sensitive enough to discriminate
different kinds of attacks of very different intensities, using
the same representation for normal-operation traffic.

8. Implementation Issues

The SSC-EA-based algorithm performs clustering in
N = m(m−1)/2 low-dimensional sub-spaces Xi ∈ R

2. As
we have shown, this provides a high discrimination power
to detect and characterize different types of network at-
tacks. However, the multiple clusterings computation in-
creases the total Computational Time (CT) of the algo-
rithm, imposing scalability issues for on-line detection of
network attacks in very-high-speed networks. Scalability
should be addressed regarding both the number of features
used to describe traffic flows (m) and the number of flows
to analyze (n). In the real traffic evaluations that we have
presented, the number of flows captured in a time slot of
∆T = 20 seconds rounds n = 2500 flows. For the m = 9
features that we have used, the total number of clusterings
to compute is N = 36, which takes about 14.4 seconds in
a standard single-processor machine.

Two key features of the SSC-EA-based algorithm can
be exploited to reduce scalability problems in m and n.
Firstly, clustering is performed in low-dimensional sub-
spaces (R2), independently of the number of features that
are used. Clustering in low-dimensional feature spaces is
faster than in high-dimensional spaces [16], which partially
alleviates the overhead of multiple clusterings computa-
tion. Secondly, the clustering of each sub-space Xi can
be performed independently of the analysis on the other
sub-spaces, which is perfectly adapted for parallel com-
puting architectures. Parallel computing has become the
dominant paradigm for accelerating specific tasks and rep-
resents a booming domain, driven by the availability of
strong computational-power entities at low costs. Paral-
lelization can be achieved in different ways: using a sin-
gle multi-processor and multi-core machine, using GPU

10

(Graphic Processor Unit) capabilities, using network pro-
cessor cards, using a distributed group of machines, or
combining these techniques. We shall use the term ”slice”
as a reference to a single computational entity.

Modern network processor cards are able to perform
traffic monitoring even in 10 Gbps network connections.
In a average-loaded 10 Gbps link (about 50%-60%) there
are about 500.000 packets per second; if we consider traffic
flows with an average rate of 500 kbps (about 50 pkts/sec)
and a average duration of at least 20 seconds, then we
have about n = 10.000 flows to analyze in each time slot
of ∆T = 20 seconds. From our experimentations, we know
that we can analyze this number of flows using as much as
m = 20 traffic descriptors in less than 20 seconds, using
a parallel architecture with about 100 slices. Current net-
work processor cards vendors offer multi-core solutions for
high-performance networking with as much as 64 general
purpose cores [?], which are perfectly adapted to deploy
our unsupervised detection algorithm for very high speed
knowledge-independent traffic monitoring.

9. Computational Time and Parallelization

The last issue that we analyze is the Computational
Time (CT) of the algorithm. The SSC-EA-based algo-
rithm performs multiple clusterings inN(m) low-dimensional
sub-spaces Xi ⊂ X. This multiple computation imposes
scalability issues for on-line detection of attacks in very-
high-speed networks. Two key features of the algorithm
are exploited to reduce scalability problems in number of
features m and the number of aggregated flows n to ana-
lyze. Firstly, clustering is performed in very-low-dimensional
sub-spaces, Xi ∈ R

2, which is faster than clustering in
high-dimensional spaces [16]. Secondly, each sub-space
can be clustered independently of the other sub-spaces,
which is perfectly adapted for parallel computing archi-
tectures. Parallelization can be achieved in different ways:
using a single multi-processor and multi-core machine, us-
ing network processor cards and/or GPU (Graphic Pro-
cessor Unit) capabilities, using a distributed group of ma-
chines, or combining these techniques. We shall use the
term ”slice” as a reference to a single computational en-
tity.

Figure 13 depicts the CT of the SSC-EA-based algo-
rithm, both (a) as a function of the number of features m
used to describe traffic flows and (b) as a function of the
number of flows n to analyze. Figure 13.(a) compares the
CT obtained when clustering the complete feature space
X, referred to as CT(X), against the CT obtained with
SSC, varying m from 2 to 29 features. We analyze a large
number of aggregated flows, n = 104, and use two differ-
ent number of slices, M = 40 and M = 100. The analysis
is done with traffic from the WIDE network, combining
different traces to attain the desired number of flows. To
estimate the CT of SSC for a given value of m and M , we
proceed as follows: first, we separately cluster each of the
N = m(m−1)/2 sub-spacesXi, and take the worst-case of

0 5 10 15 20 25 30
0

50

100

150

200

250

Nº Features

C
lu

st
er

in
g

T
im

e
(s

)

Clustering in the complete Feature Space
Distributed Sub−Space Clustering, 40 slices
Distributed Sub−Space Clustering, 100 slices

1000 5000 10000 50000 100000
−1

0

1

2

3

4

5

Nº Patterns

C
lu

st
er

in
g

T
im

e
(lo

g1
0(

s)
)

Clustering in the complete Feature Space
Distributed Sub−Space Clustering, 190 slices

(a) Time vs. n features. (b) Time vs. n patterns.

