
HAL Id: hal-00736038
https://hal.science/hal-00736038

Submitted on 27 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering, visualizing, and navigating for large dynamic
graphs

Arnaud Sallaberry, Chris Muelder, Kwan-Liu Ma

To cite this version:
Arnaud Sallaberry, Chris Muelder, Kwan-Liu Ma. Clustering, visualizing, and navigating for large
dynamic graphs. GD: Graph Drawing, Sep 2012, Redmond, WA, United States. pp.487-498,
�10.1007/978-3-642-36763-2_43�. �hal-00736038�

https://hal.science/hal-00736038
https://hal.archives-ouvertes.fr

Clustering, visualizing, and navigating for large
dynamic graphs

Arnaud Sallaberry1, Chris Muelder1, and Kwan-Liu Ma1

University of California at Davis, U.S.A.
asallaberry@ucdavis.edu, muelder@cs.ucdavis.edu, ma@cs.ucdavis.edu

Abstract. In this paper, we present a new approach to exploring dy-
namic graphs. We have developed a new clustering algorithm for dynamic
graphs which finds an ideal clustering for each time-step and links the
clusters together. The resulting time-varying clusters are then used to de-
fine two visual representations. The first view is an overview that shows
how clusters evolve over time and provides an interface to find and select
interesting time-steps. The second view consists of a node link diagram
of a selected time-step which uses the clustering to efficiently define the
layout. By using the time-dependant clustering, we ensure the stability
of our visualization and preserve user mental map by minimizing node
motion, while simultaneously producing an ideal layout for each time
step. Also, as the clustering is computed ahead of time, the second view
updates in linear time which allows for interactivity even for graphs with
upwards of tens of thousands of nodes.

1 Introduction

In recent years, the domain of network visualization has yielded many techniques
for exploring large graphs. Most of these deal with static networks and are based
on graph drawing algorithms (see for example [1] or [2]), clustering techniques
(see [3] for an introduction), or exploratory methods (see for example [4], [5]
or [6]). In contrast, many fewer works have been devoted to the exploration
of dynamic graphs. A dynamic graph is an evolving graph where vertices and
edges are added and removed over time. Examples of such graphs include social
networks, dependency graphs in software engineering, website hyperlinks, router
networks, collaboration networks, etc.

When creating a node-link diagram for a dynamic graph, not only does the
layout need to consider graph topology, but also the stability between time-
steps. This generally forces a trade-off between layout quality and stability, as
a perfectly stable layout would sacrifice layout quality, and naively calculating
ideal layouts would not offer stability. While there are a number of existing
methods for creating these layouts, they generally do not scale well to large
scale graphs.

In this paper, we describe a visualization approach for dynamic graphs that
provides an overview of the entire dynamic graph over time, yields high quality
layouts for every time-step, minimizes node motion between time steps to provide

stability and preserve the user’s mental map, and which is also efficient enough
to allow for interactive exploration even under random access patterns. Our
approach consists of first clustering each time-step independently to guarantee
good locality for that time-step, associating the clusters between time-steps, and
then arranging the clusters and nodes such that nodes that are consistant are
stationary and transitional node motion is minimized. This produces a temporal
arrangement which we directly visualize as a timeline, and which we use to define
layouts for a node link diagram for each time-step which both meets general
layout criteria (namely cluster co-location and short average edge length) and
where node motion is minimized between time-steps.

The main contributions of this paper are the novel algorithms for clustering
and ordering dynamic graphs, the overview visualization, the stable and efficient
layout approach, and the scalability and interactivity of the overall system. The
clustering and ordering algorithms are useful for the discovery of trends among
time-varying graphs, and we think it will be a strong basis for future works in
this area. Our approach is the first method that we are aware of that creates an
overview to show the evolution of clusters, which is an important contribution
in the process of making hypothesis about trends among the evolution of com-
munities in a graph. Also, to the best of our knowledge, it is the first approach
that allows for interactive visualization and exploration of dynamic graphs with
tens of thousands of nodes and edges.

