Yohann Le Floch 
email: yohann.lefloch@univ-rennes1.fr
  
Singular Bohr-Sommerfeld conditions for 1D Toeplitz operators: elliptic case

In this article, we state the Bohr-Sommerfeld conditions around a global minimum of the principal symbol of a self-adjoint semiclassical Toeplitz operator on a compact connected Kähler surface, using an argument of normal form which is obtained thanks to Fourier integral operators. These conditions give an asymptotic expansion of the eigenvalues of the operator in a neighbourhood of fixed size of the singularity. We also recover the usual Bohr-Sommerfeld conditions away from the critical point. We end by investigating an example on the two-dimensional torus.

Introduction

Let M be a compact, connected Kähler manifold of complex dimension 1, with fundamental 2-form ω. Assume M is endowed with a prequantum line bundle L. Let K be another holomorphic line bundle and define the quantum Hilbert space H k as the space of holomorphic sections of L k ⊗ K, for every positive integer k. The operators acting on H k that we consider are Berezin-Toeplitz operators ( [START_REF] Boutet De Monvel | The spectral theory of Toeplitz operators[END_REF][START_REF] Borthwick | Semiclassical spectral estimates for Toeplitz operators[END_REF][START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF][START_REF] Ma | Toeplitz operators on symplectic manifolds[END_REF], and many others). The semiclassical parameter is k, and the semiclassical limit is k → +∞. Formally, k is the inverse of Planck's constant .

Our aim is to understand the spectrum of a given self-adjoint Toeplitz operator, in the semiclassical limit. In the setting of ( -)pseudodifferential operators, the similar study was done by Colin de Verdière in [START_REF] De Verdière | Spectre conjoint d'opérateurs pseudo-différentiels qui commutent[END_REF]. In his article [START_REF] Charles | Symbolic calculus for Toeplitz operators with half-form[END_REF], Charles obtained the description of the intersection of the spectrum of a self-adjoint Toeplitz operator with an interval of regular values of its principal symbol, in the semiclassical limit: the eigenvalues are selected by an integrality condition for some geometric quantities (actions) associated to the symbol of the operator (these are the Bohr-Sommerfeld conditions).

In this article, we extend these conditions around a global minimum of the principal symbol; since we work with only one degree of liberty, we expect to have a very precise description of the eigenvalues near the critical point.

Main theorem

Let A k be a self-adjoint Toeplitz operator on M ; its normalized symbol a 0 + a 1 + . . . is real-valued. Assume that its principal symbol a 0 admits a global minimum at m 0 ∈ M , with a 0 (m 0 ) = 0. Denote by λ [START_REF] Bargmann | On a Hilbert space of analytic functions and an associated integral transform[END_REF] k ≤ λ [START_REF] Bargmann | On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory[END_REF] k ≤ . . . ≤ λ (j) k ≤ . . . the eigenvalues of A k . Our main result is the following theorem.

Theorem (Theorem 6.2). There exist E 0 > 0, a sequence g(., k) of functions of C ∞ (R, R) which admits an asymptotic expansion of the form g(., k) = ≥0 k -g in the C ∞ topology, and a positive integer k 0 such that for every integer N ≥ 1 and for every E ≤ E 0 , there exists a constant C N > 0 such that for k ≥ k 0 :

λ (j) k ≤ E or E (j) k ≤ E ⇒ λ (j) k -E (j) k ≤ C N k -N where E (j) k = g k -1 j + 1 2 , k , j ∈ N.
This allows to compute asymptotic expansions to all order for eigenvalues of A k lower than E 0 , except that so far, we do not know who are the g , ≥ 0, or how to compute them. In fact, g(., k) is constructed as the local inverse of a sequence f (., k) which also admits an asymptotic expansion f (., k) = ≥0 k -f in the C ∞ topology, and the first terms f 0 , f 1 are related to geometric quantities (actions) associated to A k .

Link with the usual Bohr-Sommerfeld conditions

Let I be a set of regular values of the principal symbol a 0 ; for every E in I, the level set Γ E := a -1 0 (E) is diffeomorphic to S 1 . Fix an orientation on Γ E depending continuously on E. Define the principal action c 0 ∈ C ∞ (I) in such a way that the parallel transport in L along Γ E is the multiplication by exp(ic 0 (E)). Of course, c 0 (E) is defined up to an integer multiple of 2π, but we can always choose a determination of c 0 that is smooth on I.

Let (δ, ϕ) be a half-form bundle, that is a line bundle δ → M together with an isomorphism of line bundles ϕ : δ 2 → Λ 2,0 T * M . It is known that for any connected compact Kähler manifold of complex dimension 1, such a couple exists. Introduce the hermitian holomorphic line bundle L 1 such that K = L 1 ⊗ δ. For E in I, define the subprincipal form κ E as the 1-form on Γ E such that κ E (X a 0 ) = -a 1

where X a 0 stands for the Hamiltonian vector field associated to a 0 . Denote by j E the embedding Γ E → M , and introduce the connection ∇ E on j * E L 1 → Γ E defined by

∇ E = ∇ j * E L 1 + 1 i κ E ,
with ∇ j * E L 1 the connection induced by the Chern connection of L 1 on j * E L 1 . Define the subprincipal action c 1 ∈ C ∞ (I) like the principal action, replacing L by L 1 endowed with this connection.

Finally, define an index from the half-form bundle δ as follows: the map ϕ E : δ 2 E → T * Γ E ⊗ C, u → j * E ϕ(u) is an isomorphism of line bundles. The set u ∈ δ E ; ϕ E (u ⊗2 ) > 0 has one or two connected components. In the first case, we set E = 1, and in the second case E = 0. In fact, E is a constant E = for E in I.

If we define carefully c 0 and c 1 , the following result holds.

Proposition (Proposition 6.4). Set I =]0, E 0 [. Then

f 0 = 1 2π c 0 , f 1 = 1 2π c 1 (1) 
on I.

Thus, we recover the regular Bohr-Sommerfeld conditions away from the minimum.

Structure of the article

The paper is organized as follows: we start by recalling some properties of Toeplitz operators on a compact manifold. Then, we briefly explain how to adapt the theory in the case where the phase space is the whole complex plane. The fourth section is devoted to the construction of Fourier integral operators that we use to construct our microlocal normal form in the following part. In section 6, we state the Bohr-Sommerfeld conditions and some consequences. In the last section, we investigate an example to give some numerical evidence of our results.

Preliminaries and notations

First, we introduce the notations and conventions that we will adopt through this whole article. They are already written in [START_REF] Charles | Symbolic calculus for Toeplitz operators with half-form[END_REF] for instance, but we recall them here for the sake of completeness.

Quantum spaces

Let M be a connected compact Kähler manifold, with fundamental 2-form ω ∈ Ω 2 (M, R). Assume M is endowed with a prequantum bundle L → M , that is a Hermitian holomorphic line bundle whose Chern connection ∇ has curvature 1 i ω. Let K → M be a Hermitian holomorphic line bundle. For every positive integer k, define the quantum space H k as:

H k = H 0 (M, L k ⊗ K) = holomorphic sections of L k ⊗ K .
The space H k is a subspace of the space L 2 (M, L k ⊗ K) of sections of finite L 2 -norm, where the scalar product is given by

ϕ, ψ = M h k (ϕ, ψ)µ M
with h k the hermitian product on L k ⊗ K induced by those of L and K, and µ M the Liouville measure on M . Since M is compact, H k is finite dimensional, and is thus given a Hilbert space structure with this scalar product.

Geometric notations

Unless otherwise mentioned, "smooth" will always mean C ∞ , and a section of a line bundle will always be assumed to be smooth. The space of sections of a bundle E → M will be denoted by Γ(M, E).

Let L P → P and L N → N be two prequantum bundles over Kähler manifolds, whose fundamental 2-forms are denoted by ω P and ω N . Denote by p 1 and p 2 the projections of P ×N on each factor, and

L P L N = p * 1 L P ⊗ p * 2 L N ; then, if P × N is endowed with the symplectic form p * 1 ω P + p * 2 ω N , L P L N → P × N is a prequantum bundle.
Let P op be the manifold P endowed with the symplectic form -ω P and the (almost) complex structure opposed to the one of P , and let L -1 P be the inverse (dual) bundle of L P with induced hermitian and holomorphic structure and connection; then L -1 P → P op is a prequantum bundle. If k is a positive integer, we can identify the Schwartz kernel of an operator T : Γ(P,

L k P ) → Γ(N, L k N ) to a section of L k N L -k P → N × P op via the following formula: T s(x) = P T (x, y).s(y)µ P (y),
where µ P is the Liouville measure on the manifold P .

