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On the optimality of the empirical risk minimization procedure for the Convex Aggregation problem

We study the performance of empirical risk minimization (ERM), with respect to the quadratic risk, in the context of convex aggregation, in which one wants to construct a procedure whose risk is as close as possible to the best function in the convex hull of an arbitrary finite class F . We show that ERM performed in the convex hull of F is an optimal aggregation procedure for the convex aggregation problem. We also show that if this procedure is used for the problem of model selection aggregation, in which one wants to mimic the performance of the best function in F itself, then its rate is the same as the one achieved for the convex aggregation problem, and thus is far from optimal. These results are obtained in deviation and are sharp up to logarithmic factors.

(Résumé en Français: Nous étudions les performances de la procédure de minimisation du risque empirique, par rapport au risque quadratique, pour le problème d'agrégation convexe. Dans ce problème, on souhaite construire des procédures dont le risque est aussi proche que possible du risque du meilleur élément dans l'enveloppe convexe d'une classe finie F de fonctions. Nous prouvons que la procédure obtenue par minimisation du risque empirique sur la coque convexe de F est une procédure optimale pour le problème d'aggrégation convexe. Nous prouvons aussi que si cette procédure est utilisée pour le problème d'agrégation en sélection de modèle, pour lequel on souhaite imiter le meilleur dans F , alors le résidue d'agrégation est le même que celui obtenue pour le problème d'agrégation convexe. Cette procédure est donc loin d'être optimale pour le problème d'agrégation en sélection de modèle. Ces résultats sont obtenus en déviation et sont optimaux à des facteurs logarithmiques prés.)

Introduction and main results

In this note, we study the optimality of the empirical risk minimization procedure in the aggregation framework.

Let X be a probability space and let (X, Y ) and (X 1 , Y 1 ), . . . , (X n , Y n ) be n + 1 i.i.d. random variables with values in X × R. From the statistical point of view, D = ((X 1 , Y 1 ), . . . , (X n , Y n )) is the family of given data.

The quadratic risk of a real-valued function f defined on X is given by

R(f ) = E(Y -f (X)) 2 .
If f is a function constructed using the data D, the quadratic risk of f is the random variable

R( f ) = E (Y -f (X)) 2 |D .
For the sake of simplicity, throughout this article we will restrict ourselves to functions f and random variables (X, Y ) for which |Y |, |f (X)| ≤ b almost surely, for some fixed b ≥ 1. One should note, though, that it is possible to extend the results beyond this case, to functions with well behaved tail -though at a high technical price (cf. the chaining arguments in [START_REF] Shahar Mendelson | Reconstruction and subgaussian operators in asymptotic geometric analysis[END_REF] and [START_REF] Mendelson | Empirical processes with a bounded ψ 1 diameter[END_REF]).

In the aggregation framework, one is given a finite set F of real-valued functions defined on X (usually called a dictionary) of cardinality M . There are three main types of aggregation problems:

1. In the Model Selection (MS) aggregation problem, one has to construct a procedure that produces a function whose risk is as close as possible to the risk of the best element in the given class F (cf. [START_REF] Audibert | Progressive mixture rules are deviation suboptimal[END_REF][START_REF] Audibert | Fast learning rates in statistical inference through aggregation[END_REF][START_REF] Bunea | Aggregation for Gaussian regression[END_REF][START_REF] Dalalyan | Aggregation by exponential weighting and sharp oracle inequalities[END_REF][START_REF] Emery | Lectures on probability theory and statistics[END_REF][START_REF] Juditsky | Functional aggregation for nonparametric regression[END_REF][START_REF] Lecué | Aggregation via empirical risk minimization[END_REF][START_REF] Alexandre | Optimal rate of aggregation[END_REF][START_REF] Alexandre | Optimal aggregation of classifiers in statistical learning[END_REF][START_REF] Yang | Mixing strategies for density estimation[END_REF])

2. In the Convex (C) aggregation problem (cf. [START_REF] Audibert | Aggregated estimators and empirical complexity for least square regression[END_REF][START_REF] Bousquet | Some local measures of complexity of convex hulls and generalization bounds[END_REF][START_REF] Bunea | Sequential procedures for aggregating arbitrary estimators of a conditional mean[END_REF][START_REF] Bunea | Aggregation for Gaussian regression[END_REF][START_REF] Juditsky | Functional aggregation for nonparametric regression[END_REF][START_REF] Alexandre | Optimal rate of aggregation[END_REF][START_REF] Yang | Aggregating regression procedures to improve performance[END_REF]) one wants to construct a procedure whose risk is as close as possible to the risk of the best function in the convex hull of F (later denoted by conv(F )).

3. In the linear (L) aggregation problem (cf. [START_REF] Bunea | Aggregation for Gaussian regression[END_REF][START_REF] Emery | Lectures on probability theory and statistics[END_REF][START_REF] Koltchinskii | Local Rademacher complexities and oracle inequalities in risk minimization[END_REF][START_REF] Alexandre | Optimal rate of aggregation[END_REF]), one wants to construct a procedure whose risk is as close as possible to the risk of the best function in the linear span of F (later denoted by span(F )).

The aim in the aggregation framework is to construct a procedure f for which, with high probability

R( f ) ≤ C min f ∈∆(F ) R(f ) + ψ ∆(F ) n (M ) (1.1)
with C = 1 and ∆(F ) is either F , or conv(F ) or span(F ). It is worth mentioning that it is desirable for the constant C in (1.1) to be one in the aggregation setup for at least two reasons. First, there are some obvious mathematical differences in the analysis leading to exact oracle inequalities (C = 1) and non-exact oracle inequalities (C > 1).

In particular, the geometry of the set ∆(F ) has a key role in an attempt to obtain exact oracle inequalities, whereas non-exact oracle inequalities are mainly based on complexity and concentration argument (cf. [START_REF] Lecué | General non-exact oracle inequalities in the unbounded case[END_REF]). Second, an exact oracle inequality for the prediction risk R(•) leads to an exact oracle inequality for the estimation risk; namely, with high probability

E ( f (X) -f * (X)) 2 |D ≤ min f ∈∆(F ) E (f (X) -f * (X)) 2 + ψ ∆(F ) n (M ),
where f * denotes the regression function of Y given X. Such an estimate on the regression function cannot follow from a non-exact oracle inequality, and thus, exact oracle inequalities can provide prediction and estimation results whereas non-exact oracle inequalities only lead to prediction results. One can define the optimal rates of the (MS), (C) and (L) aggregation problems, respectively denoted by ψ

(M S) n (M ), ψ (C)
n (M ) and ψ (L) n (M ) (see, for example, [START_REF] Alexandre | Optimal rate of aggregation[END_REF]). The optimal rates are the smallest prices in the minimax sense that one has to pay to solve the (MS), (C) or (L) aggregation problems in expectation, as a function of the cardinality M of the dictionary and of the sample size n. It has been proved in [START_REF] Alexandre | Optimal rate of aggregation[END_REF] (see also [START_REF] Juditsky | Functional aggregation for nonparametric regression[END_REF] and [START_REF] Yang | Aggregating regression procedures to improve performance[END_REF] for the (C) aggregation problem) that

