N

N

Evidence of chaos in the Belief Propagation for LDPC
codes
Jean-Christophe Sibel, Sylvain Reynal, David Declercq

» To cite this version:

Jean-Christophe Sibel, Sylvain Reynal, David Declercq. Evidence of chaos in the Belief Propagation
for LDPC codes. 5th Chaotic Modeling and Simulation International Conference, 12 - 15 June 2012,
Athens Greece, Jun 2012, Athénes, Greece. pp.593. hal-00736202

HAL Id: hal-00736202
https://hal.science/hal-00736202

Submitted on 27 Sep 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00736202
https://hal.archives-ouvertes.fr

Evidence of chaos in the
Belief Propagation for LDPC codes

J.C. Sibel, S. Reynal, and D. Declercq

ETIS / ENSEA / Univ. Cergy-Pontoise / CNRS UMR 8051
F-95000, Cergy-Pontoise, France
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Abstract. In this paper, we investigate the behaviors of the Belief Propagation
algorithm considered as a dynamic system. In the context of LDPC (Low Den-
sity Parity-Check) codes, we use the noise power of the transmission channel as
a potentiometer to evaluate the different motions that the BP can follow. The
computations of dynamic quantifiers as the bifurcation diagram, the Lyapunov ex-
ponent and the reconstructed trajectory enable to bring out four main behaviors.
In addition, we propose a novel measure that is the hyperspheres method, which
provides the knowledge of the time evolution of the attractor size. The information
collected from these different quantifiers helps to better understand the BP evolu-
tion and to focus on the noise power values for which the BP suffers from chaos.

Keywords: LDPC, iterative map, chaos, Lyapunov exponent, bifurcation diagram.

1 Introduction

The channel coding is a research field whose purpose is to protect an infor-
mation to transmit from environmental disturbances. The first step is the
encoding of the information, a procedure in which the information, modeled
as a sequence of k bits uq,...,ug, is mapped to a larger sequence of IV bits
Z1,...,xn. The map consists in artificial correlations called constraints or
parity-check equations. In [1] are introduced the Low-Density Parity-Check
(LDPC) codes which are a widespread technique to encode the information.
Such a code can be represented by a Tanner graph [2], a graphical represen-
tation which turns out to be very useful in the second step, the decoding. In
this part, the bits transmitted though a random noisy channel are iteratively
handled by a decoding algorithm to create an associated output sequence
of N bits that verify the whole set of parity-check equations and that must
be as close as possible to the input sequence. One of the most famous de-
coding algorithm is the Belief Propagation (BP) [3], also used in statistical
physics [4], extensively studied in [5,6], which is deemed to be the optimal
message-passing algorithm in the case the Tanner graph of the LDPC code
is loopfree. However, in most cases the Tanner graph is not loopfree [7] that
involves that the BP becomes suboptimal. Moreover, the BP presents some
complex behaviors in terms of the noise power of the transmitted channel,
as periodic and chaotic motions [8]. Along the whole paper, we present some



measures to bring out these different behaviors. The paper is organized as
follows: in the second section are presented preliminaries about the LDPC
codes and the BP, in the third section we present the dynamic environment
of the BP, the measures to identify the behaviors and the associated results.

2 LDPC codes and Belief Propagation

We consider a set of N binary random variables X = {X1,..., Xn} whose
global state is denoted by x = [z1,...,2y]. An LDPC code is built by a
set of M constraints, or parity-check equations, C = {C,...,Cy} such that
for each check Cj its state is ¢; = ineNj x; where Nj is a subset of X
called the neighborhood of C'; depending on the LDPC code, and the sum is
computed over the Galois field GF(2). We consider that C; and X; such that
X; € Nj, form an edge e;; between two nodes inside an undirected bipartite
graph called the Tanner graph G = (XU C, {e;;}). An example of a Tanner
graph is displayed on the figure 1.

Fig. 1. Tanner graph of the Hamming code

The purpose of the BP is to estimate the joint probability distribution p(X = x),
written simply p(x), by a distribution called the belief b(x) and to extract
the most likely state X = arg maxy b(x) considered as the estimate of the in-
put sequence. Each variable X; has its own marginal probability distribution
pi(z;) and its own belief {b;(x;)}1<i<ny. The BP is an iterative algorithm
that consists in passing messages between the variables and the constraints
on the edges of a given Tanner graph at each iteration k. For each edge e;;:

e the messages ngf) (z;) from C; to X; are: nglf)(xz) = fji({mﬁy’;’l)}(m’y))

e the messages mgf)(xi) from C; to C; are: ml(»f) (z;) = gij({nz(,]?}(%y), li(x;))

where the functions f;; and gj; are detailed in [2], and {l;(z;)}; are the

likelihoods L(x) = {l1(z1) = p(y1|z1),...,In(zn) = p(yn|zN)} computed

from the channel obervations {y1,...,yn}. The noisy transmission channel

that we use in all of our simulations is an additive white Gaussian noise

channel whose power is o2. We summa(u‘ize the message-passing by a unic
k-1

implicit equation Ve;;, ngf) = Gij({nnm )}(m,n),{li}i). The convergence



of the BP is: Veyj, ny;) = ngf_l). These messages provide the computation

of the beliefs, whose equations are defined in [2]. All the simulations that
follow are done on a commonly used example which is the Tanner code [9)].