Admissible and negligible sequences

Let M be a compact connected Kähler manifold. Let (s k ) k≥1 be a sequence such that for each k, s k belongs to Γ(M, L k ⊗ K). We say that (s k ) k≥1 is

• admissible if for every positive integer , for every vector fields X 1 , . . . , X on M , and for every compact set C ⊂ M , there exist a constant c > 0 and an integer N such that

∀m ∈ C ∇ X 1 . . . ∇ X s k (m) ≤ ck N ,
• negligible if for every positive integers and N , for every vector fields X 1 , . . . , X on M , and for every compact set C ⊂ M , there exists a constant c > 0 such that

∀m ∈ C ∇ X 1 . . . ∇ X s k (m) ≤ ck -N .
We say that (s k ) k≥1 is negligible over an open set U ⊂ M if the previous estimates hold for every compact subset of U . We denote by O(k 

Toeplitz operators

Let Π k be the orthogonal projector of

L 2 (M, L k ⊗ K) onto H k . A Toeplitz operator is any sequence (T k : H k → H k ) k≥1 of operators of the form T k = Π k M f (.,k) + R k (2) where f (., k) is a sequence of C ∞ (M ) with an asymptotic expansion f (., k) = ≥0 k -f for the C ∞ topology, M f (.,k)
is the operator of multiplication by f (., k) and R k is a smoothing operator. They are the semiclassical analogue of the Toeplitz operators studied by Boutet de Monvel and Guillemin in [START_REF] Boutet De Monvel | The spectral theory of Toeplitz operators[END_REF].

We recall the following essential theorem about Toeplitz operators, which is a consequence of the works of Boutet de Monvel and Guillemin [START_REF] Boutet De Monvel | The spectral theory of Toeplitz operators[END_REF] (see also [START_REF] Bordemann | Toeplitz quantization of Kähler manifolds and gl(N ), N → ∞ limits[END_REF][START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF][START_REF] Guillemin | Star products on compact pre-quantizable symplectic manifolds[END_REF]).

Theorem 2.1. The set T of Toeplitz operators is a star algebra whose identity is (Π k ) k≥1 . The contravariant symbol map

σ cont : T → C ∞ (M )[[ ]]
sending T k into the formal series ≥0 f is well defined, onto, and its kernel is the ideal consisting of O(k -∞ ) Toeplitz operators. More precisely, for any integer ,

T k = O(k -) if and only if σ cont (T k ) = O( ).
We will mainly work with the normalized symbol

σ norm = Id + 2 ∆ σ cont
where ∆ is the holomorphic Laplacian acting on C ∞ (M ); unless otherwise mentioned, when we talk about a subprincipal symbol, this refers to the normalized symbol. This symbol has the good property that, if T k and S k are Toeplitz operators with respective principal symbols t 0 and s 0 , then

σ norm (T k S k ) = t 0 s 0 + 2i {t 0 , s 0 } + O( 2 ).
Finally, we will need to apply functional calculus to Toeplitz operators.

Proposition 2.2 ([6]

). Let T k be a self-adjoint Toeplitz operator with symbol ≥0 t and g be a function of C ∞ (R, C). Then g(T k ) is a Toeplitz operator with principal symbol g(t 0 ).

Toeplitz operators on the complex plane

Bargmann spaces

We consider the Kähler manifold C R 2 with coordinates (x, ξ), standard complex structure and symplectic form ω 0 = dξ ∧dx. Let L 0 = R 2 ×C → R 2 be the trivial fiber bundle with standard hermitian metric h 0 and connection ∇ 0 with 1-form 1 i α, where α u (v) = 1 2 ω 0 (u, v); endow L 0 with the unique holomorphic structure compatible with h 0 and ∇ 0 . For every positive integer k, the quantum space that we consider is

H 0 k = H 0 (R 2 , L k 0 ) ∩ L 2 (R 2 , L k 0 );
this means that in this case, we make the arbitrary choice that the auxiliary line bundle K is the trivial bundle with flat connection. These spaces coincide with Bargmann spaces [START_REF] Bargmann | On a Hilbert space of analytic functions and an associated integral transform[END_REF][START_REF] Bargmann | On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory[END_REF], which are spaces of square integrable functions with respect to a Gaussian weight. More precisely, we choose the holomorphic coordinate z = x-iξ √ 2 and note 

B k = f ψ k ; f : C → C holomorphic, R 2 |f (z)| 2 exp(-k|z| 2 ) dλ(z) < +∞ with ψ : C → C, z → exp -1 2 |z| 2 , ψ k its k-th
(z) = k n+1 2πn! z n ψ k , is an orthonormal basis of B k .
We denote by Π 0 k the orthogonal projector from L 2 (R 2 , L k 0 ) onto B k .

Admissible and negligible sequences

Since we will only deal with C ∞ sections, we can adopt the same definitions for admissible and negligible sequences as in the previous section.

Toeplitz operators

To consider Toeplitz operators acting on Bargmann spaces without raising technical issues, we could only work with operators with compactly supported kernels. However, we would miss the simple case of the harmonic oscillator. So we need to introduce symbol classes, very similar to the ones used when dealing with -pseudodifferential operators (see for instance [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]). The proofs of the results of this part are collected in the appendix. Let d be a positive integer. For u in C d , set m(u) = 1 + u 2 1 2 . For every integer j, we define the symbol class S d j as the set of sequences of functions of C ∞ (C d ) which admit an asymptotic expansion of the form a(., k) = ≥0 k -a in the sense that

• ∀ ∈ N ∀α, β ∈ N 2d ∃ C ,α,β > 0 |∂ α z ∂ β z a | ≤ C ,α,β m j , • ∀L ∈ N * ∀α, β ∈ N 2d ∃ C L,α > 0 ∂ α z ∂ β z a -L-1 =0 k -a ≤ C L,α,β k -L m j .
Set S d = j∈Z S d j . Now, let a(., k) be a symbol in S 1 j , and consider the operator

A k = Op(a(., k)) = Π 0 k M a(.,k) Π 0 k (3)
acting on the subspace

S k = ϕ ∈ B k ; ∀j ∈ N sup z∈C |ϕ(z)|(1 + |z| 2 ) j/2 < +∞ of B k .
As shown in [START_REF] Bargmann | On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory[END_REF], S k corresponds to the Schwartz space via a particular unitary mapping between L 2 (R) and B k , the Bargmann transform. It is easily seen that

A k sends S k into S k ; it is even continuous S k → S k . Note that if j = 0, then A k is bounded B k → B k
, and its norm is lower than sup |a(., k)|.

Let t be the section of L 0 → R 2 with constant value 1. Let F 0 be the section of L 0 L -1 0 given by

F 0 (z 1 , z 2 ) = exp - 1 2 |z 1 | 2 + |z 2 | 2 -2z 1 z2 t(z 1 ) ⊗ t -1 (z 2 ), or equivalently, if u = (x, ξ) where z = 1 √ 2 (x -iξ), F 0 (u, v) = exp - 1 4 u -v 2 - i 2 ω 0 (u, v) t(u) ⊗ t -1 (v).
Adapting the result of section 1.c of [START_REF] Bargmann | On a Hilbert space of analytic functions and an associated integral transform[END_REF], with the good normalization for the weight defining our Bargmann spaces, we have the following:

Proposition 3.2. Π 0 k admits a Schwartz kernel given by k 2π F k 0 .
In the rest of the paper, we will use the same letter to designate an operator and its Schwartz kernel. This proposition allows us to compute the Schwartz kernel of any Toeplitz operator.

Lemma 3.3. Let a(., k) be a symbol in S 1 j ; then A k = Op(a(.

, k)) admits a Schwartz kernel given by

A k (z 1 , z 2 ) = k 2π exp - k 2 |z 1 | 2 + |z 2 | 2 -2z 1 z2 ã(z 1 , z 2 , k) +R k exp -Ck|z 1 -z 2 | 2 , ( 4 
)
where ã(., ., k) belongs to S 2 j , R k is negligible and C is some positive constant. Moreover, one has

ã(z, z, k) = exp k -1 ∆ a (z, k) ( 5 
)
where

∆ = ∂ ∂z ∂ ∂z is the holomorphic Laplacian acting on C ∞ (C 2 )
, in the sense that the asymptotic expansion of ã(., ., k) is obtained by applying the formal asymptotic expansion of the operator exp k -1 ∆ to the asymptotic expansion of a(., k). This leads us to the following definition.

