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GENERAL NON-EXACT ORACLE INEQUALITIES FOR

CLASSES WITH A SUBEXPONENTIAL ENVELOPE

By Guillaume Lecué∗

CNRS, LAMA, Université Paris-Est Marne-la-vallée, 77454 France
and

By Shahar Mendelson†

Department of Mathematics, Technion, I.I.T, Haifa 32000, Israel

We show that empirical risk minimization procedures and regu-
larized empirical risk minimization procedures satisfy non-exact or-
acle inequalities in an unbounded framework, under the assumption
that the class has a subexponential envelope function. The main nov-
elty, in addition to the boundedness assumption free setup, is that
those inequalities can yield fast rates even in situations in which exact
oracle inequalities only hold with slower rates.

We apply these results to show that procedures based on ℓ1 and
nuclear norms regularization functions satisfy oracle inequalities with
a residual term that decreases like 1/n for every Lq-loss functions
(q ≥ 2), while only assuming that the tail behaviour of the input
and output variables are well behaved. In particular, no RIP type
of assumption or “incoherence condition” are needed to obtain fast
residual terms in those setups. We also apply these results to the
problems of Convex aggregation and Model Selection.

1. Introduction and main results. Let Z be a space endowed with
a probability measure P and let Z and Z1, . . . , Zn be n + 1 independent
random variables with values in Z, distributed according to P ; from the
statistical point of view, D = (Z1, . . . , Zn) is the set of given data. Let ℓ
be a loss function which associates a real number ℓ(f, z) to any real-valued
measurable function f defined on Z and any point z ∈ Z. Denote by ℓf
the loss function ℓ(f, ·) associated with f and set R(f) = Eℓf (Z) to be the

associated risk. The risk of any statistic f̂n(·) = f̂n(·,D) : Z −→ R is defined
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2 G. LECUÉ AND S. MENDELSON

by R(f̂n) = E
[
ℓ
f̂n

(Z)|D
]
.

Let F be a class (usually called the model) of real-valued measurable
functions defined on Z. In learning theory, one wants to assume as little
as possible on the class F , or on the measure P . The aim is to use the
data to construct learning algorithms whose risk is as close as possible to
inff∈F R(f) (and when this infimum is attained by a function f∗F in F , this
element is called an oracle). Hence, one would like to construct procedures
f̂n such that, for some ǫ ≥ 0, with high probability,

(1.1) R(f̂n) ≤ (1 + ǫ) inf
f∈F

R(f) + rn(F ).

The role of the residual term (or rate) rn(F ) is to capture the “complexity”
of the problem, and the hope is to make it as small as possible.

When rn(F ) tends to zero as n tends to infinity, Inequality (1.1) is called
an oracle inequality. When ǫ = 0, we say that f̂n satisfies an exact oracle
inequality (the term sharp oracle inequality has been also used) and when
ǫ > 0 it satisfies a non-exact oracle inequality. Note that the terminology
“risk bounds” has been also used for (1.1) in the literature.

A natural algorithm in this setup is the empirical risk minimization proce-
dure (ERM) (terminology due to [44]), in which the empirical risk functional

f 7−→ Rn(f) =
1

n

n∑

i=1

ℓf (Zi)

is minimized and produces f̂ERMn ∈ Arg minf∈F Rn(f). Note that when
Rn(·) does not achieve its infimum over F or if the minimizer is not unique,
we define f̂ERMn to be an element in F for which R(f̂ERMn ) ≤ inff∈F R(f)+
1/n. This algorithm has been extensively studied and we will compare our
first result to the one of [12, 4, 25].

One motivation in obtaining non-exact oracle inequalities (Equation (1.1)
for ǫ 6= 0) is the observation that in many situations, one can obtain such an
inequality for the ERM procedure with a residual term rn(F ) of the order
of 1/n, while the best residual term achievable by ERM in an exact oracle
inequality (Equation (1.1) for ǫ = 0) will only be of the order of 1/

√
n for

the same problem. For example, consider the simple case of a finite model
F of cardinality M and the bounded regression model with the quadratic
loss function (that is Z = (X,Y ) ∈ X × R with |Y |,maxf∈F |f(X)| ≤ C for
some absolute constant C and ℓ(f, (X,Y )) = (Y −f(X))2). It can be verified
that for every x > 0, with probability greater than 1 − 8 exp(−x), f̂ERMn

satisfies a non-exact oracle inequality with a residual term proportional to
(x + logM)/(ǫn). On the other hand, it is known [22, 29, 19] that in the
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same setup, there are finite models for which, with probability greater than
a positive constant, f̂ERMn cannot satisfy an exact oracle inequality with
a residual term better than c0

√
(logM)/n. Thus, it is possible to establish

two optimal oracle inequalities (i.e. oracle inequalities with a non-improvable
residual term rn(F ) up to some multiplying constant) for the same proce-
dure with two very different residual terms: one being the square of the
other one. We will see below that the same phenomenon occurs in the clas-
sification framework for VC classes. Thus our main goal here is to present
a general framework for non-exact oracle inequalities for ERM and RERM
(regularized ERM), and show that they lead to fast rates in cases when the
best known exact oracle inequalities have slow rates.

Although the improved rates are significant, it is clear that exact inequal-
ities are more “valuable” from the statistical point of view. For example,
consider the regression model with the quadratic loss. It follows from an
exact oracle inequality on the prediction risk (Equation (1.1) for ǫ = 0), an
other exact oracle inequality but for the estimation risk:

∥∥∥f̂ERMn − f∗
∥∥∥
2

L2

≤ inf
f∈F

‖f − f∗‖2
L2

+ rn(F ),

where f∗ is the regression function of Y given X and ‖·‖L2
is the L2-norm

with respect to the marginal distribution of X.
In other words, exact oracle inequalities for the prediction risk R(·) pro-

vide both prediction and estimation results (prediction of the output Y and
estimation of the regression function f∗) whereas non-exact oracle inequal-
ities provide only prediction results.

Of course, non-exact inequalities are very useful when it suffices to com-
pare the risk R(f̂n) with (1 + ǫ) inff∈F R(f); and the aim of this note is to
show that the residual term can be dramatically improved in such cases.

1.1. Empirical risk minimization. The first result of this note is a non-
exact oracle inequality for the ERM procedure. To state this result, we need
the following notation. LetG be a class of real-valued functions defined on Z.
An important part of our analysis relies on the behaviour of the supremum
of the empirical process indexed by G

(1.2) ‖P − Pn‖G = sup
g∈G

|(P − Pn)(g)|

where for every g ∈ G we set Pg = Eg(Z) and Png = n−1∑n
i=1 g(Zi). Recall

that for every α ≥ 1, the ψα norm of g(Z) is

‖g(Z)‖ψα
= inf

(
c > 0 : E exp

(
|g(Z)|α/cα

)
≤ 2

)
.
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We will control the supremum (1.2) using the quantities

σ(G) = sup
g∈G

√
Pg2 and bn(G) =

∥∥ max
1≤i≤n

sup
g∈G

|g(Zi)|
∥∥
ψ1
.

Note that for a bounded class G, one has bn(G) ≤ supg∈G ‖g‖∞ and in

the sub-exponential case, bn(G) . (log en)
∥∥∥supg∈G |g|

∥∥∥
ψ1

(this follows from

Pisier’s inequality, cf. Lemma 2.2.2 in [43]). Throughout this note we will
also use the notation bn(g) = ‖max1≤i≤n |g(Zi)|‖ψ1

and for any pseudo-norm
‖·‖ on L2(P ), we will denote by diam(G, ‖·‖) = supg∈G ‖g‖ the diameter of
G with respect to this norm.

Observe that the desired bound depends on the ψ1 behaviour of the en-
velope function of the class, supg∈G |g(Z)|, and as noted above, this extends
the “classical” framework of a uniformly bounded class in L∞. Although
this extension seems minor at first, the examples we will present show that
the assumption is not very restrictive and allows one to deal with LASSO-
type situations, in which the indexing class is very small – something which
is impossible under the L∞ assumption. On the other hand, it should be
emphasized that this is not a step towards an unbounded learning theory.
For such results, the analogous assumption should be that the class has a
bounded diameter in ψ1, which is, of course, a much weaker assumption than
a ψ1 envelope function and requires different methods (see, e.g. [28, 35]).

To obtain the required bound, we will study empirical processes indexed
by sets associated with G, namely, the star-shaped hull of G around zero
and the localized subsets for different levels λ ≥ 0, defined by

V (G) = {θg : 0 ≤ θ ≤ 1, g ∈ G} and V (G)λ = {h ∈ V (G) : Ph ≤ λ}.

Given a model F and a loss function ℓ, consider the loss class and the
excess loss class ℓF = {ℓf : f ∈ F} and the excess loss class LF = {ℓf − ℓf∗

F
:

f ∈ F}. We will assume that an oracle f∗F exists in F , and from here on set
Lf = ℓf − ℓf∗

F
.

Theorem A. There exists an absolute constant c0 > 0 for which the follow-
ing holds. Let F be a class of functions and assume that there exists Bn ≥ 0
such that for every f ∈ F , Pℓ2f ≤ BnPℓf + B2

n/n. Let 0 < ǫ < 1/2, set
λ∗ǫ > 0 for which

E‖Pn − P‖V (ℓF )λ∗
ǫ
≤ (ǫ/4)λ∗ǫ ,

and put ρn an increasing function satisfying that for every x > 0,

ρn(x) ≥ max
(
λ∗ǫ , c0

(bn(ℓF ) +Bn/ǫ)x

nǫ

)
.
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Then, for every x > 0, with probability greater than 1 − 8 exp(−x),

R(f̂ERMn ) ≤ (1 + 3ǫ) inf
f∈F

R(f) + ρn(x).

