
HAL Id: hal-00736011
https://hal.science/hal-00736011

Submitted on 27 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Motion Planner for Robot Multi-fingered
Manipulation

Jean-Philippe Saut, Anis Sahbani, Véronique Perdereau

To cite this version:
Jean-Philippe Saut, Anis Sahbani, Véronique Perdereau. A Generic Motion Planner for Robot Multi-
fingered Manipulation. Advanced Robotics, 2011, 25 (1-2), pp.23–46. �hal-00736011�

https://hal.science/hal-00736011
https://hal.archives-ouvertes.fr


A Generic Motion Planner for Robot Multi-fingered

Manipulation

Jean-Philippe Saut1, Anis Sahbani2 and Véronique Perdereau3

1LAAS-CNRS, 2ISIR-CNRS

1 Université de Toulouse ; UPS, INSA, INP, ISAE: 7, Avenue du Colonel Roche, F-31077 Toulouse Cedex 4

2,3 Université Pierre et Marie Curie - Paris 6: 4, Place Jussieu, BC:173, F-75005 Paris

1jpsaut@laas.fr, 2anis.sahbani@upmc.fr, 3veronique.perdereau@upmc.fr

Abstract

This paper addresses the dexterous manipulation-planning problem, which deals with motion

planning for multi-fingered hand manipulating objects among static obstacles, under quasi-static

movement assumption. We propose a general manipulation approach capable to compute object

and finger trajectories as well as the finger relocation sequence, in order to link any two given config-

urations of the composite system hand+object. It relies on a topological property that characterizes

the existence of solutions in the subspace of configurations where the object is grasped by the n

fingers. This property leads to reduce the problem by structuring the search space. The developed

planner captures in a probabilistic roadmap the connectivity of sub-manifolds of the composite con-

figuration space. The answer of the manipulation planning query is then given by searching a path in

the computed graph. Simulation experiments are reported for different multi-fingered manipulation

task examples showing the efficiency of the proposed method.

keywords: manipulation planning, multi-fingered manipulation, finger gaiting, grasp computation, mo-

tion planning

1 Introduction

The specificity of the robotic multi-fingered manipulation, compared to the whole arm manipulation, is

that grasp reconfiguration is possible and often necessary because of the limited accessibility domains

of the fingers. This specificity allows object manipulation to be performed in a small workspace and

avoids the need for pick and place operations if the grasp configuration must be changed to be adapted

to a given task. The goal of dexterous manipulation planning (DMP) is to compute feasible trajectories

for the grasped object and for the fingers, in order to drive the object from an initial configuration

to a final one. The ability of multi-fingered hands to perform grasp reconfiguration raises two issues

from the planning point of view. First, the manipulation task is composed of both continuous and

1



discrete events. The continuous events are finger and object motions whereas the discrete events are

the breaking of some contacts between the fingertips and the object. Secondly, the grasp can become

unstable if the planning method does not take into account the stability constraint. A DMP method

must consequently integrate schemes that will take into account these two aspects. Our main goal is

to develop a method, focused on the motion planning aspect of the dexterous manipulation, that will

be able to solve problems involving complex manipulation tasks, not only simple movements like minor

reorientation or regrasping. Such a method could constitute the core of the top high level of a complete

dexterous manipulation framework. Lower levels focused on control, can then use trajectories provided

by our DMP method to compute the finger contact forces and their associated joint torque parameters.

The paper is organized as follows. First, section 2 gives a brief overview of the literature concerning

dexterous manipulation planning problems and a brief description of a previous work on manipulation

planning with a single robot arm, which has been a source of inspiration for the proposed approach.

Section 3 presents problem formulation and hypotheses. Section 4 explains the principle of the proposed

method and describes its main algorithms. Finally, section 5 illustrates the capacities of our method

with some manipulation tasks that are solved by our planner and shows the benefits of the method for

reducing computing times. This section also deals with the influence of the main tuning parameter of

our algorithm.

2 Related Work

The early works on Dexterous manipulation planning concerned the problem formulation, without pre-

senting any resolution scheme [1, 2] (for more recent formulations see [3, 4]). They only suggested

a choice for the configuration space and presented the different geometric and kinematic constraints

related to dexterous manipulation.

Different methods were then proposed, that can be classified into two main categories: local methods

and global ones. The methods of the first category only consider a particular aspect of dexterous

manipulation like small object movements without grasp reconfiguration or, on the contrary, contact

relocation with no regard on finger or object kinematics. The second category contains the methods

that try to consider all the aspects of dexterous manipulation, in a global manner.

2.1 The Local Planning Methods

Among the local approaches is the work of D. Rus [5]. She got interested in the finger motion that makes

the grasped object rotate. She proposed a full dynamics algorithm called the finger tracking algorithm.