Definition 3.4. A Toeplitz operator is an operator from

S k to S k of the form Π 0 k M a(.,k) Π 0 k + S k , (6) 
where a(., k) is a symbol in S 1 and the kernel of S k satisfies

S k (z 1 , z 2 ) = R k (z 1 , z 2 ) exp -Ck|z 1 -z 2 | 2 (7) 
with R k negligible and C some positive constant. As in the compact case,

σ cont (A k ) = ≥0 a is called the contravariant symbol of A k .
We denote by T j the set of Toeplitz operators with contravariant symbol belonging to S 1 j .

In fact, lemma 3.3 defines the covariant symbol of A k :

σ cov (A k )(z) = ≥0 ã (z, z).
The following lemma gives an important property of the latter.

Lemma 3.5. If the covariant symbol of A k vanishes, then the Schwartz kernel of A k is of the form (7).

As a corollary of lemmas 3.3 and 3.5, we obtain the stability under composition of the set of Toeplitz operators. Corollary 3.6. Let A k ∈ T j and B k ∈ T j be two Toeplitz operators. Then C k = A k B k belongs to T j+j ; more precisely, its contravariant symbol is given by

σ cont (C k )(z) = exp - ∂ ∂z 1 ∂ ∂ z2 σ cont (A k )(z 1 )σ cont (B k )(z 2 ) |z 1 =z 2 =z , ( 8 
) in the same sense as in lemma 3.3.

Define the normalized symbol as in the compact case:

σ norm = Id + 2 ∆ σ cont .
From formula (8), we find that

σ norm (A k B k ) = a 0 b 0 + 2i {a 0 , b 0 } + O( 2 ), as expected.
Definition 3.7. A Toeplitz operator A k ∈ T j is said to be elliptic at infinity if there exists some c > 0 such that for z in C,

|σ cont (A k )(z)| ≥ c(1 + |z| 2 ) j 2 .
Adapting proposition 12 of [START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF] and theorem 39 of [START_REF] De Verdière | Méthodes semi-classiques et théorie spectrale[END_REF], one can show the following: Proposition 3.8 (Functional calculus). If A k belongs to T j for some j ≥ 1, is essentially self-adjoint and elliptic at infinity and if η : R → R is a compactly supported C ∞ function, then η(A k ) belongs to T j for every j < 0.

Fourier integral operators

The aim of this section is to construct microlocally unitary operators between H k and B k , given a local symplectomorphism χ from M to R 2 . In [START_REF] Boutet De Monvel | The spectral theory of Toeplitz operators[END_REF], Boutet de Monvel and Guillemin introduced Fourier integral operators in the homogeneous Toeplitz setting. In the semiclassical Toeplitz theory, such operators between compact manifolds have been used by Charles [START_REF] Charles | Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators[END_REF][START_REF] Charles | Semi-classical properties of geometric quantization with metaplectic correction[END_REF], but some difficulties arise when dealing with a non compact manifold. Nevertheless, the ideas, based on Lagrangian sections, are very similar.

Let

χ : Ω 1 ⊂ M → Ω 2 ⊂ R 2 be a symplectomorphism between the open sets Ω 1 and Ω 2 . Then the graph Λ χ = {(u, χ(u)); u ∈ Ω 1 } ⊂ Ω 1 × Ω 2
of χ is a Lagrangian submanifold of the product M ×C op . As in the previous section, let t be the section of L 0 → R 2 with constant value 1. By definition of the connection on L 0 , we have ∇ 0 t = 1 i α ⊗ t, where α is the primitive of ω 0 given by α u (v) = 1 2 ω 0 (u, v). The following lemma is elementary.

Lemma 4.1.

Taking Ω 1 smaller if necessary, we can find a local gauge s of

L → Ω 1 such that ∇s = 1 i χ * α ⊗ s.
We consider the section t Λχ of L L -1 0 over Λ χ given by

t Λχ (u, χ(u)) = s(u) ⊗ t -1 (χ(u)).
Thanks to proposition 2.1 of [START_REF] Charles | Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators[END_REF], we can build a local section

E of L L -1 0 → Ω 1 × Ω op 2 such that • E is equal to t Λχ on Λ χ ,
• for every holomorphic vector field Z on Ω 1 × Ω op 2 , the covariant derivative of E with respect to Z is zero modulo a section vanishing to infinite order along Λ χ , and this section is unique modulo a section vanishing to infinite order along Λ χ . Furthermore, we can always assume that E < 1 outside Λ χ , and we will make this assumption until the end of this article.

We consider a sequence of functions of C ∞ (Ω 1 × Ω op 2 ), which admits an asymptotic expansion ≥0 k -a for the C ∞ topology whose coefficients are all supported in a fixed (independent of k)

compact set C ⊂ Ω 1 × Ω 2 . Let S k be the local section of (L k ⊗ K) L -k 0 given by S k (u, v) = k 2π E k (u, v)a(u, v, k),
and consider the operator S k defined on Γ(C, L k 0 ) by

(S k φ)(u) = R 2 S k (u, v).φ(v) dλ(v),
which makes sense since S k (., .)

vanishes outside Ω 1 × Ω 2 . Proposition 4.2. The operator R k = S k Π 0 k maps B k into Γ(M, L k ⊗ K).
Proof. We must show that if ϕ k is a smooth square integrable section of

L k 0 → C, then S k Π 0 k ϕ k is a smooth section of L k ⊗ K → M . It is enough to show that the Schwartz kernel of S k Π 0
k and its derivatives with respect to the first variable are rapidly decreasing in the second variable. Let R k be this kernel; one has

R k (u, v) = p 2 (C) S k (u, w).Π 0 k (w, v)dw, with p 2 the projection from M × C to C. So R k (u, v) = k 2π 2 p 2 (C) f (u, v, w, k)E k (u, w).t k (w) ⊗ t -k (v)dw with f (u, v, w, k) = a(u, w, k) exp -k 4 w -v 2 -ik 2 ω 0 (w, v) . This implies the estimate R k (u, v) ≤ k 2π 2 p 2 (C) |a(u, w, k)| exp - k 4 w -v 2 E k (u, w) dw.
Since E ≤ 1 and a(., ., k) is bounded by some constant c k > 0, this yields

R k (u, v) ≤ k 2π 2 c k p 2 (C) exp - k 4 w -v 2 dw. Using w -v 2 ≥ v 2 -2 w v , we obtain R k (u, v) ≤ k 2π 2 c k exp - k 4 v 2 p 2 (C) exp k 2 w v dw.
Finally, an upper bound for the integral that appears in this inequality is πr 2 exp k 2 r v where p 2 (C) is included in the closed ball of radius r and centered at the origin. This allows us to conclude that

R k (u, v) ≤ k 2π 2 c k πr 2 exp - k 4 v 2 + kr 2 v .
The same kind of estimates hold for the successive derivatives of R k with respect to u; we prove them by differentiating under the integral sign.

Unfortunately, R k has no reason to map holomorphic sections to holomorphic sections; to fix this problem, we set

T k = Π k R k ; defined in this way, T k is an operator from B k to H k . Proposition 4.3. The Schwartz kernel of T k reads T k (u, v) = k 2π E k (u, v)b(u, v, k) + O(k -∞ ) (9)
with b(., ., k) a sequence of smooth functions which admits an asymptotic expansion b(., ., k

) = ≥0 k -b for the C ∞ topology satisfying b 0 (u, χ(u), k) = µ(u)a 0 (u, χ(u), k)
where µ is a smooth, nowhere vanishing function which depends only on the section E.

The proof is the same as the proof of proposition 4.2 of [START_REF] Charles | Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators[END_REF]; it is based on an application of the stationary phase lemma.

An operator V k : B k → H k admitting a Schwartz kernel of the form of equation ( 9) and satisfying Π k V k Π 0 k = V k will be called a Fourier integral operator associated to the sequence b(., ., k); let us denote by FI(χ) the set of such operators. We define the full symbol map

σ : FI(χ) → C ∞ (M )[[ ]], V k → ≥0 b (u, χ(u)).
One can show that its kernel consists of smoothing operators. In the same way, we define FI(χ -1 ) : H k → B k . The following property is another application of the stationary phase lemma. Proposition 4.4. Let R k ∈ FI(χ) and S k ∈ FI(χ -1 ) with respective principal symbols r 0 (u, χ(u)) and s 0 (v, χ -1 (v)). Then there exists a smooth nowhere vanishing function ν : R 2 → R such that for every Toeplitz operator

T k on M with principal symbol t 0 , S k T k R k is a Toeplitz operator on R 2 with principal symbol equal to ν(v)s 0 (v, χ -1 (v))t 0 (χ -1 (v))r 0 (χ -1 (v), v) on Ω 2 .
To conclude this section, we prove that we can find microlocally unitary operators mapping B k to H k in the following sense.