2 Related Works

A common method for visualizing dynamic graphs is to animate the transi-
tions between time-steps [7–12]. This approach yields dynamic visualization with
nodes appearing, disappearing and moving to produce readable layout for each
time-step. Alternatively, multiple time-steps can be staticly placed next to each
other using ”Small Multiples” [13]. This eases the comparison of distant time-
steps but the area devoted for each time-step is small and this reduces the
readability of each graph. An empirical study to compare the advantages and
drawbacks of these approaches (”Animation” vs. ”Small Multiples”) has been
performed by Archambault et al. [14]. A major issue for both methods is to
ensure the stability of the layout [15, 12, 16, 17]. A stable layout helps preserve
the user’s mental map as there is less movement between time-steps, but sacri-
fices quality in terms of readability for later time-steps as their layout depends
on previous time-steps. Many experiments has been proposed to examine the
effect of preserving the mental map in dynamic graphs visualization [18–20].
The results of [20] were quite surprising because the most effective visualiza-
tions were the extreme ones, i.e. the ones with very low or high mental map
preservation: visualizations with medium preservation performed less well. The
approach described in this paper aims to achieve high mental map preservation.

An interesting visualization dealing with dynamic large directed graphs has
been proposed by Burch et al. [21]. Vertices are ordered and positioned on several
vertical parallel lines, and directed edges connect these vertices from left to right.

2

Each time-step’s graph is thus displayed between two consecutive vertical axes.
Hu et al. [17] proposed a method based on a geographical metaphor to visualize
clustered dynamic graphs. However, their approach requires one global clustering
over time, while ours allows nodes to be transferred in order to create better local
clusterings and to capture the evolutions of the communities.

3 Clustering

A dynamic graph can be defined formally as an agglomerate graph G = (V,E)
and an ordered sequence of subgraphs S = {G1 = (V1, E1), G2 = (V2, E2), ..., Gk =
(Vk, Ek)} where each Gt is the subgraph of G at time t. V, V1, V2, ..., Vk are finite
and non-disjointed sets of nodes, E,E1, E2, ..., Ek are finite and non-disjointed
sets of edges such that V = V1 ∪ V2 ∪ ... ∪ Vk and E = E1 ∪E2 ∪ ... ∪Ek. What
we need is to create a time-varying clustering, i.e. a set of clusters evolving over
time. The clustering method we describe here is a two step algorithm. The first
step consists of partitioning the nodes for each time step independently. Then,
we associate these clusters through time to derive time-varying clusters.

3.1 Time-step Clusterings

Finding a partition of the nodes of a static graph according to its structure
is a well studied problem. Schaeffer has published a good overview of graph
clustering methods[3]. For our approach, we need to cluster a dynamic graph,
which is a less studied problem. We do this by first finding a partition for each
time step, i.e. a set of clusterings C = {C1, C2, ..., Ck} where Ct = {ct1, ct2, ..., ctlt}
is a partition of the nodes Vt of Gt. In this paper, we call each Ct a “time-step
clustering” where cti is the “time-step cluster” i at time t, and cti ⊆ Vt for each
i ∈ J1, ltK, Vt = ct1 ∪ ct2 ∪ ...ctl and cti ∩ ctj = ∅ for each pair (i, j) ∈ J1, ltK2.

Our algorithm is based on the so-called modularity function [22]. It represents
the sum of the number of edges linking nodes of the same clusters minus the
expected such sum if edges were distributed at random. For a graph Gt = (Vt, Et)
and a partition Ct of its nodes, the modularity Q(Ct) is defined by:

Q(Ct) =
1

2|Et|
∑
u,v∈Vt

[
Auv −

kukv
2|Et|

]
δ(ct(u), ct(v))

where |Et| is the number of edges, Auv is 1 if there is an edge between u and
v and 0 otherwise, ku =

∑
v Auv is the number of edges attached to u, ct(u) is

the time-step cluster of Ct containing u, δ(ct(u), ct(v)) is 1 if ct(u) = ct(v) and
0 otherwise.

A partition that maximizes this function helps to discover clusters of densely
connected communities. Moreover, as shown by Noack [23], optimizing the mod-
ularity is the same as optimizing an energy function in graph layout. This equiv-
alence implies that our layout based on such a clustering algorithm yields a good
representation of the graph.

3

The problem of finding a partition that maximizes the modularity is hard,
and the corresponding decision problem is NP-complete [24]. We use the heuristic
proposed by Blondel et al. [25], which works well in terms of both the quality
of the results and the computation time. Initially, each node belongs to its own
cluster. Then pairs of clusters are recursively merged such that the modularity
of the partitioning increases. If two possible merges involve the same cluster, the
merge that improves the modularity the most is performed.