Figure 13: Computational Time as a function of n of features and
n of flows to analyze. The number of aggregated flows in (a) is
n = 10000. The number of features and slices in (b) is m = 20 and
M = 190 respectively.

the obtained clustering time as a representative measure
of the CT in a single sub-space, i.e., CT(XSSCwc) = max i

CT(Xi). Then, if N 6 M , we have enough slices to com-
pletely parallelize the SSC algorithm, and the total CT
corresponds to the worst-case, CT(XSSCwc). On the con-
trary, if N > M , some slices have to cluster various sub-
spaces, one after the other, and the total CT becomes
(N%M + 1) times the worst-case CT(XSSCwc), where %
represents integer division. The first interesting observa-
tion from figure 13.(a) regards the increase of CT(X) when
m increases, going from about 8 seconds form = 2 to more
than 200 seconds for m = 29. As we said before, cluster-
ing in low-dimensional spaces is faster, which reduces the
overhead of multiple clusterings computation. The sec-
ond paramount observation is about parallelization: if the
algorithm is implemented in a parallel computing architec-
ture, it can be used to analyze large volumes of traffic using
many traffic descriptors in an on-line basis; for example, if
we use 20 traffic features and a parallel architecture with
100 slices, we can analyze 10000 aggregated flows in less
than 20 seconds.

Figure 13.(b) compares CT(X) against CT(XSSCwc)
for an increasing number of flows n to analyze, using m =
20 traffic features and M = N = 190 slices (i.e., a com-
pletely parallelized implementation of the SSC-EA-based
algorithm). As before, we can appreciate the difference in
CT when clustering the complete feature space vs. using
low-dimensional sub-spaces: the difference is more than
one order of magnitude, independently of the number of
flows to analyze. Regarding the volume of traffic that
can be analyzed with this 100% parallel configuration, the
SSC-EA-based algorithm can analyze up to 50000 flows
with a reasonable CT, about 4 minutes in this experience.
In the presented evaluations, the number of aggregated
flows in a time slot of ∆T = 20 seconds rounds the 2500
flows, which represents a value of CT(XSSCwc) ≈ 0.4 sec-
onds. For the m = 9 features that we have used (N = 36),
and even without doing parallelization, the total CT is
N×CT(XSSCwc) ≈ 14.4 seconds.

11

10. Conclusions

The Unsupervised Network Anomaly Detection Algo-
rithm that we have proposed presents many interesting
advantages with respect to previous proposals in the field
of unsupervised anomaly detection. It uses exclusively un-
labeled data to detect traffic anomalies, without assuming
any particular model or any canonical data distribution,
and without using signatures of anomalies or training. De-
spite using ordinary clustering techniques to identify traffic
anomalies, UNADA avoids the lack of robustness of gen-
eral clustering approaches, by combining the notions of
Sub-Space Clustering, Density-based Clustering, and mul-
tiple Evidence Accumulation. We have verified the effec-
tiveness of UNADA to detect real single source-destination
and distributed network attacks in real traffic traces from
different networks, all in a completely blind fashion, with-
out assuming any particular traffic model, clustering pa-
rameters, or even clusters structure beyond a basic defini-
tion of what an anomaly is. Additionally, we have shown
detection results that outperform traditional approaches
for outliers detection, providing a stronger evidence of the
accuracy of UNADA to detect network anomalies.

Acknowledgments

This work has been done in the framework of the Euro-
pean project ECODE, funded by the European Commis-
sion under grant FP7-ICT-2007-2/223936.

References

[1] S. Hansman and R. Hunt, “A Taxonomy of Network and Com-
puter Attacks”, in Computers and Security, vol. 24 (1), pp. 31-43,
2005.

[2] Symantec Enterprise Security, “Symantec Internet Security
Threat Report, Trends for 2010”, Symantec Reports, vol. 16,
April 2011.