Proposition 4.5. There exists a Fourier integral operator U

k : B k → H k such that • U * k U k ∼ Π 0 k on Ω 2 , • U k U * k ∼ Π k on Ω 1 ,
reducing 

Ω
k = S k P k ; then U (0) * k U (0) k is a Toeplitz operator on R 2 , with principal symbol ν(v) |p 0 (v)| 2 s 0 χ -1 (v), v 2 . Since ν(v) and s 0 (s, χ -1 (v)) vanish in no point
v, one can choose p 0 such that this principal symbol is equal to 1. Doing so,

U (0) * k U (0) k
has the same principal symbol as Π 0 k , so there exists a Toeplitz operator R (0)

k such that U (0) * k U (0) k ∼ Π 0 k + k -1 R (0) k
on Ω 2 . From now on, when there is no ambiguity, the equality between operators will mean microlocal equality on Ω 2 . Let n ∈ N and assume that there exists an operator

U (n) k : B k → H k and a Toeplitz operator R (n) k (with principal symbol r n ) such that U (n) * k U (n) k = Π 0 k + k -(n+1) R (n) k .
Let T k be a Toeplitz operator on R 2 with principal symbol t 0 , and set

U (n+1) k = U (n) k Π 0 k + k -(n+1) T k . One has U (n+1) * k U (n+1) k = Π 0 k + k -(n+1) T * k + R (n) k + T k + k -(n+2) R (n+1) k with R (n+1) k
a Toeplitz operator. This implies that if we choose t 0 such that 2 (t 0 ) = -r n , then

U (n+1) * k U (n+1) k = Π 0 k + k -(n+2) R (n+1) k .
So we can construct the operators

U (n) k
by induction; it remains to apply Borel's summation lemma to find the desired operator U k .

Composing such a U k by U k on the left and U * k on the right gives:

(U k U * k ) 2 ∼ U k U * k on Ω 1 .
Since U k U * k is an elliptic Toeplitz operator on Ω 1 (its principal symbol vanishes nowhere), it has a microlocal inverse at each point of Ω 1 ; so the preceding equation yields

U k U * k ∼ Π k on Ω 1 .
Of course, such operators satisfy the analogue of Egorov's theorem:

Proposition 4.6. If U k is as above, then, for every Toeplitz operator

T k on M with principal symbol t 0 , S k = U * k T k U k is a Toeplitz operator on R 2 with principal symbol equal to t 0 • χ -1 on Ω 2 .
For a proof, see [12, theorem 47]. The action of a Fourier integral operator at the subprincipal level is much more complicated to compute. Denote by σ 0 (U k ) the principal symbol of U k , and by γ the 1-form on Λ χ such that

∇ Hom(C,K) σ 0 (U k ) = - 1 i γ ⊗ σ 0 (U k )
endowing C with the trivial connection and K with the one inherited from L 1 and δ. Now, notice that the symplectomorphism χ brings the complex structure of C op to a positive complex structure j on M . Introduce the section Ψ of Hom(Ω 1,0 (C), Ω 1,0

j (M )) |Λχ → Λ χ such that for all α ∈ Λ 1,0 (T Ω op 2 ) * and β ∈ Λ 1,0 (T Ω 1 ) * , Ψ(α) ∧ β = (χ * α) ∧ β.
This map is well-defined because the sesquilinear pairing Λ 1,0

j (T m Ω 1 ) * × Λ 1,0 (T m Ω 1 ) * → C, (α, β) → (α ∧ β)/ω m is non-degenerate. Let δ be the 1-form on Λ χ such that ∇Ψ = δ ⊗ Ψ
where ∇ is the connection induced by the Chern connections of Ω 2,0 (C) and Ω 2,0 (M ). In [9, Theorem 3.3], Charles derived the following formula.

Theorem 4.7. With the same notations as in the previous proposition and denoting by t 1 the subprincipal symbol of T k , the subprincipal symbol s 1 of S k is given by:

s 1 (u) = t 1 (m) + γ (m,u) - 1 2 δ (m,u) , X t 0 (m), ((χ -1 ) * X t 0 )(u)
for u ∈ R 2 and m = χ -1 (u).

Microlocal normal form

The local model

Our local model will be the realization of the quantum harmonic oscillator in the Bargmann representation:

Q k = 1 k z ∂ ∂z + 1 2 , with domain C[z] which is dense is B k .
The following lemma is easily shown. Lemma 5.1. Q k is an essentially self-adjoint Toeplitz operator with normalized symbol q 0 . Moreover, the spectrum of

Q k is Sp(Q k ) = k -1 n + 1 2
, n ∈ N .

A symplectic Morse lemma

Let (N, ω) be a two-dimensional symplectic manifold and f a function of C ∞ (N, R). Assume f admits an elliptic critical point at n 0 ∈ N , with f (n 0 ) = 0. Replacing f by -f if necessary, we can assume that this critical point is a local minimum for f . Define

q 0 : R → R 2 , (x, ξ) → 1 2 (x 2 + ξ 2 ).
The following theorem is well-known.

Theorem 5.2.

There exist a local symplectomorphism χ : (N, n 0 ) → (R 2 , 0) and a function g in C ∞ (R, R) satisfying g(0) = 0 and g (0) > 0, such that

f • χ -1 = g • q 0
where χ -1 is defined.

It can be viewed as a consequence of the isochore Morse lemma [START_REF] De Verdière | Le lemme de Morse isochore[END_REF] or of Eliasson's symplectic normal form theorem [START_REF] Eliasson | Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case[END_REF], but this case is in fact easier than these two results.

Semiclassical normal form

We consider a self-adjoint Toeplitz operator A k on M ; its normalized symbol a(., ) = a 0 + a 1 + . . . is real-valued. Assume that the principal symbol a 0 admits a non-degenerate local minimum at m 0 ∈ M . Assume also that a 0 (m 0 ) = 0, so that a 0 takes positive values on a neighbourhood of m 0 . Hence, thanks to theorem 5.2, we get a neighbourhood Ω 1 of m 0 in M , a neighbourhood Ω 2 of 0 in R 2 , a local symplectomorphism χ : Ω 1 → Ω 2 and a function g 0 of C ∞ (R, R) with g 0 (0) = 0 and g 0 (0) > 0, such that:

a 0 • χ -1 = g 0 • q 0
on Ω 2 . We denote by f 0 the local inverse of g 0 . Our goal is to show: Theorem 5.3. There exist a Fourier integral operator U k : B k → H k and a sequence f (., k) of functions of C ∞ (R, R) which admits an asymptotic expansion in the C ∞ topology of the form f (., k) = ≥0 k -f , such that:

• U * k U k ∼ Π 0 k on Ω 2 , • U k U * k ∼ Π k on Ω 1 , • U * k f (A k , k)U k ∼ Q k on Ω 2 .
Proof. We consider an operator

U (0)
k satisfying the two first points (see the previous section). We will construct the operator that we seek by successive perturbations by unitary Toeplitz operators on B k . More precisely, we show by induction that for every positive integer n, there exist an operator

U (n) k : B k → H k satisfying the two first points, a sequence f (n) (., k) of functions of C ∞ (R, R) of the form f (n) (., k) = n =0 k -f , with f smooth, and a Toeplitz operator R (n) k acting on B k such that U (n) * k f (n) (A k , k)U (n) k = Q k + k -(n+1) R (n) k on Ω 2 .
The first step is as follows: by the results of the previous section, the operator

U (0) * k f 0 (A k )U (0)
k is a Toeplitz operator on B k , whose principal symbol is equal to f 0 • a 0 • χ -1 = q 0 on Ω 2 . Hence, there exists a Toeplitz operator R (0)

k on B k such that U (0) * k f 0 (A k )U (0) k = Q k + k -1 R (0) k .
We look for U

(1) k of the form U (0) k P k with P k a unitary Toeplitz operator on B k . Moreover, we choose f (1) (., k) = f 0 + k -1 θ 1 • f 0 with θ 1 a smooth function that remains to determine. Expanding, we get

U (1) * k f (1) (A k , k)U (1) k = P * k U (0) * k f 0 (A k )U (0) k P k +k -1 P * k U (0) * k (θ 1 •f 0 )(A k )U (0) k P k which yields U (1) * k f (1) (A k , k)U (1) k = P * k Q k + k -1 R (0) k P k +k -1 P * k U (0) * k (θ 1 •f 0 )(A k )U (0) k P k .
Consequently, we wish to have

P * k Q k + k -1 R (0) k P k + k -1 P * k U (0) * k (θ 1 • f 0 )(A k )U (0) k P k = Q k + k -2 R (1) k where R (1)
k is a Toeplitz operator; this amounts, remembering that P k is unitary, to

Q k P k + k -1 R (0) k P k + U (0) * k (θ 1 • f 0 )(A k )U (0) k P k = P k Q k + k -2 P k R (1) k which we can rewrite [Q k , P k ] + k -1 R (0) k P k + U (0) * k (θ 1 • f 0 )(A k )U (0) k P k = k -2 P k R (1)
k .

