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A New Strategy Combining Empirical and Analytical

Approaches For Grasping Unknown 3D Objects

S. El-Khoury, A. Sahbani

Université Pierre et Marie Curie, Paris 6, France

Abstract

This paper proposes a novel strategy for grasping 3D unknown objects
in accordance with their corresponding task. We define the handle or the
natural grasping component of an object as the part chosen by humans to pick
this object with. When humans reach out to grasp an object, it is generally
in the aim of accomplishing a task. Thus, the chosen grasp is quite related to
the object task. Our approach learns to identify objects handles by imitating
humans. In this paper, a new sufficient condition for computing force-closure
grasps on the obtained handle is also proposed. Several experiments were
conducted to test the ability of the algorithm to generalize to new objects.
They also show the adaptability of our strategy to the hand kinematics.
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1. Introduction

To operate in everyday environments and assist people, robots have to
deal with a wide range of objects. Thus, many robotics applications require
manipulation. Grasp synthesis is the central action of objects manipulation
and this study will focus on that phase.
The first goal of every grasping strategy is to ensure stability. A grasp is
stable if a small disturbance, on the object position or finger force, generates
a restoring wrench that tends to bring the system back to its original con-
figuration [14]. Nguyen [43] introduces an algorithm for constructing stable
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grasps. Nguyen also proves that all 3D force-closure grasps can be made
stable. A grasp is force-closure when the fingers can apply appropriate forces
on the object to produce wrenches in any direction [9]. Obviously, stability
is a necessary but not a sufficient condition for a grasping strategy. When
we reach out to grasp an object, we have a goal in our mind or a task to
accomplish. Computing task-oriented grasps is consequently crucial for a
grasping strategy. Finally, because of the variety of objects shapes and sizes,
grasping novel objects is required. This paper proposes a grasp synthesis
strategy that meets these constraints.

2. Related Work

A grasping strategy should ensure stability, task compatibility and adapt-
ability to novel objects. In other terms, it should always have an answer to
the following question: where to grasp a novel object in order to accomplish
a task? Analytical and empirical approaches answer this question differently.

2.1. Analytical Approaches

Analytical Approaches consider the laws of physics, kinematics and dy-
namics in determining grasps. Such approaches address the problem of com-
puting force-closure and task-oriented grasps. Many works have been devel-
oped to compute force-closure grasps. Grasp synthesis approaches dealing
with polyhedral objects reduce the force-closure condition to a test of the
angles between the faces normals [43] or use the linear model to derive an-
alytical formulation for grasps characterization [47, 18, 29]. Some general
approaches, where no restrictions are placed on the object model, were also
used [15, 30]. These methods find contact points on a 3D object surface
that ensure force-closure. But what about computing good force-closure
grasps? For this purpose, different quality criteria were introduced to the
grasping literature for computing optimal force-closure grasps achieving the
most desirable performance in resisting external wrench loads [41, 23]. These
approaches are tackled between optimizing and heuristical techniques. The
former compute optimal force-closure grasps by optimizing an objective func-
tion according to a pre-defined grasp quality criterion [41]. When objects are
modelled with a set of vertices, they search all their combinations to find
the optimal grasp [41, 23, 54]. Heuristic methods generate first many grasps
candidates, filtered them with a simple heuristic and then choose the best
candidate [32, 26, 40]. These approaches find stable grasps adapted for pick

2



and place operations but are not task-oriented.
Only few works [17, 46, 27, 48] take the task into account. The task wrench
space (TWS) models wrenches applied on the grasped object in order to
perform a task. Given an object and a task to be executed, Li and Sas-
try proposed to represent the TWS as a six-dimensional ellipsoid [17]. The
latter conforms well the task but its difficult to obtain. The authors were
conducted to pre-compute the trajectory followed by the object to accom-
plish the task. Obviously, this approach is not adapted to new tasks nor
to new objects, the whole computation procedure will be repeated. Pollard
models the TWS with a six-dimensional unit sphere [46]. Thus, it is as-
sumed that the probability for every wrench direction to occur is equal. This
representation has no physical interpretation since wrenches occurring at an
object boundary are not uniform. Consequently, the TWS is not uniform as
well. Borst approximates the OWS with an ellipsoid in order to model the
TWS [27]. This representation takes into account the object geometry and
the wrenches it may encounter. But since this representation accounts for
different wrenches on the whole object boundary, it does not consider task
specific information. Thus, the computed grasp is not the best adapted to
a specific task. Haschke [37] optimizes the maximal applicable wrench for a
given task wrench direction. However, the paper does not include any infor-
mation about the corresponding task wrench direction computation. Thus,
task-oriented analytical methods suffer from two main problems: the diffi-
culty of modeling a task and the computational effort to find a grasp suitable
for the corresponding task. While the selection of task-oriented optimal grasp
is very easy for a human hand, it is still a complicated process for a robot
hand.

