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We observe (X i , Y i ) n i=1 where the Y i 's are real valued outputs and the X i 's are m × T matrices. We observe a new entry X and we want to predict the output Y associated with it. We focus on the high-dimensional setting, where mT ≫ n. This includes the matrix completion problem with noise, as well as other problems. We consider linear prediction procedures based on different penalizations, involving a mixture of several norms: the nuclear norm, the Frobenius norm and the ℓ 1 -norm. For these procedures, we prove sharp oracle inequalities, using a statistical learning theory point of view. A surprising fact in our results is that the rates of convergence do not depend on m and T directly. The analysis is conducted without the usually considered incoherency condition on the unknown matrix or restricted isometry condition on the sampling operator. Moreover, our results are the first to give for this problem an analysis of penalization (such nuclear norm penalization) as a regularization algorithm: our oracle inequalities prove that these procedures have a prediction accuracy close to the deterministic oracle one, given that the reguralization parameters are well-chosen.

1 Introduction

The model and some basic definitions

Let (X, Y ) and D n = (X i , Y i ) n i=1 be n + 1 i.i.d random variables with values in M m,T × R, where M m,T is the set of matrices with m rows and T columns with entries in R. Based on the observations D n , we have in mind to predict the realvalued output Y by a linear transform of the input variable X. We focus on the high-dimensional setting, where mT ≫ n. We use a "statistical learning theory point of view": we do not assume that E(Y |X) has a particular structure, such as E(Y |X) = X, A 0 for some A 0 ∈ M m,T , where •, • is the standard Euclidean inner product given for any A, B ∈ M m,T by A, B := tr(A ⊤ B).

(

) 1 
The statistical performance of a linear predictor X, A for some A ∈ M m,T is measured by the quadratic risk

R(A) := E[(Y -X, A ) 2 ]. (2) 
If Ân ∈ M m,T is a statistic constructed from the observations D n , then its risk is given by the conditional expectation

R( Ân ) := E[(Y -X, Ân ) 2 |D n ].
A natural candidate for the prediction of Y using D n is the empirical risk minimization procedure, namely any element in M m,T minimizing the empirical risk R n (•) defined for all A ∈ M m,T by

R n (A) = 1 n n i=1 (Y i -X i , A ) 2 .
It is well-known that the excess risk of this procedure is of order mT /n. In the high dimensional setting, this rate is not going to zero. So, if X → A 0 , X is the best linear prediction of Y by X, we need to know more about A 0 in order to construct algorithms with a small risk. In particular, we need to know that A 0 has a "lowdimensional structure". In this setup, this is usually done by assuming that A 0 is low rank. A first idea is then to minimize R n and to penalize matrices with a large rank. Namely, one can consider Ân ∈ argmin

A∈M m,T R n (A) + λ rank(A) , (3) 
for some regularization parameter λ > 0. But A → rank(A) is far from being a convex function, thus minimizing (3) is very difficult in practice, see [START_REF] Fazel | Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices[END_REF] for instance on this problem. Convex relaxation of (3) leads to the following convex minimization problem Ân ∈ argmin

A∈M m,T R n (A) + λ A S 1 , (4) 
where • S 1 is the 1-Schatten norm, also known as nuclear norm or trace norm. This comes from the fact that the nuclear norm is the convex envelope of the rank on the unit ball of the spectral norm, see [START_REF] Fazel | Rank minimization and applications in system theory[END_REF]. For any matrix A ∈ M m,T , we denote by s 1 (A), . . . , s rank(A) (A) its nonincreasing sequence of singular values. For every p ∈ [1, ∞], the p-Schatten norm of A is given by

A Sp := rank(A) j=1 s j (A) p 1/p . (5) 
In particular, the • S∞ -norm is the operator norm or spectral norm. The • S 2 -norm is the Frobenius norm, which satisfies

A 2 S 2 = i,j
A 2 i,j = A, A .

Motivations

A particular case of the matrix prediction problem described in Section 1.1 is the problem of (noisy) matrix completion, see [START_REF] Srebro | Maximum-margin matrix factorization[END_REF][START_REF] Srebro | Rank, trace-norm and max-norm[END_REF], which became very popular because of the buzz surrounding the Netflix prize 1 . In this problem, it is assumed that X is uniformly distributed over the set {e p,q : 1 ≤ p ≤ m, 1 ≤ q ≤ T }, where e p,q ∈ M m,T is such that (e p,q ) i,j = 0 when i = q or j = p and (e p,q ) p,q = 1. If E(Y |X) = A 0 , X for some A 0 ∈ M m,T , then the Y i are n noisy observations of the entries of A 0 , and the aim is to denoise the observed entries and to fill the non-observed ones. First motivation. Quite surprisingly, for matrix completion without noise (Y i = X i , A 0 ), it is proved in [START_REF] Candès | Exact matrix completion via convex optimization[END_REF] and [START_REF] Candès | The power of convex relaxation: Near-optimal matrix completion[END_REF] (see also [START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF], [START_REF] Recht | A simpler approach to matrix completion[END_REF]) that nuclear norm minimization is able, with a large probability (of order 1 -(m ∧ T ) -3 ) to recover exactly A 0 when n > cr(m + T )(log n) 6 , where r is the rank of A 0 . This result is proved under a so-called incoherency assumption on A 0 . This assumption requires, roughly, that the left and right singular vectors of A 0 are well-spread on the unit sphere. Using this incoherency assumption [START_REF] Candès | Matrix completion with noise[END_REF], [START_REF] Raghunandan | Matrix completion from noisy entries[END_REF] give results concerning the problem of matrix completion with noise. However, recalling that this assumption was introduced in order to prove exact completion, and since in the noisy case it is obvious that exact completion is impossible, a natural goal is then to obtain results for noisy matrix completion without the incoherency assumption. This is a first motivation of this work: we derive oracle inequalities without any assumption on A 0 , not even that it is low-rank. More than that, we don't need to assume that E(Y |X) = X, A 0 for some A 0 , since we use a statistical learning point-of-view in the statement of our results. More precisely, we construct procedures Ân satisfying sharp oracle inequalities of the form R( Ân ) ≤ inf

A∈M m,T R(A) + r n (A) (6) 
that hold with a large probability, where r n (A) is a residue related to the penalty used in the definition of Ân that we want as small as possible. By "sharp" we mean that in the right hand side of ( 6), the constant in front of the infimum of R(A) is equal to one. As shown below, considering the prediction problem (6) allows to remove assumptions which are usually mandotary for exact reconstruction, like the incoherency assumption.

A surprising fact in our results is that, for penalization procedures that involve the 1-Schatten norm (and also for penalizations involving other norms), the residue r n (•) does not depend on m and T directly: it only depends on the 1-Schatten norm of A 0 , see Section 2 for details. This was not, as far as we know, previously noticed in literature (all the upper bounds obtained for Ân -A 0 2 S 2 depend directly on m and T and on A 0 S 1 or on its rank and on A 0 S∞ , see the references above and below). This fact points out an interesting difference between nuclear-norm penalization (also called "Matrix Lasso") and the Lasso for vectors. In [START_REF] Rohde | Estimation of high-dimensional low rank matrices[END_REF], which is a work close to ours, upper bounds for p-Schatten penalization procedures for 0 < p ≤ 1 are given in the same setting as ours, including in particular the matrix completion problem. The results are stated without the incoherency assumption for matrix completion. But for this problem, the upper bounds are given using the empirical norm Ân -A 0 2 n = n i=1 X i , Ân -A 0 2 /n only. An upper bound using this empirical norm gives information only about the denoising part and not about the filling part of the matrix completion problem. Our results have the form [START_REF] Francis | Consistency of trace norm minimization[END_REF], which entails when

E(Y |X) = X, A 0 for some A 0 ∈ M m,T that E X, Ân -A 0 2 ≤ inf A∈M m,T E X, A -A 0 2 + r n (A) ,
and taking A 0 in the infimum leads to the upper bound

E X, Ân -A 0 2 ≤ r n (A 0 ).
Note that E X, Ân -A 0 2 = Ân -A 0 2 S 2 /(mT ) in the uniform matrix completion problem (see Example 1 below).

Second motivation. In the setting considered here, an assumption called Restricted Isometry (RI) on the sampling operator

L n (A) = 1 √ n ( X 1 , A , . . . , X n , A )
has been introduced in [START_REF] Recht | Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[END_REF] and used in a series of papers, see [START_REF] Rohde | Estimation of high-dimensional low rank matrices[END_REF], [START_REF] Candès | Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements[END_REF], [START_REF] Negahban | A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers[END_REF][START_REF] Negahban | Estimation of (near) low-rank matrices with noise and high-dimensional scaling[END_REF].

This assumption is the matrix version of the restricted isometry assumption for vectors introduced in [START_REF] Candès | Decoding by linear programming[END_REF]. Note that in the high-dimensional setting (mT ≫ n), this assumption is not satisfied in the matrix completion problem, see [START_REF] Rohde | Estimation of high-dimensional low rank matrices[END_REF] for instance, which provides results with and without this assumption. The RI assumption is very restrictive and is, up to now, only satisfied by some special random matrices (cf. [START_REF] Rudelson | On sparse reconstruction from Fourier and Gaussian measurements[END_REF][START_REF] Olivier Guédon | Subspaces and orthogonal decompositions generated by bounded orthogonal systems[END_REF][START_REF] Shahar Mendelson | Uniform uncertainty principle for Bernoulli and subgaussian ensembles[END_REF][START_REF] Shahar Mendelson | Reconstruction and subgaussian operators in asymptotic geometric analysis[END_REF] and references therein). However, after the submission of this paper was submitted a preprint [START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF] introducing the Restricted Strong Convexity (RSC) assumption, which is satisfied with a large probability even in the matrix completion problem, on a restricted class of matrices with small "spikiness" (consisting of matrices such that the ratio between the ℓ ∞ and S 2 norms is small enough). A second motivation for this work is that our results do not require any RI or RSC assumption.