Remark 1.1. Although the formulation of Theorem A requires that for
every ℓ ∈ ℓF , Pℓ2 ≤ BnPℓ + B2

n/n, we will show that if ℓ is nonnegative,
this condition is trivially satisfied for Bn ∼ diam(ℓF , ψ1) log(n).

Unfortunately, this type of condition is far from being trivially satisfied
for the excess loss class LF = {ℓf − ℓf∗

F
: f ∈ F}, which is one of the

major differences between exact and non-exact oracle inequalities. Indeed,
the Bernstein condition, that for every f ∈ F , EL2

f ≤ BELf (see [4] or
Section 6 below), used in [25, 12, 4] to obtain exact oracle inequalities with
fast rates (rates of the order of 1/n), depends on the geometry of the problem
[31, 30] and may not be true in general. Theorem A is similar in nature to
Corollary 2.9 of [4] and a detailed comparison between the two results can
be found in Section 6.

Theorem A is similar in nature to Theorem 2 in [25]:

Theorem 1.2. Let φ : R → R be a non decreasing, continuous function,
for which φ(1) ≥ 1 and x → φ(x)/x is non increasing. Set F to be a class

of functions where there is some 0 ≤ β ≤ 1 such that EL2
f ≤ B

(
ELf

)β
, and

‖ℓf‖∞ ≤ 1. If φ(λ) ≥ √
nE supf,g∈F,P (ℓf−ℓg)2≤λ2(P − Pn)(ℓf − ℓg) for any λ

satisfying φ(λ) ≤ √
nλ2 and ε∗ is the unique solution of the equation

√
nε2∗ =

φ(
√
Bεβ∗ ), then for every x ≥ 1, with probability greater than 1 − exp(−x),

R(f̂ERMn ) ≤ inf
f∈F

R(f) + c0xε
2
∗.

One of the applications of the above theorem in learning theory is for
the loss function ℓf (x, y) = 1If(x) 6=y. It leads to an exact oracle inequal-
ity for the ERM procedure, preformed in a class F of VC dimension V ≤
n (see [25] for more details), and with a residual term of the order of
(
V log(enB1/β/V )/n

)1/(2−β)
.

In comparison, in the same situation, for every f ∈ F , Eℓ2f ≤ Eℓf . There-
fore, it follows from Theorem A, the argument used to obtain Equation (29)
in [25] (or Example 3 in [12]) and the peeling argument which will be pre-
sented in (2.5) below, that for every x ≥ 1, with probability greater than
1 − 8 exp(−x),

(1.3) R(f̂ERMn ) ≤ (1 + 3ǫ) inf
f∈F

R(f) + c0
xV log

(
en/V

)

ǫ2n
.
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The residual term ǫ2∗ obtained in [25] is optimal but since it heavily de-
pends on the parameter β, it ranges between

√
V/n and V/n (up to a log-

arithmic factor). In particular, it can be as bad as the square root of the
residual term of the non-exact oracle inequality (1.3) in the same situation.
The main difference between the two results is that the condition Eℓ2f ≤ Eℓf
for every f ∈ F is always satisfied whereas the condition that for every

f ∈ F EL2
f ≤ B

(
ELf

)β
depends on the relative position of Y and F , and

thus on geometry of the system (F, Y ).
It is interesting to note that the residual term in (1.3) always yields fast

rate even for hard classification problem such that P[Y = 1|X] = 1/2.
This means that while the prediction problem in classification is completely
blind to the geometry of the model, the estimation problem is influenced in
a very strong way by the geometry of (F, Y ). Thus, estimating the regression
function (or the Bayes rule) is in general much harder than predicting the
output Y .

Another related result is the one in [12] where (among other results)
an exact oracle inequality is proved for the ERM with a residual term
δn(x). The residual term is controlled using the empirical oscillation φn(δ) =
E supf,g∈F (δ) |(P −Pn)(ℓf − ℓg)| indexed by F (δ) = {f ∈ F : PLf ≤ δ}, and

by the L2 diameter D(δ) = supf,g∈F (δ)

√
P (ℓf − ℓg)2:

δn(x) = argmin
(
δ > 0 : φn(δ) +

√
2x

n

(
D(δ)2 + 2φn(δ)

)
+

x

2n
≤ c0δ

)
.

Note that all the quantities λ∗ǫ , ε
2
∗ from [25], δn(x) from [12], µ∗ from [4]

or Theorem 6.1 below, define the residual terms of the oracle inequalities as
a fixed point of some equation. Those appear naturally either from iterative
localization of the excess risk, converging to δn(x) [12, 16], or from an “iso-
morphic” argument [4] identifying the “level” µ∗ at which the actual and
the empirical structures are equivalent. We refer the reader to those articles
for more details.

Results in [25, 12, 4] were obtained under the boundedness assumption
supf∈F ‖ℓf‖∞ ≤ 1 because the necessary tools from empirical processes
theory, like contraction inequalities [21], only hold under such an assumption.
In particular, these results do not apply even to the Gaussian regression
model. The approach developed in this work provides a slight improvement,
since risk bounds hold if the envelope function supf∈F ℓf is sub-exponential
(which is the case for the Gaussian regression model with respect to the
square loss).

One should also mention the subtle but significant gap between the margin
assumption and the Bernstein condition which we use. Both state that for
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every f ∈ F ,

E(ℓf − ℓf∗)
2 ≤ B0

(
E(ℓf − ℓf∗)

)1/κ

for some constant κ ≥ 1. However, in the margin condition f∗ has the
minimal risk over all measurable functions (for instance, f∗ is the regression
function in the regression model with respect to the quadratic loss), while
in a Bernstein condition f∗F is assumed to minimize the risk over F .

The two conditions are equivalent only when f∗ ∈ F (and thus f∗ = f∗F ).
But in general, they are very different. As a simple example, in the bounded
regression model (i.e. |Y |, supf∈F |f(X)| ≤ C) with respect to the quadratic
loss, the margin assumption holds with κ = 1 whereas the Bernstein condi-
tion is not true in general. For more details on the difference between the
margin assumption and the Bernstein condition we refer the reader to the
discussion in [18].

1.2. Regularized empirical risk minimization. The second type of appli-
cation we will present deals with non-exact regularized oracle inequalities.
Usually a model F is chosen or constructed according to the belief that an
oracle f∗F in F is close, in some sense, to some minimizer f∗ of the risk func-
tion in some larger class of functions F (for example, in the regression model,
f∗ can be the regression function and F = L2(PX)). Hence, by choosing a
particular model F ⊂ F , it implicitly means that we believe f∗ to be close
to F in some sense.

It is not always possible to construct a class F that captures properties
f∗ is believed to have (e.g., a low-dimensional structure or some smoothness
properties). In such situation, one is not given a single model F (usually the
set F is too large to be called a model), but a functional crit : F −→ R+,
called a criterion, that characterizes each function according to its level of
compliance with the desired property – and the smaller the criterion, the
“closer” one is to the property). For instance, when F is an RKHS one can
take crit(·) to be the norm in the reproducing kernel Hilbert space, or when
F is the set of all linear functionals in Rd, one may chose crit(β) = ‖β‖ℓp for

some p ∈ [0,∞]. The extreme case here is p = 0 and ‖β‖ℓ0 is the cardinality
of the support of β; thus a small criterion means that β belongs to a low-
dimensional space.

Instead of considering the ERM over the too large class F , the goal is
to construct a procedure having both good empirical performances and a
small criterion. One idea, that we will not develop here, is to minimize the
empirical risk over the set Fr = {f ∈ F : crit(f) ≤ r} [41, 5], and try to
find a data-dependent way of choosing the radius r. Another popular idea
is to regularize the empirical risk: consider a non-decreasing function of the
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criterion called a regularizing function and denoted by reg : F −→ R+ and
construct

(1.4) f̂RERMn ∈ Arg min
f∈F

(
Rn(f) + reg(f)

)
,

with the obvious extension if the infimum is not attained.
The procedure (1.4) is called regularized empirical risk minimization pro-

cedure (RERM). RERM procedures have been introduced to avoid the “over-
fitting” effect of large models [3, 24], and later to select functions with ad-
ditional properties, like smoothness (for instance, SVM estimators in [38])
or an underlying low-dimensional structure (for example, the LASSO esti-
mator).

In this setup, we are interested in constructing estimators f̂n realizing the
best possible trade-off between the risk and the regularizing function over
F : there exists some ǫ ≥ 0 such that with high probability

(1.5) R(f̂n) + reg(f̂n) ≤ (1 + ǫ) inf
f∈F

(
R(f) + reg(f)

)
.

Using the same terminology as in (1.1), Inequality (1.5) is called a regularized
oracle inequality. When ǫ = 0, (1.5) is called an exact regularized oracle
inequality and when ǫ > 0, (1.5) is called a non-exact regularized oracle
inequality.

Following our analysis of the ERM algorithm, the next result is a regular-
ized oracle inequality for the RERM. But before stating this result, one has
to say a word on the way the regularizing function reg(·) and the criterion
crit(·) are related.

The choice of reg(·) is driven by the complexity of the sequence (Fr)r≥0

of models
Fr = {f ∈ F : crit(f) ≤ r}.