This will be true if and only if the subprincipal symbol of the operator on the left of the equality vanishes, that is to say

1 i {q 0 , p 0 } + p 0 (r 0 + θ 1 • q 0 ) = 0
where p 0 and r 0 stand for the respective principal symbols of P k and R (0) k . Set p 0 = exp(iϕ 0 ) with ϕ 0 a smooth, real-valued function (since P k is unitary). The previous equation then becomes

{ϕ 0 , q 0 } = r 0 + θ 1 • q 0 .
This equation is standard and it is well-known that it can be solved. We recall a method from [START_REF] Eliasson | Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case[END_REF] to find θ 1 and ϕ 0 smooth such that it is satisfied, since we will need to know how to construct these in part 6.2. Consider the functions:

F (x, ξ) = - 1 2π 2π 0 r 0 (φ t q 0 (x, ξ)) dt and ϕ 0 (x, ξ) = - 1 2π 2π 0 t r 0 (φ t q 0 (x, ξ)) dt,
where φ t q 0 stands for the Hamiltonian flow of q 0 taken at time t: φ t q 0 (x, ξ) = (x cos t + ξ sin t, -x sin t + ξ cos t).

Since we integrate on a compact set and the flow φ t is smooth with respect to (x, ξ), both F and ϕ 0 are smooth. By construction, we have {F, q 0 } = 0. But we have the easy lemma Lemma 5.4. Let f be a function of C ∞ (R 2 , R) such that {f, q 0 } = 0. Then the function g such that

f = g • q 0 belongs to C ∞ (R, R).
So there exists a function θ 1 of C ∞ (R, R) such that F = θ 1 • q 0 . Integrating by parts, it is easy to show that {ϕ 0 , q 0 } = θ 1 • q 0 + r 0

The next steps are practically the same; indeed, let n ≥ 1 and assume that we have found U (n) k and f (n) (., k) satisfying the desired properties. We now look for

U (n+1) k of the form U (n) k (Π 0 k + k -n V k ) with V k a Toeplitz operator on B k such that Π 0 k + k -n V k is unitary. Furthermore, we write f (n+1) (., k) = f (n) (., k) + k -(n+1) θ n+1
• f 0 with θ n+1 an unknown smooth function. We want the existence of a Toeplitz operator R

(n+1) k such that U (n) * k f (n+1) (A k , k)U (n) k Π 0 k + k -n V k = (Π 0 k +k -n V k ) Q k + k -(n+2) R (n+1) k
which gives, expanding,

Q k + k -n Q k V k + k -(n+1) R (n) k + U (n) * k (θ n+1 • f 0 )(A k )U (n) k = Q k + k -n V k Q k + k -(n+2) R (n+1) k + k -(2n+1) V k R (n+1) k
.

Thus, we wish that

[Q k , V k ] + k -1 R (n) k + U (n) * k (θ n+1 • f 0 )(A k )U (n) k = 0;
this will be verified if and only if

1 i {q 0 , v 0 } + r n + θ n+1 • q 0 = 0
which is treated as before.

We conclude thanks to Borel's summation lemma (applied to both f (., k) and U k ).

Bohr-Sommerfeld conditions

Let A k be a self-adjoint Toeplitz operator on M as in the previous section. Moreover, assume that a 0 (m 0 ) is a global minimum of the principal symbol a 0 , and that m 0 is the unique point of M with this property. This implies that there exists E 0 > 0 such that for every E ≤ E 0 , the level set a -1 0 (E) is connected and contained in Ω 1 .

The maximum norm A k ∞ of A k tends to the L ∞ -norm a 0 ∞ of a 0 as k goes to infinity [START_REF] Bordemann | Toeplitz quantization of Kähler manifolds and gl(N ), N → ∞ limits[END_REF]; hence, for k large enough, the spectrum of A k is included in the set -E 1 , E 1 , where E 1 = a 0 ∞ + 1.

Statement of the result

Before stating the Bohr-Sommerfeld conditions, it is convenient to show that the sequence f (., k) can be inverted, and that its inverse still has a good asymptotic expansion. Lemma 6.1. For k large enough, the function f (., k) that appears in theorem 6.2 is a bijection from -E 1 , E 0 to its image; more precisely, it is strictly increasing. Moreover, the inverse sequence g(., k) admits an asymptotic expansion in the C ∞ topology of the form g(., k)

= ≥0 k -g + O(k -∞ ), uniformly on -E 1 , E 0 .
Proof. The first assertion follows from the mean value inequality

∀k ≥ 1 ∀E, Ẽ ∈ -E 1 , E 0 |f (E, k)-f ( Ẽ, k)| ≥ inf [-E 1 ,E 0 ] |f (., k)||E-Ẽ|
and the fact that f (., k) is bounded below by some positive constant. This implies that for k sufficiently large, f (., k) is strictly monotone on -E 1 , E 0 ; since f 0 (0) > 0, f (., k) is in fact strictly increasing. For the second part, the proof is once again based on Borel's summation lemma; it is done by induction thanks to Taylor's formula with integral remainder.

We can therefore introduce the sequences

E (j) k = g k -1 j + 1 2 , k , j ∈ N ( 10 
)
for k large enough and for j such that k -1 j + 1 2 belongs to the set

f (-E 1 , k), f (E 0 , k) . Since g(., k) is also strictly increasing, the E (j) k are ordered: ∀j ∈ N, E (j) k < E (j+1) k .
We can be more precise; fix j ∈ N and write

E (j) k = g 0 k -1 j + 1 2 + k -1 g 1 k -1 j + 1 2 + O(k -2 ).
Then, applying Taylor's formula with integral remainder, we get

E (j) k = g 0 (0) =0 +k -1 g 1 (0) + j + 1 2 g 0 (0) + O(k -2 ). ( 11 
)
One must be careful with this estimate: the O(k -2 ) remainder is no longer uniform with respect to j. Denote by λ

(1)

k ≤ λ (2) k ≤ . . . ≤ λ (j)
k ≤ . . . the eigenvalues of A k . The main result of this section is the following theorem. Theorem 6.2. There exists a positive integer k 0 ≥ 1 such that for every integer N ≥ 1 and for every E ≤ E 0 , there exist a constant C N > 0 such that for k ≥ k 0 :

λ (j) k ≤ E or E (j) k ≤ E ⇒ λ (j) k -E (j) k ≤ C N k -N . ( 12 
)
Moreover, for k large enough, all the eigenvalues of A k smaller than E 0 are simple. In particular, we obtain an asymptotic expansion to every order for the eigenvalues of A k smaller than E 0 .

We will need the following lemma, based on the min-max principle.

Lemma 6.3 ([11, lemma 3.3]).

Let A and B be two self-adjoint operators acting, respectively, on the Hilbert spaces H and H, both bounded from below. Denote by Π A I the spectral projection of A on I and by λ A 1 ≤ λ A 2 ≤ . . . ≤ λ A j ≤ . . . the increasing sequence of eigenvalues below the essential spectrum of A; if there is a finite number j max of such eigenvalues, extend the sequence for j > j max by setting λ A j = λ A ess , where λ A ess is the infimum of the essential spectrum of A. Introduce the same notations for B. Suppose that there exist a bounded operator U : H → H , an interval I = (-∞, E], and constants C > 0, c ∈ (0, 1) such that U Π B I (H) ⊂ Dom(A) and

(U * AU -B)Π B I ≤ C and U * U Π B I -Π B I ≤ c.
Then, for all j such that λ B j ≤ E, one has

λ A j ≤ (λ B j + C) 1 + c 1 -c . Proof of theorem 6.2. Fix E in -E 1 , E 0 . Let J be an open neighbourhood of -E 1 , E such that the open set a -1 0 (J ) is contained in Ω 1
, and let η : R → R be a smooth function equal to 1 on -E 1 , E and 0 outside J . Consider the Toeplitz operator R k = η(A k ) and set

B k = (f (A k , k) -U k Q k U * k ) R k . By the choice of R k , the microsupport of B k is a subset of Ω 1 . Moreover, f (A k , k) is microlocally equal to U k Q k U * k on Ω 1 .
These two facts imply that B k is negligible; since M is compact, this yields that for every N ≥ 1, there exists a positive constant C N such that

B k ≤ C N k -N . Now, let Π f (A k ,k)
≤f (E,k) be the spectral projection associated to f (A k , k) and corresponding to the eigenvalues smaller than f (E, k).