2.2. Empirical Approaches

Empirical grasping methods avoid the computational complexity of ana-
lytical techniques by attempting to mimic human grasping strategies. Em-
pirical strategies for grasp planning can be divided into two main kinds: (1)
systems based on the observation of the object to be grasped and (2) sys-
tems based on the observation of a human performing the grasp. The former
techniques generally learn to associate objects characteristics with a hand
preshape, while in the latter, a robot observes a human operator performing
a grasp and try then to imitate the same grasp. This technique is called in
the literature learning by demonstration approach. Different Learning-by-
Demonstration frameworks, where the robot observes the human performing

3



a task and is afterwards able to perform the task itself were proposed in
the literature. One of the problems arising in human based learning settings
is the one of measuring human performance. Some researchers use data-
gloves, map human hand to artificial hand workspace and learn the different
joint angles [35, 31], hand preshapes [38] or the corresponding task wrench
space [24] in order to perform a grasp. Others use stereoscopy to track the
demonstrator’s hand performing a grasp [36] or try to recognize its hand
shape from a database of grasp images [49]. Mirror neurones that fire not
only when grasping but also when observing an action were also introduced
to the grasping problem [19]. These approaches enable objects telemanipu-
lation or grasp type recognition. However, their learning data is based on
the hand observation, i.e the joint angles, the hand trajectory or the hand
shape. Thus the learning algorithm do not take into consideration the ma-
nipulated object properties. Consequently, these methods are not adapted to
grasping previously unknown objects. The authors in [19] roughly estimate
the size and location of the object and relate them to the hand properties.
Kyota [38] finds cylinder-likeness surfaces on the object and associate these
surfaces with different hand shapes. They do not take into account object
usage. Thus, these approaches can find stable grasps for pick and place oper-
ations but are unable to determine a suitable grasp for object manipulation.
Grasping strategies based on the object observation analyze its properties
and learn to associate them with different grasps. Pelossof’s startegy can
predict the quality of a grasp according to a stability criterion [45]. Saxena’s
approach [22] find grasping points on mugs handles or on elongated objects
mid-points. Such contact points are adapted to some objects in terms of
task-compatibility but when this approach encounter elongated objects such
as screw-drivers or bottles, it will also identify a grasping region situated
at these objects middles. Such grasps are not necessarily adapted to such
kinds of objects. Stark’s grasping strategy [52] can only distinguish between
two objects classes: handle-graspable (adapted for mugs) and side-graspable
(adapted for bottles). This method does not take into account the variety
of objects shapes and thus the variety of possible grasps. Li and Pollard
strategy [16] determine for one object different grasps and fail to choose the
one adapted to the task-requirements. These systems can generalize to new
objects but they find either stable grasps or generate for one object differ-
ent grasps and fail to select automatically the one that best suits the task.
When trying to do this autonomously, they encounter the same problem of
analytical task-oriented methods, which is task modelling.
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2.3. Contribution

Fully autonomous grasping of a previously unknown object remains a
challenging problem. In other words, a strategy that learns to associate a
grasp to an unknown object/task is still unsolved. We have shown that
neither analytical nor empirical approaches can fulfill by themselves the con-
straints of stability, task compatibility and adaptability to new objects. We
propose, in this paper, an approach combining empirical and analytical meth-
ods to find appropriate grasps for novel objects. Our strategy associates to
each object a handle by imitating humans. This permits to find, for an un-
known object, a grasp in accordance with its corresponding task. A new
sufficient condition for computing force-closure grasps on the obtained han-
dle is also proposed. This method aims at reducing force-closure grasps
computation time.

3. The proposed approach

It’s obvious that if we are able to recognize objects, we will also be able
to associate a grasp to each object category. Because of the variety of objects
shapes and sizes, predicting every possible object the robot could encounter is
impossible. Thus, a robot will certainly have to grasp non-identified objects
and so are humans. Grasping novel objects is a task humans perform with a
great dexterity. To acquire this ability, robots should handle objects in the
same manner as humans. Thus, what should the grasping algorithm learns
in order to pick a new object in the same manner as humans? In other words,
what parameters are relevant to new objects grasping? Are these parameters
related to the hand characteristics? Are they related to the object features?

3.1. Grasping By Components: The Concept

According to the Recognition By Components theory of Biederman [10],
or RBC, humans are able to recognize objects by separating them into geons,
or geometric ions. Geons are composed of different shapes (i.e. cylinders,
cones, etc.) that can be assembled in various ways to form an unlimited
amount of objects. Biederman suggests that segmenting objects for their
identification does not depend on our familiarity with these objects. Thus,
we conduct the same process for any object, whether it is familiar or un-
familiar. Consider for example the object shown in Figure 1. Despite its
unfamiliarity, we may be able to identify this object by segmenting it into
parts at regions of deep concavity. But what about grasping an unfamiliar
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Figure 1: Biederman unfamiliar object [10].

object? Does its part decomposition emphasize a specific grasp?