ψ (M S) n (M ) ∼ log M n , ψ (C) n (M ) ∼    M n if M ≤ √ n 1 n log eM √ n if M > √ n and ψ (L) n (M ) ∼ M n
where we denote a ∼ b if there are absolute positive constants c and C such that cb ≤ a ≤ Cb. Note that the rates obtained in [START_REF] Alexandre | Optimal rate of aggregation[END_REF] hold in expectation and in particular, the rate ψ (C) n (M ) was achieved in the gaussian regression model with a known variance and a known marginal distribution of the design. In [START_REF] Bunea | Sequential procedures for aggregating arbitrary estimators of a conditional mean[END_REF], the authors were able to remove these assumptions at a price of an extra log n factor for 1 ≤ M ≤ √ n (results are still in expectation). We also refer the reader to [START_REF] Birgé | Model selection via testing: an alternative to (penalized) maximum likelihood estimators[END_REF][START_REF] Yang | Aggregating regression procedures to improve performance[END_REF] for non-exact oracle inequalities in the (C) aggregation context. Lower bounds in deviation follow from the arguments of [START_REF] Alexandre | Optimal rate of aggregation[END_REF] for the three aggregation problems with the same rates ψ

(M S) n (M ), ψ (C) n (M ) and ψ (L)
n (M ). In other words, there exist two absolute constants c 0 , c 1 > 0 such that for any sample cardinality n ≥ 1, any cardinality of a dictionary M ≥ 1 and any aggregation procedure fn , there exists a dictionary F of size M such that with probability larger than c 0 ,

R( fn ) ≥ min f ∈∆(F ) R(f ) + c 1 ψ ∆(F ) n (M ), (1.2) 
where the residual term ψ

∆(F ) n (M ) is ψ (M S) n (M ) (resp. ψ (C) n (M ) or ψ (L) n (M ) ) when ∆(F ) = F (resp. ∆(F ) = conv(F ) or ∆(F ) = span(F ))
. Procedures achieving these rates in deviation have been constructed for the (MS) aggregation problem ( [START_REF] Audibert | Progressive mixture rules are deviation suboptimal[END_REF] and [START_REF] Lecué | Aggregation via empirical risk minimization[END_REF]) and the (L) aggregation problem ( [START_REF] Koltchinskii | Local Rademacher complexities and oracle inequalities in risk minimization[END_REF]). So far, there was no example of a procedure that achieves the rate of aggregation ψ (C) n (M ) with high probability for the (C) aggregation problem and the aim of this note is to prove that the most natural procedure, empirical risk minimization over the convex hull of F , achieves the rate of ψ Indeed, we will show that the procedure f ERM -C minimizing the empirical risk functional

f -→ R n (f ) = 1 n n i=1 (Y i -f (X i )) 2 , (1.3) 
in conv(F ) achieves, with high probability, the rate min M n , log M n for the (C) aggregation problem (see the exact formulation in Theorem 4.3 in the Appendix). Moreover, we will show that the rate ψ (C) n (M ) can be achieved by f ERM -C for any orthogonal dictionary (formulated in Theorem B). On the other hand, it turns out that the same algorithm is far from the conjectured optimal rate ψ (M S) n (M ) for the (MS) aggregation problem (see Theorem A and [START_REF] Lecué | Aggregation via empirical risk minimization[END_REF] for the conjecture).

Our first main result is to prove a lower bound on the performance of f ERM -C (ERM in the convex hull) in the context of the (MS) aggregation problem. In [START_REF] Lecué | Aggregation via empirical risk minimization[END_REF], it was proved that this procedure is suboptimal for the problem of (MS) aggregation when the size of the dictionary is of the order of √ n. Here we complement the result by providing a lower bound for almost all values of M and n.

Theorem A There exist two absolute positive constants c 0 and c 1 for which the following holds. For any integer n and M such that log M ≤ c 0 n 1/3 , there exists a dictionary F of cardinality M such that, with probability greater than 9/12

R( f ERM -C ) ≥ min f ∈F R(f ) + c 2 ψ n (M ),
where

ψ n (M ) = M/n when M ≤ √ n and n log(eM/ √ n -1/2 when M > √ n.
Moreover, for the same class F , if M ≥ √ n, then with probability larger than 7/12,

R( f ERM -C ) ≤ min f ∈F R(f ) + c 3 ψ n (M ).
Note that the residual term ψ n (M ) of Theorem A is much larger than the optimal rate ψ (M S) n (M ) = (log M )/n for the (MS) aggregation problem. It shows that ERM in the convex hull satisfies a much stronger lower bound than the one mentioned in (1.2) that holds for any algorithm. This result is of particular importance since optimal aggregation procedures for the (MS) aggregation problem take their values in conv(F ), and it was thus conjectured that f ERM -C could be an optimal aggregation procedure for the (MS) aggregation problem (cf. [START_REF] Lecué | Aggregation via empirical risk minimization[END_REF] for more details on this problem). In [START_REF] Lecué | Aggregation via empirical risk minimization[END_REF] it was proved that this not the case for M = √ n; Theorem A shows that this is not the case for all the values of M and n in the significant range (when M is sub-exponential in n).

The proof of Theorem A requires two separate arguments (as in the proofs of the lower bounds in [START_REF] Yang | Aggregating regression procedures to improve performance[END_REF] and [START_REF] Alexandre | Optimal rate of aggregation[END_REF]). The case M ≤ √ n is easier, and follows an identical path to the one used in [START_REF] Lecué | Aggregation via empirical risk minimization[END_REF] for M = √ n. Its proof is presented for the sake of completeness, and to allow the reader a comparison with the situation in the other case, when M > √ n. In the "large M " range things are very different and we present a more intuitive description of the idea behind the construction in Section 2.

The performance of ERM in the convex hull has been studied for an infinite dictionary in [START_REF] Bousquet | Some local measures of complexity of convex hulls and generalization bounds[END_REF], in which estimates on its performance have been obtained in terms of the metric entropy of F . The resulting upper bounds were conjectured to be suboptimal in the case of a finite dictionary, since they provide an upper bound of M/n for every n and M whereas it is possible to achieve the rate (log M )/n when M ≥ √ n. Although this result is probably known to experts and relies on standard machinery (see for instance [START_REF] Koltchinskii | Local Rademacher complexities and oracle inequalities in risk minimization[END_REF][START_REF] Koltchinskii | Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems: Ecole[END_REF]), we present its proof in the Appendix.

The residual term min M n , log M n of Theorem 4.3 behaves like ψ (C) n (M ) except for values of M for which n 1/2 < M ≤ c(ǫ)n 1/2+ǫ for ǫ > 0. And, although there is a gap in this range in the general case, under the additional assumption that the dictionary is orthogonal, this gap can be removed.

Theorem B For every b > 0 there is a constant c 1 (b) and an absolute constant c 2 for which the following holds. Let n and M be integers which satisfy that log M ≤ c 1 (b)

√ n. Let F be a finite dictionary F of cardinality M and (X, Y ) such that

|Y |, sup f ∈F |f (X)| ≤ b. If F = {f 1 , . . . , f M } satisfies that Ef i (X)f j (X) = 0 for any i = j ∈ {1, . . . , M }, then f ERM -C achieves the rate ψ (C)
n (M ): for any u > 0, with probability greater than 1 -exp(-u)

R( f ERM -C ) ≤ min f ∈conv(F ) R(f ) + c 2 b 2 max ψ (C) n (M ), u n .
Removing the gap in the general case is likely to be a much harder problem, although we believe that the orthogonal case should be the "worst" one. Finally, a word about notation. Throughout, we denote absolute constants or constants that depend on other parameters by c, C, c 1 , c 2 , etc., (and, of course, we will specify when a constant is absolute and when it depends on other parameters). The values of constants may change from line to line. The notation x ∼ y (resp.

x y) means that there exist absolute constants 0 < c < C such that cy ≤ x ≤ Cy (resp. x ≤ Cy). If b > 0 is a parameter then x b y means that x ≤ C(b)y for some constant C(b) depending only on b. We denote by ℓ M p the space R M endowed with the ℓ p norm. The unit ball there is denoted by B M p . We also denote the unit Euclidean sphere in R M by S M -1 .