If (λ, ϕ) is an eigencouple for A k with λ ≤ E, then R k ϕ = η(λ)ϕ = ϕ. This implies that for every φ in Π f (A k ,k) ≤f (E,k) (H k ), R k φ = φ, and consequently (f (A k , k) -U k Q k U * k ) Π f (A k ,k) ≤f (E,k) ≤ C N k -N .
Similarly, there exists c N > 0 such that

(Π k -U k U * k ) Π f (A k ,k) ≤f (E,k) ≤ c N k -N .
So lemma 6.3 shows that if f (λ

(j) k , k) ≤ f (E, k), the inequality k -1 j + 1 2 ≤ 1 + c N k -N 1 -c N k -N f (λ (j) k , k) + C N k -N
holds. So for k large enough (independently of E), we have k

-1 j + 1 2 ≤ f (E, k).
Now, let ρ be a smooth function equal to 1 on f 0 (-E 1 ), f 0 (E) and vanishing outside an open neighbourhood K of f 0 (-E 1 ), f 0 (E) such that q -1 0 (K) ⊂ Ω 2 . Thanks to proposition 3.8, we can consider the Toeplitz operator S k = ρ(Q k ), and set

C k = (U * k f (A k , k)U k -Q k ) S k .
Since S k belongs to every T j , j < 0, C k belongs to T 0 and is thus a bounded operator B k → B k . Moreover, by construction, it is negligible. Hence there exists a positive constant CN such that

C k ≤ CN k -N ; modifying C N if necessary, we can assume that CN is equal to C N . So, in- troducing the spectral projection Π Q k ≤f (E,k) corresponding to the eigenvalues of Q k smaller than f (E, k), the inequality (U * k f (A k , k)U k -Q k ) Π Q k ≤f (E,k) ≤ C N k -N
holds. Similarly, we have

U * k U k -Π 0 k Π Q k ≤f (E,k) ≤ c N k -N .
Hence, applying again lemma 6.3, we obtain that f (λ

(j) k , k) ≤ 1 + c N k -N 1 -c N k -N k -1 j + 1 2 + C N k -N
as soon as k -1 j + 1 2 ≤ f (E, k). This shows that if f (λ

(j) k , k) ≤ f (E, k), then f (λ (j) k , k) -k -1 j + 1 2 ≤ C N k -N
for some positive constant C N . Exchanging the roles of Q k and A k , and using lemma 6.1, this gives formula [START_REF] De Verdière | Méthodes semi-classiques et théorie spectrale[END_REF]. Using this result and the fact that there exists c > 0 such that for j ∈ N,

E (j+1) k -E (j)
k is equivalent to ck -1 , we obtain that the λ (j) k are simple for k large enough.

Computation of the principal and subprincipal terms

In order to exploit these results, it remains to compute a few first terms in the asymptotic expansion of the sequence f (., k). What we can do is relate the principal and subprincipal terms to the actions introduced in section 1.2. Proposition 6.4. Set I =]0, E 0 [. Then

f 0 = 1 2π c 0 , f 1 = 1 2π c 1 (13) 
on I.

Proof. Let us first compute f 0 . Fix a level E in I. Let 1 i β be the 1-form describing locally the Chern connection on L; then c 0 (E) is given by

c 0 (E) = Γ E β.
Using the relation a 0 • χ -1 = g 0 • q 0 , we can then write

c 0 (E) = C E (χ -1 ) * β
where C E is the circle centered at the origin and with radius 2f 0 (E). Using Stokes' formula and the fact that χ is a symplectomorphism, this yields that c 0 (E) is the area of the disk bounded by C E , that is, if the orientation that we chose is the one giving the positive area (and this is what we will assume in the rest of this section)

c 0 (E) = 2πf 0 (E). (14) 
Now, turn back to the proof of our normal form theorem 5.3, where f 1 is constructed from the subprincipal symbol r 0 of U

(0) * k f (A k , k)U (0)
k . By uniqueness of f 1 , instead of starting from any operator U (0) k , we can choose one with symbol u ⊗ v, where u is constant and v is a square root of Ψ. Doing so, we can compute r 0 thanks to theorem 4.7:

r 0 = (a 1 • χ -1 )( f 0 • a 0 • χ -1 ) -ν χ -1 (.) X f 0 •a 0 • χ -1
where ν is the local connection 1-form associated to ∇ L 1 . We have

f 1 = θ 1 • f 0 with θ 1 such that for all (x, ξ) in R 2 (θ 1 • q 0 ) (x, ξ) = - 1 2π 2π 0 r 0 φ t q 0 (x, ξ) dt
where φ t q 0 stands for the Hamiltonian flow of q 0 . Since

q 0 = f 0 • a 0 • χ -1 , this implies that for (x, ξ) in R 2 f 1 • a 0 • χ -1 (x, ξ) = - 1 2π 2π 0 (a 1 f 0 • a 0 ) χ -1 φ t q 0 (x, ξ) dt + 1 2π 2π 0 ν χ -1 (φ t q 0 (x,ξ)) X f 0 •a 0 χ -1 (φ t q 0 (x, ξ)) dt.
So, for m = m 0 in Ω 1 , we have

(f 1 • a 0 )(m) = - 1 2π 2π 0 (a 1 f 0 • a 0 ) χ -1 φ t q 0 (χ(m)) dt + 1 2π 2π 0 ν χ -1 (φ t q 0 (χ(m))) X f 0 •a 0 χ -1 φ t q 0 (χ(m)) dt; thus, if E = a 0 (m), f 1 (E) = 1 2π 2π 0 ν χ -1 (φ t q 0 (χ(m))) X f 0 •a 0 χ -1 φ t q 0 (χ(m)) dt - f 0 (E) 2π 2π 0 a 1 χ -1 φ t q 0 (χ(m)) dt. But χ -1 • φ t q 0 • χ is the Hamiltonian flow of q 0 • χ = f 0 • a 0 , so f 1 (E) = 1 2π 2π 0 ν φ t f 0 •a 0 (m) X f 0 •a 0 (φ t f 0 •a 0 (m)) dt - f 0 (E) 2π 2π 0 a 1 φ t f 0 •a 0 (m) dt.
Therefore, if T E is the period of the flow φ t a 0 along Γ E , we have T E = 2πf 0 (E) for E close to 0, and a change of variable gives

f 1 (E) = 1 2πf 0 (E) 2π 0 ν φ tf 0 (E) f 0 •a 0 (m) X f 0 •a 0 φ tf 0 (E) f 0 •a 0 (m) dt - 1 2π T E 0 a 1 φ tf 0 (E) f 0 •a 0 (m) dt
which yields, since the Hamiltonian vector field associated to f 0 • a 0 is X f 0 •a 0 = (f 0 • a 0 )X a 0 , and hence φ tf 0 (E)

f 0 •a 0 (m) = φ t a 0 (m): f 1 (E) = 1 2πf 0 (E) 2π 0 ν φ t a 0 (m) f 0 (E)X a 0 (φ t a 0 (m)) dt - 1 2π T E 0 a 1 φ t a 0 (m) dt =-Γ E κ E
and by linearity of ν

f 1 (E) = 1 2π 2π 0 ν φ t a 0 (m) X a 0 (φ t a 0 (m)) dt = Γ E ν + 1 2π Γ E κ E .
The right term of this equality is precisely equal to c 1 (E); so we have on I

c 1 = 2πf 1 . ( 15 
)
To conclude, we can show that = 1 on I, so the result of theorem 6.2 matches the usual Bohr-Sommerfeld conditions on the set I of regular values.