[3] N. Wyler, “Aggressive Network Self-Defense”, ISBN 978-1-
931836-20-3, Syngress - Elsevier, 2005.

[4] G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou,
“Network Anomaly Detection and Classification via Opportunis-
tic Sampling”, in IEEE Network, vol. 23 (1), 2009.

[5] R. Kemmerer and G. Vigna, “Intrusion Detection: A Brief His-
tory and Overview”, in IEEE Security & Privacy Mag., vol. 35
(4), 2002.

[6] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and
B. Stiller, “An Overview of IP Flow-Based Intrusion Detection”,
in IEEE Communications Surveys & Tutorials, vol. 12 (3), 2010.

[7] C. Kruegel and T. Toth, “Using Decision Trees to Improve
Signature-Based Intrusion Detection”, in Proc. RAID, 2003.

[8] J. Lee, H. Lee, S. Sohn, J. Ryu, and T. Chung, “Effective Value
of Decision Tree with KDD99 Intrusion Detection Datasets for
IDS”, in Proc. ICACT, 2008.

[9] P. Barford, J. Kline, D. Plonka, and A. Ron, “A Signal Analysis
of Network Traffic Anomalies”, in Proc. ACM IMW, 2002.

[10] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing Network-
Wide Traffic Anomalies”, in Proc. ACM SIGCOMM, 2004.

[11] A. Lakhina, M. Crovella, and C. Diot, “Mining Anomalies Using
Traffic Feature Distributions”, in Proc. ACM SIGCOMM, 2005.

[12] A. Soule, K. Salamatian, and N. Taft, “Combining Filtering
and Statistical Methods for Anomaly Detection”, in Proc. ACM

IMC, 2005.

[13] D. Brauckhoff, K. Salamatian, and M. May, “Applying PCA for
Traffic Anomaly Detection: Problems and Solutions”, in Proc.

INFOCOM, 2009.
[14] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-

based Change Detection: Methods, Evaluation, and Applica-
tions”, in Proc. ACM IMC, 2003.

[15] G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and K. Cho, “Ex-
tracting Hidden Anomalies using Sketch and non Gaussian Multi-
resolution Statistical Detection Procedures”, in Proc. LSAD,
2007.

[16] A. K. Jain, “Data Clustering: 50 Years Beyond K-Means”, in
Pattern Recognition Letters, vol. 31 (8), pp. 651-666, 2010.

[17] L. Parsons, E. Haque, and H. Liu, “Subspace Clustering for
High Dimensional Data: a Review”, in ACM SIGKDD Expl.

Newsletter, vol. 6 (1), pp. 90-105, 2004.
[18] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion Detection with

Unlabeled Data Using Clustering”, in Proc. ACM DMSA Work-

shop, 2001.
[19] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A

Geometric Framework for Unsupervised Anomaly Detection: De-
tecting Intrusions in Unlabeled Data”, in Applications of Data

Mining in Computer Security, Kluwer Publisher, 2002.
[20] K. Leung and C. Leckie, “Unsupervised Anomaly Detection

in Network Intrusion Detection Using Clustering”, in Proc.

ACSC05, 2005.
[21] A. Fred and A. K. Jain, “Combining Multiple Clusterings Us-

ing Evidence Accumulation”, in IEEE Trans. Pattern Anal. and

Machine Int., vol. 27 (6), 2005.
[22] M. Ester, P. Kriegel, J. Sander, and X. Xu, “A Density-based

Algorithm for Discovering Clusters in Large Spatial Databases
with Noise”, in Proc. ACM SIGKDD, 1996.

[23] N. Williams, S. Zander, and G. Armitage, “A Preliminary Per-
formance Comparison of Five Machine Learning Algorithms for
Practical IP Traffic Flow Classification”, in ACM SIGCOMM

Computer Communication Review, vol. 36 (5), 2006.
[24] G. Fernandes and P. Owezarski, “Automated Classification of

Network Traffic Anomalies”, in Proc. SecureComm’09, 2009.
[25] K. Cho, K. Mitsuya and A. Kato, “Traffic Data Repository at

the WIDE Project”, in USENIX Annual Technical Conference,
2000.

[26] “METROlogy for SECurity and QoS”, at http://laas.fr/

METROSEC

[27] “Bro Intrusion Detection System”, at http://www.bro-ids.org
[28] “SNORT: an Open Source Network Intrusion Prevention and

Detection System”, at http://www.snort.org

12

