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Abstract—The Belief Propagation (BP) is an inference algorithm used

to estimate marginal probability distributions for any Markov Random

Field (MRF). In the realm of Low-Density Parity-Check (LDPC) codes

that can be represented by MRF called Tanner graphs, the BP is used

as a decoding algorithm to estimate the states of bits sent through a

noisy channel. Known to be optimal when the Tanner graph is a tree,

the BP suffers from suboptimality when the Tanner graph has a loop-like

topology. Furthermore, combinations of loops, namely the trapping sets,

are particularly harmful for the decoding. To circumvent this problem

were proposed other algorithms, like the Generalized Belief Propagation

(GBP) that comes from statistical physics. This algorithm allows to absorb

topological structures inside new nodes called regions. An advantage is

that the resulting graph, the region graph, is not unique then according

to its construction this region graph is a media for the GBP that can

provide more accurate estimates than the BP.

In this paper, we propose novel constructions of the region graph for

the famous Tanner code of length N = 155 by making use of the trapping

sets as basis for the regions.

I. INTRODUCTION

A well-known problematic of the Markov Random Fields (MRF)

is to extract their marginal probability distributions. This inference

problem has numerous applications in computer vision, neural net-

works, image processing, statistical physics and channel coding. In

[1] has been proposed the Belief Propagation (BP), known to provide

accurate estimates. In the realm of error-correcting coding theory, the

BP is a decoding algorithm that helps to recover a sequence of bits

sent through a noisy channel. To this end the BP is associated to Low-

Density Parity-Check (LDPC) codes that consist in applying artifical

constraints between the bits, namely the parity-check equations. The

sets of the bits joined with the set of the constraints form an

MRF, called the Tanner graph, used as a media for the BP [2].

It is an accurate inference algorithm, meaning that it has relevant

performance in terms of the bit-error rate (BER). However the Tanner

graphs of most LDPC codes have loop-like topologies, that leads the

BP to wrong estimates, making this algorithm suboptimal [3]. In

particular, the combination of short loops, as the trapping sets [4],

[5], are very harmful. To circumvent this phenomenon, we bring out

that the BP is equivalent to the Bethe approximation [6], a method

used in statistical physics to estimate averages of thermodynamics

quantities by neglecting – to some extent – correlations between

interacting variables [7]. As the BP, this technique suffers from the

loop-like topology of the graphical representation of the problem, like

spin glasses. It has been generalized to the Kikuchi approximation,

a technique that consists in gathering interacting variables to absorb

loops [8]. The resulting graph, called the region graph, is a media for

a new message-passing algorithm, the Generalized Belief Propagation

(GBP) that turns out to be more accurate than the BP provided that the

region graph has absorbed damageable structures. Along the whole

paper, we focus on the Tanner code [9] whose main property is that

it can be entirely described by a set of known trapping sets. Then the

region graph can be built by working on them, that allows to lower

BER of the GBP comparing with the BP one.

In [6] has been highlighted that the update equations of the GBP

does not provide convergence of the algorithm therefore it was

proposed to relax the update with the memory by the introduction

of a uniform weighting. However, this choice seems quite restrictive.

Here we propose a general point of view of the relaxation by the

use of a damping factor that depends on the iteration, and we make

reveal that it provides relevant properties of the GBP.

The section II deals with preliminaries about the LDPC codes, the

BP and the trapping sets. In the section III, are exposed the origins

of the GBP, the region graph construction rules. We resume with

a classical construction and two novel constructions adapted to the

Tanner code. We also introduce the general damping factor and the

different evolutions we propose with associated results. In the section

IV, we expose results about our novel constructions.

II. PRELIMINARIES

A. LDPC Codes – Belief Propagation

We consider N bits X = {x1, . . . , xN} sent through a noisy

channel. In the whole paper, we use the additive white gaussian

channel whose power is given by the Signal-to-Noise Ratio (SNR).