For any r ≥ 0, the complexity of Fr is measured by λ∗ǫ (r) defined as above
for some fixed 0 < ǫ < 1/2 by

E‖Pn − P‖V (ℓFr )λ∗
ǫ (r)

≤ (ǫ/4)λ∗ǫ (r).

Hence, λ∗ǫ (r) is a “level” in ℓFr above which the empirical and the actual
structures are equivalent; namely, with high probability, on the set {ℓ ∈
ℓFr : Pℓ ≥ λ∗ǫ (r)},

(1/2)Pnℓ ≤ Pℓ ≤ (3/2)Pnℓ.

Thus, the function r → λ∗ǫ (r) captures the “isomorphic profile” of the collec-
tion (ℓFr)r≥0. Up to minor technical adjustments, the regularizing function,
defined formally in (1.8), is reg(·) = λ∗ǫ (crit(·)).
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We will study two separate situations, both motivated by the applications
we have in mind. In the first, crit(·) will be uniformly bounded and may
only grow with the sample size n – that is, there is a constant Cn satisfying
that for every f ∈ F , crit(f) ≤ Cn. The second case we deal with is when
the “isomorphic profile” r → λ∗ǫ (r) tends to infinity with r. For technical
reasons, we also introduce an auxiliary function αn, defined in the following
assumption.

Assumption 1.1. Assume that for every f ∈ F , ℓf (Z) ≥ 0 a.s. and that
there are non-decreasing functions φn and Bn such that for every r ≥ 0 and
every f ∈ Fr,

bn(ℓFr) ≤ φn(r) and Pℓ2f ≤ Bn(r)Pℓf +B2
n(r)/n.

Let 0 < ǫ < 1/2 and consider a function ρn : R+ × R∗
+ → R non-decreasing

in its first argument and such that, for any r ≥ 0 and x > 0,

ρn(r, x) ≥ max
(
λ∗ǫ (r), c0

(φn(r) +Bn(r)/ǫ)(x+ 1)

nǫ

)
.

Assume that either:

• there exists Cn > 0 such that for every f ∈ F , crit(f) ≤ Cn and in this
case define αn(ǫ, x) = Cn, for all 0 < ǫ < 1/2 and x > 0, or

• the function r → λ∗ǫ (r) tends to infinity with r and there exists K1 > 0
such that 2ρn(r, x) ≤ ρn(K1(r + 1), x), for all r ≥ 0 and x > 0 and,
in this case, let f0 be any function in ∪r≥0Fr and define αn such that,
for every x > 0 and 0 < ǫ < 1/2,

αn(ǫ, x) ≥ max
[
K1(crit(f0) + 2),(1.6)

(λ∗ǫ )
−1((1 + 2ǫ)(3R(f0) + 2K ′(bn(ℓf0) +Bn(crit(f0)))((x+ 1)/n))

)]
,

where (λ∗ǫ )
−1 is the generalized inverse function of λ∗ǫ (i.e. (λ∗ǫ )

−1(y) =
sup

(
r > 0 : λ∗ǫ (r) ≤ y

)
, for all y > 0) and K ′ is some absolute

constant.

Theorem B. There exist absolute positive constants c0, c1 K and K ′ for
which the following holds. Under Assumption 1.1, for every x > 0 and

(1.7) f̂RERMn ∈ Arg min
f∈F

(
Rn(f) +

2

1 + 2ǫ
ρn(crit(f) + 1, x+ logαn(ǫ, x))

)
,
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with probability greater than 1 − 12 exp(−x),

R(f̂RERMn ) + ρn(crit(f̂
RERM
n ) + 1, x+ logαn(ǫ, x))

)

≤ inf
f∈F

[
(1 + 3ǫ)R(f) + 2ρn(crit(f) + 1, x+ logαn(ǫ, x))

+ c1
(bn(ℓf ) +Bn(crit(f))/ǫ)(x+ 1)

nǫ

]
.

Fortunately, αn usually has little impact on the resulting rates. For instance,
in the main application we will present here, logαn(ǫ, x) .ǫ log(x+ n).

Like in Theorem A, the Bernstein type condition Pℓ2 ≤ Bn(r)Pℓ +
B2
n(r)/n holds when ℓ is nonnegative and sub-exponential for Bn(r) .

diam(ℓFr , ψ1) log(n). Therefore, and contrary to the situation in exact oracle
inequalities, the “geometry” of the family of classes (Fr)r≥0 does not play a
crucial role in the resulting non-exact regularized oracle inequalities.

Observe that now the choice of the regularizing function in terms of the
criterion is now made explicit:

(1.8) reg(f) =
2

1 + 2ǫ
ρn(crit(f) + 1, x+ logαn(ǫ, x)).

1.3. ℓ1-regularization. The formulation of Theorem B seems cumber-
some, but it is not very difficult to apply it – and here we will present one
application dealing with high-dimensional vectors of short support. Other
applications on Matrix Completion, Convex aggregation and Model Selec-
tion can be found in [20].

Formally, let (X,Y ), (Xi, Yi)1≤i≤n be n + 1 i.i.d. random variables with
values in Rd × R and denote by PX the marginal distribution of X. The
dimension d can be much larger than n but we believe that the output Y
can be well predicted by a sparse linear combination of covariables of X; in
other words, Y can be reasonably approximated by

〈
X,β0

〉
for some β0 ∈ Rd

of short support (even though we will not require any assumption of this
type to obtain our results).

These kind of problems are called “high-dimensional” because there are
more covariables than observations. Nevertheless, one hopes that under the
structural assumption that Y “depends” only on a few number of covariables
of X, it would still be possible to construct efficient statistical procedures
to predict Y .

In this framework, a natural criterion function is the ℓ0 function measuring
the size of the support of a vector. But since this function is far from being
convex, using it in practice is hard (see, e.g., [36]). Therefore, it is natural
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to consider a convex relaxation of the ℓ0 function as a criterion: the ℓ1 norm
[41, 8, 10].

In what follows, we will apply Theorem B to establish non-exact regular-
ized oracle inequalities for ℓ1-based RERM procedures, and with fast error
rates – a residual term that tends to 0 like 1/n up to logarithmic terms. The
regularizing function resulting from Theorem B for the Lq-loss (q ≥ 2) will
be the q-th power of the ℓ1-norm. In particular, for the quadratic loss, we
regularize by ‖ · ‖2

ℓ1
, the square of the ℓ1-norm:

(1.9) β̂n ∈ Arg min
β∈Rd

( 1

n

n∑

i=1

(Yi −
〈
Xi, β

〉
)2 + κ(n, d, x)

‖β‖2
ℓ1

n

)
,

while the standard LASSO is regularized by the ℓ1 norm itself. This choice
of the exponent is dictated by the complexity of the underlying models: the
sequence of balls (rBd

1)r≥0 trough the isomorphic profile function r → λ∗ǫ (r).
Observe that since ‖β‖ℓ1 /

√
n ≥ ‖β‖2

ℓ1
/n when ‖β‖ℓ1 ≤ √

n, a non-exact
oracle inequality for the LASSO estimator itself follows from Theorem B,
but with a slow rate of 1/

√
n. Using the q-th power of the ℓ1-norm as a

penalty function for the Lq-risk yields a fast 1/n rate (see Theorem C).
We will perform this study for the Lq-loss function, and in which case,

for every β ∈ Rd,

R(q)(β) = E|Y −
〈
X,β

〉
|q and R(q)

n (β) =
1

n

n∑

i=1

|Yi −
〈
Xi, β

〉
|q.

The following result is obtained only under the assumption that Y and
‖X‖ℓd∞ belong to Lψq

. Since there are no “statistically reasonable” ψq vari-
ables for q > 2, it sounds more “statistically relevant” to assume that
|Y |, ‖X‖ℓd∞ are almost surely bounded when one wants results for the Lq-
risk with q > 2, or that the functions are in Lψ2 for q = 2 (for example,
linear models with sub-gaussian noise and a sub-gaussian design satisfy this
condition).

Theorem C. Let q ≥ 2. There exist constants c0 and c1 that depend only
on q for which the following holds. Assume that there exists K(d) > 0 such

that ‖Y ‖ψq
,
∥∥∥‖X‖ℓd∞

∥∥∥
ψq

≤ K(d). For x > 0 and 0 < ǫ < 1/2, let

λ(n, d, x) = c0K(d)q(log n)(4q−2)/q(log d)2(x+ log n)

and consider the RERM estimator

β̂n ∈ Arg min
β∈Rd

(
R(q)
n (β) + λ(n, d, x)

‖β‖qℓ1
nǫ2

)
.
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Then, with probability greater than 1−12 exp(−x), the Lq-risk of β̂n satisfies

R(q)(β̂n) ≤ inf
β∈Rd

(
(1 + 2ǫ)R(q)(β) + η(n, d, x)

(1 + ‖β‖qℓ1)
nǫ2

)
,

where η(n, d, x) = c1K(d)q(log n)(4q−2)/q(log d)2(x+ log n).
Procedures based on the ℓ1-norm as a regularizing or constraint func-

tion have been studied extensively in the last few years. We only mention
a small fraction of this very extensive body of work [6, 7, 8, 13, 15, 23, 26,
27, 41, 42, 45, 46]. In fact, it is almost impossible to make a proper com-
parison even with the results mentioned in this partial list. Some of these
results are close enough in nature to Theorem C to allow a comparison. In
particular, in [4], the authors prove that with high probability, the LASSO
satisfies an exact oracle inequality with a residual term ∼ ‖β‖ℓ1 /