First terms of the asymptotic expansion of the eigenvalues

Theorem 6.2 and formula [START_REF] Charles | Spectral asymptotics via the semiclassical Birkhoff normal form[END_REF] give an asymptotic expansion for the eigenvalues of A k smaller than E 0 . Fix j ∈ N; for k large enough, one has

λ (j) k = k -1 g 1 (0) + j + 1 2 g 0 (0) + O(k -2 ).
We can be more precise, since we know the value of g 1 (0): by definition of g(., k), we have g 1 = -(f 1 •g 0 )g 0 , and the computation made in the previous part leads to f 1 (0) = -a 1 (0)f 0 (0); consequently, g 1 (0) = a 1 (0) and

λ (j) k = k -1 a 1 (0) + j + 1 2 g 0 (0) + O(k -2 ). ( 16 
)
But g 0 (0) = 1 f 0 (0) ; moreover, it is standard that the principal action c 0 is smooth even at the critical value E = 0. Hence, thanks to formula [START_REF] De Verdière | Le lemme de Morse isochore[END_REF], one has

λ (j) k = k -1   a 1 (0) + 2π j + 1 2 c 0 (0)   + O(k -2 ). ( 17 
)
In particular, the gap between two consecutive eigenvalues is given by

λ (j+1) k -λ (j) k = 2πk -1 c 0 (0) + O(k -2 ). ( 18 
)

An example on the torus

The aim of this section is to give numerical evidence for our results by investigating the case of a particular Toeplitz operator on the torus T of real dimension 2. One can find the details of the quantization of T in [START_REF] Charles | Knot state asymptotics I, AJ conjecture and abelian representations[END_REF], where the authors investigate some conjectures on knot states; let us briefly recall its main ingredients.

The setting

Endow R 2 with the linear symplectic form ω 0 and consider a lattice Λ with symplectic volume 4π. The Heisenberg group H = R 2 × U (1) with product (x, u).(y, v) = x + y, uv exp i 2 ω 0 (x, y) acts on the trivial bundle L 0 → R 2 , with action given by the same formula. This action preserves the prequantum data, and the lattice Λ injects into H; therefore, the fiber bundle L 0 reduces to a prequantum bundle L over T = R 2 /Λ. The action extends to the fiber bundle L k 0 by

(x, u).(y, v) = x + y, u k v exp ik 2 ω 0 (x, y)
and naturally induces an action

T * : Λ → End Γ R 2 , L k 0 , u → T * u .
The Hilbert space H k = H 0 (M, L k ) can naturally be identified to the space H Λ,k of holomorphic sections of L k 0 → R 2 which are invariant under the action of Λ, endowed with the hermitian product

ϕ, ψ = D ϕ ψ |ω 0 |
where D is the fundamental domain of the lattice. Furthermore, Λ/2k acts on H Λ,k . Let e and f be generators of Λ satisfying ω 0 (e, f ) = 4π; one can show that there exists an orthonormal basis (ψ ) ∈Z/2kZ of H Λ,k such that

∀ ∈ Z/2kZ T * e/2k ψ = w ψ T * f /2k ψ = ψ +1 (19) 
with w = exp iπ k . The sections ψ can be expressed in terms of Θ functions. Set M k = T * e/2k and L k = T * f /2k . Let (q, p) be coordinates on R 2 associated to the basis (e, f ) and [q, p] be the equivalence class of (q, p). Both M k and L k are Toeplitz operators, with respective principal symbols [q, p] → exp(2iπp) and [q, p] → exp(2iπq), and vanishing subprincipal symbols. Consequently

A k = M k + M -1 k + L k + L -1
k is a Toeplitz operator on T with principal symbol

a 0 (q, p) = 2 (cos(2πp) + cos(2πq)) (20) 
and vanishing subprincipal symbol. Its matrix in the basis (ψ 

) ∈Z/2kZ is              2α 0 1 0 . . . 0 1 
             where α = cos π k .
The principal symbol a 0 is known as Harper's Hamiltonian. It admits a global minimum at m 0 = [1/2, 1/2], with a 0 (m 0 ) = -4. Figure 1 is a contour plot of this function on the fundamental domain. In figure 2, we derived numerically the spectrum of A k . Figure 3 shows the modulus of the eigenfunction associated to the eigenvalue closest to a prescribed level E.

In this situation, we can express c 0 (0), and so, by equation ( 17), the first eigenvalues of A k . Indeed, the symplectic form on T is ω = 4πdp ∧ dq and the hessian of a 0 at m 0 = [1/2, 1/2] is given by:

d 2 a 0 (m 0 ) = 8π 2 I 2 so it is easy to obtain c 0 (0) = 1.
Consequently, the first eigenvalues are given by:

λ (j) k = -4 + 2πk -1 j + 1 2 + O(k -2 ). (21) 
This is exactly what our simulations show; we plotted the eigenvalues located in a window of length 20πk -1 around the minimum (so we expect to see about ten eigenvalues) and the result can be seen in figure 4. 

Figures

A k (z 1 , z 2 ) = C Π k (z 1 , z 3 )a(z 3 , k)Π k (z 3 , z 2 ) dλ(z 3 ) which is equal to k 2π 2 C exp - k 2 |z 1 | 2 + |z 2 | 2 + 2|z 3 | 2 -2z 1 z3 -2z 3 z2 a(z 3 , k) dλ(z 3 ).
(22) This can be written

A k (z 1 , z 2 ) = k 2π 2 C exp(ikφ(z 1 , z 2 , z 3 ))a(z 3 , k) dλ(z 3 )
with the phase φ given by

φ(z 1 , z 2 , z 3 ) = i 2 |z 1 | 2 + |z 2 | 2 + 2|z 3 | 2 -2z 1 z3 -2z 3 z2 .
It is more convenient to use real variables: let u j = (x j , ξ j ) be the point of

R 2 corresponding to z j = 1 √ 2 (x j -iξ j ). The phase φ reads φ(u 1 , u 2 , u 3 ) = i 4 u 1 -u 3 2 + u 3 -u 2 2 + 2iω 0 (u 1 -u 2 , u 3 ) .
Using the identity

u 1 -u 3 2 + u 3 -u 2 2 = 1 2 u 1 -u 2 2 + 2u 3 -u 1 -u 2 2 ,
we can rewrite φ as

φ(u 1 , u 2 , u 3 ) = i 8 u 1 -u 2 2 + ϕ(u 1 , u 2 , u 3 ) with ϕ(u 1 , u 2 , u 3 ) = i 4 1 2 2u 3 -u 1 -u 2 2 + 2iω 0 (u 1 -u 2 , u 3 ) . So we have A k (u 1 , u 2 ) = exp -k 8 u 1 -u 2 2 I k (u 1 , u 2 ) with I k (u 1 , u 2 ) = k 2π 2 R 2 exp(ikϕ(u 1 , u 2 , u 3 ))a(u 3 , k) dλ(u 3 );
a change of variable finally gives

I k (u 1 , u 2 ) = k 2π 2 R 2 exp(ikψ(u 1 , u 2 , u 3 )) a u 3 + u 1 + u 2 2 , k dλ(u 3 ), with ψ(u 1 , u 2 , u 3 ) = i 2 u 3 2 + iω 0 (u 1 -u 2 , u 3 ) + iω 0 (u 1 , u 2 ) .
To evaluate this integral, we cannot directly use the stationary phase lemma because a(., k) may not be compactly supported; we have to adapt it. In order to do so, we start by computing the critical locus

C ψ = (u 1 , u 2 , u 3 ) ∈ C 3 ; d u 3 ψ(u 1 , u 2 , u 3 ) = 0 and (ψ)(u 1 , u 2 , u 3 ) = 0 of ψ. It is clear that (ψ)(u 1 , u 2 , u 3 ) = 0 if
and only if u 3 = 0; moreover, the derivative of ψ with respect to u 3 is given by

d u 3 ψ(u 1 , u 2 , u 3 ) = i u 3 , . - 1 2 ω 0 (u 1 -u 2 , .), hence C ψ is the set of (u, u, 0), u ∈ R 2 . Now, consider χ ∈ C ∞ (R 2 , R + ) equal
to 1 in the set { x 3 ≤ δ} for some δ > 0 and with compact support, and

decompose I k as I k = k 2π 2 (J k + K k ), with J k (u 1 , u 2 ) = R 2 exp(ikψ(u 1 , u 2 , u 3 )) a u 3 + u 1 + u 2 2 , k χ(u 3 ) dλ(u 3 )
and K k (u 1 , u 2 ) equal to the same integral replacing χ by 1 -χ. First, we show that K k is negligible. Choose R > 0 and consider the points (u 1 , u 2 ) belonging to the ball of R 4 centered at the origin and of radius R. Writing the integral in K k in polar coordinates, we have Performing successive integration by parts, it is easy to prove that for every positive integer f . Furthermore, using the facts that ∂Ψ ∂ρ (ρ, θ) = iρ -1 2 (x 1 -x 2 ) sin θ + 1 2 (y 1 -y 2 ) cos θ, D N A is equal to a linear combination of terms of the form ∂ p Ψ ∂ρ p ∂ q A ∂ρ q and a(., k) belongs to S 1 j , we have the estimate This shows that K k ≤ c N k -N on the ball of radius R for some c N > 0. We treat the derivatives of K k in the same way. It remains to estimate J k . Since the second derivative of ψ with respect to u 3 is equal to iId, and since