3 Dynamics

3.1 State space definition and properties

We consider {G;} (;,j) as a set of iterated maps on the state variables {ngf)}(i,j)

and T") = {ngf)}(i,j) as the points of the trajectories of the BP at iteration
k in the associated state space £.

3.2 Parameters and scaling

In [8] the value of o2, or the corresponding Signal to Noise Ratio (SNR), is
used as a parameter such that different values imply different motions of the
BP. However, most of their simulations are done for particular noise real-
izations and scaled on the SNR, that prevents from evaluating a statistical
behavior. A reason is that the noise realizations that lead the BP not to con-
verge or to converge to a wrong estimate are rare events, essentially because
the LDPC codes and the iterative algorithms are created to this end. A way
to have some statistical evaluations of the behavior of the BP is:

1. finding some of these noise realizations,

2. storing the corresponding initializations on the state variables,

3. averaging the quantities to measure for a sufficient set of initializations
that are close in the state space in the sense of the Euclidean distance.

By this way, we target the critical values, i.e. the SNR that correspond to a
blatant change in the behavior of the algorithm, which are the bifurcations.

3.3 Bifurcation diagram

A relevant method to extract the critical values of the SNR is the use of the
bifurcation diagram. It consists in evaluating the value of a function F that is
computed from the state variables at their steady state for J different values
of the SNR. We get a sequence [E,,, ..., E,,] that represents the behavior of
the dynamic system in terms of the SNR. We consider the following function
exposed in [8] called the mean square beliefs:

where the input sequence in the channel is the null sequence and the beliefs
are computed at the last iteration K of the BP algorithm. Obviously, there is



no reason that the associated dynamic system has reached any steady state
at this iteration but we need to suppose it for computation time’s sake. This
function presents three important values:

e I, = 1: all the beliefs indicate that the ouput sequence is the null
sequence which is a good decoding,

o B, = %: all the beliefs are uniform thus there is no information about
the state of the transmitted bits, which is a missed decoding,

e E, = 0: all the beliefs indicate that the output sequence is the comple-
mentary of the sent sequence, which is a completely wrong decoding.

The display of [Ey,,...,E,,] en-
ables to know two properties of the
used algorithm: the amplitudes pro-
vides information about the decod-
ing performance, and the variation
between successive values gives us
the critical values of the SNR. We
display on the figure 2 the mean bi-

Es

0.8 furcation diagrams of the BP. We
observe that for SNRs lower than
SN 2.19 dB, the BP follows a regular

Fig. 2. Bifurcation diagrams of the BP  increasing steady motion. When

the SNR is greater than this criti-
cal value, the algorithm follows a periodic motion. However, for values in
[2.5 dB,2.98 dB] it does not appear any known evolution which can be an
indication of chaos. For values greater than 2.99 dB, the BP converges to the
good decoding state.

3.4 Reduced trajectory

Another use of the mean square beliefs function is the representation of the
trajectory in a 3-dimensional state space. To this end, we use the phase
space reconstruction [10]. The method is first to compute this function at
each iteration to get the following sequence E, = [Ey(k)|o<k<k. Afterthat
we share this one dimensional sequence in a three dimensional sequence E, .
On the figures 3 and 5 are displayed some reduced trajectories of the BP for
typical values of the SNR deduced from the previous bifurcation diagram.
It appears four typical behaviors that match with the four intervals exposed
in the previous paragraph. We obtain a very small sized attractor for SNR
= 2.10 dB that can be considered as a fixed point, whereas the reduced
trajectory transforms to a limit cycle when the SNR is between 2.19 dB and
2.49 dB. A crucial point is that the thickness of the trajectory along this
limit cycle increases as the SNR is getting greater up to 2.50 dB.



Fig. 3. Reduced trajectory for the BP on the Tanner code with SNR = 2.15 dB

and 2.30 dB

Fig. 4. Reduced trajectory for the BP on

the Tanner code with SNR = 2.40 dB

At the same time this limit cycle
interleaves with other limit cycles,
that can be understood as a se-
quence of period doubling bifurca-
tions in terms of dynamic system, as
is displayed on the figure 4 with two
interleft cycles. Such a phenomenon
is a typical route to chaos, that is
observable from 2.51 dB. A chaotic
motion means that there is not any
periodic motion or fixed point con-

vergence anymore, as it is displayed for 2.70 dB. When the SNR reaches 2.99
dB the trajectory collapses to a single point that is a true fixed point.

Fig. 5. Reduced trajectory for the BP on the Tanner code with SNR = 2.70 dB

and 3.00 dB

We have to be cautious because E, is not a true trajectory, it does not
respect the Cauchy-Lipschitz condition [10] due to the non bijection between
the messages and the beliefs. Thus, this sequence only has the role of giving
clues about the true behavior as the possible shape of the actual trajectory
in £ that are: convergence to a fixed point, convergence to a limit cycle,



convergence to a chaotic attractor. To distinguish these shapes, we need a
criterion that reflects the behavior by its own value.