If F is a class of functions, let f * be a minimizer in F of the true risk; in our case, 2 , and let L F = {L f : f ∈ F } be the excess loss class associated with F , the target Y and the quadratic risk. The aim of this section is to give some of the ideas needed in the proof of Theorem A in the case M ≥ √ n. It is also presented to explain why the seemingly unlikely fact that the rate 1

f * is the minimizer of E(f (X) -Y ) 2 . For every f ∈ F set L f = (Y -f (X)) 2 -(Y - f * (X))
n log eM/ √ n (2.1)
actually improves as the size of the dictionary M increases in our construction is true.

The example used for this result is a class

F M = {0, ±φ 1 , . . . , ±φ M } where (φ i ) M i=1
is a bounded orthonormal family of L 2 (P X ) and Y = φ M +1 (X) is orthogonal to this family. We also assume that Φ

(X) = (φ 1 (X), . . . , φ M (X)) is isotropic, that is, for every λ ∈ R n , E Φ(X), λ 2 = λ 2 2 . An element in conv(F M ) is of the form f λ = Φ, λ for some λ ∈ B M 1 , its excess loss is L f λ = Φ, λ 2 -2 Φ, λ φ M +1
and the process one has to minimize is indexed by B M 1 and given by

P n L f λ = 1 n n i=1 Φ(X i ), λ 2 - 2 n n i=1 Φ(X i ), λ φ M +1 (X i ). (2.
2) It follows from [START_REF] Shahar Mendelson | Reconstruction and subgaussian operators in asymptotic geometric analysis[END_REF] that the oscillations of the quadratic term

λ ∈ B M 1 → |(P n - P )( Φ, λ
2 )| are of lower order, and that the empirical process (2.2) behaves like

λ ∈ B M 1 → λ 2 2 -2n -1/2 V, λ where V = n -1/2 n i=1 φ M +1 Φ(X i )
, while a gaussian approximation shows that V essentially behaves like a standard gaussian vector G in R M . Hence, the excess risk P L b f = λ 2 2 of the empirical risk minimization procedure

f = f b λ will be located around arg min 0≤r≤1 min λ∈B M 1 ∩ √ rS M -1 r -2 G, λ √ n = arg min 0≤r≤1 r -2n -1/2 sup λ∈B M 1 ∩ √ rS M -1 G, λ .
Observe that for every radius 0

< r ≤ 1, sup λ∈B M 1 ∩ √ rS M -1 •, λ
, is an interpolation norm, which will be denoted by

• A • r .
The problem arises because in the range 1/M ≤ r ≤ 1 (which is the range we are interested in), a proportional change in the radius r only results in a logarithmic change in the value of E G A • r , which is why one has to obtain a sharp estimate on E G A • r for every r. It turns out that a rather accurate estimate on the complexity of

B M 1 ∩ √ rS M -1
comes from vectors of "short" support. Namely, for every I ⊂ {1, ..., M }, let S I be the set of vectors in S M -1 supported in I. Set

C k = |I|=k 1 √ k S I ⊂ B M 1 ∩ 1 √ k S M -1 . If one replaces B M 1 ∩ 1 √ k S M -1 by C k ,
it is much easier to analyze ERM over that set. Indeed, it is straightforward to verify that ERM is likely to choose a vector in C k , where k minimizes the functional

k → 1 √ k - 2 √ n • E sup v∈C k G, v = 1 √ k - 2 √ n E k i=1 (g 2 i ) * 1/2 , (2.3) 
where (x * i ) is a non-increasing ordering of the vector (|x i |). A sharp estimate on the gaussian quantity reveals that the gap between the "level" k and the "level" ℓ decrease with the dimension M . Thus, the minimum of (2.3)which is proportional to (2.1)-decreases as M increases.

The proof of Theorem A will be a combination of two approximation arguments -first, of the measure n -1/2 n i=1 X i by a gaussian, and second, an approximation of B M 1 by the sets C k , reducing the problem to the one described above.

One should comment that it is possible to approximate

B M 1 ∩ 1 √ k S M -1 using a completely combinatorial set ∪ |I|=k k -1 {-1, 1} I ,
and the way the complexities change between the levels k and ℓ as M increases gives a more geometric explanation to why the minimizer moves closer to 0.

Proof of the lower bound for the (MS) aggregation problem (Theorem A)

The proof of Theorem A consists of two parts. The first, simpler part, is when M ≤ √ n. This is due to the fact that if 0 < θ < 1 and ρ = θr ∼ M/n, the set

B M 1 ∩ √ rS M -1 is much "larger" than the set B M 1 ∩ √ ρB M 2 .
This results in much larger "oscillations" of the appropriate empirical process on the former set than on the latter one, leading to very negative values of the empirical excess risk functional for functions whose excess risk larger than ρ. The case M ≥ √ n is much harder because when considering the required values of r and ρ, the complexity of the two sets is very close, and comparing the two oscillations accurately involves a far more delicate analysis.

The case M ≤ √ n

We will follow the method used in [START_REF] Lecué | Aggregation via empirical risk minimization[END_REF]. Let (φ i ) i∈N be a sequence of functions defined on [0, 1] and set µ to be a probability measure on [0, 1] such that (

φ i : i ∈ N) is a sequence of independent Rademacher variables in L 2 ([0, 1], µ).
Let M ≤ √ n be fixed and put (X, Y ) to be a couple of random variables; X is distributed according to µ and Y = φ M +1 (X). Let F = {0, ±φ 1 , . . . , ±φ M } be the dictionary, and note that any function in the convex hull of F can be written as

f λ = M j=1 λ j φ j for λ ∈ B M 1 .
Since relative to conv(F ), f * = 0, the excess quadratic loss function is

L λ (X, Y ) = -2φ M +1 (X) λ, Φ(X) + λ, Φ(X) 2 where we set Φ(•) = (φ 1 (•), . . . , φ M (•)).
The following is a reformulation of Lemma 5.4 in [START_REF] Lecué | Aggregation via empirical risk minimization[END_REF].