Our assumptions on X are very mild, see Section 2, and are satisfied in the matrix completion problem, as well as other problems, such as the multi-task learning, see Section 2 below. Third motivation. Our results are the first to give an analysis of nuclear-norm penalization (and of other penalizations as well, see below) as a regularization algorithm. Indeed, an oracle inequality of the form [START_REF] Francis | Consistency of trace norm minimization[END_REF] proves that these penalization procedures have a prediction accuracy close to the deterministic oracle one, given that the reguralization parameters are well-chosen.

Fourth motivation. We give oracle inequalities for penalization procedures involving a mixture of several norms:

• S 1 , • 2 S 2 and the ℓ 1 -norm • 1 . Indeed, if E(Y |X) = X,
A 0 , the matrix A 0 may enjoy the following properties: low-rank, many zeros entries or well-spread eigenvalues. As far as we know, no result for penalization using several norms was previously given in literature for high-dimensional matrix prediction.

Procedures based on 1-Schatten norm penalization have been considered by many authors recently, with applications to multi-task learning and collaborative filtering. The first studies are probably the ones given in [START_REF] Srebro | Maximum-margin matrix factorization[END_REF][START_REF] Srebro | Rank, trace-norm and max-norm[END_REF], using the hinge loss for binary classification. In [START_REF] Francis | Consistency of trace norm minimization[END_REF], it is proved, together with some other asymptotic results, that under some condition on the X i , the nuclear norm penalization can consistently recover rank(A 0 ) when n → +∞. Let us recall also the references we mentioned above and close other ones [START_REF] Fazel | Rank minimization and applications in system theory[END_REF][START_REF] Recht | Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[END_REF], [START_REF] Candès | Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements[END_REF][START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF][START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Candès | Matrix completion with noise[END_REF][START_REF] Candès | The power of convex relaxation: Near-optimal matrix completion[END_REF], [START_REF] Keshavan | Matrix completion from a few entries[END_REF][START_REF] Raghunandan | Matrix completion from noisy entries[END_REF], [START_REF] Rohde | Estimation of high-dimensional low rank matrices[END_REF], [START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF], [START_REF] Recht | A simpler approach to matrix completion[END_REF][START_REF] Recht | Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[END_REF], [START_REF] Negahban | A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers[END_REF][START_REF] Negahban | Estimation of (near) low-rank matrices with noise and high-dimensional scaling[END_REF], [START_REF] Argyriou | On spectral learning[END_REF][START_REF] Argyriou | Convex multi-task feature learning[END_REF][START_REF] Argyriou | A spectral regularization framework for multi-task structure learning[END_REF], [START_REF] Abernethy | A new approach to collaborative filtering: Operator estimation with spectral regularization[END_REF], and let us cite also two very recent preprints [START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF], [START_REF] Koltchinskii | Nuclear norm penalization and optimal rates for noisy low rank matrix completion[END_REF], which were submitted after this paper. A precise comparison with some of these references is given in Section 2.4 below.

The procedures studied in this work

If E(Y |X) = X, A 0 where A 0 is low rank, in the sense that rank(A 0 ) ≪ n, nuclear norm penalization (4) is likely to enjoy some good prediction performances. But, if we know more about the properties of A 0 , then some additional penalization can be considered. For instance, if we know that the non-zero singular values of A 0 are "wellspread" (that is almost equal) then it may be interesting to use the "regularization effect" of a penalty based on the S 2 norm in the same spirit as a "ridge" penalty for vectors or functions. Moreover, if we know that many entries of A 0 are close or equal to zero, then using also a ℓ 1 -penalization on the entries

A → A 1 = 1≤p≤m 1≤q≤T |A p,q | (7) 
may improve even further the prediction. As a consequence, we consider in this paper a penalization that uses a mixture of several norms: for λ 1 , λ 2 , λ 3 > 0, we consider

pen λ 1 ,λ 2 ,λ 3 (A) = λ 1 A S 1 + λ 2 A 2 S 2 + λ 3 A 1 (8) 
and we will study the prediction properties of

Ân (λ 1 , λ 2 , λ 3 ) ∈ argmin A∈M m,T R n (A) + pen λ 1 ,λ 2 ,λ 3 (A) . (9) 
Of course, if more is known on the structure of A 0 , other penalty functions can be considered.

We obtain sharp oracle inequalities for the procedure Ân (λ 1 , λ 2 , λ 3 ) for any values of λ 1 , λ 2 , λ 3 ≥ 0 (excepted for (λ 1 , λ 2 , λ 3 ) = (0, 0, 0) which provides the wellstudied empirical risk minimization procedure). In particular, depending on the "a priori" knowledge that we have on A 0 we will consider different values for the triple (λ 1 , λ 2 , λ 3 ). If A 0 is only known to be low-rank, one should choose λ 1 > 0 and λ 2 = λ 3 = 0. If A 0 is known to be low-rank with many zero entries, one should choose λ 1 , λ 3 > 0 and λ 2 = 0. If A 0 is known to be low-rank with well-spread nonzero singular values, one should choose λ 1 , λ 2 > 0 and λ 3 = 0. Finally, one should choose λ 1 , λ 2 , λ 3 > 0 when a significant part of the entries of A 0 are zero, that A 0 is low rank and that the non-zero singular values of A 0 are well-spread.

Remark 1. We propose in Section 2 below several oracle inequalities for procedures involving the low-rank inducing S 1 -norm, and mixtures of it with the S 2 and ℓ 1norms on the entries. These results garantee the statistical performance of each of these procedures with mixed norm. However, the theory proposed here is too general to prove that one of the mixed penalizations improves upon the pure S 1 penalization on some restricted class of matrix. Such results (that are of different nature) deserves another work, to be considered later on.

Results

We will use the following notation: for a matrix A ∈ M m,T , vec(A) denotes the vector of R mT obtained by stacking its columns into a single vector. Note that this is an isometry between (M m,T , [START_REF] Ledoux | Probability in Banach spaces[END_REF], p. 10) and a similar norm can be defined for 0 < α < 1.

• S 2 ) and (R mT , | • | ℓ mT 2 ) since A, B = vec A, vec B . We introduce also the ℓ ∞ norm A ∞ = max p,q |A p,q |. Let us recall that for α ≥ 1, the ψ α - norm of a random variable Z is given by Z ψα := inf{c > 0 : E[exp(|Z| α /c α ))] ≤ 2} (cf.

Assumptions and examples

The first assumption concerns the "covariate" matrix X.

Assumption 1 (Matrix X). There are positive constants b X,∞ , b X,ℓ∞ and b X,2 such that X S∞ ≤ b X,∞ , X ∞ ≤ b X,ℓ∞ and X S 2 ≤ b X,2 almost surely. Moreover, we assume that the "covariance matrix"

Σ := E[vec X(vec X) ⊤ ] is invertible.
This assumption is very mild. It is met in the matrix completion and the multitasklearning problems, defined below.

Example 1 (Uniform matrix completion). The matrix X is uniformly distributed over the set {e p,q : 1 ≤ p ≤ m, 1 ≤ q ≤ T } (see Section (1.2)), so in this case Σ = (mT ) -1 I mT (where I mT stands for the indentity matrix on R mT ) and b

X,2 = b X,∞ = b X,ℓ∞ = 1.
Example 2 (Weighted matrix completion). The distribution of X is such that P(X = e p,q ) = π p,q where (π p,q ) 1≤p≤m,1≤q≤T is a family of positive numbers such that 1≤p≤m,1≤q≤T π p,q = 1. In this situation Σ is invertible and again b

X,2 = b X,∞ = b X,ℓ∞ = 1.
Example 3 (Multitask-learning, or "column-masks"). The distribution of X is uniform over a set of matrices with only one non-zero column (all the columns have the same probability to be non-zero). The distribution is such that the j-th column takes values in a set {x j,s : s = 1, . . . , k j }, each vector having the same probability. So, in this case Σ is equal to T -1 times the mT × mT block matrix with T diagonal blocks of size m × m made of the T matrices k -1 j k j i=1 x j,s x ⊤ j,s for j = 1, . . . , T . If we assume that the smallest singular values of the matrices k -1 j k j i=1 x j,s x ⊤ j,s ∈ M m,m for j = 1, . . . , T are larger than a constant σ min (note that this implies k j ≥ m), then Σ has its smallest singular value larger than σ min T -1 , so it is invertible. Moreover, if the vectors x j,s are normalized in ℓ 2 , then one can take b

X,∞ = b X,ℓ∞ = b X,2 = 1.
The next assumption deals with the regression function of Y given X. It is standard in regression analysis.

Assumption 2 (Noise). There are positive constants b

Y , b Y,∞ , b Y,ψ 2 , b Y,2 such that Y -E(Y |X) ψ 2 ≤ b Y,ψ 2 , E(Y |X) L∞ ≤ b Y,∞ , E[(Y -E(Y |X)) 2 |X] ≤ b 2 Y,2 almost surely and EY 2 ≤ b 2 Y .
In particular, any model Y = A 0 , X + ε where A 0 S∞ < +∞ and ε is a centered sub-gaussian noise satisfies Assumption 2. Note that in the matrix completion problem, if σ 2 = E(ε 2 ), the signal-to-noise ratio is given by E( X, A 0 2 )/σ 2 = A 0 2 S 2 /(σ 2 mT ), so that σ 2 has to scale like 1/(mT ) for the signal-to-noise ratio to have a reasonable value.

Note that by using the whole strength of Talagrand's concentration inequality on product spaces for ψ α (0 < α ≤ 1) random variables obtained in [START_REF] Law | A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF], other type of tail decay of the noise could be considered (yet leading to slower decay of the residual term) depending on this assumption.