3.2 Time-varying Clustering

We define a time-varying clustering of a dynamic graph G as a set of time-
varying clusters V C = {V C1, V C2, ..., V Cl}. Each of these time-varying clusters
is an ordered sequence V Ci = {vc1i , vc2i , ..., vcki } where k is the number of time
steps and each vcti is a subset of the vertices Vt at time t. That is, each time-
varying cluster V Ci is a cluster whose membership can evolve over time, where
vcti represents the set of nodes in the cluster i at time t. As the number of clusters
can change between timesteps, not every cluster exists at every timestep, so the
total number of time-varying clusters l can be larger than the number of time
step clusters at any time step.

Our overall approach is to compare the time-step clusters pairwise between
neighboring time-steps and putting the most similar time-step clusters into the
same time-varying cluster. We start from an empty set V C of time-varying
clusters and we create a time-varying cluster V Ci for each time-step cluster
c1i of the first time-step clustering C1. The set of nodes of these time-varying
clusters V Ci at time 1 are initialized with the time-step clusters c1i : vc

1
i ← c1i .

Then, starting with this partition of the graph at time 1, for each vc2i we
search for the time-step cluster of C2 that is the most similar to vc1i . Let c2a be
such a cluster, then vc2i ← c2a. If no similar cluster can be found in C2, then vc2i
is an empty set (i.e. the time-varying cluster has disappeared at time-step 2). If
there is a time-step cluster c2a in C2 that cannot be associated with a vc2i , then a
new time-varying cluster V Cb is created with vc1b ← ∅ and vc2b ← c2a. We iterate
this process for each time-step.

The crux of this algorithm is how to decide which time-step cluster of Ct is
the most similar to a cluster of Ct−1. The solution we use is based on a similarity
function between time-step clusters of Ct−1 and clusters of Ct. Results of this
function can be stored in a matrix M such that Mij denotes the similarity
between ct−1i and ctj . Starting from the highest value of this matrix and the

corresponding clusters ct−1i and ctj , we assign ctj to the time t of the dynamic

cluster V Ci that contains the cluster ct−1i at the time t−1. Then we do the same
for the second highest value of the matrix and so on. Any values corresponding
to time-step clusters that have already been assigned to a dynamic cluster are
skipped. This process ends when there are no more time-step clusters or when
the highest similarity value is under a given threshold. Finally, any remaining
time-step clusters become new dynamic clusters.

In our implementation, we use the Jaccard index to compute the similarities.
For two clusters ct−1i and ctj , this is defined by the equation |ct−1i ∩ ctj |/|c

t−1
i ∪

4

ctj |. There are two main advantages in using this metric. First it takes into
account the number of shared nodes as well as the total number of nodes, which
guarantees homogeneity between consecutive steps of a time-varying cluster.
Secondly it returns a value normalized between 0 and 1 which is helpful for
empirically defining a threshold.

4 Ordering

Our visualization is based not just on a clustering, but on an ordering of the
time-varying clusters (in the next sections, we use the word “cluster” instead of
“time-varying cluster” to simplify the notation). Then, nodes are also ordered
within each cluster. A node that moves from a cluster V Ca to a cluster V Cb is
involved in the node ordering of both V Ca and V Cb, e.g. it can be the 6th node
of V Ca and the 3rd node of V Cb.

4.1 Ordering clusters

The stability of the layout is one of the main goals of our method: we want to
easily see the evolution of the clusters and also be able to follow nodes that
move between clusters. As the layout depends on the ordering, clusters need to
be ordered in such a way that two clusters exchanging many nodes are close to
each other.

We do this by first creating a weighted quotient graph QG = (VQG, EQG, ω)
defined by the relationships between the time-varying clusters V C of G. Each
node of VQG represents a cluster of V C, i.e. VQG ← V C. There is an edge in EQG
between V Ci and V Cj if and only if there is at least one node in the sets of V Ci
that is also in a set of V Cj . The weight function ω is a function ω : EQG → N
defined for each edge e = (V Ci, V Cj) as the number of transferred of nodes
between sets of V Ci and sets of V Cj .