3.5 Lyapunov exponents

A common measure is the Lyapunov

exponent A, that consists in evalu-
0.012 ating at each iteration k < K the
log-ratio of the Euclidean distance
between two initially close trajecto-
ries. As detailed in [11,10] the sign
of X reveals the behavior of the sys-
tem around the corresponding ini-
tialization of the trajectories: A > 0
means the trajectories have moved
SNR away one from the other, which is an

. . . <
Fig. 6. Lyapunov exponents of the BP on evidence of a chaotic behavior,A <

the Tanner code scaled on the SNR 0 means juhe. trajectlories have got
closer, which is an evidence of a con-

vergent behavior to a small sized volume of the state space. This volume is
reduced to a fixed point if and only if A — co. When A crosses the x-axis the
system suffers from a bifurcation meaning that the algorithm has changed
of motion. The corresponding SNR are the critical values. We display on
the figure 6 the Lyapunov exponents of the BP on the Tanner code. As we
have observed on the bifurcation diagrams, the evolution is really different
as soon as the SNR is greater than 2.09 dB. The BP curves is perfectly con-
sistent with the associated bifurcation diagram in the sense that the critical
values we extract are the same and the behaviors we could imagine by the
bifurcation diagram are also revealed by the Lyapunov exponent. A relevant
analyze we need to effect is the comparison with the reduced trajectory we
exposed previously so as to associate accurately with each reduced motion a
particular evolution of A. For SNR € [0dB;2.19db]: the reduced trajectory
converges to a very small sized volume of Egp that we can consider as a fixed
point whereas A is close to the null value, for SNR € [2.20db; 2.49db]: the
reduced trajectory is trapped into a limit cycle whereas A has gone over a
stair, for SNR € [2.50db;2.98db]: the reduced trajectory does not converge
to any fixed point, limit cycle or quasi-limit cycle but to a chaotic attrac-
tor whereas A soars to high values, for SNR € [2.99db; +o0odb]: the reduced
trajectory converges to a fixed point corresponding to a good decoding.

0.008

< 0.004

3.6 Hyperspheres method

We propose here a novel method to evaluate the unstability of the BP, based
on its own trajectory in £. This method is complementary to the Lyapunov
exponent measure because it reveals the size of the attractor that the trajec-
tory falls into and some other properties about the limit cycles. This method



consists in computing the rays Ry, of the hyperspheres circumscribed to the
trajectory inside a given temporal window centered around each point 7).
On the figure 7 are displayed the
evolutions of two rays that corre-

‘ ‘ ‘ spond to two initially close trajec-

0.12 - n tories in the Euclidean sense. The
motion we observe for SNR = 2.30

3 01 |~ N dB is consistent with the limit cycle
we observed on the reduced trajec-

0.08 - n tory. The curve of the ray enables

—— — — to estimate the period of the trajec-
tory around 23 iterations. Moreover
we can assert that this limit cycle is
Fig. 7. Evolution of two hyperspheres stable because the two rays cannot
rays corresponding to two initially close be distinguished. For 2.70 dB the
trajectories of the BP on the Tanner code rays moved away one from the other
at SNR = 2.10 dB, SNR = 2.30 dB as it was predicted by the Lyapunov
exponent observations. More accurately we can see that the rays has different
oscillations step. This is due to the period doubling bifurcations explained
previously. During 92 iterations in average for k < 500, the trajectory is
trapped in a given limit cycle and for the next 92 iterations the trajectory
falls into another limit cycle of different ray. For both it is possible to mea-
sure the period or pseudo-period that is the same as the period of the first
limit cycle, that is 23 iterations. For k£ > 500 we cannot distinguish these
different phases of evolution, the period doubling has led to chaos.

Ry
Ry
o
N

T

Fig. 8. Evolution of two hyperspheres rays corresponding to two initially close
trajectories of the BP on the Tanner code at SNR = 2.70 dB, SNR = 3.00 dB

Such an observation makes our method relevant to bring out crucial infor-
mation by a one dimensional function. Another important aspect of the
hyperspheres method is the raising of the behaviors difference between two
initially close trajectories: we easily observe that the evolution of the rays
cannot be distinguished while £ < 200 but as k is getting greater, the evo-



lution of the rays move away one from the other but they follow the same
kind of motion. For both of them the hypervolumes of the state space in
which they are locking in are quite of the same size. When the SNR reaches
the last critical value we observe that one of the rays decreases to the null
value because the BP has converged to a fixed point. The other ray has not
collapsed yet because the SNR is just at the critical value, if it was increased
a little we would see the two rays going to zero.

4 Conclusion

In this paper, we raised the dynamics issue of the BP by the use of known
and new measures. The most important result is that the BP follows a
systematic scheme when the decoding is not trivial: convergence to a small-
sized attractor, locking in a limit cycle, chaos and convergence to a fixed-
point. Such a property is really useful because it helps to bring out the
critical values of the noise power of the channel for which the BP could present
complex behaviors. Another advantage of our study is that all the measures
we used can be applied on any other decoding algorithms. Therefore, we have
started to create a toolbox for the dynamics study of the LDPC decoders.
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