Main results

In this section we state our main results. We give sharp oracle inequalities for the penalized empirical risk minimization procedure Ân ∈ argmin

A∈M m,T 1 n n i=1 (Y i -X i , A ) 2 + pen(A) , (10) 
where pen(A) is a penalty function which will be either a pure • S 1 penalization, or a "matrix elastic-net" penalization

• S 1 + • 2 S 2 or other penalty functions involving the • 1 norm. Theorem 1 (Pure • S 1 penalization).
There is an absolute constant c > 0 for which the following holds. Let Assumptions 1 and 2 hold, and let x > 0 be some fixed confidence level. Consider any

Ân ∈ argmin A∈M m,T R n (A) + λ n,x A S 1 , for λ n,x = c X,Y (x + log n) log n √ n , where c X,Y := c(1 + b 2 X,2 + b Y b X + b 2 Y,ψ 1 + b 2 Y,∞ + b 2 Y,2 + b 2 X,∞ ).
Then one has, with a probability larger than 1 -5e -x , that

R( Ân ) ≤ inf A∈M m,T R(A) + λ n,x (1 + A S 1 ) .
When there is an underlying model, namely if E(Y |X) = X, A 0 for some matrix A 0 , an immediate corollary of Theorem 1 is that for any x > 0, we have

E X, Ân -A 0 2 ≤ c X,Y (x + log n) log n √ n (1 + A 0 S 1 )
with a probability larger than 1 -5e -x . The rate obtained here involves the nuclear norm of A 0 and not the rank. In particular, this rate is not deteriorated if A 0 is of full rank but close to a low rank matrix, and it is also still meaningful when m +T is large compared to n. This is not the case for rates of the form rank(A 0 )(m+T )/n, obtained before the submission of this paper for the same procedure, see [START_REF] Raghunandan | Matrix completion from noisy entries[END_REF] and [START_REF] Rohde | Estimation of high-dimensional low rank matrices[END_REF], which are obtained under stronger assumptions. However, high-dimension matrix recovery is a very active field of research, and two preprints were submitted only very recently (at the time of the revision of this paper), where one can find results that don't need rank constraints, see [START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF] and [START_REF] Koltchinskii | Nuclear norm penalization and optimal rates for noisy low rank matrix completion[END_REF]. Theorem 1 and these results are compared in Section 2.4.

Concerning the optimality of Theorem 1, the following lower bound can be proved by using the classical tools of [START_REF] Alexandre | Introduction à l'estimation non-paramétrique[END_REF]. Consider the model

Y = A 0 , X + σζ ( 11 
)
where ζ is a standard Gaussian variable and X is distributed like the m × T diagonal matrix diag[ǫ 1 , . . . , ǫ m∧T ] where ǫ 1 , . . . , ǫ m∧T are i.i.d. Rademacher variables. Then, there exists absolute constants c 0 , c 1 > 0 such that the following holds. Let n, m, T ∈ N -{0} and R > 0. Assume that m ∧ T ≥ √ n. For any procedure  constructed from n observations in the model [START_REF] Candès | Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements[END_REF] (and denote by P ⊗n A 0 the probability distribution of such a sample), there exists A 0 ∈ RB(S 1 ) such that with P ⊗n A 0 -probability greater than c 1 ,

R( Â) -R(A 0 ) ≥ c 0 σR 1 n log c 0 σm ∧ T R √ n .
This shows that, up to some logarithmic factor, the residual term obtained in Theorem 1 is optimal. The only point is that the S 2 norm of the design in ( 11) is not nicely upper bounded ( X S 2 = m ∧ T a.s.) as it is required in Assumption 1. Nevertheless, the assumption X S 2 ≤ b X,2 a.s. is mostly technical: it comes from the fact that we use the weak inclusion B(S 1 ) ⊂ B(S 2 ) for the computation of the complexity of B(S 1 ) w.r.t. the norm coming out of our method (cf. Subsection 3.5 below). This inclusion is clearly a source of looseness and we believe that Theorem 1 is also valid if we only assume that X S∞ ≤ b X,∞ a.s. in place of X S 2 ≤ b X,2 a.s.. We now state three sharp oracle inequalities for procedures of the form [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF] where the penalty function is a mixture of norms.

Theorem 2 (Matrix Elastic-Net).

There is an absolute constant c > 0 for which the following holds. Let Assumptions 1 and 2 hold. Fix any x > 0, r 1 , r 2 > 0, and consider Ân ∈ argmin

A∈M m,T R n (A) + λ n,x (r 1 A S 1 + r 2 A 2 S 2 ) ,
where

λ n,x = c X,Y log n √ n 1 r 1 + (x + log n) log n r 2 √ n , where c X,Y = c(1+b 2 X,2 +b X,2 b Y +b 2 Y,ψ 1 +b 2 Y,∞ +b 2 Y,2
). Then one has, with a probability larger than 1 -5e -x , that

R( Ân ) ≤ inf A∈M m,T R(A) + λ n,x (1 + r 1 A S 1 + r 2 A 2 S 2 ) .
Theorem 2 guarantees the performances of the Matrix Elastic-net estimator (mixture of the S 1 -norm and the S 2 -norm to the square). The use of this algorithm is particularly relevant for matrices with a spectra spread out on the few first singular values, namely for matrices with a singular value decomposition of the form

U diag[a 1 , . . . , a r , ǫ r+1 , . . . , ǫ m∧T ]V ⊤ , (12) 
where U and V are orthonormal matrices, where (a 1 , . . . , a r ) is well-spread (roughly speaking, the a i 's are of the same order) and where the ε i are small compared to the a i .

Theorem 3 ( • S 1 + • 1 penalization).
There is an absolute constant c > 0 for which the following holds. Let Assumptions 1 and 2 hold. Fix any x, r 1 , r 3 > 0, and consider Ân ∈ argmin

A∈M m,T R n (A) + λ n,x (r 1 A S 1 + r 3 A 1 )
for

λ n,x := c X,Y 1 r 1 ∧ log(mT ) r 3 (x + log n)(log n) 3/2 √ n , where c X,Y = c(1 + b 2 X,2 + b X,2 b Y + b 2 Y,ψ 1 + b 2 Y,∞ + b 2 Y,2 + b 2 X,∞ + b 2 X,ℓ∞ ).
Then one has, with a probability larger than 1 -5e -x , that

R( Ân ) ≤ inf A∈M m,T R(A) + λ n,x (1 + r 1 A S 1 + r 3 A 1 )) .
Theorem 3 guarantees the statistical performances of a mixture of the S 1 -norm and the ℓ 1 -norm. This mixed penalization shall improve upon the pure S 1 penalization when the underlying matrix contains many zeros. Note that, in the matrix completion case, the term √ log mT can be removed from the regularization (and thus the residual) term thanks to the second statement of Proposition 1 below, see Section 3.5.

Theorem 4 ( • S 1 + • 2 S 2 + • 1 penalization).
There is an absolute constant c > 0 for which the following holds. Let Assumptions 1 and 2 hold. Fix any x, r 1 , r 2 , r 3 > 0, and consider

Ân ∈ argmin A∈M m,T R n (A) + λ n,x (r 1 A S 1 + r 2 A 2 S 2 + r 3 A 1 ) for λ n,x := c X,Y (log n) 3/2 √ n 1 r 1 ∧ log(mT ) r 3 + x + log n r 2 √ n , where c X,Y = c(1+b 2 X,2 +b X,2 b Y +b 2 Y,ψ 1 +b 2 Y,∞ +b 2 Y,2
). Then one has, with a probability larger than 1 -5e -x , that

R( Ân ) ≤ inf A∈M m,T R(A) + λ n,x (1 + r 1 A S 1 + r 2 A 2 S 2 + r 3 A 1 )) .
It is interesting to note that the techniques used in this paper allow to handle very general penalty functions as long as the set {A ∈ M m,T : pen(A) ≤ r} is convex for any r > 0. The parameters r 1 , r 2 and r 3 in the above procedures are completely free and can depend on n, m and T . Intuitively, it is clear that r 2 should be smaller than r 1 since the • S 2 term is used for "regularization" of the non-zero singular values only, while the term • S 1 makes Ân of low rank, as for the elastic-net for vectors (see [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF]). Indeed, for the • S 1 + • 2 S 2 penalization, any choice of r 1 and r 2 such that r 2 = r 1 log n/ √ n leads to a residual term smaller than

c X,Y (1 + x + log n) (log n) 2 r 2 n + log n √ n A S 1 + (log n) 2 n A 2 S 2 .
Note that the rate related to A S 1 is (up to logarithms) 1/ √ n while the rate related to A 2 S 2 is 1/n. The choice of r 3 depends on the number of zeros in the matrix. Note that in the

• S 1 + • 1 case, any choice 1 ≤ r 3 ≤ r 1 entails a residue smaller than c X,Y (x + log n) log n √ n (1 + A S 1 + A 1 ),
which makes again the residue independent of m and T .

Why we don't need the incoherency assumption

So far, results obtained in the matrix completion problem require a model of the form E(Y |X) = X, A 0 for some A 0 ∈ M m,T , where A 0 satisfies the incoherency assumption (see Section 1.2). The incoherency assumption is natural and somehow mandatory when one wants to reconstruct exactly A 0 from non-noisy observations (that is for the model Y = X, A 0 in Example 1 above). In this paper, we don't need this assumption, since we don't consider the problem of exact reconstruction. Instead, we give upper bounds on the prediction error E(Y -Ân , X ) 2 with a residue of the form c/ √ n. Let us recall a simple example given in [START_REF] Candès | Exact matrix completion via convex optimization[END_REF] where the incoherency assymption is not satisfied, and where exact reconstruction typically fails. Assume that Y = X, A 0 , where X is the design of the matrix completion problem, and where A 0 is a matrix with every entries equal to 0 excepted for the top-left one, which is equal to (A 0 ) 1,1 . If each X i is different from e 1,1 , then every observed output is zero:

Y 1 = • • • = Y n = 0.
Note that this happens with probability 1 -(mT ) -n , which is very large. In this situation, it is obviously impossible to recover A 0 , namely to find back the unobserved top-left entry: in this case we have Ân = 0 whatever the penalization is, so we predict Y by 0 whatever the input X. The aim of the incoherency assumption is to exclude such situations. The risk of this prediction is

R(0) = EY 2 = E A 0 , X 2 = (A 0 ) 2
1,1 /(mT ) = 0 whereas the best possible risk is 0. This does not contradict our oracle inequalities, since 1/(mT ) ≪ 1/

√ n in the highdimensional setting considered here. Actually, in this scaling 1/(mT ) is very close to 0 (the risk of the oracle), so predicting Y by 0 is almost as good as predicting Y by the oracle X, A 0 , and actually, for the matrix completion design, this is not very bad to say that e 11 is close to the null matrix.