Lemma 3.1 There exist absolute constants c 0 , c 1 and c 2 for which the following holds. Let (X i , Y i ) i=1,...,n be n independent copies of (X, Y ). Then, for every r > 0, with probability greater than 1 -8 exp(-c 0 M ), for any λ ∈ R M ,

λ 2 2 - 1 n n i=1 λ, Φ(X i ) 2 ≤ 1 2 λ 2 2 (3.1)
and

c 1 rM n ≤ sup λ∈ √ rB M 2 1 n n i=1 λ, Φ(X i ) φ M +1 (X i ) ≤ c 2 rM n . (3.2) 
Set r = βM/n for some 0 < β ≤ 1 to be named later, and observe that

B M 1 ∩ √ rS M -1 = √ rS M -1 because r ≤ 1/M . For any λ ∈ √ rS M -1 , P L λ = λ 2 2 =
r, and thus applying (3.1) and (3.2), it is evident that with probability greater than

1 -8 exp(-c 0 M ), inf λ∈B M 1 ∩ √ rS M -1 P n L λ = r - sup λ∈ √ rS M -1 (P -P n )L λ ≤ r + sup λ∈ √ rS M -1 λ 2 2 - 1 n n i=1 λ, Φ(X i ) 2 - sup λ∈ √ rS M -1 2 n n i=1 λ, Φ(X i ) φ M +1 (X i ) ≤ 3r 2 -2c 1 rM n = 3β 2 -2c 1 β M n ≤ -c 1 β M n , provided that β ≤ 2c 1 /3 2 .
On the other hand, let ρ = αM/n for some α to be chosen later. Using (3.1) and (3.2) again, it follows that with probability at least 1 -8 exp(-c 0 M ), for any

λ ∈ B M 1 ∩ √ ρB M 2 P n L λ ≤ P L λ + λ 2 2 - 1 n n i=1 λ, Φ(X i ) 2 + 2 n n i=1 λ, Φ(X i ) φ M +1 (X i ) ≤ 3ρ 2 + 2c 2 ρM n = 3α 2 + 2c 2 √ α M n .
Therefore, if 0 < α < β satisfies that 3α/2+2c 2 √ α < c 1 √ β for some 0 < β ≤ 2c 1 /3 2 then with probability greater than 1 -16 exp(-c 0 M ), the empirical risk function

λ -→ R n (f λ ) achieves smaller values on B M 1 ∩ √ rS M -1 than on B M 1 ∩ √ ρB M 2 .
Hence, with the same probability, R( f ERM -C ) ≥ ρ = αM/n.

The case M ≥ √ n

Let us reformulate the second part of Theorem A.

Theorem 3.2 There exist absolute constants c 0 , c 1 , c 2 and n 0 for which the following holds. For every integers n ≥ n 0 and M , if

√ n ≤ M ≤ exp(c 0 n 1/3
), there is a function class F M of cardinality M consisting of functions that are bounded by 1, and a couple (X, Y ) distributed according to a probability measure µ, such that with µ ⊗n -probability at least 9/12, R( f

) ≥ min f ∈F M R(f ) + c 1 n log(eM/ √ n) ,
where f is the empirical minimizer in conv(F M ). Moreover, with µ ⊗n -probability greater than 7/12, R( f

) ≤ min f ∈F M R(f ) + c 2 n log(eM/ √ n) .
The proof will require accurate information on a monotone rearrangement of almost gaussian random variables. Lemma 3.3 There exists an absolute constant C for which the following holds. Let g be a standard gaussian random variable, set H(x) = P(|g| > x) and put W (p) = H -1 (p) (the inverse function of H). Then for every 0 < p < 1,

W 2 (p) -log 2/(πp 2 ) + log(log 2/(πp 2 ) ≤ C log log 2/(πp 2 ) log(2/(πp 2 ) .
Moreover, for every 0 < ǫ < 1/2 and 0 < p < 1/(1 + ǫ),

W 2 (p) -W 2 ((1 + ǫ)p) ≤ Cǫ, W 2 (p) -W 2 ((1 -ǫ)p) ≤ Cǫ.
Proof. The proof of the first part follows from the observation that for every x > 0,

√ 2 x √ π exp(-x 2 /2) 1 - 1 x 2 ≤ P(|g| > x) ≤ √ 2 x √ π exp(-x 2 /2), (3.3) 
where c is a suitable absolute constant (see, e.g. [START_REF] Valentin | Limit theorems of probability theory, volume 4 of Oxford Studies in Probability[END_REF]), combined with a straightforward (yet tedious) computation. The second part of the claim follows from the first one, and is omitted.

The next step is a gaussian approximation of a variable Y = n -1/2 n i=1 X i , where X 1 , . . . , X n are i.i.d random variables, with mean zero, variance 1, under the additional assumption that X has well behaved tails. Definition 3.4 [START_REF] Ledoux | Probability in Banach spaces[END_REF][START_REF] Van Der | Weak convergence and empirical processes[END_REF] Let 1 ≤ α ≤ 2. We say that a random variable X belongs to L ψα if there exists a constant C such that

E exp |X| α /C α ≤ 2.
(3.4)

The infimum over all constants C for which (3.4) holds defines a norm called the ψ α norm of X, and we denote it by X ψα .

Proposition 3.5 ([22], pg. 183) For every L there exist constants c 1 and c 2 that depend only on L and for which the following holds. Let (X n ) n∈N be a sequence of i.i.d., mean zero random variables with variance 1, and

X ψ 1 ≤ L. If Y = 1 √ n n i=1 X i then for any 0 < x ≤ c 1 n 1/6 , P[Y ≥ x] = P[g ≥ x] exp EX 3 1 x 3 6 √ n 1 + c 2 x + 1 √ n and P[Y ≤ -x] = P[g ≤ -x] exp -EX 3 1 x 3 6 √ n 1 + c 2 x + 1 √ n .
In particular, if 0 < x ≤ c 1 n 1/6 and EX 3 1 = 0 then

|P[|Y | ≥ x] -P[|g| ≥ x]| = c 2 P[|g| ≥ x] x + 1 √ n .
Since Proposition 3.5 implies a better gaussian approximation than the standard Berry-Esséen bounds, one may consider the following family of random variables that will be used in the construction.

Definition 3.6 We say that a random variable Y is (L, n)-almost gaussian for L > 0 and n ∈ N, if Y = n -1/2 n i=1 X i
, where X 1 , . . . , X n are independent copies of X, which is a non-atomic random variable with mean 0, variance 1, and satisfies that EX 3 = 0 and X ψ 1 ≤ L.

Let X 1 , ..., X n and Y be such that

Y = n -1/2 n i=1 X i is (L, n)-almost gaussian. For 0 < p < 1 set U (p) = {x > 0 : P(|Y | > x) = p}.
Since X is non-atomic then U (p) is non-empty and let

u + (p) = sup U (p) and u -(p) = inf U (p).
We shall apply Lemma 3.3 and Proposition 3.5 in the following case to bound u + (i/M ) and u -(i/M ) for every i, as long as M is not too large (i.e. log M ≤ c 1 n 1/3 ). To that end, set ǫ M,n = [(log M )/n] 1/2 , and for fixed values of M and n, and

1 ≤ i ≤ M let u + i = u + (i/M ) and u - i = u -(i/M ).
Corollary 3.7 For every L > 0 there exist a constant C 0 that depends on L and an absolute constant C 1 for which the following holds. Assume that Y is (L, n)-almost gaussian and that log M ≤ C 0 n 1/3 . Then, for every

1 ≤ i ≤ M/2, (u + i ) 2 ≤ log 2M 2 πi 2 -log log 2M 2 πi 2 + C 1 max log log 2M 2 /(πi 2 ) log 2M 2 /(πi 2 ) , ǫ M,n , and 
(u - i ) 2 ≥ log 2M 2 πi 2 -log log 2M 2 πi 2 -C 1 max log log 2M 2 /(πi 2 ) log 2M 2 /(πi 2 ) , ǫ M,n . Proof. Since √ log M ≤ C 0 n 1/6
, one may use the gaussian approximation from Proposition 3.5 to obtain

P[|Y | ≥ 4 log M ] ≤ P[|g| ≥ 4 log M ] 1 + c 1 √ 4 log M + 1 √ n ≤ 2 4π log M exp(-2 log M ) 1 + c 1 √ 4 log M + 1 √ n ≤ 1 M 2 .
Thus, for every 1