Assumptions:

When considering objects we use for everyday tasks on a part-representation
level, we can make the following assumptions:

• Objects handles: Objects are equipped with a part designed specifically
to make their grasp easier. Figure 2 shows some familiar objects. The
black part indicates the component that humans choose to grasp these
objects. Thus, it is also the part that satisfies the task requirements.
This part is what we call the object natural grasping component or
more simply the object handle. We all agree that the handle of a cup

Figure 2: Some objects used for everyday tasks. The black part indicates the object
handle.

or a mug is its curved part and that the handle of a bottle, a pencil
or a spoon is their elongated parts. But what about the handle of an
unknown object? Which part of the object is there to facilitate its
grasp? If we can determine the handle of an unknown object, we can
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easily find a grasp of that object adapted to the task it is designated
to.

• Grasping Similarities: Many objects with similar components are grasped
in the same manner. Bags, buckets, mugs and cups are roughly com-
posed of a cylinder and a curved cylinder. Even though the arrange-
ment of these components is different for these objects, they are all
grasped by their curved component (Fig. 3). Thus, the choice of an ob-
ject graspable part is influenced by the shape of its constituting single
parts. Objects parts orientation is less relevant to that choice.

Figure 3: The choice of an object graspable part is influenced by the shape of its consti-
tuting parts, independently from their orientations, i.e: a) a mug, b) a bucket and c) a
bag are all grasped by their curved part.

• Handle Vs. Relative Sizes: The relative sizes of object components
is crucial for the graspable part selection. Let us examine some alco-
hol glasses shapes and sizes. More precisely, we consider wine, cham-
pagne and brandy glasses. Although, all these glasses are composed of
three parts: the bowl, the stem and the foot, they are grasped differ-
ently (Fig. 4). Wine glasses are characterized by their wide bowl which
gives the wine the chance to breathe. Champagne flutes are character-
ized by a narrow bowl on the top. This is designed to keep sparkling
wine desirable during its consumption. Wine and champagne glasses
are designed to be held by the stem to help prevent the heat from the
hand from warming the alcohol. On the other hand, brandy glasses
have a short stem. They are designed to be held by the bowl. The
wide bowl of the brandy glass accommodates the hand, which warms
the brandy for drinking. This example shows that objects are designed
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Figure 4: Roughly approximation of: a) a wine glass, b) a champagne flute and c) a brandy
glass.

in a way making their grasp easier and that the choice of the graspable
component is influenced by the objects parts relative sizes.

In summary, we can say that information about an unknown object parts
shapes and sizes may emphasize a specific part for grasping. This leads to
the ”Grasping By Components” or GBC strategy.

3.2. Grasping By Components: The Strategy

The diagram below (Fig. 5) illustrates a description of the proposed grasp-
ing strategy [34]. By representing objects as a set of components, we may
identify the graspable one. Hence, our approach is composed of four steps:

Part Segmentation: Objects are first decomposed into single parts at re-
gions of deep concavities. This conforms well with human intuition about
parts. A common 3D objects segmentation technique is to compute surface
features which contrast boundary and non-boundary points and then to de-
compose the object into parts at boundary points. The key issue here is how
to reliably locate the part boundaries?

Shape Approximation: Since information about objects components shapes
and sizes is required, the approximation step ensures a geometrical descrip-
tion of these parts. Therefore, which model has to be used?

Learning: The learning step permits to learn the grasping component of
an object using information about its sub-parts shapes and sizes. This step
is performed by imitating humans choice of objects graspable parts. The
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Figure 5: The different steps of the proposed approach.

difficulty here is to determine the training data. What objects should be se-
lected for training and is the algorithm capable to generalize to novel objects?

Contact Points: Once the handle of an object is identified, a grasp is com-
puted on that part. How the contact points are determined? Is the grasp
obtained stable?

The following section will focus on object modelling that includes object
part segmentation and volumetric part models choice and recovery. The
learning step will be detailed in section 5. Computing contact points will be
addressed in section 6. The experimental results are detailed in section 7.
Section 8 concludes.

4. Object Modeling

Object modeling is obtained by segmenting a 3D object model into its
meaningful parts and by describing the shape of each part. We use in our
experiments synthetic (CAO models) and real objects (obtained from a 3D
laser scanner or from a 3D reconstruction using a vision system) models.
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4.1. Segmentation

A segmentation algorithm based on the Gaussian curvature and the con-
caveness estimation is used [12].

Gaussian curvature and Surface behavior:. Given a vertex p on a polygonal
mesh (Fig. 6), the discrete gaussian curvature k(p) is defined by [13]:

Figure 6: Discrete Gaussian curvature computation. The first, the second, and the third
patches show elliptic, parabolic and hyperbolic behavior. Thus they have positive, zero
and negative Gaussian curvature respectively.

k(p) =
3(2π −

∑N

i θi)
∑N

i Ai

(1)

where N is the number of triangles at p; θi, represents the interior angle of
the triangle at p; Ai, represents the area of the corresponding triangle. Thus,
a point p belongs to the following categories: elliptic if k > 0; hyperbolic if
k < 0; parabolic if k = 0 (Fig. 6). Therefore, we can divide the surface into
disjunctive regions by detecting the boundaries with hyperbolic behavior.