Comparison with recent results

In this section we compare Theorem 1 (and only this theorem since other papers consider S 1 -penalization only) with the results from recent papers: [START_REF] Rohde | Estimation of high-dimensional low rank matrices[END_REF], which was submitted a year before our paper and [START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF], [START_REF] Koltchinskii | Nuclear norm penalization and optimal rates for noisy low rank matrix completion[END_REF], which are preprints submitted after this paper, the latter being submited at the time of the revision. In order to compare our results with these close references, we assume that E(Y |X) = A 0 , X for some matrix A 0 , and that m = T for simplicity.

In [START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF], the problem of matrix completion with noise is considered, where the distribution of X can be different from the uniform law on the entries of the matrix (note that our paper includes this case as well, since there is barely no restriction on the distribution of X, see Assumption 1 above). In this case the authors propose to replace the nuclear norm by a weighted nuclear norm (which depends on the distribution of X). Two upper bounds are proposed for this algorithm, assuming that A 0 belongs to a S q -Schatten ball for 0 < q ≤ 1 (see Corollaries 1 and 2 herein), and that the "spikiness" of A 0 , namely the ratio between the ℓ ∞ -norm and ℓ 2 -norm of its entries, is smaller than some constant α 2 * . For q = 0, assuming that A 0 belongs to a q-Schatten ball with radius r simply means that the rank of A 0 is smaller than r. In this case, the authors prove that (using our notations):

E X, Ãn -A 0 2 ≤ c 1 α 2 * rm log m n ( 13 
)
with a probability larger than 1 -c 2 exp(-c 3 log m), where Ãn is a weighted nuclearnorm penalized estimator with an additional weighted ℓ ∞ -constraint, where the weights involve directly the distribution of X. When A 0 is not exactly low-rank, but is known to belong to the 1-Schatten ball with radius ρ, the authors prove that

E X, Ãn -A 0 2 ≤ cρα * rm log m n . ( 14 
)
Theorem 1 improves these results at several levels. Indeed, let us recall that Theorem 1 entails that, for every A 0 S 1 ≤ ρ and every x > 0:

E X, Ân -A 0 2 ≤ c(ρ + 1) (x + log n) log n √ n (15) 
with a probability larger than 1 -e -x . From a practical point of view, we use a purely data-driven procedure: we don't need to know the distribution of X for the computation of Ân , while Ãn needs to know it (this problem is also present in the very recent preprint [START_REF] Koltchinskii | Nuclear norm penalization and optimal rates for noisy low rank matrix completion[END_REF]). From a theoretical point of view, ( 15) is strictly better than ( 14) since the rate is faster by a factor √ m, which is a large quantity in this problem, and since we do not need the spikiness assumption. Moreover, note that the spikiness constant may be close to m for a spiky matrix (with large isolated entries). So, Theorem 1 proves in particular that the spikiness assumption is not necessary. Finally, [START_REF] Candès | Decoding by linear programming[END_REF] is also better than [START_REF] Candès | Exact matrix completion via convex optimization[END_REF] when A 0 has rank r, since m/n ≥ 1/ √ n when n ≤ m 2 (which is true in the high-dimensional scaling we are interested in) and since again, the spikiness constant α * may be large.

In an interesting paper [START_REF] Koltchinskii | Nuclear norm penalization and optimal rates for noisy low rank matrix completion[END_REF], which was submitted at the time of the revision of this paper, the authors consider a simplified estimator: they assume that the distribution of X is known, so instead of minimizing the empirical risk R n (A), they minimize E X, A S 2 -2 i=1 X i , A /n. In the matrix completion problem, this leads to an estimator with a particularly simple form, giving rise to the optimal rates for this problem, which were actually previously unknown. Indeed, they prove that the correct rate of convergence is 1/ √ mn (up to logarithms), while the rate in (15) is 1/ √ n. When the distribution of X is known, this is a strong improvement of our results. However, note that the question of whether the rate 1/ √ mn is achievable in our more realistic setting, where the distribution of X is unknown is still open, and currently investigated.

3 Proof of the main results

Some definitions and notations

Here we gather some definitions used throughout the proof of the Theorems. For any r, r 1 , r 2 , r 3 ≥ 0, we consider the ball

B r,r 1 ,r 2 ,r 3 := {A ∈ M m,T : r 1 A S 1 + r 2 A 2 S 2 + r 3 A 1 ≤ r}, (16) 
and we denote by B r,1 = B r,1,0,0 the nuclear norm ball, by B r,r 1 ,r 2 = B r,r 1 ,r 2 ,0 the matrix elastic-net ball. In what follows, B r will be either B r,1 , B r,r 1 ,r 2 , B r,r 1 ,r 2 ,r 3 or B r,r 1 ,0,r 3 , depending on the penalization. We consider an oracle matrix in B r given by:

A * r ∈ argmin A∈Br E(Y -X, A ) 2
and the following excess loss function over B r defined for any A ∈ B r by

L r,A (X, Y ) := (Y -X, A ) 2 -(Y -X, A * r ) 2 . ( 17 
)
Define also the class of excess loss functions

L r := {L r,A : A ∈ B r }, (18) 
and its localized set at level λ > 0:

L r,λ := {L r,A : A ∈ B r , EL r,A ≤ λ}. (19) 
The star-shaped-hull at 0 of L r is given by V r := star(L r , 0) = {αL r,A : A ∈ B r and 0 ≤ α ≤ 1} and its localized set at level λ > 0

V r,λ := {g ∈ V r : Eg ≤ λ}. (20) 

Scheme of proof of Theorems 1, 2, 3, and 4

The proof of Theorems 1 to 4 rely on the recently developed isomorphic penalization method, introduced by P. Bartlett, S. Mendelson and J. Neeman: it has improved several results on penalized empirical risk minimization procedures for the Lasso [START_REF] Bartlett | ℓ 1 -regularized linear regression: Persistence and oracle inequalities[END_REF] and for regularization in reproducing kernel Hilbert spaces [START_REF] Mendelson | Regularization in kernel learning[END_REF], see also [START_REF] Peter | Fast rates for estimation error and oracle inequalities for model selection[END_REF]. This approach relies on a sharp analysis of the complexity of the set V r,λ . Indeed, an important quantity appearing in statistical learning theory is the maximal deviation of the empirical distribution around its mean uniformly over a class of functions. If V is a class of functions, we define the supremum of the deviation of the empirical mean around its expectation over V by

P n -P V = sup h∈V 1 n n i=1 h(X i , Y i ) -Eh(X, Y ) .
For the analysis given below, we will need strong deviation results for P n -P V compared with its mean and precise upper bounds for E P n -P V . The former is achieved using a new version (see Theorem 4 in [START_REF] Law | A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF]) of Talagrand's concentration inequality (see [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF]) since the class of excess losses V r,λ is not bounded but ψ 1 (subexponential). The latter is obtained using the generic-chaining mechanism developed in [START_REF] Talagrand | The generic chaining[END_REF]. Before going into the details of the proofs, let us described the general scheme. The isomorphic penalization method is described in details in Section 3.7 below. It requires the following steps:

1. the first step (cf. Lemma 5 from Section 3.3 below) is to study the Bernstein property (cf. [START_REF] Bartlett | Empirical minimization[END_REF]) of the problem. This is a geometric property (naturally satisfied by convex sets such as the balls B r,r 1 ,r 2 ,r 3 ) at the heart of the concentration properties of P n L r,A around P L r,A for every r ≥ 0 and A ∈ M m,T ;

2. the second step deals with the complexity of the models B r,r 1 ,r 2 ,r 3 for every radius r ≥ 0. This complexity is "adapted" to the learning problem, that is, it is measured through the fixed point

λ * (r) = inf λ > 0 : E P -P n V r,λ ≤ λ/8 ,
also called Rademacher complexity after symmetrization of the process. An upper bound of such quantities is usually obtained using a chaining technique (cf. Section 3.5);

3. the third step is to apply a general result from [START_REF] Peter | Fast rates for estimation error and oracle inequalities for model selection[END_REF], [START_REF] Mendelson | Regularization in kernel learning[END_REF] and [START_REF] Bartlett | ℓ 1 -regularized linear regression: Persistence and oracle inequalities[END_REF] (cf. Theorem 11 in Section 3.7 below) in order to derive a first version of the oracle inequalities. Note that the penalizations obtained at these stage are not yet the correct ones, because of some residual terms coming out of this method.

On the importance of convexity

An important parameter driving the quality of concentration of P n -P V around its expectation is the so-called Bernstein's parameter (cf. Definition 2.6 in [START_REF] Bartlett | Empirical minimization[END_REF]). We are studying this parameter in our context without introducing its general definition. For every matrix A ∈ M m,T , we consider the random variable f A := X, A and the following subset of L 2 (P):

C r := {f A : A ∈ B r }, (21) 
where B r = B r,r 1 ,r 2 ,r 3 is given by [START_REF] Carl | Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces[END_REF]. Because of the convexity of the norms • S 1 ,

• S 2 and • 1 , the set C r is convex, for any r, r 1 , r 2 , r 3 ≥ 0. Now, consider the following minimum

f * r ∈ argmin f ∈Cr E(Y -f ) 2 (22) 
and

C r := min b X,∞ r r 1 , b X,2 r r 2 , b X,ℓ∞ r r 3 , (23) 
with the convention 1/0 = +∞.