≤ i ≤ M , if x ∈ U (i/M ) then x ≤ √ 4 log M . Let 1 ≤ i ≤ M/2 and x ∈ U (i/M ). Since x ≤ 2C 0 n 1/6 (because x ≤ √ 4 log M ≤ 2C 0 n 1/6 ), it follows from Proposition 3.5 that i/M -H(x) ≤ c 3 H(x) x + 1 √ n ≤ c 4 H(x)ǫ M,n , (3.5) 
where

H(x) = P[|g| ≥ x]. Observe that if W (p) = H -1 (p), then W 2 (i/M ) -x 2 ≤ c 5 ǫ M,n . Indeed, since H(x)(1 -c 4 ǫ M,n ) ≤ i/M ≤ H(x)(1 + c 4 ǫ M,n
), then by the monotonicity of W and the second part of Lemma 3.3, setting p = H(x),

W 2 (i/M ) ≤ W 2 ((1 + c 4 ǫ M,n )H(x)) ≤ W 2 (H(x)) + c 6 ǫ M,n = x 2 + c 6 ǫ M,n .
One obtains the lower bound in a similar way. The claim follows by using the approximate value of W 2 (i/M ) provided in the first part of Lemma 3.3.

The parameters u + i and u - i can be used to estimate the distribution of a nonincreasing rearrangement (Y * i ) M i=1 of the absolute values of M independent copies of Y .

Lemma 3.8 There exists constants c > 0 and j 0 ∈ N for which the following holds. Let Y 1 , ..., Y M be i.i.d. non-atomic random variables. For every 1 ≤ s ≤ M , with probability at least 1 -2 exp(-cs),

|{i : |Y i | ≥ u - s }| ≥ s/2 and |{i : |Y i | ≥ u + s }| ≤ 3s/2.
In particular, with probability at least 11/12, for every

j 0 ≤ j ≤ M/2, u - 2j ≤ Y * j ≤ u + ⌈2(j-1)/3⌉ ,
where ⌈x⌉ = min{n ∈ N : x ≤ n}.

Proof. Fix 0 < p < 1 to be named later and let (δ i ) M i=1 be independent {0, 1}valued random variables with Eδ i = p. A straightforward application of Bernstein's inequality [START_REF] Van Der | Weak convergence and empirical processes[END_REF] shows that

P 1 M M i=1 δ i -p ≥ t ≤ 2 exp(-cM min{t 2 /p, t}).
In particular, with probability at least 1 -2 exp(-c 1 M p),

(1/2)M p ≤ M i=1 δ i ≤ (3/2)M p.
We will apply this observation to the independent random variables δ i = 1I {|Y i |>a} , 1 ≤ i ≤ M for an appropriate choice of a. Indeed, if we take a for which P(|Y 1 | > a) = s/M (such an a exists because Y 1 is non-atomic), then with probability at least 1 -2 exp(-c 1 s), at least s/2 of the |Y i | will be larger than a, and at most 3s/2 will be larger than a. Since this result holds for any a ∈ U (s/M ) the first part of the claim follows. Now take s 0 to be the smallest integer such that 1-2 M s=s 0 exp(-cs) ≥ 11/12 (in particular c -1 log 24 ≤ s 0 ≤ c -1 (log 48 + 1)). Applying the union bound and a change of variables, it is evident that with probability at least 5/6, for every ⌊(3s

0 )/2⌋ + 1 ≤ j ≤ M/2, |{i : |Y i | ≥ u - 2j }| ≥ j and |{i : |Y i | ≥ u + ⌈(2(j-1))/3⌉ }| ≤ j -1,
and thus u - 2j ≤ Y * j ≤ u + ⌈(2(j-1))/3⌉ . With Lemma 3.8 and Corollary 3.7 in hand, one can bound the following functional of the random variables (Y * i ) M i=1 .

Lemma 3.9 For every L > 0 there exist constants c 1 , ..., c 4 , j 0 and α < 1 that depend only on L for which the following holds. Let Y be (L, n)-almost gaussian and let Y 1 , ..., Y M be independent copies of Y . Then, with probability at least 11/12, for every

j 0 ≤ ℓ ≤ k ≤ αM , c 1 log(ek/ℓ) -ǫ M,n log(eM/ℓ) ≤ Y * ℓ -Y * k ≤ c 2 log(ek/ℓ) + ǫ M,n log(eM/ℓ) .
Moreover, with probability at least 10/12, for every

j 0 ≤ ℓ ≤ k ≤ αM Y * ℓ -Y * k - 1 k k i=1 (Y * i -Y * k ) 2 1/2 ≥ c 3 log(ek/ℓ) log(eM/ℓ) - c 4 log(eM/k) , and if j 0 ≤ k ≤ αM , then u - 2k ≤ Y * k ≤ u + ⌈2(k-1)/3⌉ and 1 k k i=1 (Y * i -Y * k ) 2 1/2 ≤ c 4 log(eM/k) , provided that log 2 M L k and that ǫ M,n = (log M )/n ≤ 1.
Proof. The first part of the claim follows from Lemma 3.8 and Corollary 3.7, combined with a straightforward computation. For the second part, observe that, for some well chosen constant c 1 (L) depending only on L, with probability at least 11/12,

Y * 1 ≤ c 1 (L) √ log M .
Hence, applying the first part of the claim, with probability at least 10/12,

1 k k i=1 (Y * i -Y * k ) 2 ≤ c 1 (L) j 0 log M k + 1 k k i=j 0 (Y * i -Y * k ) 2 ≤ c 1 (L) j 0 log M k + c 2 k k i=j 0 log 2 (ek/i) log(eM/i) + ǫ 2 M,n log(eM/i) ≤ c 1 (L) j 0 log M k + c 3 1 + ǫ 2 M,n log (eM/k) ≤ c 4 log(eM/k) ,
provided that log 2 M L k and that ǫ M,n ≤ 1. Note that to estimate the sum we have used that

1 k k i=j 0 log 2 (ek/i) log(eM/i) ≤ 1 log(eM/k) 1 k k i=j 0 log 2 (ek/i) ≤ c 3 log eM/k .
Now the second and the third parts follow from the first one.

The next preliminary step we need is a simple bound on the dual norm to the one whose unit ball is

A r = B M 1 ∩ √ rB M 2 . Recall that for a convex body C ⊂ R M , the polar body of C is C • = {x ∈ R M : sup y∈C x, y ≤ 1}, and in our case, A • r = conv(B M ∞ ∪ r -1/2 B M
2 ) (see, for example, [START_REF] Pisier | The volume of convex bodies and Banach space geometry[END_REF]). From here on, given v ∈ R M , set

v A • r = sup w∈Ar v, w ,
and, as always, (v * i ) M i=1 is the monotone rearrangement of (|v i |) M i=1 .