Concaveness estimation:. Concave vertices are also pertinent to objects de-
composition into meaningful parts. Concaveness and convexity of the vertices
on a mesh are estimated with the following equations [50]:

Np =
(
∑N

i niAi)
∑N

i Ai

pc =
(
∑N

i piAi)
∑N

i Ai

(2)

d = |−→ppc.Np| ds = −→ppc.Np (3)
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Where the average plane H of a vertex p is defined by the normal vector
Np of p and a center point pc, and the distance d from p to H ; Ai, pi and
ni are the area, the vertex and the normal of the adjacent face around p,
respectively, and −→pcp denotes the vector from p to pc; ds the signed distance
from p to H . Based on the signed distance, the vertex p is defined as convex
if ds ≤ 0, and as concave if ds > 0.

Gaussian curvature can identify elliptic and hyperbolic behaviors of a
3D polygonal mesh. However, it cannot detect if a corner vertex is con-
cave or convex. Thus the concaveness detection complement the Gaussian
curvature. After the estimation of these features on each vertex of the 3D tri-
angular mesh of the object model, vertices are labelled as boundary or inner
region vertices. A vertex p is a boundary vertex if it has an hyperbolic be-
havior or is concave. The segmentation approach is then performed in three
steps, minima detection, plateau erosion and region merging. The minima
detection step finds the local minima (the non-boundary regions) and mark
each minimum with a unique label. The rest areas are considered plateaus.
Plateaus are then eroded to their neighbor minima. Finally a region merging
step merges the less important regions according to a size criterion to their
neighbor regions. More details on these steps can be found in [12]. Since
this method uses multi-ring neighborhood in order to compute a 3D object
surface features, it succeeds in decomposing low resolution as well as high
resolution 3D laser scanned objects (Fig. 7).

Figure 7: Segmentation of real 3D laser scanned objects.

4.2. Approximation

Object segmentation produces a set of parts. The next task is to generate
a description for each one. Each part is represented by a superquadric. With
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only few parameters, superquadrics can represent a large variety of standard
geometric solids as well as smooth shapes. In order to have a manageable
number of superquadrics shapes, we have chosen 7 representative models
that span the space of superellipsoids: box, cylinder, sphere, bent box, bent
cylinder, tapered box and tapered cylinder [34]. A superquadric surface
model is defined by the following implicit equation:

f(x, y, z) =

((

x

a1

)
2

ǫ2

+

(

y

a2

)
2

ǫ2

)

ǫ2

ǫ1

+

(

z

a3

)
2

ǫ1

= 1 (4)

Where, a1, a2 and a3, define the superquadric size; ǫ1 and ǫ2, determine
the shape curvatures that define a smoothly changing family of shapes from
rounded to square. This compact model of superquadrics, defined by only five
parameters, can model a large set of building blocks like spheres, cylinders
and boxes (Fig. 8). In order to increase the flexibility of the model (4), two

Figure 8: Simple and deformed superquadrics.

deformations, tapering and bending (Fig. 8), are added. Tapering is defined
with two parameters kx and ky. Bending is defined with the bending angle γ.

5. Learning the Natural Grasping Component

The previous section detailed an object representation as a set of su-
perquadrics. Thus, the remaining issue is obviously to develop a learning
algorithm to select the graspable one. This is difficult since objects are com-
posed of a variable number of parts which are of different shapes and sizes.
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The question that arise is: What information about the objects is relevant
to their grasping? Can this information be reused to grasp novel objects?
What could possibly be the training data?

5.1. Object Coding

We previously showed that the choice of the graspable part is influenced
by the object components shapes and relative sizes. However, this choice is
less influenced by the object parts assembly (section 3.1). The shape and the
size of a superquadric are represented by 8 parameters; a1, a2, a3, ǫ1, ǫ2, kx, ky and γ.
Thus, a 8xS column vector V , where S is the object part number, represents
the whole object. This object representation is invariant to object translation
and rotation. For a scale factor invariance, the size parameters of the object
components are represented as the ratio of their most important value.

5.2. Training Data

The proposed learning algorithm should use object components shapes
and sizes in order to select the grasping part. We showed that an object
sub-parts assembly is less relevant than their shapes and sizes to this choice.
Thus, we can consider multi-part objects grasping as an extension of two-part
objects grasping knowledge. This leads to a training data constituted of two-
part objects. In learning algorithms, a large number of training examples is
needed in order to have a good generalization. Collecting real world data is
cumbersome. Generating synthetic data is easier and less-time consuming.
Therefore, we use synthetic 3D objects models available on Princeton Bench-
mark [51] and NTU 3D Model Benchmark [11] along with labels indicating
the grasping component. Since the learning algorithm should perform an
analogue of humans choice of the grasping component, several subjects were
asked to identify the grasping part of the corresponding objects.

As for the choice of the two-parts training objects, supervised learning re-
quires a set of objects that can potentially span the space of two superquadrics
assembly. Therefore, the choice of the training objects should effectively sub-
sample this space. Seven superquadrics are used to model our objects. Thus,
the training objects components are chosen to span these 7 superquadrics
shapes with different sizes. We use 12 objects for the training set (Fig. 9).
Figure (10) shows the steps for generating the training data. It shows first
the initial object, its decomposition into single parts, the approximation of
each part with a superquadric and finally its corresponding grasping part
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Figure 9: Training objects set. The black part indicates the chosen object handle.

according to humans choice. Additionally, to increase the diversity in our
data, once a synthetic model of the object has been created, we vary some
properties of the object components such as the size, the bending angle or the
tapering parameters without changing the whole appearance of the object.
By varying these properties, we generate 72 examples of each object. These
examples are divided into training data and testing data.