Lemma 5 (Bernstein's parameter). Let assumptions 1 and 2 hold. There is a unique f * r satisfying (22) and a unique

A * r ∈ B r such that f * r = f A * r almost surely. Moreover, any A ∈ B r satisfies EL r,A ≥ E X, A -A * r 2 ,
and the class L r satisfies the following Bernstein's condition: for every

A ∈ B r EL 2 r,A ≤ 4(b 2 Y,2 + (b Y,∞ + C r ) 2 )EL r,A .
Proof. By convexity of C r and classical analysis in Hilbert spaces, we have Y -f * r , ff * r L 2 ≤ 0 for any f ∈ C r . Thus, we have, for any

f ∈ C r Y -f 2 L 2 -Y -f * r 2 L 2 = 2 f * r -f, Y -f * r + f -f * r 2 L 2 ≥ f -f * r 2 L 2 . ( 24 
)
In particular, the minimum is unique. Moreover, C r is a closed set and since Σ is invertible under Assumption 1, there is a unique

A * r ∈ B r such that f * r = f A * r .
By the trace duality formula and Assumption 1, we have, for any A ∈ B r,r 1 ,r 2 ,r 3 :

|f A | ≤ X S∞ A S 1 ≤ b X,∞ r r 1 , |f A | ≤ X S 2 A S 2 ≤ b X,2 r r 2 , and |f A | ≤ X ∞ A 1 ≤ b X,ℓ∞ r r 3
almost surely, so that |f A | ≤ C r for any A ∈ B r a.s.. Moreover, for any A ∈ B r :

L r,A = 2(Y -E(Y |X)) X, A * r -A + (2E(Y |X) -A + A * r , X ) X, A * r -A . ( 25 
)
Thus, using Assumption 2, we obtain

EL 2 r,A = E 4(Y -E(Y |X)) 2 X, A -A * r 2 + (2E(Y |X) -X, A + A * r ) 2 X, A -A * r 2 ≤ 4E X, A -A * r 2 E (Y -E(Y |X)) 2 |X + 4(b Y,∞ + C r ) 2 E X, A -A * r 2 ≤ 4(b 2 Y,2 + (b Y ∞ + C r ) 2 )E X, A -A * r 2 ,
which concludes the proof using [START_REF] Koltchinskii | Nuclear norm penalization and optimal rates for noisy low rank matrix completion[END_REF].

The isomorphic property of the excess loss functions class

The isomorphic property of a class of functions has been introduced in [START_REF] Bartlett | Empirical minimization[END_REF] and is a consequence of Talagrand's concentration inequality (cf. [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF]) applied to a localization of the class together with the Bernstein property (given here in Lemma 5 above). We recall here the argument in our special case. Note that we use here a new version of Talagrand's inequality (see Theorem 4 in [START_REF] Law | A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF]) since the class of excess losses is not bounded but only ψ 1 (sub-exponential).

Theorem 6. There exists an absolute constant c > 0 such that the following holds.

Let Assumptions 1 and 2 hold. Let r > 0 and λ(r) > 0 be such that

E P n -P V r,λ(r) ≤ λ(r) 8 .
Then, with probability larger than 1 -4e -x : for all A ∈ B r

1 2 P n L r,A -ρ n (r, x) ≤ P L r,A ≤ 2P n L r,A + ρ n (r, x), where ρ n (r, x) := c λ(r) + b Y,ψ 1 + b Y,∞ + b Y,2 + C r 2 x log n n ,
and C r has been introduced in (23).

Proof. We follow the line of the proof of Theorem 2.2 in [START_REF] Mendelson | Regularization in kernel learning[END_REF]. Let λ > 0 and x > 0. Thanks to Theorem 4 from [START_REF] Law | A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF], with probability larger than 1 -4 exp(-x),

P -P n V r,λ ≤ 2E P -P n V r,λ + c 1 σ(V r,λ ) x n + c 2 b n (V r,λ ) x n (26) 
where, by using the Bernstein's properties of L r (cf. Lemma 5)

σ 2 (V r,λ ) := sup g∈V r,λ Var(g) ≤ sup E(αL r,A ) 2 : 0 ≤ α ≤ 1, A ∈ B r , E(αL r,A ) ≤ λ ≤ sup 4(b 2 Y,2 + (b Y,∞ + C r ) 2 )E(αL r,A ) : 0 ≤ α ≤ 1, A ∈ B r , E(αL r,A ) ≤ λ ≤ 4(b 2 Y,2 + (b Y,∞ + C r ) 2 )λ, ( 27 
)
and using Pisier's inequality (cf. [START_REF] Van Der | Weak convergence and empirical processes[END_REF]):

b n (V r,λ ) := max 1≤i≤n sup g∈V r,λ g(X i , Y i ) ψ 1 ≤ log n sup g∈V r,λ g(X, Y ) ψ 1 = log n sup α(2Y -X, A + A * r ) X, A * r -A : 0 ≤ α ≤ 1, A ∈ B r ψ 1 ≤ 4(log n)(b Y,ψ 1 + b Y,∞ + C r )C r , (28) 
where we used decomposition [START_REF] Ledoux | Probability in Banach spaces[END_REF] and Assumption 2 together with the uniform bound | A, X | ≤ C r holding for all A ∈ B r . Moreover, for any λ > 0, V r,λ is star-shaped so G : λ → E P -P n V r,λ /λ is non-increasing. Since G(λ(r)) ≤ 1/8 and ρ n (r, x) ≥ λ(r), we have

E P -P n V r,ρn(r,x) ≤ ρ n (r, x)/8,
which yields, in Equation ( 26) together with the variance control of Equation ( 27) and the control of Equation [START_REF] Shahar Mendelson | Uniform uncertainty principle for Bernoulli and subgaussian ensembles[END_REF], that there exists an event Ω 0 of probability measure greater than 1 -4 exp(-x) such that, on Ω 0 ,

P -P n V r,ρn(r,x) ≤ ρ n (r, x) 4 + c 1 (b Y,∞ + b Y,2 + C r ) ρ n (r, x)x n + c 2 (b Y,ψ 1 + b Y,∞ + C r )C r x log n n ≤ ρ n (r, x) 2 ( 29 
)
in view of the definition of ρ n (r, x). In particular, on Ω 0 , for every A ∈ B r such that P L r,A ≤ ρ n (r, x), we have |P L r,A -P n L r,A | ≤ ρ n (r, x)/2. Now, take A ∈ B r such that P L r,A = β > ρ n (r, x) and set g = ρ n (r, x)L r,A /β. Since g ∈ V r,ρn(r,x) , Equation ( 29) yields, on Ω 0 , |P g -P n g| ≤ ρ n (r, x)/2 and so (1/2)P n L r,A ≤ P L r,A ≤ (3/2)P n L r,A which concludes the proof.

A function r → λ(r) such that E P n -P V r,λ(r) ≤ λ(r)/8 is called an isomorphic function and is directly connected to the choice of the penalization used in the procedure which was introduced in Section 2. The computation of this function is related to the complexity of Schatten balls, computed in the next section.

Complexity of Schatten balls

The generic chaining technique (see [START_REF] Talagrand | The generic chaining[END_REF]) is a powerful technique for the control of the supremum of empirical processes. For a subgaussian process, such a control is achieved using the γ 2 functional recalled in the next definition.

Definition 7 (Definition 1.2.5, [START_REF] Talagrand | The generic chaining[END_REF]). Let (F, d) be a metric space. We say that (F j ) j≥0 is an admissible sequence of partitions of F if |F 0 | = 1 and |F j | ≤ 2 2 j for all j ≥ 1. The γ 2 functional is defined by

γ 2 (F, d) = inf (F j ) j sup f ∈F j≥0 2 j/2 d(f, F j ),
where the infimum is taken over all admissible sequence (F j ) j≥1 of F , and where d(f, F j ) = inf g∈F j d(f, g).

A classical upper bound on the γ 2 functional is the Dudley's entropy integral:

γ 2 (F, d) ≤ c 0 ∞ 0 log N (F, d, ǫ)dǫ, (30) 
where N (B, • , ε) is the minimal number of balls with respect to the metric d of radius ǫ needed to cover B. There is in general a logarithmic loss between the γ 2 function and the Dudley entropy integrals. This gap is illustrated in Theorem 8 below. Let (E, • ) be a Banach space. We denote by B(E) its unit ball. We say that (E, • ) is 2-convex if there exists some ρ > 0 such that for all x, y ∈ B(E), we have

x + y ≤ 2 -2ρ x -y 2 .
In the case of 2-convex bodies, the following theorem gives an upper bound on the γ 2 functional that can improve the one given by Dudley's entropy integral.

Theorem 8 (Theorem 3.1.3, [START_REF] Talagrand | The generic chaining[END_REF]). For any ρ > 0, there exists c(ρ) > 0 such that if (E, • ) is a 2-convex Banach space and • E is another norm on E, then

γ 2 (B(E), • E ) ≤ c(ρ) ∞ 0 ǫ log N (B(E), • E , ǫ)dǫ 1/2
.

The generic chaining technique provides the following upper bound on Gaussian processes.