Next we need to find an ordering of these clusters, i.e. a permutation φ :
VQG → {1, 2, ..., |VQG|} that minimizes the function:

LAφ(QG) =
∑

uv∈EQG

u,v∈VQG

ω(uv) · |φ(u)− φ(v)|

This function is called the Linear arrangement function (LA) and finding an
ordering that minimizes it is known as the Minimum Linear Arrangement Prob-
lem (MinLA) [26]. MinLA is NP-hard and the corresponding decision problem
is NP-complete [27]. Many heuristics have been proposed to find a satisfying
solution. A list of these methods and an experiment has been proposed by Petit
[26]. More recently, Koren and Harel have proposed a new heuristic [28] that is
a good compromise between computation time and quality of the results.

5

4.2 Ordering nodes

The second ordering step consists in finding a permutation of the nodes within
each cluster V Ci of V C. Since we want to maximize stability, we calculate this
permutation over all time, so that nodes will not move within a cluster, even if
this leaves gaps at some time-steps. As with the clusters, this is another MinLA
problem. Let vci be the set of nodes of V Ci: vci =

⋃
1≤t≤k vc

t
i. Then the permu-

tation is defined as ϕi : vci → {1, 2, ..., |vci|}. This ordering needs to take into
account the ordering of the clusters computed previously: for example, if a node
v moves only once from a cluster V Ca to a cluster V Cb and if φ(V Ca) < φ(V Cb),
then v should lie at the upper extremity of V Ca (high ϕa(v)) and at the lower
extremity of V Cb (low ϕb(v)). To find the permutation ϕi, we first compute for
each node v of vci the median of the clusters V Ci v belongs to:

mediani(v) =

∑
V Cj ;v∈vcj

φ(V Cj)

|{V Cj ; v ∈ vcj}|

Then, the permutation ϕi is the ordering obtained by sorting the nodes of vci
according to their median value: mediani(v) < mediani(u)⇔ ϕi(v) < ϕi(u).

5 Visualization

The visualization methods we employ focus on representing the evolving clusters
in dynamic graphs. inspired by [29, 30] that provides an overview of the entire
dynamic graph, and a more traditional node-link view for individual time-steps.
Both of these views are derived from the clustering and ordering methods de-
scribed earlier. Moreover, since the clustering and ordering are computed as
a preprocessing step, the computation times of the visualizations are linear,
which makes it possible to obtain real-time, interactive navigation of the dy-
namic graph.

5.1 Time-line view

The time-line view depicts an overview of the nodes’ arrangement into clusters
and of the nodes motion between clusters. Each node is represented as a line
where the x-position is time and the y-positions corresponds the cluster the
nodes belong to at each given time and its position within the cluster.

Figure 1(a) shows an example. For reference purposes, in this diagram the
time-steps are represented with vertical grey lines (here from from 1 to 5). There
are 8 horizontal lines (including black, blue and green ones), which correspond to
8 nodes. There are four clusters on the y-axis, and a horizontal line is in front of
one of them when the corresponding node belongs to it. Clusters are positioned
according to the ordering φ computed by the pre-processing algorithm, from
bottom to top (e.g. the cluster labelled 4 is the cluster V Ca with a such that
4 = φ(V Ca)).

6

As an example of reading this plot, consider the blue line. The corresponding
node v belongs to the cluster 4 at times 1 and 2, and it belongs to the cluster 3
at times 3 and 4, since the blue line moves from cluster 4 to cluster 3 at time 3.
We also see that the blue node is no longer in the graph at the time-step 5 and
that the green node appears in the graph at the time-step 2.

1

2
1

2

3

4

1 2 3 4 5

3

(a) (b)

Fig. 1. (a) The time-line gives an overview of the clusters and of the nodes moving
from clusters to clusters. Each horizontal or bent line is a node. Vertical grey lines
represent time-steps, from 1 to 5. Y-axis represents clusters, e.g. the blue line near the
cluster 4 at time-steps 1 and 2 stands for a node v that belongs to V Ca with a such
that 4 = φ(V Ca), at the time 1 and at the time 2 (it belongs to vc1a and vc2a but not
to vc3a, vc4a and vc5a). (b) Time-step view of the graph used in the example of Figure
1(a). It shows the graph at the 3rd time-step. We don’t display the edges here. Nodes
represented as disks are positioned along a Hilbert’s curve, represented by the black
bended line.