Lemma 3.10 For every v ∈ R M and any 0 < ρ < r ≤ 1 such that 1/r and 1/ρ are integers,

v A • r -v A • ρ ≥ v * 1/r -v * 1/ρ -   ρ 1/ρ i=1 (v * i -v * 1/ρ ) 2   1/2
and in general for any 0 < r ≤ 1,

v * ⌊1/r⌋ ≤ v A • r ≤ v * ⌈1/r⌉ + ⌈1/r⌉   ⌈1/r⌉ i=1 (v * i -v * ⌈1/r⌉ ) 2   1/2 . Proof. First, observe that for every v ∈ R M , v A • r = min 1≤j≤M   √ r j i=1 (v * i -v * j ) 2 1/2 + v * j   . (3.6) Indeed, since A • r = conv B M ∞ ∪(1/ √ r)B M 2 , it is evident that v A • r = inf{ u ∞ + √ r w 2 , v = u + w}. One may verify that if v = u + w is an optimal decomposition then supp(w) ⊂ {i : |u i | = u ∞ }. Hence, if u ∞ = K then for every 1 ≤ i ≤ M , u i = Ksgn(v i )1I {|v i |≥K} + v i 1I {|v i |<K} , and thus, w i = 1I {|v i |≥K} (v i -sgn(v i )K). Therefore, v A • r = inf K>0 K + √ r {i:|v i |≥K} (|v i | -K) 2 1/2 .
Moreover, since it is enough to consider only values of K in {v * j : 1 ≤ j ≤ M }, (3.6) is verified. In particular, if 1/r is an integer then

v A • r ≤ √ r 1/r i=1 (v * i -v * 1/r ) 2 1/2 + v * 1/r .
On the other hand, if

T r = {u ∈ R M : u 2 ≤ √ r, |supp(u)| ≤ 1/r} then T r ⊂ B M 1 ∩ √ rB M 2 . Hence, v A • r ≥ sup w∈Tr v, w = √ r   1/r i=1 (v * i ) 2   1/2 .
Therefore, if 1/r and 1/ρ are integers, it follows that

v A • r -v A • ρ ≥ √ r 1/r i=1 (v * i ) 2 1/2 -   √ ρ 1/ρ i=1 (v * i -v * 1/ρ ) 2 1/2 + v * 1/ρ   ≥ v * 1/r -v * 1/ρ - √ ρ 1/ρ i=1 (v * i -v * 1/ρ ) 2 1/2 , because (r 1/r i=1 (v * i ) 2 ) 1/2 ≥ v * 1/r .
The second part follows in a similar fashion and it omitted.

Proof of the lower bound of Theorem 3.2. Let φ 1 , ..., φ M , X and a > 0 be such that φ 1 (X), . . . , φ M (X) are uniformly distributed on [-a, a] and have variance 1 (in particular a = √ 3). Set T (X) = φ M +1 (X) = Y to be a Rademacher variable. Assume further that (φ i ) M +1 i=1 are independent in L 2 (P X ) and let F M = {0, ±φ 1 , ..., ±φ M }. Note that the functions in conv(F M ) are given by f λ = Φ, λ where Φ = (φ 1 , ..., φ M ) and λ ∈ B M 1 . It is straightforward to verify that the excess loss function of f λ relative to conv(F M ) is

L f λ = (f λ -φ M +1 ) 2 -(0 -φ M +1 ) 2 = Φ, λ 2 -2 Φ, λ φ M +1 (since f * = 0), implying that EL f λ = λ 2 2 . Let us consider the problem of empirical minimization in conv(F M ) = { λ, Φ : λ ∈ B M 1 }. Recall that A r = B M 1 ∩ √ rB M 2 and, for an independent sample (Φ(X i ), φ M +1 (X i )) n i=1 , define the functional ψ(r, ρ) =n inf λ∈Ar R n (f λ ) -inf µ∈Aρ R n (f µ ) .
If we show that for some r ≥ ρ, ψ(r, ρ) < 0, then for that sample, EL b f ≥ ρ. Note that, for any r, ρ > 0,

ψ(r, ρ) ≤ sup λ∈Ar n i=1 Φ(X i ), λ 2 -2 sup λ∈Ar n i=1 Φ(X i ), λ φ M +1 (X i ) + 2 sup µ∈Aρ n i=1 Φ(X i ), λ φ M +1 (X i ),
and let us estimate the supremum of the process

λ ∈ A r → n i=1 Φ(X i ), λ 2 = n (P n -P )( Φ, λ 2 ) + λ 2 2 .
Observe that Φ(X) is isotropic (that is, for every λ ∈ R M , E λ, Φ(X)

2 = λ 2 2
), and subgaussian -since λ, Φ(X) ψ 2 ≤ 4a λ 2 . Hence, applying the results from [START_REF] Shahar Mendelson | Reconstruction and subgaussian operators in asymptotic geometric analysis[END_REF], it is evident that with probability at least 11/12, sup λ∈Ar

(P n -P )( λ, Φ 2 ) ≤ c(a) max diam(A r , • 2 ) γ 2 (A r , • 2 ) √ n , γ 2 2 (A r , • 2 ) n .
(3.7) Recall that for r ≥ 1/M , γ 2 (A r , • 2 ) ∼ log(eM r) (see, for instance, [START_REF] Shahar Mendelson | Reconstruction and subgaussian operators in asymptotic geometric analysis[END_REF]), and thus, if r ≥ max(1/M, 1/n), then with probability at least 11/12,

n sup λ∈Ar (P n -P )( Φ, λ 2 ) + λ 2 2 ≤ nr + c 1 nr log(eM r),
where c 1 is a constant that depends only on a.

Next, to estimate the first two terms, let

Y j = n -1/2 n i=1 φ M +1 (X i ) Φ(X i ), e j
and observe that (Y j ) M j=1 are independent copies of a (2, n)-almost gaussian variable.

If we set V = (Y i ) M i=1 then sup λ∈Ar n i=1 λ, Φ(X i ) φ M +1 (X i ) -sup θ∈Aρ n i=1 θ, Φ(X i ) φ M +1 (X i ) = √ n sup λ∈Ar λ, V -sup θ∈Aρ θ, V = √ n( V A • r -V A • ρ ) = ( * ).
By Lemma 3.10, if 1/r = ℓ and 1/ρ = k are integers, then It follows that if we select r ∼ 1/ n log(eM/ √ n) and ρ ∼ r with ρ < r so that the conditions of Lemma 3.9 are satisfied, then with probability at least 9/12, ψ(r, ρ) < 0. Hence, with the same probability,

( * ) ≥ √ n Y * ℓ -Y * k - 1 k k i=1 (Y * i -Y * k ) 2 1/2
R( f ) -min f ∈F M R(f ) = EL b f ≥ c 6 n log(eM/ √ n) .
Proof of the upper bound in Theorem 3.2. We will show that with constant probability, inf

0≤r≤r 0 inf λ∈B M 1 ∩ √ rS M -1 R n (f λ ) < inf r 0 ≤r≤1 inf λ∈B M 1 ∩ √ rS M -1 R n (f λ ) (3.8) 
for r 0 ∼ 1/ n log(eM/ √ n), and thus, on that event, R( f ) ≤ r 0 . To that end, one has to show that inf

0≤r≤r 0 inf λ∈B M 1 ∩ √ rS M -1 P n L f λ < inf r 0 ≤r≤1 inf λ∈B M 1 ∩ √ rS M -1 P n L f λ . Let Q(r) = sup λ∈B M 1 ∩ √ rB M 2 (P n -P )( Φ, λ 2 )
and set r * = inf r > 0 : EQ(r) ≤ r/2 . Applying (3.7) and since γ 2 (A r , • 2 ) ∼ log(eM r), then r * ≤ c 0 log eM/ √ n /n. Hence, by a standard fixed point argument (see for instance, [START_REF] Bartlett | Empirical minimization[END_REF]), it follows that with probability greater than 11/12, if λ ∈ B M 1 and λ 2 2 ≥ r * , then