An LDPC code of length N is modeled by M < N parity-check

equations C = {c1, . . . , cM} such that:

∀j ∈ {1, . . . ,M}, cj(x1, . . . , xN ) =
∑

xi∈Nj

xi

where the sum is computed over GF(2), and Nj is a set of bits

that are the neighborhood of cj determined by the code. We define

Ni the neighborhood of xi by the set {cj |xi ∈ Nj}j . A couple

{xi, cj ∈ Ni} forms an edge eij between a variable node associated

to xi and a check node associated to cj in a bipartite graph

G = {X ∪ C}
⋃

{eij}ij . We call this graph the Tanner graph.

The BP is an inference algorithm that consists in passing messages

along the edges of G. We denote m
(k)
ij (resp. n

(k)
ji ) the message from

the variable node xi (resp. the check node cj) to the check node cj
(resp. the variable node xi) at iteration k, where a message is the

probability distribution of the receiver conditionned to the emitter.

For any edge eij the update equations are [2]:

n
(k)
ji (0) =

1

2
+

1

2

∏

Xi′∈Nj\Xi

(

2m
(k−1)

i′j
(0)− 1

)

n
(k)
ji (1) = 1− n

(k)
ji (0) (1)

m
(k)
ij (xi) =

li(xi)

Zij

∏

Cj′∈Ni\Cj

n
(k)

j′i
(xi) (2)



where Zij is a normalization factor such that: m
(k)
ij (0) +

m
(k)
ij (1) = 1. To initialize the algorithm, we use the likeli-

hoods {li(xi) = pi(yi|xi)}i computed with observable nodes

{y1, . . . , yN}: ∀eij ,m
(0)
ij = li(xi). The estimate of the marginal

probability distribution on xi, i.e., the belief on a variable xi is:

b
(k)
i (xi) =

li(xi)

Zi

∏

j∈Ni

n
(k)
ji (xi) (3)

where Zi is a normalization factor such that:

bi(0) + bi(1) = 1. The estimate of the sent bits are:

∀i ∈ {1, . . . , N}, x̂
(k)
i = arg maxxi

b
(k)
i (xi). The

algorithm is stopped as soon as all the parity-check equations

are verified by the output bits or if the convergence is reached:

∀xi, ∀cj ∈ Nj , n
(k+1)
ji = n

(k)
ji .

B. Trapping-sets

When N is infinite, it has been prooved [4] that the BP reaches the

optimal solution given by the maximum likelihoods decoder because

the Tanner graph is a tree. However, in pratical cases, N is finite, and

most LDPC codes contain loops inside their Tanner graph making the

BP suboptimal [3]. Furthermore, the short loops and the combinations

thereof are very harmful. The trapping sets exposed in [5] are well-
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Fig. 1. Tanner graph of the TS(5,3)

known topological structures

that harm the decoding. A trap-

ping set TS(a,b) is a Tanner

graph that contains a variable

nodes and b unverified check

nodes. We consider the case

a = 5 and b = 3 whose Tanner

graph is represented on Fig.1.

Such a structure takes place in

many LDPC codes, including

the Tanner code [9] of length

N = 155 with M = 93. The

interesting property of this LDPC code is that it is entirely covered

by a set T of 155 trapping sets, i.e.:

∀cj ∈ C, ∃t ∈ T , cj ∈ t (4)

∀xi ∈ X, ∃t ∈ T , xi ∈ t (5)

The BER of the Tanner code suffers from an error floor [4] for high

SNR values, especially due to the TS(5,3). A current problematic is

then to lower the error floor. The finite alphabet iterative decoders

are good challengers to solve this problem but we do not deal with

these algorithms, we invite the interested reader to pay attention to

the article [10] for more details.