√
n up to

logarithm factors, under tail assumptions on Y and X. In [7], upper bounds

on the risks E[
〈
X, β̂n − β0

〉2
] and

∥∥∥β̂n − β0

∥∥∥
ℓ1

were obtained for a weighted

LASSO β̂n when E
(
Y |X

)
=
〈
X,β0

〉
for β0 with short support. Exact oracle

inequalities for RERM using an entropy based criterion or on an ℓp crite-
rion (with p close to 1) were obtained in [14, 15] for any convex and regular
loss function and with fast rates. Similar bounds were obtained in [42] for a
RERM using a weighted ℓ1-criterion. In [6] it is shown that the LASSO and
Dantzig estimators [8] satisfy oracle inequalities in the deterministic design
setup and under the REC condition. In fact, in most of these results the
authors obtained exact oracle inequalities with an optimal residual term of
|Supp(β0)|(log d)/n, which is clearly better than the rate ‖β‖2

ℓ1
/n obtained

in Theorem C for the quadratic loss and in the same context.
However, it is important to note that all these exact oracle inequalities

were obtained under an assumption that is similar in nature to the Restricted
Isometry Property (RIP), whereas in Theorem C one does not need that kind
of assumption on the design. Although it seems strange that it is possible
to obtain fast rates without RIP there is nothing magical here. In fact, the
isomorphic argument used to prove Theorem B (and thus Theorem C) shows
that the random operator β ∈ Rd → n−1/2∑n

i=1(Yi−
〈
Xi, β

〉
)ei ∈ Rn satisfies

some sort of an RIP, which actually coincides with the RIP property in the
noise-free case Y =

〈
X,β0

〉
for an isotropic design. This indicates that RIP

is not the key property in establishing oracle inequalities for the prediction
risk, but rather, the “isomorphic profile” of the problem at hand, which
takes into account the structure of the class of functions.

Finally, a word about notation. Throughout, we denote absolute constants
or constants that depend on other parameters by c, C, c1, c2, etc., (and, of
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course, we will specify when a constant is absolute and when it depends
on other parameters). The values of these constants may change from line
to line. The notation x ∼ y (resp. x . y) means that there exist absolute
constants 0 < c < C such that cy ≤ x ≤ Cy (resp. x ≤ Cy). If b > 0 is
a parameter then x .b y means that x ≤ C(b)y for some constant C(b)
depending only on b. We denote by ℓdp the space Rd endowed with the ℓp

norm ‖x‖ℓdp =
(∑

j |xj |p
)1/p

. The unit ball there is denoted by Bd
p and the

unit Euclidean sphere in Rd is Sd−1.

2. Preliminaries to the proofs. In this section we obtain a general
bound on E ‖P − Pn‖(ℓF )λ

for the Lq-loss when q ≥ 2, and show that a
Bernstein type condition is satisfied under weak assumption on the loss
function.

2.1. Isomorphic properties of the loss class. The isomorphic property of
a functions class measures the “level” at which empirical means and ac-
tual means are equivalent. The notion was introduced in this context in [4].
Although it is not a necessary feature of this method, if one wishes the iso-
morphic property to hold with exponential probability, one can use a high
probability deviation bound on the supremum of the localized process. A
standard way (though not the only way, or even the optimal way!) of ob-
taining such a result is through of Talagrand concentration inequality [39]
applied to localizations of the function class, combined with a good control
of the variance in terms of the expectation (a Bernstein type condition).
When applied to an excess loss class, this argument leads to exact oracle
inequalities (see for example, [33, 5]). Here we are interested in non-exact
oracle inequality, and thus, we will study the isomorphic properties of the
loss class. To make the presentation simpler, we are not dealing with a fully
“unbounded theory” like in [28], but rather that the class has an envelope
function which is bounded in ψ1, and to follow the path of [33], in which one
obtains the desired high probability bounds using Talagrand’s concentration
theorem. Since we would like to avoid the assumption that the class consists
of uniformly bounded functions, an important part of our analysis is the
following ψ1 version of Talagrand’s inequality [1].

Theorem 2.1. There exists an absolute constant K > 0 for which the
following holds. Let Z1, . . . , Zn be n i.i.d. random variables with values in a
space Z and let G be a countable class of real-valued measurable functions
defined on Z. For every x > 0 and α > 0, with probability greater than
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1 − 4 exp(−x),

‖P − Pn‖G ≤ (1 + α)E ‖P − Pn‖G +Kσ(G)

√
x

n
+K(1 + α−1)bn(G)

x

n
.

Using the same truncation argument as in [1], it follows that for every
single function g ∈ L2(P ) and every α, x > 0, with probability greater than
1 − 4 exp(−x),

Png ≤ (1 + α)Pg +K

√
xPg2

n
+K(1 + α−1)

bn(g)x

n

and, in particular, if there exists some Bn ≥ 0 for which Pg2 ≤ BnPg +
B2
n/n, then for every 0 < α < 1 and x > 0, with probability greater than

1 − 4 exp(−x),

(2.1) Png ≤ (1 + 2α)Pg +K ′(1 + α−1)(bn(g) +Bn)
x+ 1

n
.

Theorem 2.1 can be extended to classes G satisfying some separability
property like condition (M) in [25]. We apply Theorem 2.1 in this context
and it will be implicitly assumed that every time we use Theorem 2.1, this
separability condition holds. In particular, Theorem 2.1 will be applied to
the localized sets V (ℓF )λ to get non-exact oracle inequalities for the ERM
algorithm and to the family (V (ℓFr)λ)r≥0 to get non-exact regularized oracle
inequalities for the RERM procedure.

Observe that Theorem 2.1 requires that the envelope function supg∈G |g|
is sub-exponential, but since ‖max1≤i≤nXi‖ψ1 . ‖X‖ψ1 log n it follows that
bn(ℓF ) is not much larger than ‖ supg∈G g(X)‖ψ1 . However, this condition
can be a major drawback. For instance, if the set G consists of linear func-
tions indexed by the Euclidean sphere Sd−1, and X is the standard gaussian
measure on Rd, the resulting envelope function is bounded in ψ1(µ), but its
norm is of the order of

√
d. In Theorem C, we bypass this obstacle by assum-

ing that ‖Y ‖ψq
,
∥∥∥‖X‖ℓd∞

∥∥∥
ψq

≤ K(d). This assumption is far better suited

for situations in which the indexing class is small – like localized subsets of
Bd

1 that appear naturally in LASSO type results.

Theorem 2.2. Let F be a functions class and assume that there exists
Bn ≥ 0 such that for every f ∈ F , Pℓ2f ≤ BnPℓf + B2

n/n. If 0 < ǫ < 1/2
and λ∗ǫ > 0 satisfy that

E‖Pn − P‖V (ℓF )λ∗
ǫ
≤ (ǫ/4)λ∗ǫ ,
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then for every x > 0, with probability larger than 1 − 4e−x, for every f ∈ F

Pℓf ≤ (1 + 2ǫ)Pnℓf + ρn(x),

where, for K the constant appearing in Theorem 2.1,

ρn(x) = max
(
λ∗ǫ ,

(
4Kbn(ℓF ) + (6K)2Bn/ǫ

)
(x+ 1)

nǫ

)
.

Proof. The proof follows the ideas from [4]. Fix λ > 0 and x > 0, and
note that by Theorem 2.1, with probability larger than 1 − 4 exp(−x),
(2.2)

‖P − Pn‖V (ℓF )λ
≤ 2E ‖P − Pn‖V (ℓF )λ

+Kσ(V (ℓF )λ)

√
x

n
+Kbn(V (ℓF )λ)

x

n
.

Clearly, we have bn(V (ℓF )λ) ≤ bn(ℓF ) and

σ2(V (ℓF )λ) = sup
(
P (αℓf )

2 : 0 ≤ α ≤ 1, f ∈ F, P (αℓf ) ≤ λ
)
≤ Bnλ+B2

n/n.

Moreover, since V (ℓF ) is star-shaped, λ ≥ 0 → φ(λ) = E ‖P − Pn‖V (ℓF )λ
/λ

is non-increasing, and since φ(λ∗ǫ ) ≤ ǫ/8 and ρn(x) ≥ λ∗ǫ then

E ‖P − Pn‖V (ℓF )ρn(x)
≤ (ǫ/4)ρn(x).

Combined with (2.2), there exists an event Ω0(x) of probability greater than
1 − 4 exp(−x), and on Ω0(x),

‖P − Pn‖V (ℓF )ρn(x)
≤ (ǫ/2)ρn(x) +K

√
(Bnρn(x) +B2

n/n)x

n
+K

bn(ℓF )x

n

≤ ǫρn(x).

Hence, on Ω0(x), if g ∈ V (ℓF ) satisfies that Pg ≤ ρn(x), then |Pg − Png| ≤
ǫρn(x). Moreover, if Pℓf = β > ρn(x), then g = ρn(x)ℓf/β ∈ V (ℓF )ρn(x);
hence |Pg − Png| ≤ ǫρn(x), and so (1 − ǫ)Pℓf ≤ Pnℓf ≤ (1 + ǫ)Pℓf .

2.2. The Bernstein condition of loss functions classes. In Theorem A,
the desired concentration properties (and thus the fast rates in Theorem C)
rely on a Bernstein type condition, that for every f ∈ F ,

(2.3) Pℓ2f ≤ BnPℓf +B2
n/n.