Theorem 9 (Theorem 1.2.6, [START_REF] Talagrand | The generic chaining[END_REF]). There is an absolute constant c > 0 such that the following holds. If (Z f ) f ∈F is a subgaussian process for some metric d (i.e. Z f -Z g ψ 2 ≤ c 0 d(f, g) for all f, g ∈ F ) and if f 0 ∈ F , then one has

E sup f ∈F |Z f -Z f 0 | ≤ cγ 2 (F, d).
The pseudo-metric used to measure the complexity of the excess loss classes is empirical, and defined for any A ∈ M m,T by

A ∞,n := max 1≤i≤n | X i , A |. (31) 
This pseudo-metric comes out of the so-called L ∞,n -method of M. Rudelson introduced in [START_REF] Rudelson | Random vectors in the isotropic position[END_REF] and first used in learning theory in [START_REF] Mendelson | Regularization in kernel learning[END_REF]. We denote by B(S p ) the unit ball of the Banach space S p of matrices in M m,T endowed with the Schatten norm • Sp . We denote also by B 1 the unit ball of M m,T endowed with the ℓ 1 -norm • 1 . In the following, we compute the complexity of the balls B(S 1 ), B(S 2 ) and B 1 with respect to the empirical pseudo-metric • ∞,n . Proposition 1. There exists an absolute constant c > 0 such that the following holds. Assume that X i S 2 , X i ∞ ≤ 1 for all i = 1, . . . , n. Then, we have

γ 2 (rB(S 1 ), • ∞,n ) ≤ γ 2 (rB(S 2 ), • ∞,n ) ≤ cr log n and γ 2 (rB 1 , • ∞,n ) ≤ cr(log n) 3/2 log(mT ).
Moreover, if we assume that X 1 , . . . , X n have been obtained in the matrix completion model then

γ 2 (rB 1 , • ∞,n ) ≤ cr(log n) 3/2 .
Proof. The first inequality is obvious since B(S 1 ) ⊂ B(S 2 ). By using Dual Sudakov's inequality (cf. Theorem 1, [START_REF] Pajor | Remarques sur les nombres d'entropie d'un opérateur et de son transposé[END_REF]), we have for all ǫ > 0,

log N (B(S 2 ), • ∞,n , ǫ) ≤ c 0 E G ∞,n ǫ 2 ,
where G is a m × T matrix with i.i.d. standard Gaussian random variables for entries. A Gaussian maximal inequality and the fact that

X i S 2 ≤ 1 for all i = 1, . . . , n provides E G ∞,n = E max i=1,...,n | G, X i | ≤ c 1 √ log n, since G, X i is a Gaussian variable with variance X i S 2 ≤ 1, hence log N (B(S 2 ), • ∞,n , ǫ) ≤ c 2 log n ǫ 2 .
Denote by B ∞,n the unit ball of (M m,T , • ∞,n ) in V n = span(X 1 , . . . , X n ), the linear subspace of M m,T spanned by X 1 , . . . , X n . The volumetric argument provides

log N (B(S 2 ), • ∞,n , ǫ) ≤ log N (B(S 2 ), • ∞,n , η) + log N (ηB ∞,n , ǫB ∞,n ) ≤ c 2 log n η 2 + n log 3η ǫ
for any η ≥ ǫ > 0. Thus, for η n = log n/n, we have, for all 0

< ǫ ≤ η n log N (B(S 2 ), • ∞,n , ǫ) ≤ c 3 n log 3η n ǫ .
Since B(S 2 ) is the unit ball of a Hilbert space, it is 2-convex. We can thus apply Theorem 8 to obtain the following upper bound

γ 2 (rB(S 2 ), • ∞,n ) ≤ c 4 r log n.
Now, we prove an upper bound on the complexity of B 1 with respect to • ∞,n . Recall that vec : M m,T → R mT concatenates the columns of a matrix into a single vector of size mT . Obviously, vec is an isometry between (M m,T , • S 2 ) and (R mT , | • | 2 ), since A, B = vec(A), vec(B) . Using this mapping, we see that, for any ǫ > 0,

N (B 1 , • ∞,n , ǫ) = N (b mT 1 , | • | ∞,n , ǫ)
where b mT 1 is the unit ball of ℓ mT 1 and | • | ∞,n is the pseudo norm on R mT defined for any x ∈ R mT by |x| ∞,n = max 1≤i≤n | y i , x | where y i = vec(X i ) for i = 1, . . . , n. Note that y 1 , . . . , y n ∈ b mT 2 , where b mT 2 is the unit ball of ℓ mT 2 . We use the Carl-Maurey's empirical method (or "probabilistic method") to compute the covering number N (b mT 1 , | • | ∞,n , ǫ) for "large scales" of ǫ and the volumetric argument for "small scales". Let us begin with the Carl-Maurey's argument. Let x ∈ b mT 1 and Z be a random variable with values in {±e 1 , . . . , ±e mT , 0} -where (e 1 , . . . , e mT ) is the canonical basis of R mT -defined by P[Z = 0] = 1 -|x| 1 and for all i = 1, . . . , mT ,

P[Z = sign(x i )e i ] = |x i |.
Note that EZ = x. Let s ∈ N -{0} to be defined later and take s i.i.d. copies of Z denoted by Z 1 , . . . , Z s . By the Giné-Zinn symmetrization argument and the fact that Rademacher processes are upper bounded by Gaussian processes, we have

E 1 s s i=1 Z i -EZ ∞,n ≤ c 0 E 1 s s i=1 g i Z i ∞,n ≤ c 1 log n s ( 32 
)
where the last inequality follows by a Gaussian maximal inequality and the fact that |y i | 2 ≤ 1. Take s ∈ N to be the smallest integer such that ǫ ≥ c 1 (log n)/s. Then, the set 1 s s i=1

z i : z 1 , . . . , z s ∈ {±e 1 , . . . , ±e mT , 0} (33) 
is an ǫ-net of b mT 1 with respect to | • | ∞,n . Indeed, thanks to [START_REF] Pajor | Remarques sur les nombres d'entropie d'un opérateur et de son transposé[END_REF] there exists ω ∈ Ω such that |s -1 s i=1 Z i (ω) -x| ∞,n ≤ ǫ. This implies that there exists an element in the set [START_REF] Recht | A simpler approach to matrix completion[END_REF] which is ǫ-close to x. Since the cardinality of the set introduced in (33) is, according to [START_REF] Carl | Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces[END_REF] 

:= (log n)(log mT )/n 1/2 that log N (b mT 1 , | • | ∞,n , ǫ) ≤ s log e(2mT + s -1) s ≤ c 2 (log n) log(mT ) ǫ 2 ,
and a volumetric argument gives

log N (b mT 1 , | • | ∞,n , ǫ) ≤ c 3 n log 3η n ǫ
for any 0 < ǫ ≤ η n . Now we use the upper bound [START_REF] Negahban | Estimation of (near) low-rank matrices with noise and high-dimensional scaling[END_REF] and compute the Dudley's entropy integral to obtain

γ 2 (rB 1 , • ∞,n ) ≤ c 4 r(log n) 3/2 log(mT ).
where

φ n (r, λ) := c 2 U n (K r,λ ) λ n + U n (K r,λ ) R(A * r ) n + U n (K r,λ ) 2 n , for K r,λ = 2B r ∩ √ λD.
Proof. Recall that L r,λ is given by [START_REF] Giné | Some limit theorems for empirical processes[END_REF]. Using the Giné-Zinn symmetrization [START_REF] Giné | Some limit theorems for empirical processes[END_REF] and the inclusion of ( 34), one has, for any r > 0 and λ > 0,

E P -P n L r,λ ≤ EE ǫ 2 n sup A∈A * r +K r,λ n i=1 ǫ i L r,A (X i , Y i ) ,
where ǫ 1 , . . . , ǫ n are n i.i.d Rademacher variables. Introduce the Rademacher process Z A := n i=1 ǫ i L r,A (X i , Y i ), and note that for any A, A ′ ∈ A * r + K r,λ :

E ǫ |Z A -Z A ′ | 2 = n i=1 X i , A -A ′ 2 (2Y i -X i , A + A ′ ) 2 = 4 n i=1 X i , A -A ′ 2 (Y i -X i , A * r -X i , A + A ′ 2 -A * r ) 2 ≤ 8 A -A ′ 2 n,∞ n i=1 (Y i -X i , A * r ) 2 + sup A∈K r,λ n i=1 X i , A 2 ,
where we recall that A n,∞ = max i=1,...,n | X i , A |. So, using the generic chaining mechanism (cf. Theorem ( 9)), we obtain

E P -P n L r,λ ≤ c n E γ 2 (K r,λ , • n,∞ ) n i=1 (Y i -X i , A * r ) 2 + sup A∈K r,λ n i=1 X i , A 2 1/2 ≤ c √ n (Eγ 2 (K r,λ , • n,∞ ) 2 ) 1/2 R(A * r ) + E sup A∈K r,λ 1 n n i=1 X i , A 2 1/2 .
Using [START_REF] Rohde | Estimation of high-dimensional low rank matrices[END_REF] and Theorem 1.2 from [START_REF] Olivier Guédon | Subspaces and orthogonal decompositions generated by bounded orthogonal systems[END_REF], we obtain:

E sup A∈K r,λ 1 n n i=1 X i , A 2 ≤ λ + c max λ n U n (K r,λ ), U n (K r,λ ) n 2 ,
and so, we arrive at

E P -P n L r,λ ≤ cφ n (r, λ),
where

φ n (r, λ) := c U n (K r,λ ) √ n λ + R(A * r ) + √ λU n (K r,λ ) √ n + U n (K r,λ ) 2 n 1/2 ≤ c U n (K r,λ ) λ n + U n (K r,λ ) R(A * r ) n + U n (K r,λ ) 2 n .
We conclude with the peeling argument provided in Lemma 4.6 of [START_REF] Mendelson | Regularization in kernel learning[END_REF]:

E P -P n V r,λ ≤ c i≥0 2 -i E P -P n L r,2 i+1 λ .
Now, we can derive the following corollary. It gives several upper bounds for E P -P n V r,λ , depending on what B r is (i.e. which penalty function is used).

Corollary 1 ( • S 1 penalization). Let Assumptions 1 and 2 hold and assume that B r = B r,1,0,0 for r > 0, see [START_REF] Carl | Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces[END_REF]. Then, we have

E P -P n V r,λ 1 (r) ≤ λ 1 (r) 8 
for any r > 0, where

λ 1 (r) = c b 2 X,2 r 2 (log n) 2 n + b X,2 b Y r log n √ n .
Proof. If B r = rB(S 1 ), we have using the embedding K r,λ ⊂ 2B r and Proposition 1 that U n (K r,λ ) ≤ cb X,2 r log n, so

φ n (r, λ) ≤ c b X,2 r log n λ n + b X,2 r log n R(A * r ) n + b 2 2,X r 2 (log n) 2 n =: cφ n,1 (r, x).
Hence, using Proposition 3 we obtain

E P -P n V r,λ ≤ c i≥0 2 -i φ n,1 (r, 2 i+1 λ) ≤ cφ n,1 (r, λ),
where we used the fact that the sum is comparable to its first term because of the exponential decay of the summands. Thus, one has E P -P n V r,λ ≤ λ/8 when λ ≥ cφ n,1 (r, λ). In particular, since

R(A * r ) ≤ EY 2 ≤ b 2 Y (see Assumption 2), for values of λ such that λ ≥ c b 2 X,2 r 2 (log n) 2 n + b X,2 b Y r log n √ n ,
we have E P -P n V r,λ ≤ λ/8, which proves the Corollary.