III. GENERALIZED BELIEF PROPAGATION

A. Origins

In statistical physics, spin glasses are well-known Markov Random

Fields (MRF) in which a problem is to minimize the free energy. This

optimization has been demonstrated to be equivalent to the inference

problem [6]. Most methods rely on region-based approximations,

where the MRF is clustered such that the belief b(x) is a product

of the beliefs {br(xr)}r over the clusters:

b(x) =
∏

r∈R

b
cr
r (xr) (6)

where {cr}r are overcounting numbers provided to account only once

each variable of the MRF [11]. The Bethe Approximation (BA) [7]

is a region-based approximation that takes into account the short-

range correlations between the spins. It can be modeled by a factor

graph that is identical to a Tanner graph if and only if the factors

define hard constraints, which is the case of LDPC codes. Therefore,

with computations detailed in [12], it has been concluded that the

BA was equivalent to the BP. This equivalence provides a solution to

the problem of the loop-like structure of the Tanner graph. Indeed,

the BA has been extended to the Kikuchi Approximation (KA) [8],

a method to minimize the free energy as the BA with the slight

difference that it considers larger ranges of correlation, thereby can

absorb loops. The associated inference algorithm is the GBP.

B. Region-graph

The GBP is a message-passing algorithm that runs on a Bayesian

network, namely the region graph, whose nodes are called regions.

Each region r is compouned of a set of check nodes Cr and a set

of variables Xr 6= ∅ with the following condition: if Cr is not an

empty set then ∀cj ∈ Cr,Nj ⊆ Xr . Here we expose the rules of

construction then we present three different constructions, two of

which are our novel constructions suited to the Tanner code.

1) Rules of construction: The region graph is a graph of L

levels. We present the construction in two steps. The first step is the

construction of the first level: it is the choice of the initial regions set

R0 = {r0k}k, i.e. the choice of the harmful structures of the Tanner

graph that need to be neutralized. R0 is valid if:

∀cj ∈ C, ∃r0k ∈ R0, cj ∈ Cr0
k
,Nj ⊆ Xr0

k

∀xi ∈ X, ∃r0k ∈ R0, xi ∈ Xr0
k

The second step is the construction of the other levels

{R1, . . . ,RL−1}. To build Rl we search for the common variables

and checks between the regions of the previous level Rl−1. Thus

a region rlk belongs to Rl if we can find an associated parent set

P l
k ⊂ Rl−1 such that:

∀cj ∈ Crl
k
, ∀rl−1

j ∈ P l
k, cj ∈ Cl−1

j

∀xi ∈ Xrl
k
, ∀rl−1

j ∈ P l
k, xi ∈ Xl−1

j

The region graph reaches its last level RL−1 when there is no

intersection anymore between the regions of RL−1. To each region

r is associated an overcounting number cr ∈ Z such that a graph of

regions is a true region graph if:

∀r ∈ R,
∑

p∈R
r⊆p

cp = 1 (7)

where r ⊂ p means that Xr ⊆ Xp and Cr ⊆ Cp.

2) Classical construction: Proposed in [6], it consists in including

only one check node per initial region:

∀cj ∈ C, ∃!r0k ∈ R0, Cr0
k
= cj

∀(r0k, r
0
j ) ∈ R2

0, Cr0
k
∩ Cr0

j
= ∅

The next levels are constructed as exposed previously. As an example

we display on Fig.2(a) the Tanner graph of the Hamming code, and on

Fig.2(b) the region graph from this method. In this case, the region

graph has its own topology. However, for most LDPC codes, the

sparsity of the Tanner graph makes this method generate a region

graph whose topology is identical to the Tanner graph one. Thus the

GBP provides the same solution as the BP, which is not relevant.

3) Novel constructions: In the case of the Tanner code, we use the

trapping sets TS(5,3) introduced previously to create the level R0.

The complexity of the GBP grows as the number of variable nodes

contained in the regions is increased. A complete TS(5,3), i.e. the

TS(5,3) together with the neighborhoods of all the check nodes, is
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Fig. 2. Hamming code

compouned of 35 variable nodes then any message from R0 to R1

amounts to 235 operations, which is not fair at all. Therefore, we

must use smaller initial regions to lower the complexity.

The first idea we propose is presented on Fig.3, where each TS(5,3)

is split into three initial regions, each of them containing two check

nodes, one unverified check node, and their associated neighborhoods.