Figure 10: Some two-part objects used for generating the training set. (a) shows the initial
3D object. (b) presents its segmentation into single parts. (c) shows the superquadric
approximation of each constituting part. (d) shows the natural grasping part in black.
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5.3. Learning Algorithm

A multi-layer perceptron, with one hidden layer, is trained with a typical
backpropagation learning algorithm [1] in order to select the grasping part
of a two-component object. Eight parameters are sufficient to represent a
component shape and size. In the sequel, the first layer has sixteen inputs
(training performed on two-parts objects). On the other hand, the output
layer represents whether the first or the second component of the object is
chosen as grasping part. Thus, the output is a one unit layer. As for the
hidden layer, 5 units were chosen empirically.
For multi-part objects, the decision of the grasping component is taken by
considering the object parts two by two in a randomly order. In other words,
the algorithm starts by choosing a grasping component between two parts of
the object. The chosen part is then compared with another component and
so on until finding the handle of the multi-part object.

6. From the Grasping Component to the Grasping Points

This section concerns the generation of stable grasps on the object gras-
pable part. The stability of a grasp is characterized by force-closure property.
In the past few years, several force-closure tests were proposed [18, 23]. These
methods require considerable computation time. Researchers used heuristic
approaches to improve performance by randomly generating grasps and fil-
tering them [26] or by generating grasps in respect of specific rules which
conducts to necessary but not sufficient condition of force-closure [44]. Our
heuristic is original in the sense that it permits not only fast computation
but also good quality force-closure grasps generation. This is confirmed by
comparing it to the classical convex-hull method [39].

6.1. Force-Closure Preliminaries

This paragraph presents definitions and theorems necessary for our force-
closure test elaboration.

Definition 1: According to the definition of Salisbury and Roth [21], a
grasp is force-closure if and only if any external wrench can be balanced by
the wrenches at the fingertips.

Proposition 1: Salisbury and Roth [21] have also showed that a neces-
sary and sufficient condition for force-closure is that the primitive contact
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wrenches resulted by contact forces at the contact points positively span the
entire 6-dimensional wrench space. This condition is equivalent to that the
origin of the wrench space lies strictly inside the convex hull of the primitive
contact wrenches [4, 42].

Proposition 2: For any n-dimensional Euclidean space En, n + 1 vectors
are necessary to positively span En [3].

Proposition 3: A set of n+1 vectors v1, v2, ...., vn+1 in Rn positively span
En if and only if vn+1 is a unique linear combination of vi, i = 1, ..., n and
all coefficients are strictly negative [53]. In other words, the n + 1 vectors
positively span En if and only if v1, v2, ...., vn are linearly independent, thus
constitute a basis of En, and vn+1 is written as:

vn+1 =
n

∑

i=1

αivi, αi < 0

6.2. A new sufficient condition for n-finger force-closure grasps

In order to ensure force-closure or determine grasp wrenches that pos-
itively span the entire 6-dimensional wrench space, one needs to find: (1)
primitive wrenches that constitute a 6D basis and (2) a primitive wrench
that can be expressed as a negative linear combination of that basis. But,
in which case wrenches associated to hard contact points may form a basis
of the wrench space? May a representation in the 3D space of 6D wrenches
facilitate the problem? Plücker coordinates represents a 6D contact wrench
by the line of action of its corresponding force [5, 28] and Grassmann algebra
studies the rank of such lines [2]. We use these two studies to prove the
following propositions [33]:

Proposition 4: The 6 lines on the sides of a tetrahedron are independent,
and thus form a basis of R6 (Fig. 11).

Proposition 5: Wrenches associated to 3 non-aligned contact points are
of rank 6.

Proposition 6: Assume that the grasp of n− 1 non-aligned fingers is not
force-closure. Suppose that {bi}i=1..k is the k-dimensional (where k = 6) basis
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Figure 11: The wrenches of rank 3 associated to the frictional contact points p1, p2 and
p3.

associated to their corresponding contact wrenches. A sufficient condition for
a n-finger force-closure grasp is that there exists a contact wrench γ such that:

• γ is inside the linearized friction cone

of the nth finger (5)

• γ =
k

∑

i=1

βibi, βi < 0

⇒ γ = Bβ ⇒ β = B−1γ (6)

where B = [b1, b2, ..., bk] is a k × k matrix and β = [β1, β2, ..., βk]
T is a k × 1

strictly negative vector. Thus, a simple multiplication by B−1 permits to
test if a contact wrench γ, and consequently the location of the nth contact
point, ensures a force-closure grasp.
Proof. A necessary and sufficient condition for force-closure is that the prim-
itive contact wrenches resulted by contact forces at the contact points posi-
tively span the entire k-dimensional wrench space [21]. A set of k +1 vectors
in Rk positively span Ek if and only if the (k + 1)th vector is a unique linear
combination of the other k vectors and all coefficients are strictly negative,
(from proposition 2). The k + 1 vectors {γ, b1, b2, .., bk} satisfy these condi-
tions and thus positively span Rk. �

6.3. Quality criterion of the n− 1 fingers locations

At this point, we showed (proposition 6) that to achieve force-closure,
we generate randomly locations of n − 1 non-aligned fingers. A position
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of the nth finger is chosen such that an associated contact wrench can be
uniquely expressed as a strictly negative linear combination of one of the
first generated n − 1 fingers wrench basis. Our objective is to ensure fast
robust force-closure grasps generation. In our case, force-closure grasps fast
computation and robustness are strongly linked. In order to understand how
the two latter are tied together, one should notice that generating a n-finger
good grasp will depend on the generation of the first n − 1 fingers. A good
choice of their locations will induce on one hand robust grasps and on the
other hand more locations for the nth finger on the object surface guarante-
ing force-closure and consequently fast computation. Thus, we need to find
a criterion that quantifies a placement of the n− 1 first fingers that induces
a good quality 6D wrench basis. Let Ff , where f = 1..(n − 1) be the first
generated n − 1 fingers. The quality criterion proposed for 3D case is the
extension of the one in 2D. In a 2D case, a wrench basis is represented by
three points in the 3D space that constitute with the wrench space origin
a tetrahedron. A wrench that ensures force-closure grasp is a wrench that
can be uniquely expressed as a strictly negative linear combination of the 3D
basis. Thus, the larger the tetrahedron, the more choices we have for such a
wrench. Different tetrahedron quality measures were proposed in the litera-
ture especially in the field of mesh optimization. One of the most used quality
is Q = V

h3
max

[6], where V is the volume of the tetrahedron and hmax is its
maximal edge length. Dealing with 3D objects grasps involves 6D wrenches.
Thus, instead of computing 3D tetrahedra volumes, we are conducted to
calculate volumes of 6D hypertetrahedra. As the volume V of a tetrahedron
can be expressed as the product of a constant and the determinant of the
tetrahedron vertices, the computation of a 6-volume hypertetrahedron could
be viewed as a determinant calculation:

Q({Ff}) = max
i,i=1..nb

β.det(wi
1, w

i
2, w

i
3, w

i
4, w

i
5, w

i
6)

h6
i max

(7)

Where {wi
j}j=1..6 is a 6D wrench basis; nb is the number of 6D basis cor-

responding to the n − 1 fingers; hi max is the maximal wrench length. This
quality measure is used in the experiments to generate the first n − 1 con-
tacts locations on 3D objects. With such a criterion, our approach is four
times faster than the classic convex-hull method and the force-closure grasps
obtained are of better quality. For futher details on these results, the reader
should refer to [33]. In the following, we present the algorithm taking into
account this quality measure for generating robust force-closure grasps.
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Proposed Algorithm

Require: - 3D points representing the object
- Linearized friction cone at each point and corresponding wrenches

Ensure: - n fingers force-closure grasp
1: L = Rand Na Fingers(n-1)
2: ntry ← 0
3: L basis = Find Basis (L wrenches)
4: q L=quality(L basis)
5: if q L <threshold then

6: Go to step 1
7: end if

8: vertex = Rand Finger(1)
9: ntry ← ntry+1

10: FC = Force Closure Test(vertex, r basis)
11: if (!FC) and (ntry ≤ nmax ) then

12: Go to step 8
13: else

14: or Go to step 1
15: end if

Given a representation of an object along with normal directions and a
friction coefficient, wrenches associated to each of its vertices are firstly
computed. In order to obtain n-finger force-closure grasps, the function
Rand Na Fingers generates randomly, locations of non-aligned n− 1 fingers
on the object surface. A number L basis of 6-dimensional basis from the
wrenches associated to these n − 1 contacts are determined by Find Basis.
The quality of these basis is computed with quality function. If the latter
is below a threshold, we proceed at the generation of other n − 1 fingers
locations. If the quality of at least one of the L basis is above the specified
threshold, an object vertex is then randomly chosen by Rand Finger and
tested for ensuring a n-finger force-closure grasp with Force Closure Test. If
the n-finger grasp ensures force-closure the algorithm finishes. Otherwise,
ntry permits to choose between generating novel n − 1 fingers locations or
testing another object vertex for force-closure with the basis of the same
n− 1 fingers. Note that the choice of the threshold and nmax is crucial for
the algorithm force-closure grasps computation time. The threshold value
cannot be determined analytically. It varies with the object shape and thus
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is chosen empirically.