Lines in the clusters are positioned according to the orderings ϕi computed
during the pre-processing step. In this way, a node v that moves from a cluster
V Ca to a cluster V Cb with φ(V Ca) < φ(V Cb) is likely to be positioned at the
upper extremity of V Ca (high ϕa(v)) and at the lower extremity of V Cb (low
ϕb(v)). This technique reduces edge crossings and improves the readability of
the view.

Clusters are separated by a constant gap to clarify their distinctions. The
height of a cluster V Ci corresponds to the size the set vci of all the nodes that
belong to it at least for one time-step. As an example, |vcb| = 4 (see the red
circle 1) and |vcc| = 3 with c such that 2 = φ(V Cc) (see the red circles 2 and
3). Thanks to this, a node has always the same position in the same cluster, so
there will be no bends when a node remains in the same cluster and the area
devoted to a cluster remains the same.

5.2 Time-step view

The second view is a node-link diagram that shows the graph at any selected
time-step. The layout is based on the technique of Muelder and Ma [2], which
maps a 1-D ordering of nodes to a space filling curve to define the layout.

Since we have already computed a stable ordering of nodes, it is sensible to
map this same ordering onto the space filling curve. In the timeline, the height

7

of each line at any time step corresponds to the pre-computed ordering. So, we
can reuse these y-positions as a 1-D layout for that time-step, then map the
nodes directly to a space-filling curve by placing the nodes at the corresponding
distance along the curve. This is done by normalizing both the 1-D layout and
the length of the curve, then calculating the position of each node by recursively
mapping it to the curve in constant time, as in the original paper [2]. Figure
1(b) shows an example of this node positioning on the same example as the one
presented in Figure 1(a) for time-step 3. In this diagram, we use a Hilbert curve,
but we also use Peano curve, a Gosper curve, and an H-curve, and the user can
switch between these curves as desired (see [31] for a summary of well-known
space-filling curves).

One interesting property of a space-filling curve is known as the Worst-Case
Locality [31]. This property guarantees that the euclidean distances between
nodes in the layout are bounded by the distances of the same nodes in the
one-dimensional layout. So, the proximities of elements (nodes/clusters) depend
directly on the ordering. As the ordering is based primarily on the connectivity
of the networks, this guarantees layout quality metrics, such as tightly connected
groups of nodes being placed close together with a good aspect ratio, and short
average edge lengths.

Since a node has always the same position in the time-line when it is in the
same cluster and the area devoted to a cluster remains the same, its placement
in the layout will also be constant. This ensures the stability of the layout. Even
the distance that moving nodes is minimized, as the ordering is computed such
that clusters that exchange many nodes will be placed closer together.

As the layout itself runs in linear time (see the section 7 for more detailed
explanation), the visualization can be updated interactively by the user and we
can even easily play the sequence of graphs and animate the transitions with
graphs of tens of thousands nodes/edges (see section 5.3 for more details).

As we use a clustering hierarchy, we can also employ the hierarchical edge
bundling technique [32] which improves the readability of the graph. Control
points of the spline linking a node v and a node u are defined by the path
through the clustering hierarchy, and placed according to the clusters’ centroids.

Figure 2 shows a real-world example of both views.

5.3 Interaction and navigation

One of the most useful features of our approach is that any time-step can be
laid out quickly and directly, without needing to iterate over the other time-
steps. The benefit of this is that it enables random access. That is, users can
find interesting time-steps in the time-line and skip between them directly. We
enable this form of interaction by letting the user simply click in the time-line
on the time-step that they want to load. We also include the more traditional
approach of simply animating over the entire dynamic graph. In either case, the
positions of nodes that move are interpolated between time-steps so that the user
can follow their motion. Within the node-link diagram itself, we can also allow
for traditional graph interaction, such as selection, or focus+context zooming.