Assumption (2.3) is trivially satisfied when the loss functions are positive
and uniformly bounded: if 0 ≤ ℓf ≤ B then Pℓ2f ≤ BPℓf . It also turns out
that (2.3) does not require any “global” structural assumption on F and is
trivially verified if class members have sub-exponential tails.
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Lemma 2.3. Let X be a nonnegative subexponential random variable.
Then for every z ≥ 1,

EX2 ≤ log(ez) ‖X‖ψ1
EX +

(
4 + 6 log2(ez) ‖X‖2

ψ1

)

ez
.

Proof. Fix θ > 0 and note that

EX21IX≥θ =

∫ ∞

0
2tP[X1IX≥θ ≥ t]dt = θ2P

[
X ≥ θ

]
+ 2

∫ ∞

θ
tP
[
X ≥ t

]
dt

≤ 2θ2 exp
(
− θ/ ‖X‖ψ1

)
+ 4

∫ ∞

θ
t exp

(
− t/ ‖X‖ψ1

)
dt

≤
(
2θ2 + 4θ ‖X‖ψ1

+ 4
)
exp

(
− θ/ ‖X‖ψ1

)
.(2.4)

Since X ≥ 0, it follows from (2.4) that, for any θ > 0,

EX2 ≤ EX21IX≤θ + EX21IX≥θ

≤ θEX +
(
2θ2 + 4θ ‖X‖ψ1

+ 4
)
exp

(
− θ/ ‖X‖ψ1

))
.

The result follows for θ = ‖X‖ψ1
log(ez).

In particular, if ℓf ≥ 0 and ‖ℓf‖ψ1
≤ D for some D ≥ 1, then for every

n ≥ 1,

Eℓ2f ≤
(
c0D log(en)

)
Eℓf +

(
c0D log(en)

)2

n
.

2.3. Upper bounds on E ‖P − Pn‖V (ℓF )λ
. Let H be the loss class associ-

ated with F for the ERM or with a class Fr for some r ≥ 0 for the RERM.
The next step is to obtain bounds on the fixed point of the localized process,
that is, for some c0 < 1, to find a small λ∗ for which

E ‖P − Pn‖V (H)λ∗
≤ c0λ

∗.

Note that the complexity of the star-shaped hull V (H) is not far from
the one of H itself. Actually, a bound on the expectation of the supremum
of the empirical process indexed by V (H)λ will follow from one on Hµ for
different levels µ ∈ {2iλ : i ∈ N}. This follows from the peeling argument of
[5]: that V (H)λ ⊂ ⋃∞

i=0{θh : 0 ≤ θ ≤ 2−i, h ∈ H,Eh ≤ 2i+1λ}. Therefore,
setting Hµ = {h ∈ H : Eh ≤ µ},for all µ > 0 and R∗ = infh∈H Eh,

(2.5) E ‖P − Pn‖V (H)λ
≤

∑

{i:2i+1λ≥R∗}

2−iE ‖P − Pn‖H2i+1λ
,
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because if 2i+1λ < R∗, then the sets H2i+1λ are empty. Thus, it remains to
bound E ‖P − Pn‖Hµ

for any µ > 0.
Let us mention that a naive attempt to control these empirical processes

using a contraction argument is likely to fail, and will result in slow rates
even in very simple cases (for example, a regression model with a bounded
design). We refer to [11, 32, 34] for more details.

The bounds obtained below on E ‖P − Pn‖Hµ
are expressed in terms of a

random metric complexity of H, which is based on the structure of a typical
coordinate projection PσH. These random sets are defined for every sample
σ = (X1, ..., Xn) by

PσH = {(f(X1), . . . , f(Xn)) : f ∈ H}.

The complexity of these random sets will be measured via a metric in-
variant, called the γ2-functional, introduced by Talagrand as a part of the
generic chaining mechanism.

Definition 2.4 ([40]). Let (T, d) be a semi-metric space. An admissible
sequence of T is a sequence (Ts)s∈N of subsets of T such that |T0| ≤ 1 and
|Ts| ≤ 22s

for any s ≥ 1. We define

γ2(T, d) = inf
(Ts)s∈N

sup
t∈T

∞∑

s=0

2s/2d(t, Ts)

where the infimum is taken over all admissible sequences (Ts)s∈N of T .

We refer the reader to [40] for an extensive survey on chaining methods
and on the γ2-functionals. In particular, one can bound the γ2-functional
using an entropy integral

(2.6) γ2(T, d) .

∫ diam(T,d)

0

√
logN(T, d, ǫ)dǫ

where N(T, d, ǫ) is the minimal number of balls of radius ǫ with respect to
the metric d needed to cover T , and diam(T, d) is the diameter of the metric
space (T, d).

We will use the γ2-functional to state our theoretical bounds because there
are examples in which γ2(T, d) is significantly smaller that the corresponding
entropy integral. However, in all our concrete applications we will use the
bound (2.6) since the computation of those is much simpler, the gap is at
most logarithmic, and the purpose of this note is not to obtain the optimal
estimates but to show that the residual terms in exact and non-exact oracle
inequalities could be very different.
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Now, we turn to some concrete examples where H is the loss functions
class in the regression model with respect to the Lq-loss.

Let q ≥ 2 and set the Lq-loss function of f to be ℓ
(q)
f (x, y) = |y − f(x)|q.

In this case, the Lq-loss functions class localized at some level µ is (ℓ
(q)
F )µ =

{ℓ(q)f : f ∈ F,Eℓ
(q)
f ≤ µ}.

The following result is a combination of a truncation argument and Rudel-

son’s Ln∞ method. To formulate it, set M =

∥∥∥∥sup
ℓ∈(ℓ

(q)
F

)µ
|ℓ|
∥∥∥∥
ψ1

, for any

A ⊂ Rd, let Ã = A ∪ −A, and if F (µ) = {f ∈ F : Pℓ
(q)
f ≤ µ}, put

Un = Eγ2
2(P̃σF (µ), ℓn∞).

Proposition 2.5. For every q ≥ 2, there exists a constant c0 depending
only on q for which the following holds. If F is a class of functions, then for
any µ > 0,

1. if q = 2 then E ‖P − Pn‖(ℓ
(q)
F

)µ
≤ c0 max

[√
µUn

n ,
Un

n

]
,

2. if q > 2 then E ‖P − Pn‖(ℓ
(q)
F

)µ
is upper bounded by

c0 max



√

µ
Un
n

√(
M log n

)(q−2)/q
,
Un
n

(
M log n

)(q−2)/q
,
M log n

n


 .

Proof. Let φ(h) = sign(h) min(|h|, θ) where θ > 0 is a threshold to
be fixed later. For f ∈ F , set hf (x, y) = y − f(x), let Hµ = {hf : f ∈
F, E|hf |q ≤ µ}, and note that |h|q = |φ(h)|q +

(
|h|q − θq

)
1I|h|≥θ. Thus,

E ‖P − Pn‖(ℓ
(q)
F

)µ
= E sup

h∈Hµ

|(Pn − P )(|h|q)|

≤ E suph∈Hµ
|(Pn−P )(|φ(h)|q)| + E sup

h∈Hµ

Pn|h|q1I|h|≥θ + sup
h∈Hµ

P |h|q1I|h|≥θ

≤ E sup
h∈Hµ

|(Pn − P )(|φ(h)|q)| + 2E
(

sup
h∈Hµ

|h|q1I|h|≥θ
)
.

To upper bound the truncated part of the process, consider the empirical

diameter Dn = suph∈Hµ

(
Pn|φ(h)|2q−2

) 1
2q−2

. By the Ziné-Ginn symmetriza-

tion Theorem [43] and the upper bound on a Rademacher process by a
Gaussian one,

E sup
h∈Hµ

|(Pn − P )(|φ(h)|q)| ≤ c0√
n

EEg sup
h∈Hµ

∣∣∣
1√
n

n∑

i=1

gi|φ(h)(Xi, Yi)|q
∣∣∣
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where g1, . . . , gn are n independent standard random variables and Eg de-
notes the expectation with respect to those variables. For a fixed sam-
ple (Xi, Yi)

n
i=1, let (Z(h))h∈Hµ

be the gaussian process defined by Z(h) =

n−1/2∑n
i=1 gi|φ(h)(Xi, Yi)|q. If f, g ∈ F then

Eg(Z(hf ) − Z(hg))
2 =

1

n

n∑

i=1

(
|φ(hf )(Xi, Yi)|q − |φ(hg)(Xi, Yi)|q

)2

≤ 1

n

n∑

i=1

q2|f(Xi) − g(Xi)|2 max
(
|φ(hf )(Xi, Yi)|, |φ(hg)(Xi, Yi)|

)2q−2

≤ 2q2 max
1≤i≤n

(f(Xi) − g(Xi))
2D2q−2

n ,

where we have used that
∣∣|φ(u)|q − |φ(v)|q

∣∣ ≤ q|u− v|max
(
|φ(u)|, |φ(v)|

)q−1

for every u, v ∈ R. By a standard chaining argument it follows that

(2.7) Eg sup
f∈F (µ)

∣∣∣
1√
n

n∑

i=1

gi|φ(hf )(Xi, Yi)|q
∣∣∣ ≤ c1qγ2(P̃σF (µ), ℓn∞)Dq−1

n ,

and thus, E suph∈Hµ
|(Pn − P )(|φ(h)|q)| ≤ c2q

√
Eγ2

2(P̃σF (µ),ℓn∞)
n

√
ED2q−2

n .
A bound on the diameter follows from (2.7) and the contraction principle:

ED2q−2
n ≤E sup

h∈Hµ

|(Pn − P )(|φ(h)|2q−2)| + sup
h∈Hµ

P |φ(h)|2q−2

≤c2qθ
q−2

√
n

Eg sup
h∈Hµ

∣∣∣
1√
n

n∑

i=1

gi|φ(h)(Xi, Yi)|q
∣∣∣+ θq−2µ

≤c2qθq−2

√
UnED2q−2

n

n
+ θq−2µ,

implying that ED2q−2
n ≤ c3 max

(
q2θ2q−4Un/n, θ

q−2µ
)

and so

(2.8) E sup
h∈Hµ

|(Pn − P )(|φ(h)|q)| ≤ c4qmax
(qUnθq−2

n
,

√
Unθq−2µ

n

)
.