7. Experimental Results

We proposed a grasping strategy that describes objects as an assembly
of parts and then proceeds to the identification of the handle or the Natural
Grasping Component (NGC) in accordance with humans choice. This section
aims at testing how well learned grasping skills generalize to new objects.
Thus, an algorithm is trained to grasp a small set of objects and tested on
a much larger set of everyday items. We begin by validating the learning
algorithm model. Two generalization experiments were performed. The first
one tests the algorithm on objects belonging to the same categories as the
training data but of different shapes and sizes. The second one considers
objects that are completely different from those of the training set. We use for
our tests synthetic 3D objects models available on Princeton Benchmark [51]
and NTU 3D Model Benchmark [11]. We also tested the algorithm on real
objects models obtained from a 3D laser scanner and from 3D reconstruction
using a vision system.

7.1. Validation of the Learning Algorithm Model

A 10-fold cross validation procedure is employed to validate the learning
algorithm. Thus, our training data (72 examples for each of the 12 two-parts
objects) is divided randomly into 10 parts. In a first step, the first part is
taken apart and used for test data while the 9 remaining parts are used for
training data. In a second step, the second part is considered as testing data
while the remaining 9 parts are considered as training data. This procedure is
repeated ten times. The advantage of this method over repeated random sub-
sampling is that all observations are used for both training and validation,
and each observation is used for validation exactly once. The 10 results
from the folds are then averaged to produce a single score estimation of the
training and testing data. We have an average of 99.45% for the training
data and of 98.97% for testing data.

7.2. First Generalization Test

We tested the algorithm on multi-part objects belonging to the same cate-
gories as the training data but of different shapes and sizes. These objects are
such as bottles, spoons, knifes, pencils etc. Some of these objects along with
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their obtained grasping part are shown in (Fig 12). This figure illustrates ob-
jects decomposition as well as their graspable part in black. The motivation
behind this experiment is that if our algorithm does not work on multi-part
objects similar to the training data, then we must conclude that our feature
set is not sufficiently discriminative. We use for this test 17 objects. For such

Figure 12: Some objects belonging to the same categories as the objects of the training
data. The first row shows objects decomposition. The second row shows in black the
grasping part identified by the algorithm.

objects, the algorithm generalizes very well and was capable of finding each
time the handle that human choose to grasp the corresponding object.

7.3. Second Generalization Test

In a second time we tested the algorithm on 54 objects that are completely
different from those of the training set. This experiment is useful to test the
algorithm ability to generalize to completely novel objects. Several subjects
were asked to grasp these objects in order to accomplish a task. We do
not specify the task that should be performed. The subjects were supposed
to identify objects graspable parts whether they recognize the object or not.
Twenty seven objects, AO (Agreed Objects), were grasped by the same man-
ner. On the other hand, the remaining 27 objects, CO (Confusing Objects),
induced confusion and the subjects chose different parts to grasp them. We
remind the reader that our aim is to imitate humans choice of the graspable
part. The distinction between AO and CO objects is necessary for measuring
our algorithm performance. Their success grasp rate is computed differently.

7.3.1. Success Grasp Rate for Agreed Objects

The different subjects totally agreed on the Agreed Objects handles.
Thus, for AO objects, whenever the algorithm selects for grasping a part

21



different from the one identified by the subjects, it is considered a failure.
Some of the AO objects are shown in (Fig. 13) along with the graspable part
identified by the algorithm in black. Objects parts that are marked with a
cross are the ones corresponding to humans choice. The system succeeds to
find the correct graspable parts for 22 AO objects, which corresponds to a
successful grasp rate of 81%. This rate shows that features such as sizes and
shapes of novel objects subparts are about 81% discriminative to determine
the object natural grasping part.

Figure 13: Examples of AO objects. The black part indicates the corresponding object
graspable part identified by the algorithm. The crossed part indicates the one chosen by
humans.

7.3.2. Success Grasp Rate for Confusing Objects

Different parts were chosen by the subjects to grasp Confusing Objects.
Since humans grasp these objects in various ways, two successful rate may be
computed: a successful grasp may be a grasp that identifies the object part
chosen by most people, or a successful grasp may be a grasp that identifies
a part chosen by at least one person. Otherwise, failure occurs. Figure (14)
shows some examples of CO objects. The black part indicates the one chosen
by the system and the cross-marked part is the one corresponding to most
people choice. The algorithm succeeds to find, for 15 CO objects, the part
selected by most people. This corresponds to a successful grasp rate of 55%.
When considering a grasp rate on the basis of ”at least chosen by one person”,
the algorithm perform well for 23 CO objects which corresponds to a rate of
85%.
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Figure 14: Examples of CO objects. The black part indicates the system choice. The
cross-marked parts indicate most humans choice.

7.4. Grasping By Components

We proposed a grasping strategy that determines in a first place an un-
known object handle and is able then to generate, on this component, contact
points ensuring the grasp stability. This section shows in a first place exam-
ples of contact points computation on the objects graspable parts. It shows
then the adaptability of our strategy to the hand kinematics.

7.4.1. Grasping Strategy Computation Time

Tables 1 and 2 show the computation time corresponding to the gen-
eration of a four-finger force-closure grasp on synthetic and real 3D objects
models with different resolutions. This time includes the different steps of the
grasping strategy; segmentation, approximation, grasping part selection and
force-closure grasp computation. Notice that the computation time increases
with the number of vertices constituting the object model.