K k (u 1 , u 2 ) = 2π 
N K k (u 1 , u 2 ) = k -N
ψ(u 1 , u 2 , u 3 ) = i 8 u 1 -u 2 2 - 1 2 ω 0 (u 1 , u 2 ) + 1 4 (i(ξ 1 -ξ 2 ) + 2x 3 ) ∂ x 4 ψ(u 1 , u 2 , u 3 ) + 1 4
(i(x 2 -x 1 ) + 2ξ 3 ) ∂ ξ 4 ψ(u 1 , u 2 , u 3 ), the stationary phase lemma [18, section 7.7] gives

J k (u 1 , u 2 ) = 2π k exp i 8 u 1 -u 2 2 - 1 2 ω 0 (u 1 , u 2 ) ã(u, u, k) + O(k -∞ ),
where ã(., ., k) belongs to S 2 j ; the coefficients ã (u 1 , u 2 , k) of its asymptotic expansion, which we do not write here, are linear combinations of derivatives of the a m , m ≥ 0, evaluated at u 1 +u 2 2 . However, the values of a(., ., k) along the diagonal of C 2 can be easily computed, because a number of terms vanish: for z in C, we have

ã(z, z, k) =   ≥0 k - ! ∆ a   (z, k) = exp k -1 ∆a (z, k).
Putting this together with the fact that K k is negligible, we obtain the result.

Proof of lemma 3.5. Formula (22) shows that the kernel A k is a holomorphic section of L k 0 L -k 0 ; differentiating equation ( 4), this implies that the Thanks to these holomorphy conditions, the fact that ã vanishes on the diagonal implies that it vanishes to all order along the diagonal. We can easily adapt lemma 1 of [START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF] to show that this yields the negligibility of expk 4 |z 1 -z 2 | 2 ã(z 1 , z 2 , k). Injecting this in formula (4) gives the result.

Proof of corollary 3.6. The kernel of C k reads

C k (z 1 , z 2 ) = C A k (z 1 , z 3 )B k (z 3 , z 2 ) dλ(z 3 ).
Using the representations of A k and B k given by lemma 3.3, this yields Using the same technique as in the proof of lemma 3.3, we show that

C k (z 1 , z 2 ) = k 2π
C k (z 1 , z 2 ) = k 2π exp - k 2 |z 1 | 2 + |z 2 | 2 -2z 1 z2 c(z 1 , z 2 , k) +R k exp -C k|z 1 -z 2 | 2
with C > 0, R k negligible, and c(., ., k) ∈ S 2 j+j . Now, consider the function č(., k) defined by č(z, k) = c(z, z, k) for z in C, and put c(., k) = exp -k -1 ∆ č (., k). Then c(., k) belongs to S 1 j+j and, by lemma 3.3, the Toeplitz operator D k = Op(c(., k)) admits a Schwartz kernel of the form

D k (z 1 , z 2 ) = k 2π exp - k 2 |z 1 | 2 + |z 2 | 2 -2z 1 z2 d(z 1 , z 2 , k) +R k exp -C k|z 1 -z 2 | 2 ,
where d(., ., k) belongs to S 2 j , R k is negligible, C is a positive constant and for every z in C, d(z, z, k) = c(z, z, k). |u=v=z up to a negligible term, which was to be proved.
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 12 Figure 1: A few level sets of a 0
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 3 Figure 3: E = a 0 (0.7, 0.6), k = 500
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 43 Figure 4: Eigenvalues in [-4, -4 + 20πk -1 ]; in red squares, the eigenvalues of A k obtained numerically; in blue diamonds, the theoretical eigenvalues up to order k -2 (i.e. forgetting the O(k -2 ) in formula (21))

  (ρ, θ)) A(ρ, θ, k) dρ dθ where Ψ(ρ, θ) = ψ(u 1 , u 2 , (ρ cos θ, ρ sin θ)) andA(ρ, θ, k) = ρ a (ρ cos θ, ρ sin θ) + u 1 + u 2 2 , k (1 -χ(ρ cos θ, ρ sin θ)).

  (ρ, θ)) D N A(ρ, θ, k)dρ dθ where D is the differential operator acting on C ∞ ([δ, +∞[×[0, 2π]) given by Df = i ∂ ∂ρ ∂Ψ ∂ρ -1

+ u 2 2 2 j 2 + u 2 2 2 j 2 ≤ 1 +

 22221 +∞ δ exp (ikΨ(ρ, θ)) D N A(ρ, θ, k)dρ ≤ C N +∞ δ expk 2 ρ 2 w(ρ, θ) dρ with w(ρ, θ) = ρ j 1 1 + ρ(cos θ, sin θ) + u 1for some C N > 0 and j 1 , j 2 ∈ Z. If j 2 < 0, this last integral can be bounded by+∞ δ ρ j 1 expk 2 ρ 2 dρ = O(k -1/2 ); if j 2 > 0, we have 1 + ρ(cos θ, sin θ) + u 1 |ρ| 2 + |R| 2 j 2and hence+∞ δ expk 2 ρ 2 w(ρ, θ) dρ ≤ CN +∞ δ expk 2 ρ 2 ρ j 3 dρ = O(k -1/2 ).

  sequences of functions z ∈ C → ∂ã ∂ z1 (z, z, k) and z ∈ C → ∂ã ∂z 2 (z, z, k) are negligible. Hence, we have for ≥ 0 and z ∈ C ∂ã ∂ z1 (z, z) = 0 = ∂ã ∂z 2 (z, z).

2 C 2 |z 1 | 2 +

 2212 exp (ikφ(z 1 , z 2 , z 3 )) ã(z 1 , z 3 , k) b(z 3 , z 2 , k) dλ(z 3 ) +R k exp -Ck|z 1 -z 2 | 2 , with C > 0, R k negligible and φ(z 1 , z 2 , z 3 ) = i |z 2 | 2 + 2|z 3 | 2 -2z 1 z3 -2z 3 z2 .

  Lemma 3.5 yields that C k = D k + R k exp -C k|z 1 -z 2 | 2 for some C > 0 and R k negligible. It remains to compute the contravariant symbol of C k . For z in C, put ȃ(z, w, k) = ã(z, z + w, k) and b(z, w, k) = b(z + w, z, k). One has č = exp k -1 ∆ w ȃb |w=0with ∆ w the holomorphic laplacian with respect to w; using lemma 3.5, we find č(z, k)= exp k -1 ∂ ∂ ū ∂ ∂v ǎ(u, k)) b(v, k) |u=v=z up to a negligible term. Now, since c(., k) = exp -k -1 ∆ č (., k), this yields c(z, k) = exp -k -1 ∂ ∂u ∂ ∂v a(u, k)b(v, k)

Proposition 3.1. The

  tensor power, and λ the Lebesgue measure on R 2 . It is easily shown that for k ≥ 1, H 0 k is precisely B k . Sometimes, we will use the identification of the section f ψ to the function f in abusive notations, such as talking about the operator ∂ ∂z action on B k , etc. It is standard that B k is closed in L 2 R 2 , exp(-k|z| 2 )dλ(z) , and is thus a Hilbert space; moreover, we know an orthonormal basis of B k . family (ϕ n,k ) n∈N , where ϕ n,k

  [START_REF] Bargmann | On a Hilbert space of analytic functions and an associated integral transform[END_REF] and Ω 2 if necessary, where we recall that the symbol ∼ stands for microlocal equality.

Proof. Start from a Fourier integral operator S k associated to s(., ., k) with principal symbol s 0 (v, χ -1 (v)) never vanishing on Ω 1 × Ω 2 . The first step is to construct an operator with the first property; we do it by induction, correcting S k by Toeplitz operators. More precisely, let P k be a Toeplitz operator on R 2 , and denote by p 0 its principal symbol. Set U (0)
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