Next, observe that for q = 2, the right hand side in (2.8) does not depend
on the truncation level θ, and thus one may take θ arbitrarily large, leading
to the desired result.

For q 6= 2, consider the unbounded part of the process. Since the envelope
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function of Hµ exhibits a subexponential decay, then

E
(

sup
h∈Hµ

|h|q1I|h|≥θ
)

=

∫ ∞

0
P
[

sup
h∈Hµ

|h|q1I|h|≥θ ≥ t
]
dt

= θqP
[

sup
h∈Hµ

|h| ≥ θ
]
+

∫ ∞

θq
P
[

sup
h∈Hµ

|h|q ≥ t
]
dt

≤ 2θq exp
(
− θq/M

)
+ 2M exp

(
− θq/M

)
.

The result follows by taking θq = M log n.

3. Proof of Theorem A. In this section, we will present the proof of
Theorem A, which follows the same ideas as [5, 4] for the excess loss.

Lemma 3.1. There exists an absolute constant c0 > 0 for which the
following holds. Let F be a class of functions and assume that there is some
Bn such that for every f ∈ F , Pℓ2f ≤ BnPℓf + B2

n/n. For x > 0 and
0 < ǫ < 1/2, consider an event Ω0(x) on which for every f ∈ F ,

R(f) ≤ (1 + 2ǫ)Rn(f) + ρn(x),

where ρn(·) is some fixed increasing function. Then, with probability greater
than P(Ω0(x)) − 4 exp(−x),

R(f̂ERMn ) ≤ (1 + 3ǫ) inf
f∈F

(
R(f) + c0

(bn(ℓf ) +Bn)(x+ 1)

nǫ

)
+ ρn(x).

Proof. Fix x > 0, let K ′ be the constant introduced in (2.1), consider

f∗ ∈ Arg min
f∈F

(
R(f) + 15K ′ (bn(ℓf ) +Bn)(x+ 1)

nǫ

)
,

and without loss of generality one assume that the infimum is achieved. By
(2.1) (for α = (ǫ/2)/(1 + 2ǫ)), the event Ω∗(x) on which

Rn(f
∗) ≤ 1 + 3ǫ

1 + 2ǫ
R(f∗) + 5K ′ (bn(ℓf∗) +Bn)(x+ 1)

nǫ
,

has probability greater than 1 − 4 exp(−x). Hence,

−(1 + 3ǫ)R(f∗) ≤ −(1 + 2ǫ)Rn(f
∗) + 15K ′ (bn(ℓf∗) +Bn)(x+ 1)

nǫ
,

and on Ω0(x) ∩ Ω∗(x), every f in F satisfies that

R(f)−(1+3ǫ)R(f∗) ≤ (1+2ǫ)
(
Rn(f)−Rn(f∗)

)
+ρn(x)+15K ′ (bn(ℓf∗) +Bn)(x+ 1)

nǫ
.
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Since Rn(f̂
ERM
n ) −Rn(f

∗) ≤ 0 then

R(f̂ERMn ) ≤ (1 + 3ǫ)R(f∗) + 15K ′ (bn(ℓf∗) +Bn)(x+ 1)

nǫ
+ ρn(x)

and the claim now follows from the choice of f∗.

Proof of Theorem A: Let x > 0, 0 < ǫ < 1/2 and put

ρn(x) = max
(
λ∗ǫ ,

((
6K/ǫ

)2
Bn +

(
4K/ǫ

)
bn(ℓF )

)
(x+ 1)

n

)
.

By Theorem 2.2, the event Ω0(x), on which every f ∈ F satisfies that

R(f) ≤ (1 + 2ǫ)Rn(f) + ρn(x),

has probability greater than 1 − 4 exp(−x). Now, the result follows from
Lemma 3.1.

The remark following Theorem A, that if ℓ is nonnegative, then ℓF satisfies
a Bernstein type condition with Bn ∼ diam(ℓF , ψ1) log(en) follows from
Lemma 2.3.

4. Proof of Theorem B. Although the proof of Theorem B seems
rather technical, the idea behind it is rather simple. First, one needs to find
a “trivial” bound on crit(f̂RERMn ), giving preliminary information on where
one must look for the RERM function (this is the role played by the function
αn). Then, one combines peeling and fixed point arguments to identify the
exact location of the RERM.

Note that for F = ∪r≥0Fr, we have crit(f) = ∞ for all f ∈ F\F . There-
fore, without loss of generality, we can replace the set F by F in both the
definition of the RERM in (1.4) and in the non-exact regularized oracle
inequality of Theorem B.

We begin with the following rough estimate on the criterion of the RERM.
In the case where there is a trivial bound crit(f) ≤ Cn, for all f ∈ F then
it follows that for any 0 < ǫ < 1/2 and x > 0, crit(f̂RERMn ) ≤ Cn =
αn(ǫ, x). Turning to the second case stated in Assumption 1.1, recall that
r → λ∗ǫ (r) tends to infinity with r and there exists K1 > 0 such that for
every (r, x) ∈ R+ ×R∗

+, 2ρn(r, x) ≤ ρn(K1(r+1), x). Hence, for every x > 0
and 0 < ǫ < 1/2, we set αn to satisfy that

αn(ǫ, x) ≥ max
[
K1(crit(f0) + 2),

(λ∗ǫ )
−1((1 + 2ǫ)(3R(f0) + 2K ′(bn(ℓf0) +Bn(crit(f0)))((x+ 1)/n))

)]
,
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where f0 is any fixed function in F (for instance, when 0 ∈ F , one may take
f0 = 0), and (λ∗ǫ )

−1 is the generalized inverse function of λ∗ǫ . In this case,
we prove the following high probability bound on crit(f̂RERMn ).

Lemma 4.1. Assume that r → λ∗ǫ (r) tends to infinity when r tends to
infinity and that there exists K1 > 0 such that for every (r, x) ∈ R+ × R∗

+,
2ρn(r, x) ≤ ρn(K1(r + 1), x). Then, under the assumptions of Theorem B,
for every x > 0 and 0 < ǫ < 1/2, with probability greater than 1−4 exp(−x),
crit(f̂RERMn ) ≤ αn(ǫ, x).

Proof. By the definition of f̂RERMn ,

Rn(f̂
RERM
n ) +

2

1 + 2ǫ
ρn
(
crit(f̂RERMn ) + 1, x+ logαn(ǫ, x)

)

≤ Rn(f0) +
2

1 + 2ǫ
ρn
(
crit(f0) + 1, x+ logαn(ǫ, x)

)
.

Since ℓ is nonnegative, then Rn(f̂
RERM
n ) ≥ 0, and thus

ρn
(
crit(f̂RERMn ) + 1, x+ logαn(ǫ, x)

)

≤ (1 + 2ǫ)Rn(f0)/2 + ρn
(
crit(f0) + 1, x+ logαn(ǫ, x)

)

≤ max
(
(1 + 2ǫ)Rn(f0), 2ρn

(
crit(f0) + 1, x+ logαn(ǫ, x)

))
.

Since ρn(r, x) ≥ λ∗ǫ (r), for all r ≥ 0, one of the following two situations
occurs: either

λ∗ǫ (crit(f̂
RERM
n )) ≤ (1 + 2ǫ)Rn(f0),

or, noting that for every (r, x) ∈ R+×R∗
+, 2ρn(r, x) ≤ ρn(K1(r+1), x), then

ρn
(
crit(f̂RERMn ) + 1, x+ logαn(ǫ, x)

)
≤ 2ρn

(
crit(f0) + 1, x+ logαn(ǫ, x)

)

≤ ρn
(
K1(crit(f0) + 2), x+ logαn(ǫ, x)

)
,

and since ρn is monotone in r then crit(f̂RERMn ) ≤ K1(crit(f0) + 2).
Hence, in both cases

(4.1) crit(f̂RERMn ) ≤ max
(
(λ∗ǫ )

−1((1 + 2ǫ)Rn(f0)
)
,K1(crit(f0) + 2)

)
.

On the other hand, according to (2.1), with probability greater than 1 −
4 exp(−x), Rn(f0) ≤ 3R(f0) + 2K ′(bn(ℓf0) + Bn(crit(f0)))(x + 1)/n. The
result follows by plugging the last inequality in (4.1) and since λǫ is non-
decreasing.
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The next step is to find an “isomorphic” result for f̂RERMn . The idea is
to divide the set given by the trivial estimate on crit(f̂RERMn ) into level sets
and analyze each piece separately.

Lemma 4.2. Under the assumptions of Theorem B, for every x > 0,
with probability greater than 1 − 8 exp(−x),

R(f̂RERMn ) ≤ (1 + 2ǫ)Rn(f̂
RERM
n ) + ρn

(
crit(f̂RERMn ) + 1, x+ logαn(ǫ, x)

)
.