We call this construction a triplets construction.
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x2, x4, x5
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Fig. 3. Region-graph of the TS(5, 3) – Triplets split

Each initial region contains 13 variable nodes, making the com-

putation of a message from R0 to R1 of 213 operations, which

is dramatically less than the complexity given by the previous

proposition. Locally, the region graph of a TS(5,3) is loop free, that

makes the decoding optimal. In [13] is introduced that a region graph

can offer a GBP more accurate than the BP simply by adding to the

Tanner graph super regions. Therefore, we only link the triplets to the

check nodes of the Tanner graph considering that a region constituted

by a check cj is actually {cj∪Nj}. Unfortunately, when we consider

the whole code, the trapping sets are strongly correlated each other

to each other. Thus, the region graph is not loop free, making the

decoding not optimal. However, the construction provides a GBP that

can offer better properties than the BP as we will see in the results

part.

The second proposition is presented on Fig.4, where each TS(5,3)

is split into three initial regions, each of them containing four check

nodes, two unverified check nodes and their associated neighbor-

hoods. We call this a triangles construction. Each initial region

contains 24 variable nodes, making the computation of a message

from R0 to R1 of 224 which is greater than what we got from the

previous construction, but still lower than 235. The advantage of this

construction is that it absorbs the short loops of the TS(5,3) and the

unverified check nodes. As for the triplets construction, locaaly the

region graph is loop free but embedded to the whole Tanner graph, a
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x2, x3, x4, x5
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Fig. 4. Region-graph of the TS(5, 3) – Triangles split

TS(5,3) has complex links with its fellow beings. However, we can

hope that it won’t be affected by trapping sets effects. We expose the

results of these construction in the next section.

C. Message-passing

The GBP consists in passing messages along the edges of the

region graph. Unlike the Tanner graph, this one is a directed graph

because of the parent links. Thus, we compute a message m
(k)
rq if

and only if r is a parent of q, i.e. q is a child of r denoted q ∈ Cr .

We define Fr the family of r as {q|Cq ⊆ Cr,Xq ⊆ Xr}q , and its

descendants Dr = Fr\r. According to [6], [11] the messages from

a region r to a region q at iteration k are:

m
(k)
rq (xq) =

∑

xr\q

Lr\q(xr\q)cr\q(xr)
∏

p⊂R\Fr
s⊂Fr\Fq

m
(k−1)
ps (xs)

Zrq

∏

p⊂Dr\Fq
s⊂Dq

m
(k)
ps (xs)

(8)

where:

• xr\q is the state of Xr\q = Xr\Xq ,

• Lr\q(xr\q) =
∏

xi⊂Xr\q
li(xi),

• cr\q(xr) =
∏

cj∈Cr\Cq
cj(xNj

),

• Zrq is a normalization factor to ensure that:
∑

xq
m

(k)
rq (xq) = 1.

In [6] is assumed that the iteration indices of the messages at

the denominator must be the same as the one of mrq to keep

relevant performance. Though, it prevents from using an efficient

parallelisation of the computation. Simulations have shown that it is

possible to replace at the denominator the messages m
(k)
ps by m

(k−1)
ps ,

without damaging the results of the algorithm, it helps to get a faster

parallel algorithm. For any region r at iteration k we compute the

beliefs:

b
(k)
r (xr) =

1

Zr

Lr(xr)cr(xr)
∏

p⊂R\Fr
s⊂Fr

m
(k)
ps (xs) (9)

where Zr is a normalization factor to ensure that
∑

xr
b
(k)
r (xr) = 1.

To get the beliefs for the single variables we only need to compute

the marginal probability distributions of the regions beliefs. Thus for

any region r:

∀xi ∈ Xr, b
(k)
i (xi) =

1

Zi

∑

xr\i

b
(k)
r (xr) (10)

where Zi is a normalization factor to ensure that
∑

xi
b
(k)
i (xi) = 1.

The estimates {x̂1, . . . , x̂N} are computed then as for the BP.