Table 1: Generating 4-finger force-closure grasps for synthetic objects.

Objects Grasps
Vertices Number 629 1725 7613

GBC time(s) 2.59 3.73 7.82
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Table 2: Generating 4-finger force-closure grasps for laser scanned objects and an object
model obtained using vision (the last column).

Objects Grasps
Vertices Number 183534 137421 122307 7360

GBC time(s) 267.63 173.8 159.82 8.87

7.4.2. Grasping by Taking into account the Hand Kinematics

At this point, our grasping strategy identifies an unknown object han-
dle and generates contact points on it with the only constraint of stability.
Dealing with a robotic hand model induces additional kinematical and geo-
metrical constraints. Taking these constraints into account results in limiting
possible locations for the contact points on the graspable part. The latter
should be kinematically feasible for the fingers and they should also avoid
collision with the hand, the remaining fingers and the object. Consequently,
these contacts should be generated in respect of the accessibility domains of
the fingers. Furthermore, a grasp involves several closed kinematic loops be-
tween the fingers and the object. Randomly generation of a closed kinematic
chain is very difficult. In order to handle these closed kinematic chains and
inspired by the thesis of J.P. Saut [56], we propose to adapt the RLG (Ran-
dom Loop Generator) algorithm [55] to our grasping strategy. RLG aims
at handling closed kinematic loops by dividing them into active and passive
parts. The idea of the algorithm is to reduce the closed kinematic chain com-
plexity iteratively until the active part becomes reachable by all passive chain
segments simultaneously. In our case, the object is the active part while the
fingers constitute the passive parts. A grasp can occur when the object is
reachable by all the fingers. The reachable workspace of a kinematic chain
is defined as the volume which the end-effectors can reach. RLG approxi-
mates such volume with a sphere. Figure 15 illustrates an example of the
reachable workspace of a finger. It also shows the intersection between this
space and the object. Thus, the finger should be placed on this intersection.
The placement of the first finger is then taken into account when computing
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Figure 15: The red sphere represents the reachable workspace approximation of a finger.
The green part stands for the object surface reachable by the finger. Thus, this finger
should be placed on that green part [56].

the second finger reachable workspace and so on until the placement of all
fingers. We modify our grasping strategy to take these constraints into con-
sideration. Figure 16 shows several grasps obtained using DLR and Rutgers
hands models and GraspIT simulator. The latter uses PQP algorithm to
detect collisions [39].

Figure 16: The first row shows generating 4-finger force-closure grasps using DLR hand
model in GraspIT simulator. The second row shows examples with the Rutgers hand.

8. Conclusion

This paper addresses the problem of grasping unknown objects. The lat-
ter can be stated as follows: given a previously unknown object, determine a
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set of contacts on the object surface appropriately in order to ensure stability
and to successfully perform a task. Despite the quantity of relevant work in
the field, this problem remains challenging and tackles with two main issues:

• Task modelling.

• Generalizing learned grasping skills to new objects.

We overcome these difficulties and propose a strategy that associates a grasp
to an unknown object/task by taking inspiration from humans behavior and
Biedermann’s theory of Recognition By Components. The latter states that
humans recognize objects by representing them as an assembly of parts. On a
part-representation level, it seems obvious that each object is equipped with
a part designed specifically to make its grasp easier, its handle. We define a
handle or the natural grasping component of an object as the part chosen by
humans to pick this object with. Our method learns humans choice of the
grasping component based on information such as objects sub-parts shapes
and sizes. Thus, objects are decomposed into single parts and each part is
then fitted with a superquadric. The grasp stability is obtained by determin-
ing contact points on the object handle verifying force-closure property.

We implemented the proposed approach and tested its ability to gener-
alize on previously unknown objects models whether synthetic or real via
laser scanning or 3D reconstruction using a vision system. The experiments
show that the algorithm succeeds in imitating humans when grasping un-
known objects. A score of about 80% is obtained. Thus, we can conclude
that geometric features such as objects sub-parts shapes and sizes, are in-
deed relevant to objects grasping. The gap of 20% is due to the fact that
some objects have similar shapes but different functionalities, hence, they
are grasped differently. Once the object graspable part is determined, we
process at the generation of grasping contact points on it. For this purpose,
a new sufficient force-closure grasp condition is introduced. It aims at reduc-
ing good force-closure grasps computation time. It generates locations of n-1
non-aligned fingers according to a quality criterion and finds then locations
of the nth finger that ensures force-closure. Finally, we also adapted the al-
gorithm to take into consideration a robotic hand model and corresponding
kinematics constraints.
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Nowadays, many researchers try to understand humans behavior by pro-
gramming neuroscience theories in humanoid robots and vice versa [7]. Our
work is also based on the psychological RBC theory and other neuroscience
studies. But, will the high scores obtained validate the corresponding theo-
ries? Are primitives such as objects sub-parts shapes and sizes sufficient to
identify novel objects grasps? Do we actually understand how people grasp
unknown objects? The work presented in this paper is a first step towards
a full understanding of humans behavior and may be our learning algorithm
needs to be enhanced to take into account recent/future studies on humans
brain.
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