λ 2 2 2 ≤ 1 n n i=1 Φ(X i ), λ 2 ≤ 3 λ 2 2 2 .
In particular, by Lemma 3.9, Lemma 3.10 and Corollary 3.7, with probability larger than 9/12, for every r ≥ r * , inf

λ∈B M 1 ∩ √ rS M -1 P n L f λ = inf λ∈B M 1 ∩ √ rS M -1 1 n n i=1 Φ(X i ), λ 2 - 2 n n i=1 Φ(X i ), λ φ M +1 (X i ) ≥ r 2 - 2 √ n sup λ∈B M 1 ∩ √ rS M -1 λ, V ≥ r 2 - 2 √ n sup λ∈B M 1 ∩ √ rB M 2 λ, V = r 2 - 2 V A • r √ n ≥ r 2 - 2 √ n Y * ⌈1/r⌉ + ⌈1/r⌉ ⌈1/r⌉ i=1 (Y * i -Y * ⌈1/r⌉ ) 2 1/2 ≥ r 2 - 2 √ n u + ⌈2(⌈1/r⌉-1)/3⌉ + c 1 log(c 2 M r) ≥ r 2 - 2 √ n c 3 log c 4 M r + c 1 log(c 5 M r) > 0 (3.9)
provided that r ≥ c 6 log eM/ √ n /n for some constant c 6 large enough. Therefore, on that event, if λ 2 2 ≥ c 7 log eM/ √ n /n then P n L f λ > 0. On the other hand, P n L f 0 = 0, and thus λ It remains to show that with sufficiently high constant probability inf

0≤r≤r 0 inf λ∈B M 1 ∩ √ rS M -1 P n L f λ < inf r 0 ≤r≤r 1 inf λ∈B M 1 ∩ √ rS M -1 P n L f λ for r 0 ∼ 1/ n log(eM/ √ n) and r 1 = c 7 log eM/ √ n /n.
Using the same argument as in (3.9) and applying Lemma 3.9, Lemma 3.10 and Corollary 3.7, it is evident that with probability at least 10/12, inf

r 0 ≤r≤r 1 inf λ∈B M 1 ∩ √ rS M -1 P n L f λ (3.10) ≥ inf r 0 ≤r≤r 1 r - 2 √ n log(C 0 M r) -c 8 log log(C 0 M r 0 ) 1/2 - c 1 n log(c 5 M r 0 ) -Q(r 1 )
and for some r 2 ≤ r 0 to be named later, inf 

0≤r≤r 0 inf λ∈B M 1 ∩ √ rS M -1 P n L f λ ≤ inf 0≤r≤r 2 inf λ∈B M 1 ∩ √ rS M -1 P n L f λ ≤ inf 0≤r≤r 2 r - 2 √ n log(C 1 M r) -c 9 log log(C 1 M r 2 ) 1/2 + Q(r 2 ). ( 3 
inf λ∈B M 1 ∩ √ rS M -1 P n L f λ -inf r 0 ≤r≤r 1 inf λ∈B M 1 ∩ √ rS M -1 P n L f λ ≤ c 11 log (C 0 r 0 )/(C 1 r 2 ) log C 1 M r 2 + r 2 -r 0 + c 1 n log c 5 M r 0 + c 12 r 1 log eM r 1 √ n ≤ c 13 log (C 0 β 0 )/(C 1 β 2 ) n log eM/ √ n + β 2 -β 0 n log eM/ √ n + c 14 n log eM/ √ n + c 14 log eM/ √ n n .
Therefore, there exists some β 0 for which the latter quantity is negative and thus (3.8) holds for r 0 = β 0 / n log C 0 β 0 M/ √ n .

Proof of Theorem B

Our starting point is to describe the machinery developed in [START_REF] Bartlett | Empirical minimization[END_REF], leading to the desired estimates on the performance of ERM in a general class of functions. Let G be a class of functions and denote by L G = {(x, y) -→ (y -g(x)) 2 -(y -g * G (x)) 2 : g ∈ G} the associated class of quadratic excess loss functions, where g * G is the minimizer of the quadratic risk in G. Let V = star(L G , 0) = {θL : 0 ≤ θ ≤ 1, L ∈ L G } and for every λ > 0 set V λ = {h ∈ V : Eh ≤ λ}. 

∈ L G , EL 2 ≤ BEL. If x > 0, λ * > 0 satisfies that E P -P n V λ * ≤ λ * /8 and λ * (x) = c 0 max λ * , x n ,
then with probability greater than 1 -exp(-x), the empirical risk minimization procedure

g in G satisfies R( g) ≤ inf g∈G R(g) + λ * (x).
Let F be the given dictionary and set G = conv(F ). Using the notation of Theorem 4.1, put L conv(F ) = L f : f ∈ conv(F ) , consider the star-shaped hull V = star(L conv(F ) , 0) and its localizations V λ = {g ∈ V : Eg ≤ λ} for any λ > 0. Thanks to convexity, the following observation holds in our case (see [START_REF] Mendelson | Obtaining fast error rates in nonconvex situations[END_REF] for the proof).

Proposition 4.2 If f ∈ conv(F ) then EL f ≥ f -f * 2 L 2 (P X )
where f * is the minimizer of the quadratic risk in conv(F ). In particular,

1. EL 2 ≤ 4b 2 EL for any L ∈ L conv(F ) ; 2. For µ > 0, if f ∈ conv(F ) satisfies that EL f ≤ µ, then f ∈ f * + K µ , where K µ = 2[conv{±f 1 , . . . , ±f M } ∩ √ µB(L 2 (P X ))].
The first part of Proposition 4.2 shows that L conv(F ) satisfies the assumptions of Theorem 4.1 with B = 4b 2 . To apply Theorem 4.1 one has to find λ * > 0 for which E P -P n V λ * ≤ λ * /8, and to that end we will use the second part of Proposition 4.2. First, observe that it was shown in [START_REF] Peter | ℓ 1 -regularized linear regression: Persistence and oracle inequalities[END_REF] that

E P -P n V λ ≤ i≥0 2 -i E P -P n L 2 i+1 λ , (4.1) 
where from here on we set L µ = L ∈ L conv(F ) : EL ≤ µ . Applying the second part of Proposition 4.2 it is evident that {f ∈ conv(F ) :

EL f ≤ µ} ⊂ f * + K µ .
Proof of Theorem B. By the Giné-Zinn symmetrization Theorem [START_REF] Van Der | Weak convergence and empirical processes[END_REF],

E P -P n Lµ ≤ 2EE ǫ sup L∈Lµ 1 n n i=1 ǫ i L(X i , Y i ) . (4.2) 
Note that if L ∈ L µ and f ∈ conv(F ) satisfies that L = L f , then for any (x, y),

|L(x, y)| = |(y -f (x)) 2 -(y -f * (x)) 2 | = |(f * (x) -f (x))(2y -f (x) -f * (x))| ≤ 4b|f (x) -f * (x)|.
Thus, by the contraction principle (see, e.g. [START_REF] Ledoux | Probability in Banach spaces[END_REF]) and Proposition 4.2,

E P -P n Lµ ≤ 8b √ n EE ǫ sup f ∈Kµ 1 √ n n i=1 ǫ i f (X i ) .
Observe that since the dictionary consists of an orthogonal family, if (e 1 , . . . , e M ) is the standard basis in ℓ M 2 and F (•) = (f 1 (•), . . . , f M (•)), then

K µ = 2 λ, F : λ ∈ B M 1 ∩ √ µE ,
where E is an ellipsoid with principal axes ( f i L 2 e i ) M i=1 . From here on we will assume that ( f i L 2 ) M i=1 is a non-increasing sequence. Now, we want to bound

E sup f ∈Kµ 1 n n i=1 ǫ i f (X i ) = E sup λ∈B M 1 ∩ √ µE 2 n n i=1 ǫ i λ, F (X i ) = 2 √ n E n i=1 1 √ n ǫ i F (X i ) (B M 1 ∩ √ µE) • ,
where

• (B M 1 ∩
√ µE) • denotes the dual norm to the one whose unit ball is B M 1 ∩ √ µE.