D. Damping factor

In [6] it has been highlighted the fact that the GBP suffers from

a poor convergence. Therefore the authors introduced a constant

uniform damping factor w = 0.5 that helps to balance between the

memory {m(k−1)
rq }rq of the algorithm and the update {Frq}rq by

the following relaxation:

∀q ∈ R, ∀r ∈ Pq, m
(k)
rq =

1

2
Frq +

1

2
m

(k−1)
rq (11)



Here we propose a more general point of view by writing:

∀q ∈ R, ∀r ∈ Pq, m
(k)
rq = wkFrq + (1− wk)m

(k−1)
rq (12)

where wk is a decreasing damping factor. The last value wK must

be a null value to ensure that at the end:

∀q ∈ R, ∀r ∈ Pq, m
(K)
rq = m

(K−1)
rq

The challenge is to find a suited sequence {w0, . . . , wK} that

provides both convergence and relevant performance. We consider

four different functions displayed on the Fig.5:

• (C) constant: wk = w0,

• (A) affine: wk = w0(1−
k
K
),

• (P) parabolic: wk = w0(1−
k
K
)n, n > 1,

• (IP) inverse parabolic: wk = w0

(

1− ( k
K
)n
)

, n > 1.
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Fig. 5. Damping factors, w0 = 0.85

The balance between the mem-

ory m
(k−1)
rq and the update Frq

is different from case to case.

In the case of a parabolic func-

tion, the memory is quickly

highlighted at the expense of

the update, whereas in the case

of an inverse parabolic func-

tion the memory is practically

ignored for a long time. The

affine coefficient enables a pro-

gressive oversight of the update

up to a complete use of the

memory. The constant function is what is proposed in [6] with

different values. We present on Fig.6 the evolution of the average Bit-

Error Rate BERk along the iterations with these different damping

factors for four different initializations w0. The simulations have been

realized with an SNR of 2.90 dB, i.e. at the end of the waterfall

where the trapping sets are really harmful. The first observation to

do from 6(d) is that a constant damping factor to the value wk = 1.00
provides the worst BERk meaning that the pure update is not efficient

at all as it was indicated previously. From Fig.6(a) joined with

Fig.6(b), it appears that a low value of w0 is recommended to get

fast convergence of the GBP. In addition, we see that whatever the

decreasing rule of wk, the value w0 = 0.5 lower the BER to a

steady value at k = 19 unlike the value w0 = 0.25 has a longer

transcient phase before convergence at k22. Thus, the initial uniform

distribution between the memory and the update is the more relevant

choice. Furthermore, on Fig.6(c) and 6(d) we observe that for high

w0 the parabolic wk, that gives quickly a low wk, fosters the fastest

convergence compared with the constant, the affine and the inverse

parabolic one. As an example, we see that the parabolic GBP, i.e.

the GBP with the parabolic wk, converges at k = 22, whereas the

inverse parabolic GBP converges at k = K i.e. when the convergence

is completely forced. Although the parabolic GBP is dramatically

faster, the steady value BERK are the same for both, meaning that

wk is a convergence booster. The second convergence booster is the

affine one, which is not surprising because it is a particular case

of the parabolic function with n = 1. Then one could assume that

increasing n provides faster convergence. However other simulations

that we do not present here do not confirm this, from n = 2 the

BERk are indistinguishable for the parabolic law. On the four figures,

we can extract, among other, a common property: whatever w0 the

parabolic GBP always converges nearly k = 20. This invariance is

crucial because it brings out that w0 is a degree of freedom for the

parabolic GBP, unlike the other decreasing laws.
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Fig. 6. BERk of the GBP on the Tanner code with the triplets construction,
K = 100

The surprising information from these observations is that they

indicate that a fast and accurate GBP is enhanced by the memory and

not by the update that defines the GBP itself. Thus, an assumption

is that the GBP acts like a starter we must forget as quick as

possible, it seems more relevant to use only a small percentage of

the update for small value of k and to forget it as quick as possible.

We do not display the result of the triangles contruction here to

keep a reasonnable paper length, but simulations carried on this case

highlight the same assumption. Simulations on other values of the

SNR and other codes like the Hamming code made also reveal the

same conclusion. It seems that the property of choosing a parabolic

decreasing of wk with w0 < 0.5 to obtain relevant performance with

few iterations belongs to the GBP and not to the code.

IV. RESULTS

In this section we expose results of simulations in terms of the

BER between the BP and the GBP. We present first the results on

the Hamming code to evaluate the classical construction. Then we

present the results on the Tanner code with our two constructions to

bring out their efficiency.