Proof. Let Ω0(x) be the event

R(f̂RERMn ) −Rn(f̂
RERM
n )

2ǫRn(f̂RERMn ) + ρn
(
crit(f̂RERMn ) + 1, x+ logαn(ǫ, x)

) ≥ 1,

and we will show that this event has the desired small probability.
Clearly,

P[Ω0(x)] ≤ P
[
Ω0(x)∩{crit(f̂RERMn ) ≤ αn(ǫ, x)}

]
+P
[
crit(f̂RERMn ) > αn(ǫ, x)

]
,

and by Lemma 4.1, P
[
crit(f̂RERMn ) > αn(ǫ, x)

]
≤ 4 exp(−x) in the second

case of Assumption 1.1 or P
[
crit(f̂RERMn ) > αn(ǫ, x)

]
= 0 when there is a

trivial bound on the criterion. Therefore, in any case, we have P
[
crit(f̂RERMn ) >

αn(ǫ, x)
]
≤ 4 exp(−x).

Recall that Fi = {f ∈ F : crit(f) ≤ i}, for all i ∈ N, and since ρn is
monotone in r then

P
[
Ω0(x) ∩ {crit(f̂RERMn ) ≤ αn(ǫ, x)}

]

≤
⌊αn(ǫ,x)⌋∑

i=0

P
[
Ω0(x) ∩ {i ≤ crit(f̂RERMn ) ≤ i+ 1}

]

≤
⌊αn(ǫ,x)⌋∑

i=0

P
[
∃f ∈ Fi+1 : R(f) ≥ (1 + 2ǫ)Rn(f) + ρn(i+ 1, x+ logαn(ǫ, x))

]
.

By Theorem 2.2, for every t > 0 and i ∈ N, with probability greater than
1 − 4 exp(−t), for every f ∈ Fi+1, Pℓf ≤ (1 + 2ǫ)Pnℓf + ρn(i + 1, t). In
particular,

P
[
∃f ∈ Fi+1 : R(f) ≥ (1 + 2ǫ)Rn(f) + ρn(i+ 1, x+ logαn(ǫ, x))

]

≤ 4 exp
(
− (x+ logαn(ǫ, x))

)
.
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Hence, the claim follows, since

P
[
Ω0(x) ∩ {crit(f̂RERMn ) ≤ αn(ǫ, x)}

]

≤
⌊αn(ǫ,x)⌋∑

i=0

4 exp
(
− (x+ logαn(ǫ, x))

)
≤ 4 exp(−x).

Proof of Theorem B: Let x > 0 and 0 < ǫ < 1. Without loss of
generality, we assume that, for the constant K ′ defined in (2.1), there exists
f∗ ∈ F minimizing the function

f ∈ F −→(1 + 3ǫ)R(f) + ρn(crit(f) + 1, x+ logαn(ǫ, x))

+ 6K ′ (bn(ℓf ) +Bn(crit(f))(x+ 1)

ǫn
.

Let Ω∗(x) be the event on which

Rn(f
∗) ≤ 1 + 3ǫ

1 + 2ǫ
R(f∗) +K ′ (bn(ℓf∗) +Bn(crit(f

∗)))(x+ 1)

n

(1 + 3ǫ

ǫ

)
.

Since f∗ ∈ Fcrit(f∗) then Pℓ2f∗ ≤ Bn(crit(f
∗))Pℓf∗ +B2

n(crit(f
∗))/n, and by

(2.1) (applied with α = ǫ/(1 + 2ǫ)), P(Ω∗(x)) ≥ 1 − 4 exp(−x).
Consider the event Ω0(x), on which

R(f̂RERMn ) ≤ (1 + 2ǫ)Rn(f̂
RERM
n ) + ρn

(
crit(f̂RERMn ) + 1, x+ logαn(ǫ, x)

)
,

and observe that by Lemma 4.2, P[Ω0(x)] ≥ 1 − 8 exp(−x). Therefore, on
Ω0(x) ∩ Ω∗(x), we have

R(f̂RERMn ) + ρn
(
crit(f̂RERMn ) + 1, x+ logαn(ǫ, x)

)
− (1 + 3ǫ)R(f∗)

≤(1 + 2ǫ)
(
Rn(f̂

RERM
n ) −Rn(f

∗)
)

+ 2ρn
(
crit(f̂RERMn ) + 1, x+ logαn(ǫ, x)

)
+ 6K ′ (bn(ℓf∗) +Bn(crit(f

∗)))(x+ 1)

ǫn

≤(1 + 2ǫ)
(
Rn(f̂

RERM
n ) +

2

1 + 2ǫ
ρn
(
crit(f̂RERMn ) + 1, x+ logαn(ǫ, x)

)

−Rn(f
∗) − 2

1 + 2ǫ
ρn
(
crit(f∗) + 1, x+ logαn(ǫ, x)

))

+ 2ρn
(
crit(f∗) + 1, x+ logαn(ǫ, x)

)
+ 6K ′ (bn(ℓf∗) +Bn(crit(f

∗)))(x+ 1)

ǫn

≤2ρn
(
crit(f∗) + 1, x+ logαn(ǫ, x)

)
+ 6K ′ (bn(ℓf∗) +Bn(crit(f

∗)))(x+ 1)

ǫn
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where the last inequality follows from the definition of f̂RERMn . Hence, by
the choice of f∗, it follows that on Ω1(x) ∩ Ω∗(x),

R(f̂RERMn ) + ρn
(
crit(f̂RERMn ) + 1, x+ logαn(ǫ, x)

)

≤ (1 + 3ǫ)R(f∗) + 2ρn
(
crit(f∗) + 1, x+ logαn(ǫ, x)

)

+ 6K ′ (bn(ℓf∗) +B(crit(f∗)))(x+ 1)

ǫn

= inf
f∈F

(
(1 + 3ǫ)R(f) + 2ρn

(
crit(f) + 1, x+ logαn(ǫ, x)

)

+ 6K ′ (bn(ℓf ) +B(crit(f)))(x+ 1)

ǫn

)
.

5. Proofs of Theorem C. Theorem C follows from a direct application
of Theorem B, by estimating the specific function ρn and the “Bernstein
function” Bn(r).

Consider the family of models (Fr)r≥0 associated with the ℓ1-criterion
Fr = {fβ : ‖β‖1 ≤ r}, where fβ(x) =

〈
x, β

〉
is a linear functional on Rd.

Lemma 5.1. There exists an absolute constant c0 for which the following
holds. For every µ and r ≥ 0, and every σ = (X1, . . . , Xn),

γ2(P̃σFr, ℓ
n
∞) ≤ c0r

(
max
1≤i≤n

‖Xi‖ℓd∞
)
(log d) log

( √
n

log d

)
.

Moreover, if
∥∥∥‖X‖ℓd∞

∥∥∥
ψ2

≤ K(d) then

(
Eγ2

2(P̃σFr, ℓ
n
∞)
)1/2 ≤ c0rK(d)(log n)3/2(log d).

The proof of the first part of the claim is rather standard and has appeared
in one form or another in several places (for example, see [5]). It follows
from (2.6) and Maurey’s empirical method (cf. [9, 37]). The second part is
an immediate corollary of the first one.
Proof of Theorem C: Observe that for every β ∈ rBd

1 ,

∥∥|Y −
〈
X,β

〉
|q
∥∥
ψ1

=
∥∥Y −

〈
X,β

〉∥∥q
ψq

≤
(
‖Y ‖ψq

+
∥∥〈X,β

〉∥∥
ψq

)q

≤
(
‖Y ‖ψq

+ ‖β‖1 ‖‖X‖∞‖ψq
)q ≤ (K(d))q(1 + r)q.

Hence, by Lemma 2.3, one may take Bn(r) = c0(2K(d))q(1 + r)q log(en).
Next, the ψ1-norm of the envelope of the class Fr satisfies

∥∥ supβ∈rBd
1
|Y −

〈
X,β

〉
|q
∥∥
ψ1

≤ (K(d))q(1+r)q, and by (2.5), Proposition 2.5 and Lemma 5.1,



26 G. LECUÉ AND S. MENDELSON

for every λ > 0,

E ‖P − Pn‖V (ℓ
(q)
Fr

)λ
≤

∞∑

i=0

2−iE ‖P − Pn‖(ℓ
(q)
Fr

)2i+1λ

≤ c0

∞∑

i=0

2−i max

(√
2i+1λ

√
r2(1 + r)q−2h(n, d)

n
,
r2(1 + r)q−2h(n, d)

n
,

K(d)q(1 + r)q(log n)

n

)

≤ c1 max



√
λ

√
(1 + r)qh(n, d)

n
,
(1 + r)qh(n, d)

n


 ,

where h(n, d) = K(d)q(log n)(4q−2)/q(log d)2. Set λ∗ǫ (r) = c2(1+r)qh(n, d)/(nǫ2)
and observe that E ‖P − Pn‖V (ℓ

(q)
Fr

)λ∗
ǫ (r)

≤ (ǫ/4)λ∗ǫ (r). Since

bn(ℓ
(q)
Fr

) = ‖ max
1≤i≤n

sup
f∈Fr

ℓ
(q)
f (Xi, Yi)‖ψ1 ≤ c3(log en)‖ sup

f∈Fr

ℓ
(q)
f (X,Y )‖ψ1 ,

then one can take φn(r) = c3K(d)q(log n)
(
1 + r

)q
. Thus,

ρn(r, x) = c4
h(n, d)(1 + rq)

nǫ2
(1 + x)

is a valid isomorphic function for this problem. It is also easy to check that
for f0 ≡ 0, logαn(ǫ, x) ≤ c5 log

(
max(x, n) ‖Y ‖qψq

)
. The result now follows

by combining these estimates with Theorem B.