Corollary 2 ( • S 1 + • 1 penalization). Let Assumptions 1 and 2 hold and assume that B r = B r,r 1 ,0,r 3 for r, r 1 , r 3 > 0, see [START_REF] Carl | Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces[END_REF]. Then, we have E P -P n V r,λ r 1 ,0,r 3 (r) ≤ λ r 1 ,0,r 3 (r) 8

for any r > 0, where

λ r 1 ,0,r 3 (r) = c 1 r 2 1 ∧ log(mT ) r 2 3 b 2 X,2 r 2 (log n) 2 n + 1 r 1 ∧ log(mT ) r 3 b X,2 b Y r(log n) 3/2 √ n ) .
Proof. The proof follows the same steps as the proof of Corollary 1.

Corollary 3 ( • S 1 + • 2 S 2 penalization). Let Assumptions 1 and 2 hold and assume that B r = B r,r 1 ,r 2 ,0 for r, r 1 , r 2 > 0, see [START_REF] Carl | Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces[END_REF]. Then, we have

E P -P n V r,λr 1 ,r 2 (r) ≤ λ r 1 ,r 2 (r) 8 
for any r > 0, where

λ r 1 ,r 2 (r) = c b 2 X,2 r(log n) 2 r 2 n + b X,2 b Y r log n r 1 √ n .
Proof. Use the inclusion

B r ⊂ r r 2 B(S 2 ) ∩ r r 1 B(S 1 )
to obtain using Proposition 1 that

φ n (r, λ) ≤ c b X,2 r r 2 log n λ n + b X,2 r r 1 log n R(A * r ) n + b 2 X,2 r(log n) 2 r 2 n .
The remaining of the proof is the same as the one of Corollary 1 so it is omitted.

Corollary 4 ( • S 1 + • 2 S 2 + • 1 penalization).
Let Assumptions 1 and 2 hold and assume that B r = B r,r 1 ,r 2 ,r 3 for r, r 1 , r 2 , r 3 > 0, see [START_REF] Carl | Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces[END_REF]. Then, we have

E P -P n V r,λr 1 ,r 2 ,r 3 (r) ≤ λ r 1 ,r 2 ,r 3 (r) 8 
for any r > 0, where

λ r 1 ,r 2 ,r 3 (r) = c b 2 X,2 r(log n) 2 r 2 n + 1 r 1 ∧ log(mT ) r 3 b X,2 b Y r(log n) 3/2 √ n ) .
Proof. The proof follows the same steps as the proof of Corollary 3.

The main difference between λ 1 (r), λ r,r 1 ,0,r 3 (r) and λ r 1 ,r 2 (r), λ r 1 ,r 2 ,r 3 (r) is that λ r 1 ,r 2 (r) and λ r 1 ,r 2 ,r 3 (r) are linear in r while λ 1 (r) and λ r 1 ,0,r 3 (r) are quadratic. The analysis of the isomorphic functions with quadratic terms will require an extra argument in the proof, in order to remove them from the penality (see below).

Remark 2 (Localization does not work here). Note that, in Corollaries 1 to 2, we don't use the fact that K r,λ ⊂ √ λD, that is, we don't use the localization argument which usually allows to derive fast rates in statistical learning theory. Indeed, for the matrix completion problem, one has E X, A -A

* r 2 = 1 mT A -A * r 2 S 2 , so when E X, A -A * r 2 ≤ λ, we only know that A ∈ A * r + √ mT λB(S 2
), leading to a term of order mT /n (up to logarithms) in the isomorphic function. This term is way too large, since one has typically in matrix completion problems that mT ≫ n.

of F with isomorphic function ρ n . Let u > 0. With probability at least 1 -exp(-u) any penalized empirical risk minimization procedure

f ∈ argmin f ∈F R n (f ) + c 1 ρ n (2(r(f ) + 1), θ(r(f ) + 1, u)) , (38) 
where r(f

) = inf(r ≥ 0 : f ∈ F r ) and R n (f ) = (1/n) n i=1 Q(Z i , f ) is the empirical risk of f , satisfies R( f ) ≤ inf f ∈F R(f ) + c 2 ρ n (2(r(f ) + 1), θ(r(f ) + 1, u))
where for all r ≥ 1 and x > 0,

θ(r, x) = x + ln(π 2 /6) + 2 ln 1 + R(f * 0 ) ρ n (0, x + log(π 2 /6))
+ log r .

End of the proof of Theorems 1 and 2

First, we need to prove that the family of models {B r : r ≥ 0} is an ordered, parametrized hierarchy of M m,T . First, fourth and fifth points of Definition 10 are easy to check. The second point follows from Lemma 5. For the third point, we consider 0 ≤ q < r < s, β := q/r and α := r/s. Since αA * s ∈ B r , we have 0

≤ R(A * r )-R(A * s ) ≤ R(αA * s )-R(A * s ) ≤ (α 2 -1) X, A * s 2 L 2 +2(1-α) Y 2 X, A * s L 2 .
As s → r, the right hand side goes to zero (because X, A * s is uniformly bounded in L 2 for s ∈ [r, r + 1]). So r → R(A * r ) is upper semi-continuous on (0, ∞). The continuity at r = 0 follows the same line. In the other direction,

0 ≤ R(A * q )-R(A * r ) ≤ R(βA * r )-R(A * r ) ≤ (β 2 -1) X, A * r 2 L 2 +2(1-β) Y 2 X, A * r L 2
and the right hand side tends to zero for the same reason as before. Now, we turn to the sixth point of Definition 10. That is the computation of the isomorphic function ρ n associated with the family {B r : r ≥ 0}. Using Theorem 6 we obtain that, with a probability larger than 1 -4e -x :

1 2 P n L r,A -ρ n (r, x) ≤ P L r,A ≤ 2P n L r,A + ρ n (r, x) ∀A ∈ B r , where ρ n (r, x) := c λ(r) + b ′ Y + C r 2 x log n n , where b ′ Y := b Y,ψ 1 + b Y,∞ + b Y,2
, where C r and λ(r) are defined depending on the considered penalization (see [START_REF] Keshavan | Matrix completion from a few entries[END_REF] and Corollaries 1 to 4). Now, we apply Theorem 11 to the hierarchy F r = B r for r ≥ 0. First of all, note that, for every x > 0 and r ≥ 1 θ(r, x) = x + ln(π 2 /6) + 2 ln 1 + EY 2 ρ n (0, x + log(π 2 /6))

+ log r ≤ x + c(log n + log log r), so ρ n (2(r + 1), θ(r + 1, x)) ≤ ρ ′ n (r, x), with:

ρ ′ n (r, x) := c λ(2(r + 1)) + (b ′ Y + C r ) 2 (x + log n + log log r) log n n .
From now on, the analysis depends on the penalization, so we consider them separately.

The • S 1 case

Recall that in this case [START_REF] Keshavan | Matrix completion from a few entries[END_REF]. An easy computation gives ρ ′ n (r, x) ≤ ρn,1 (r, x) where ρn,1 (r, x)

λ(r) = c b 2 X,2 r 2 (log n) 2 n + b X,2 b Y r log n √ n and C r = b X,∞ r, see ( 
:= c X,Y (r + 1) 2 (x + log n ∨ log log r) log n n ∨ p n,1 (r, x), where c X,Y := c(1 + b 2 X,2 + b Y b X + b 2 Y,ψ 1 + b 2 Y,∞ + b 2 Y,2 + b 2 X,∞
) and where

p n,1 (r, x) := c X,Y (r + 1)(x + log n) log n √ n .
Note that p n,1 (r, x) is the penalty we want (the one considered in Theorem 1). Let us introduce for short r(A) = A S 1 and the following functionals: Λ 1 (A) = R(A) + pen 1 (A), Λ n,1 (A) = R n (A) + pen 1 (A), Λ1 (A) = R(A) + p en 1 (A), Λn,1 (A) = R n (A) + p en 1 (A),

where pen 1 (A) := p n,1 (r(A), x) and where p en 1 (A) := ρn,1 (r(A), x) is a penalization that satisfies that, if à ∈ argmin A Λn,1 (A), then we have R( Ã) ≤ inf A Λ1 (A) with a probability larger than 1 -4e -x . Recall that we want to prove that if  ∈ argmin A Λ n,1 (A), then we have R( Â) ≤ inf A Λ 1 (A) with a probability larger than 1 -5e -x . This will follow if we prove inf

A Λ1 (A) ≤ inf A Λ 1 (A) and (39) 
argmin

A Λ n,1 (A) ⊂ argmin A Λn,1 (A), (40) 
so we focus on the proof of these two facts. First of all, let us prove that if ρn,1 (r, x) > p n,1 (r, x) then both r and p n,1 (r, x) cannot be small. If log n < log log r we have r > e n and p n,1 (x, r) > c X,Y e n (log n) 2 / √ n. If log n ≥ log log r and ρn,1 (r, x) > p n,1 (r, x), then (r + 1) 2 (x + log n) log n n > (r + 1)(x + log n) log n √ n , so r > √ n -1 and p n,1 (r, x) > c X,Y (log n) 2 . Hence, we proved that if ρn,1 (r, x) > p n,1 (r, x), then r > 1 and p n,1 (r, x) > c X,Y (log n) 2 . Note also that p n,1 (r, x) > 2(x + log n) log n/ √ n since r > 1.