We will use two different strategies to bound this process depending on M ≤ √ n or M > √ n. First start with the case M ≥ √ n. Since both B M 1 and E are unconditional with respect to the coordinate structure given by (e i ) M i=1 , it follows that

v (B M 1 ∩ √ µE) • ∼ inf I⊂{1,...,M }   √ µ i∈I v i f i L 2 2 1/2 + max i∈I c |v i |   , (4.3) 
and in our case

, v = (v j ) M j=1 = ((1/ √ n) • n i=1 ǫ i f j (X i )) M j=1 . Let J 0 = {j : f j L 2 ≥ c 0 b log M / √ n},
where c 0 is a constant to be named later. A straightforward application of Bernstein inequality [START_REF] Van Der | Weak convergence and empirical processes[END_REF] shows that, for t ≥ c 1 , P ∃j ∈ J 0 : P n f 2 j ≥ (t + 1) f j Hence, by Hoeffding's inequality (cf. [START_REF] Van Der | Weak convergence and empirical processes[END_REF]), there exists an absolute constant c 5 such that, for any j ∈ J 0 , For every 1 ≤ j ≤ |J 0 |, let I be the set of the j largest coordinates of (|U j,ℓ |) j∈J 0 . Hence, by (4.3) and since f j L 2 ≤ b, Therefore, if we take j = min{[1/µ], |J 0 |} it is evident that

U j,ℓ 2 
ψ 2 (ǫ) ≤ c 5 n -1 n i=1 f 2 j (X i ) f j 2
E ǫ n i=1 1 √ n ǫ i F (X i ) (B M 1 ∩ √ µE) • |(X i ) n i=1 ∈ B ℓ E ǫ √ µ j i=1 (U 2 i,ℓ ) * 1/2 + E ǫ max f j L 2 U * j,ℓ , max
E ǫ n i=1 1 √ n ǫ i F (X i ) (B M 1 ∩ √ µE) • |(X i ) n i=1 ∈ B ℓ b √ ℓ log(eM µ) + log M √ n .

  in deviation (up to a log n factor for values of M close to √ n).

2

 2 

2 2≤ c 7

 27 log eM/ √ n /n (where f = f b λ ) with probability at most 9/12.

Theorem 4 . 1 (

 41 [START_REF] Bartlett | Empirical minimization[END_REF]) For every positive B and b there exists a constant c 0 = c 0 (B, b) for which the following holds. Let G be a class of functions for which L G consists of functions that are bounded by b almost surely. Assume further that for any L

2 L 2 ≤ j∈J 0 exp -c 2 n( f j 2 L 2 ) f j 2 L 2 ǫǫ

 2202222 /b 2 ) min(t 2 , t) ≤M exp(-c 3 t log M ) ≤ exp(-c 4 t log M ), and P(∃j ∈ J c 0 :P n f 2 j ≥ (t + 1)b 2 n -1 log M ) ≤ exp(-c 4 t log M ). For every integer ℓ ≥ c 1 , let A ℓ = {∀j ∈ J 0 : P n f 2 j ≤ (ℓ + 1} {∀j ∈ J c 0 : P n f 2 j ≤ (ℓ + 1)b 2 n -1 log M }.Set B ℓ = A ℓ+1 ∩ A c ℓ and note that P(B ℓ ) ≤ P(A c ℓ ) ≤ 2 exp(-c 4 ℓ log M ) for any ℓ ≥ c 1 . For every ℓ ≥ c 1 , consider the random variables conditioned on B ℓ , i f j (X i )/ f j L 2 |B ℓ ∀j ∈ J 0 i f j (X i )|B ℓ ∀j ∈ J c 0 .

L 2 ≤ 2 ψ 2 2 ≤ c 6 √| max j∈J c 0 U

 222260 c 5 (ℓ + 1), and for any j ∈ J c 0 , U j,ℓ (ǫ) ≤ c 5 (ℓ + 1)b 2 (log M )/n. By a result due to Klartag[START_REF] Klartag | 5n Minkowski symmetrizations suffice to arrive at an approximate Euclidean ball[END_REF], it follows that for every such ℓ and any 1≤ j ≤ |J 0 |, ℓ j log(e|J 0 |/j),where (U * j,ℓ )|J 0 |j=1 is a decreasing rearrangement of (|U j,ℓ |) j∈J 0 . Moreover, by a standard maximal inequality (see, e.g.[START_REF] Van Der | Weak convergence and empirical processes[END_REF])E ǫ max j∈J c 0 U j,ℓ ≤ c 7 log |J c 0 j,ℓ ψ 2 (ǫ) ≤ c 8 √ ℓb log M √ n .

  log(e|J 0 |/j) + b log(e|J 0 |/j) + E ǫ max log(e|J 0 |/j) + b log(e|J 0 |/j) + √ ℓb log M √ n .

  ) + Q(r 2 ) ≤ c 10 r 1 log eM r 1 /n.

	Moreover, thanks to (3.7), with probability greater than 10/12,	
	Q(r 1 Fix 0 < β 2 < β 0 to be named later and set		
	r 0 =	β 0 n log eM/ √ n	and r 2 =	β 2 n log eM/ √ n	.
	For β 0 large enough (resp. β 2 small enough), the infimum in (3.10) (resp. (3.11)) is
	achieved in r 0 (resp. r 2 ). Therefore, with probability greater than 8/12
	inf 0≤r≤r 0				
					.11)
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Thus, integration with respect to X 1 , ..., X n and applying the estimates on the measure of B ℓ , 2

Finally, by (4.1), for any λ > 1/M ,

and, if

When M ≤ √ n, we use the strategy developed in [START_REF] Koltchinskii | Local Rademacher complexities and oracle inequalities in risk minimization[END_REF]. Let S be the linear subspace of L 2 (P X ) spanned by F and take (e 1 , . . . , e M ′ ) to be an orthonormal basis of S (where

The rate obtained in the case M ≤ √ n follows now from (4.1).

Appendix

We establish the following upper bound on the risk of f ERM -C as a (C)-aggregation procedure in the general case. Its proof follows the same path as in Section 4. But, rather than studying the empirical process indexed by the interpolation body B M 1 ∩ √ µE, in the case M ≥ √ n, one simply uses the approximation

where, for all j = 1, . . . , M , γ j is the subgaussian random variable n -1/2 n i=1 ǫ i f j (X i ) with ψ 2 -norm bounded by n -1 n i=1 f j (X i ) 2 ≤ c 0 b 2 and thus by a maximal inequality [START_REF] Ledoux | Probability in Banach spaces[END_REF],

The result below follows from this upper bound and (4.1) for the case M > √ n, and the case M ≤ √ n follows the same path as the proof of Theorem B, and thus its proof is omitted.