6. Remarks on the differences between exact and non-exact or-

acle inequalities. The goal of this section is to describe the difference
between the analysis used in [4] to obtain exact oracle inequalities for the
ERM, and the one used in this note to establish non-exact oracle inequalities
for the ERM (Theorem A). Our aim is to indicate why one may get faster
rates for non-exact inequalities than for exact ones for the same problem.

One should stress that this is not, by any means, a proof that it is impossi-
ble to get exact oracle inequalities with fast rates (there are in fact examples
in which the ERM satisfies exact oracle inequalities with fast rates: the lin-
ear aggregation problem, [12]). It is not even a proof that the localization
method presented here is sharp. A detailed study of the isomorphic method
and oracle inequalities for a general subgaussian case (i.e., a sub-exponential
squared loss), in the sense that the class F has a bounded diameter in Lψ2

rather than an envelope function, will be presented in [28].
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However, we believe that this explanation will help to shed some light on
the differences between the two types of inequalities, and refer the reader to
[28] for a more detailed and accurate analysis.

Our starting point is the following exact oracle inequality for ERM, which
is a mild modification of a result from [4]. The only difference is that it uses
Adamczak’s ψ1 version of Talagrand’s concentration inequality for empirical
processes, instead of Massart’s version.

Theorem 6.1. There exists an absolute constant c0 > 0 for which the
following holds. Let F be a class of functions and assume that there exists
B > 0 such that for every f ∈ F , PL2

f ≤ BPLf . Let µ∗ > 0 be such that
E‖Pn − P‖V (LF )µ∗ ≤ µ∗/8, and consider an increasing function ρn which

satisfies that, for every x > 0, ρn(x) ≥ max
(
µ∗, c0(bn(LF )+B)x/n

)
. Then,

for every x > 0, with probability greater than 1 − 8 exp(−x), the risk of the
ERM satisfies R(f̂ERMn ) ≤ inff∈F R(f) + ρn(x).

Roughly put, and as indicated by the theorem, localization arguments are
based on two main components:

1. A Bernstein type condition, the essence of which is that it allows one
to “translate” localization with respect to the loss or the excess loss to
a localization with respect to a natural metric. In particular this leads
to the necessary control on the ℓn2 diameter of a random coordinate
projection of the localized class.

2. The fixed point of the empirical process indexed by the localized star-
shaped hull of the loss functions class (for non-exact inequalities) or
of the excess loss functions class (for exact ones).

Although the two components seem similar for the exact and non-exact
cases, they are very different. Indeed, for a non-exact oracle inequality, the
Bernstein type condition is almost trivially satisfied and requires no special
properties on the model/output couple (F, Y ) – as long as the functions
involved have well behaved tails. As such, it is an individual property of
every class member (see Lemma 2.3).

On the other hand, the Bernstein condition required for the exact oracle
inequality is deeply connected to the geometry of the problem (see, for exam-
ple, [31]). More accurately, when the target Y is far from the set of multiple
minimizers of the risk, N(F, ℓ,X) = {Y : |{f ∈ F : R(f) = inff∈F R(f)}| ≥
2}, one can show that a Bernstein condition holds for a large variety of loss
function ℓ. However, when the target Y gets closer to the set N(F, ℓ,X), the
Bernstein constant B degenerates, and leads to rates slower than 1/

√
n even
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if F is a two functions class. Hence, the geometry of the problem (the rela-
tive position of Y and F ) is very important when trying to establish exact
oracle inequalities, and the Bernstein condition is truly a “global” property
of F .

In particular, this explains the gap that we observed in the example pre-
ceding the formulation of Theorem A. In that case, the class is a finite set
of functions and the set N(F, ℓ,X) is nonempty. Thus, one can find a set
F and a target Y in a “bad” position, leading to an excess loss class LF
with a trivial Bernstein constant (i.e. greater than

√
n). On the other hand,

regardless of the choice of Y , the Bernstein constant of ℓF is well behaved.
Let us mention that when the gap between exact and non-exact oracle

inequalities is only due to the Bernstein condition, it is likely that both ERM
and RERM will be suboptimal procedures [22, 29, 19]. In particular, when
slow rates are due to a lack of convexity of F (which is closely related to a
bad Bernstein constant of LF ), one can consider procedures which “improve
the geometry” of the model (for instance, the “starification” method of [2]
or the “pre-selection-convexification” method in [17]).

The second aspect of the problem is the fixed point of the localized empir-
ical process. Although the complexity of the sets LF and ℓF seems similar
from a metric point of view (LF is just a shift of ℓF ) the localized star-
shaped hull (LF )λ and (ℓF )λ are rather different. Since there are many ways
of bounding the empirical process indexed by these localized sets, let us show
the difference for one of the methods – based on the random geometry of the
classes, and for the sake of simplicity, we will only consider the square loss.
Using this method of analysis at hand, the dominant term of the bound on
E ‖P − Pn‖V (ℓ

(2)
F

)µ
(for the loss class) which was obtained in Proposition 2.5

is

(6.1)
√
µ

√√√√Eγ2
2(P̃σF (µ), ℓn∞)

n
.

A similar bound was obtained for E ‖P − Pn‖V (LF )µ
in [33] and [5], in which

the dominant term is

(6.2)

√(
inf
f∈F

R(f) + µ
)
√√√√Eγ2

2(P̃σF (µ), ℓn∞)

n
.

If this bound is sharp (and it is in many cases), and since R∗ = inff∈F R(f)
is in general a non-zero constant, the fixed point µ∗ of Theorem 6.1 is of the

order of

√
Eγ2

2( ˜PσF (µ∗), ℓn∞)/n and thus leads to a rate decaying slower than
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1/
√
n. In contrast, in the non-exact case one has λ∗ǫ ∼ Eγ2

2( ˜PσF (λ∗ǫ ), ℓn∞)/n
which is of the order of 1/n (up to logarithmic factors) when the complexity
Eγ2

2(P̃σF , ℓ
n
∞) is “reasonable”.

The reason for this gap comes from the observation that functions in the
star hull of ℓF whose expectation is smaller than R∗ are only “scaled down”
versions of functions from ℓF . In fact, the “complexity” of the localized
sets below the level of R∗ can already be seen at the level R∗. Hence, the
empirical process those sets index (when scaled properly), becomes smaller
with λ.

In contrast, because there are functions Lf that can have an arbitrarily
small expectation, the complexity of the localized subsets of the star hull of
LF (normalized properly, of course), can even increase as λ decreases. This
happens in very simple situations; for example, even in regression relative to
Bd

1 , if R∗ 6= 0, the complexity of the localized sets remains almost stable and
starts to decrease only at a very “low” level λ. This is the reason for the phase
transition in the error rate (∼ max{

√
(log d)/n, d/n}) that one encounters

in that problem. The first term is due to the fact that the complexity of the
localized sets does not change as λ decreases – up to some critical level, while
the second captures what happens when the localized sets begin to “shrink”.
A concrete example of this phenomenon is treated in the Supplementary
material [20] in the Convex aggregation context.

SUPPLEMENTARY MATERIAL

Supplement A: Applications to Matrix Completion, Convex ag-

gregation and Model Selection

(http://lib.stat.cmu.edu/aoas/???/???). In the supplementary file, we apply
our main results to the problem of Matrix Completion, Convex aggregation
and Model Selection. The aim is to expose the fundamental differences be-
tween exact and non-exact oracle inequalities on classical problems.
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1981.

[38] Ingo Steinwart and Andreas Christmann. Support vector machines. Information
Science and Statistics. Springer, New York, 2008.

[39] M. Talagrand. Sharper bounds for Gaussian and empirical processes. Ann. Probab.,
22(1):28–76, 1994.

[40] Michel Talagrand. The generic chaining. Springer Monographs in Mathematics.
Springer-Verlag, Berlin, 2005. Upper and lower bounds of stochastic processes.

[41] Robert Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist.
Soc. Ser. B, 58(1):267–288, 1996.

[42] Sara A. van de Geer. High-dimensional generalized linear models and the lasso. Ann.
Statist., 36(2):614–645, 2008.

[43] Aad W. van der Vaart and Jon A. Wellner. Weak convergence and empirical processes.
Springer Series in Statistics. Springer-Verlag, New York, 1996. With applications to
statistics.

[44] Vladimir Vapnik. Estimation of dependences based on empirical data. Springer Se-
ries in Statistics. Springer-Verlag, New York, 1982. Translated from the Russian by
Samuel Kotz.

[45] Tong Zhang. Some sharp performance bounds for least squares regression with L1

regularization. Ann. Statist., 37(5A):2109–2144, 2009.
[46] Hui Zou. The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc.,

101(476):1418–1429, 2006.

E-mail: Guillaume.Lecue@univ-mlv.fr E-mail: shahar@tx.technion.ac.il

mailto:Guillaume.Lecue@univ-mlv.fr
mailto:shahar@tx.technion.ac.il

	Introduction and main results
	Empirical risk minimization
	Regularized empirical risk minimization
	1-regularization

	Preliminaries to the proofs
	Isomorphic properties of the loss class
	The Bernstein condition of loss functions classes
	Upper bounds on E"026B30D P-Pn"026B30D V(F) 

	Proof of Theorem A
	Proof of Theorem B
	Proofs of Theorem C
	Remarks on the differences between exact and non-exact oracle inequalities
	Supplementary Material
	References
	Author's addresses