Let us turn to the proof of [START_REF] Srebro | Maximum-margin matrix factorization[END_REF]. Let A ′ be such that Λ1 (A ′ ) > Λ 1 (A ′ ). Then p en 1 (A ′ ) > pen 1 (A ′ ), ie ρn,1 (r(A ′ ), x) > p n,1 (r(A ′ ), x), so that r(A ′ ) > 1, p n,1 (r(A ′ ), x) > c X,Y (log n) 2 and p n,1 (r(A ′ ), x) > 2c X,Y (x + log n) log n/ √ n. On the other hand, we have inf A Λ 1 (A) ≤ b 2 Y + pen 1 (0) = b 2 Y + p n,1 (0, x). But p n,1 (r(A ′ ), x) > c X,Y (log n) 2 > 2b 2

Y and p n,1 (r(A ′ ), x) > 2p n,1 (0, x) since r(A ′ ) > 1, so that b 2 Y + p n,1 (0, x) < p n,1 (r(A ′ ), x) and then inf A Λ 1 (A) < p n (r(A ′ ), x) ≤ Λ 1 (A ′ ).

Hence, we proved that if A ′ is such that Λ 1 (A ′ ) ≤ inf A Λ 1 (A), we have Λ1 (A ′ ) ≤ Λ 1 (A ′ ), so inf A Λ1 (A) ≤ Λ1 (A ′ ) ≤ Λ 1 (A ′ ) ≤ inf A Λ 1 (A), which proves [START_REF] Srebro | Maximum-margin matrix factorization[END_REF].

The proof of ( 40) is almost the same. Let A ′ be such that Λn,1 (A ′ ) > Λ n,1 (A ′ ), so as before we have r(A ′ ) > 1, p n,1 (r(A ′ ), x) > c X,Y (log n) 2 and p n,1 (r(A ′ ), x) > 2c X,Y (x+log n) log n/ √ n. This time we have inf A Λ n,1 (A) ≤ n -1 n i=1 Y 2 i +p n,1 (0, x), so we use some concentration for the sum of the Y 2 i 's. Indeed, we have, as a consequence of Theorem 4 from [START_REF] Law | A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF], that

1 n n i=1 Y 2 i ≤ EY 2 + c 1 E(Y 4 ) x n + c 2 log n Y 2 ψ 1 x n (41) 
with a probability larger than 1 -e -x . But then, it is easy to infer that for n large enough, the right hand side of ( 41) is smaller than p n,1 (r(A ′ ), x)/2, so that we have, on an event of probability larger than 1 -e -x , that inf

A Λ n,1 (A) ≤ 1 n n i=1
Y 2 i + p n,1 (0, x) < p n,1 (r(A ′ ), x) < Λ n,1 (A ′ ).

So, we proved that if Λ n,1 (A ′ ) < Λn,1 (A ′ ), then A ′ / ∈ argmin A Λ n,1 (A), or equivalently that argmin A Λ n,1 (A) ⊂ {A : Λn,1 (A) ≤ Λ n,1 (A)}. But Λ n,1 (A) ≤ Λn,1 (A) for any A (since p n,1 (r, x) ≤ ρn,1 (r, x)), so [START_REF] Srebro | Rank, trace-norm and max-norm[END_REF] follows. This concludes the proof of Theorem 1. (r + 1)(x + log n)(log n) 3/2 √ n .

Note that p n,2 (r, x) is the penalization we want (the one considered in Theorem 3). Introducing r(A) = r 1 A S 1 + r 3 A 1 , the remaining of the proof follows the lines of the pure • S 1 case, so it is omitted. ). This is almost the penalty we want, up to the log log r term, so we consider. 

3. 8 . 2 r 3 b 1 ∧ 1 ∧

 82311 The • S 1 + • 1 case Recall that in this case λ(r) X,2 b Y r(log n) 3/2 √ n ) ,and thatC r = min b X,∞ r r 1 , b X,ℓ∞ r r 3 ,see[START_REF] Keshavan | Matrix completion from a few entries[END_REF]. An easy computation gives that ρ ′ n (r, x) ≤ ρn,2 (r, x), where ρn,2 (r, x):= c X,Y 1 r log(mT ) r 3 2 (r + 1) 2 (x + log n ∨ log log r) log n n ∨ p n,2 (r, x), where c X,Y = c(1 + b 2 X,2 + b X,2 b Y + b 2 Y,ψ 1 + b 2 Y,∞ + b 2 Y,2 + b 2 X,∞ + b 2 X,ℓ∞) and p n,2 (r, x) := c X,Y 1 r log(mT ) r 3

3. 8 . 3 2 ,

 832 The • S 1 + • 2 S 2 case This is easier than what we did for the • S 1 case, since we only have a log log r term to remove from the penalization. Recall thatλ(r) = c b 2 X,2 r(log n) 2 r 2 n + b X,2 b Y r log n r so that ρ ′ n (r, x) ≤ ρn,3 (r, x) where ρn,3 (r, x) = c X,Y (r + 1) log n √ n 1 r 1 + (x + log n ∨ log log r) log n r 2 √ n , where c X,Y = c(1 + b 2 X,2 + b X,2 b Y + b 2 Y,ψ 1 + b 2 Y,∞ + b 2 Y,2

p n, 3

 3 (r, x) = c X,Y (r + 1) log n Let us introduce for short r(A) := r 1 A S 1 + r 2 A 2 S 2 = inf r ≥ 0 : A ∈ B rand the following functionals:Λ 3 (A) = R(A) + pen 3 (A), Λ n,3 (A) = R n (A) + pen 3 (A), Λ3(A) = R(A) + p en 3 (A), Λn,3 (A) = R n (A) + p en 3 (A),
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the final step is to remove these extra terms from the penalty function (cf. Section 3.8).
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For the "matrix completion case", we have

where N (b n 1 , ǫb n ∞ ) is the minimal number of balls ǫb n ∞ needed to cover b n 1 . We use the following proposition from [START_REF] Schütt | Entropy numbers of diagonal operators between symmetric Banach spaces[END_REF] to compute N (b n 1 , ǫb n ∞ ). Proposition 2 (Theorem 1, [START_REF] Schütt | Entropy numbers of diagonal operators between symmetric Banach spaces[END_REF]). For any ǫ > 0, we have

Then the result follows from [START_REF] Negahban | Estimation of (near) low-rank matrices with noise and high-dimensional scaling[END_REF] and the computation of the Dudley's entropy integral using Proposition 2.

Computation of the isomorphic function

Introduce the ellipsoid

A consequence of Equation ( 24) in Lemma 5 is the following inclusion, of importance in what follows. Indeed, since B r is convex and symmetrical, one has:

where L r,A is given by [START_REF] Fazel | Rank minimization and applications in system theory[END_REF], and where

Hence, the complexity of {A ∈ M m,T : L r,A ∈ L r,λ } (recall that L r,λ is given by ( 19)) will be smaller than the complexity of B r and √ λD. This will be of importance in the analysis below. The next result provides an upper bound on the complexity of V r,λ , where we recall that

The embedding [START_REF] Recht | Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[END_REF] allows to derive corollaries that provide the shape of the penalty functions considered in Theorems 1 to 4. Let us introduce, for some set

Proposition 3. There exists two absolute constants c 1 and c 2 such that the following holds. Let Assumptions 1 and 2 hold. For any r > 0 and λ > 0, we have

Isomorphic penalization method

We introduce the isomorphic penalization method developed by P. Bartlett, S. Mendelson and J. Neeman in the following general setup. Let (Z, σ Z , ν) be a measurable space endowed with the probability measure ν. We consider Z, Z 1 , Z 2 , . . . , Z n i.i.d. random variables having ν for common probability distribution. We are given a class F of functions on a measurable space (X , σ X ), a loss function and a risk function

For the problem we have in mind, we will use Q((X, Y ), A) = (Y -X, A ) 2 for every A ∈ M m,T . Now, we go into the core of the isomorphic penalization method. We are given a model F ⊂ F and a family {F r : r ≥ 0} of subsets of F . We consider the following definition.

Definition 10 (Definition 2.4, [START_REF] Mendelson | Regularization in kernel learning[END_REF]). Let ρ n be a non-negative function defined on R + × R * + (which may depend on the sample). We say that the family {F r : r ≥ 0} of subsets of F is an ordered, parameterized hierarchy of F with isomorphic function ρ n when the following conditions are satisfied:

2. for any r ≥ 0, there exists a unique element f * r ∈ F r such that R(f * r ) = inf(R(f ) : f ∈ F r ); we consider the excess loss function associated with the class

3. the map r -→ R(f * r ) is continuous;

4. for every r 0 ≥ 0, ∩ r≥r 0 F r = F r 0 ;

5. ∪ r≥0 F r = F ; 6. for every r ≥ 0 and u > 0, with probability at least 1 -exp(-u)

for any f ∈ F r and

In the context of learning theory, ordered, parametrized hierarchy of a set F with isomorphic function ρ n provides a very general framework for the construction of penalized empirical risk minimization procedure. The following result from [START_REF] Mendelson | Regularization in kernel learning[END_REF] proves that the isomorphic function is a "correct penalty function".

Theorem 11 (Theorem 2.5, [START_REF] Mendelson | Regularization in kernel learning[END_REF]). There exists absolute positive constants c 1 and c 2 such that the following holds. Let {F r : r ≥ 0} be an ordered, parameterized hierarchy where pen 3 (A) := p n,3 (r(A), x) and where p en 3 (A) := ρn,3 (r(A), x). We only need to prove that inf 

Obviously, if ρn,3 (r, x) > p n,3 (r, x), then r > e n , so following the arguments we used for the S 1 penalty, it is easy to prove both ( 42) and [START_REF] Alexandre | Introduction à l'estimation non-paramétrique[END_REF]. This concludes the proof of Theorem 2.

The

see [START_REF] Keshavan | Matrix completion from a few entries[END_REF]. An easy computation gives that ρ ′ n (r, x) ≤ ρn,4 (r, x), where ρn,4 (r, x) := c X,Y (r + 1)(log n) √ n , so introducing r(A) = r 1 A S 1 + r 2 A 2 S 2 + r 3 A 1 and following the lines of the proof of the S 1 + S 2 case to remove the log log r term, it is easy to conclude the proof of Theorem 4.