8

6 Case study

The Internet dataset, shown in Figure 2, is a very large and complex dynamic
network. It is composed of 41,928 nodes and 218,080 edges over 421 time-steps.
But even at this scale, it still renders fast enough to allow for smooth animation
or interactivity. The timeline is dense and chaotic (Figure 2(a)). However, this
timeline does reveal some interesting patterns. Firstly, there are several dense
horizontal sections that never change much, which would be core autonomous
systems. Secondly, there is a gradual shift over time, from the bottom of the
plot to the top. This could be due to gradual improvements to the underlying
connectivity (e.g. when a newer, faster fiber-optic cable is developed, a new sub-
network could form utilizing it). These patterns are also visible in the node-link
diagrams. In every time-step, the large green USA cluster at the left of the plot
(most likely the west coast) is fairly constant, other than the density increasing.
Russia (in blue) and the asian cluster just left of the center of the plot are also
quite stable (although Russia seems to split near the end). The rest of America
is rather chaotic until near the end of the time range where they coalesce in the
upper right region of the plot. Europe (in purple) has a very interesting pattern:
there is a large cluster that is fairly constant for the first part of the time range,
and a large cluster that is constant near the end of the time range, but in the
middle it jumps around the plot a lot. Also, there are several smaller European
clusters distributed throughout the plot. South America also has an interesting
pattern, as it is right by the large USA cluster except for the very beginning
and end of the run. One pattern that is not apparant in the still images, but is
very interesting to see in the animation, is a trend where a single node or small
group of nodes starts a new cluster, then several nodes leave their clusters to
join the new cluster, and then the cluster immediately dissolves, all within a few
time-steps. We posit that this could be due to a misconfiguration where a router
was temporarily issuing bad BGP routes, and then was subsequently fixed.

7 Discussion

One of the strongest points of our approach is its scalability and interactivity.
Nearly all the computation is done in the pre-processing step, so both visual
representations can be generated extremely quickly. The time-line takes Θ(k∗n)
where k is the number of time-steps and n is the number of nodes. The graph
layout is even faster, taking only Θ(n) time to compute. It actually takes more
computation to render the network then to lay it out, as the rendering is Θ(n+m)
where m is the number of edges.

The downside to this is that the pre-processing step can take a long time.
Clustering each time step is relatively fast (see the original paper [25] for timing
details). Correlating clusters between time-steps and ordering the clusters are
both fast, since there are much fewer clusters than nodes. The limiting factor
is the ordering of the nodes within each cluster, which can take hours on larger
datasets.

9

(a) Timeline (b) 2001-11-04

(c) 2003-10-19 (d) 2005-09-18

(e) 2007-08-19 (f) 2009-08-02

Fig. 2. The autonomous systems of the Internet

10

8 Conclusion

We have presented a new, highly scalable approach for exploration of large dy-
namic graphs. Since the layout and rendering is performed in linear time, the
user can interactively navigate dynamic graphs of upwards of tens of thousands
of nodes and hundreds of thousands of edges. The layout method performs ex-
ceptionally well both in quality since each time-step is clustered locally, as well
as in stability since the nodes’ placements are fixed. As a future work, we intend
to further explore faster and better algorithms for deriving time-varying clusters.

Acknowledgements This research is sponsored in part by the National Science
Foundation through grants CCF 1025269 and CCF 0811422.

References

1. Hachul, S., Jünger, M.: An experimental comparison of fast algorithms for drawing
general large graphs. In: Proceedings of the International Symposium on Graph
Drawing (GD’05). Volume 3843 of LNCS., Springer (2006) 235–250

2. Muelder, C., Ma, K.L.: Rapid graph layout using space filling curves. IEEE TVCG
14(6) (2008) 1301–1308

3. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1) (2007) 27–64
4. van Ham, F., van Wijk, J.J.: Interactive visualization of small world graphs. In:

Proceedings of the IEEE Symposium on Information Visualization (InfoVis’04).
(2004) 199–206

5. Abello, J., van Ham, F., Krishnan, N.: ASK-GraphView: A large scale graph
visualization system. IEEE TVCG 12(5) (2006) 669–676

6. Archambault, D., Munzner, T., Auber, D.: GrouseFlocks: Steerable exploration of
graph hierarchy space. IEEE TVCG 14(4) (2008) 900–913

7. North, S.C.: Incremental layout in DynaDAG. In: Proceedings of the International
Symposium on Graph Drawing (GD’95). Volume 1027 of LNCS., Springer (1996)
409–418

8. Diehl, S., Görg, C.: Graphs, they are changing. In: Proceedings of the International
Symposium on Graph Drawing (GD’02). Volume 2528 of LNCS., Springer (2002)
23–30

9. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.V.: GraphAEL:
Graph animations with evolving layouts. In: Proceedings of the International Sym-
posium on Graph Drawing (GD’03). Volume 2912 of LNCS., Springer (2004) 98–
110

10. Görg, C., Birke, P., Pohl, M., Diehl, S.: Dynamic graph drawing of sequences of or-
thogonal and hierarchical graphs. In: Proceedings of the International Symposium
on Graph Drawing (GD’04). Volume 3383 of LNCS., Springer (2004) 228–238

11. Boitmanis, K., Brandes, U., Pich, C.: Visualizing internet evolution on the au-
tonomous systems level. In: Proceedings of the International Symposium on Graph
Drawing (GD’07). Volume 4875 of LNCS., Springer (2008) 365–376

12. Frishman, Y., Tal, A.: Online dynamic graph drawing. IEEE TVCG 14(4) (2008)
727–740

13. Tufte, E.R.: Envisionning Information. Graphics Press (1990)

11

14. Archambault, D., Purchase, H.C., Pinaud, B.: Animation, small multiples, and the
effect of mental map preservation in dynamic graphs. IEEE TVCG 17(4) (2011)
539–552

15. Kumar, G., Garland, M.: Visual exploration of complex time-varying graphs. IEEE
TVCG 12(5) (2006) 805–812

16. Brandes, U., Mader, M.: A quantitative comparison of stress-minimization ap-
proaches for offline dynamic graph drawing. In: Proceedings of the International
Symposium on Graph Drawing (GD’11). Volume 7034 of LNCS., Springer (1012)
99–110

17. Hu, Y., Kobourov, S.G., Veeramoni, S.: Embedding, clustering and coloring for
dynamic maps. In: Proceedings of the 5th IEEE Pacific Visualization Symposium
(PacificVis 2012). (2012) 33–40

18. Purchase, H., Hoggan, E., Görg, C.: How important is the ”mental map”? - an
empirical investigation of a dynamic graph layout algorithm. In: Proceedings of
the International Symposium on Graph Drawing (GD’06). Volume 4372 of LNCS.,
Springer (2007) 184–195

19. Saffrey, P., Purchase, H.: The ”mental map” versus ”static aesthetic” compromise
in dynamic graphs: A user study. In: Proceedings of the 9th Australasian User
Interface Conference (AUIC2008). (2008) 85–93

20. Purchase, H., Samra, A.: Extremes are better: Investigating mental map preser-
vation in dynamic graphs. In: Proceedings of the 5th International Conference
on Diagrammatic Representation and Inference (Diagrams 2008). Volume 5223 of
LNCS., Springer (2008) 60–73

21. Burch, M., Vehlow, C., Beck, F., Diehl, S., Weiskopf, D.: Parallel edge splatting
for scalable dynamic graph visualization. IEEE TVCG 17(12) (2011) 2344–2353

22. Newman, M.E.J., Girvan, M.: Graph clustering. Physical Review E 69(026113)
(2004)

23. Noack, A.: Modularity clustering is force-directed layout. CoRR abs/0807.4052
(2008)

24. Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., Wag-
ner, D.: Maximizing modularity is hard. arxiv.org/abs/physics/0608255 (2006)

25. Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of commu-
nities in large networks. Journal of Statistical Mechanics: Theory and Experiment
(2008)

26. Petit, J.: Experiments on the minimum linear arrangement problem. Technical
Report LSI-01-7-R, Universitat Politecnica de Catalunya, Departament de Llen-
guatges i Sistemes Informatics (2001)

27. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

28. Koren, Y., Harel, D.: A multi-scale algorithm for the linear arrangement prob-
lem. In: 28th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2002). Volume 2573 of LNCS., Springer (2002) 296–309

29. Ogawa, M., Ma, K.L.: Software evolution storylines. In: Proceedings of the ACM
2010 Symposium on Software Visualization (SoftVis’10). (2010) 35–42

30. Tanahashi, Y., Ma, K.L.: Design considerations for optimizing storyline visualiza-
tions. To appear in IEEE TVCG (2012)

31. Haverkort, H.J., van Walderveen, F.: Locality and bounding-box quality of two-
dimensional space-filling curves. Computational Geometry, Theory and Applica-
tions 43(2) (2010) 131–147

32. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hi-
erarchical data. IEEE TVCG 12(5) (2006) 741–748

12