A. Hamming Codes

On Fig.7 is displayed the average BER along the SNR values for

the BP and the GBP, used on Hamming codes of length N = 7 and

N = 15.

On Fig.7(a) we displayed the GBP with parabolic damping factor.

It appears that the GBP is not very different to the BP except for

high SNR values for which we see that the BER of the GBP is

lower than the BP one. This indicates that the classical construction

brings only a slight improvement in this case. Concerning Fig.7(b),

the GBP reveals better performance for an affine damping factor,

which is a parabolic one with n = 1, than for a constant damping

factor w = 1. Once again, it is a relevant illustration of the poor

result of the GBP pure update. Actually, these examples are useful

to highlight the fact that the GBP turns out to be performant with

the classical construction if the region graph is of different topology
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Fig. 7. BER of the BP and the GBP with the classical construction on
Hamming codes

compared with the Taner graph. Moreover, for most LDPC codes, the

sparsity of the Tannre graph implies a region graph whose topology

is the same as the Tanner graph one. Thus in these cases, there is not

any improvement.

B. Tanner Code

On Fig.8 we display the BERk for a particularly error event of

7 errors that makes the decoding by the BP oscillate because of

the TS(5,3). We also have simulated on other noise realizations that

harm the estimation for the same reason and we obtain the same

results as what is presented. First of all, we can see that the GBP by

the triplets construction has BERk values lower than that of the BP.

Furthermore, it appears on Fig.8(c) that the inverse parabolic function

implies errors from k = 22, unlike the parabolic and the affine ones.

0 20 40 60 80
0

0.1

0.2

0.3

iteration k

B
E

R

BP

Triplets

Triangles

(a) Affine

0 20 40 60 80
0

0.1

0.2

0.3

iteration k

B
E

R

BP

Triplets

Triangles

(b) Parabolic

0 20 40 60 80
0

0.1

0.2

0.3

iteration k

B
E

R

BP

Triplets

Triangles

(c) Inverse parabolic

Fig. 8. BERk of the BP and the GBPs
on the Tanner code

This is another test to assert

that the parabolic damping fac-

tor is the best choice for a

relevant GBP. A first conclu-

sion is that the triplets con-

struction provides a GBP that

converges fast, contrary to the

BP that can only oscillate. The

number of errors is 8 which

is truly more accurate than the

BP even though one error has

been added comparing with the

error event. Afterthat, consid-

ering the triangles construction

result, we see that the convergence is quickly reached even for

the inverse parabolic function. In addition, the number of errors

by this construction is 7 i.e. there is no more errors than in the

error event. Thus the GBP has a more powerful error correction by

this construction than the triplets construction. One would assert that

periodically, the BP corrects more errors than the GBP, whatever the

construction. Indeed, every 9 iterations in average, the BP reaches

a BERk of 0.0322581, meaning that there are only 5 errors left.

However, this result cannot be accurately predicted because the

periodical aspect is not perfect. Moreover, the difference between this

minimum value and the maximum average BER = 0.32 is too large

to use this pseudo-periodical pattern as a result to assert that around

9 iterations the lowest BERk is reached. Therefore, the GBP is truly

more reliable than the BP, because the BERk does not change. In

addition, other simulations for other SNR values with different error

events made us convinced that the GBP always gets a BER equal

or lower than the BP one, making it an accurate algorithm, provided

that it is run on suited region graph constructions as we proposed.

V. CONCLUSION

In this paper, we have exposed novel constructions of the region

graph for the Tanner code, based on its trapping sets. The simulations

we presented indicated that the performance of the GBP were

improved by these constructions, raising that a triangles construction

absorb the trapping sets better than a triplets construction. We have

showed that the use of a damping factor is necessary to ensure

relevant performance in terms of the BER, and that the classical

proposition is not the best choice. More generally, our work enabled

to understand that the GBP needs extensive research on its region

graph to give interesting performance, that can go beyond the BP.

Finally, the constructions we proposed can be adapted to any LDPC

code whose Tanner graph can be represented by a set of trapping

sets, making our studies relevant.
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