The main idea of this algorithm is to use two fixed fingers that do not move (with respect to the world

frame) and a third one that moves to control the reorientation movement. Rus proved the existence of a

diffeomorphism between the system configuration space and SO(3). The object orientation is then fully

determined by the positions of the moving fingers. A set of differential equations can be found allowing

2



to find the forces that must be exerted by the fingers in order to give a specified rotational acceleration

to the object.

[6] suggested a planning method for regrasping with a planar four-fingered hand manipulating a

polygon. It is based upon the construction of a switching graph. Each node of this graph is a set of one

among two particular kinds of grasps called parallel grasps and concurrent grasps. Parallel grasps are the

three-fingered grasps such that there exists three parallel vectors, each one included in one of the three

contact friction cones, and the middle vector direction opposite to the two others. Concurrent grasps

are made of the three contact grasps such that there exists three concurrent lines in the corresponding

double-sided friction cones, and these three friction cones positively span R2 (i.e. every vector in R2

can be written as a linear combination, with positive coefficients, of any vector triplet, each included in

one of the friction cones). This condition is used by the authors to prove that the set of all concurrent

grasps, for contacts on three different specified edges, can be represented as a set of points in the plane,

all of them included in a polygon called focus cell. A graph is built, whose nodes are focus cells. Two

nodes can be linked if the associated focus cells have a non void intersection and two edges in common.

2.2 The Global Planning Methods

Different techniques have been proposed that consider the DMP in its various aspects. [7] proposed

to build a graph whose nodes are qualitative descriptions of the grasp. These descriptions list the

contacts between elements of the grasped object and the hand, such as vertices or edges. The nodes are

linked thanks to a planning method that works in joint space and the dexterous manipulation problem

solution is found when start and goal configurations are linked to the tree. This work is restricted to a

manipulation system with a few degrees of freedom.

[8] made use of a principle similar to the finger tracking algorithm as a local method to plan the

re-orientation of a convex object. Three fingertips are fixed and the motion of a fourth one is used to

rotate the object. The planner works on two levels and its goal is to build a path between two given

orientations of the object. The higher level computes a nominal trajectory for the object, chosen to be

the shortest possible. The higher level also generates an object orientation along the nominal trajectory,

close to the previous orientation on the path. The generated orientation will be used as a sub-goal. A

lower level chooses one of three possible manipulation modes: object motion while moving all the fingers

or only some of them or motion of the fingers without moving the object. The lower level uses contact

kinematics and finger inverse models to reach the sub-goal. If it is unreachable, another sub-goal is

generated.

More recently, [9, 10] proposed methods based upon nonlinear system control theory. They employed

motion planning methods for smooth systems, extending them to deal with the discontinuities of fin-

ger gaiting. The configuration space is divided into strata, each of them corresponding to a particular

grasping finger combination. Some of these strata intersect to form other strata. The constraints asso-

ciated to each stratum are different and so are the corresponding differential equations. The principle

3



of stratified system control is to define a common state space where all the vector fields, defined for

each stratum, can be considered. This space uses fictitious inputs. These inputs can be the object

configuration (six parameters) and the fingertip positions [11] or the object configuration and the fin-

gertip positions relative to the object surface [10]. These inputs are fictitious since the real inputs are

the finger joint parameters. Once a trajectory is found, these parameters have to be computed from

the fictitious inputs, employing the inverse kinematic models. To steer the object from a configuration

to another, the stratified system planning methods compute the velocity that will allow the change of

configuration in a given time. The fingertip positions are another system input. They must be chosen

so that they will stay inside the finger accessibility domains all along the movement, while allowing the

grasp to verify the force closure stability criterion.

Among the most recent works on dexterous manipulation planning is the randomized planning

architecture [12] based on contact modes switching. It considers all possible contact modes (sliding,

sliding with rolling, with spinning, etc.). Based on the RRT method [13], a global planner builds a

random tree to explore the object configuration space and a local planner tries to link the tree nodes. The

tree nodes are the object configurations. At each iteration of the algorithm, a new object configuration

Xrand is randomly generated. The algorithm then tries to link Xrand to Xnear, the tree node that is the

closest to Xrand. A contact mode combination is randomly chosen among the different possible modes.

A short time interval is also randomly chosen and a polynomial trajectory between Xrand and Xnear

is assigned by the local level planner. The local planner then uses the inverse dynamic model of the

system and the previously chosen contact mode to test the feasibility of the local trajectory. If it is not

feasible, Xrand and Xnear are not linked and a new configuration is randomly generated.

Even more recently, [4] proposed to use joint space representation of the grasps and described the

problem as a hybrid automaton, which can be seen as a state machine that takes into account both

discrete (finger relocation) and continuous (object or finger trajectories) events. They did not present

a full resolution method but this is part of their ongoing works.

In our opinion, the drawbacks of existing methods are of two kinds. First, many methods compute

the object trajectory before computing the finger trajectories [8, 9, 10, 14]. As the object trajectory

depends strongly on the accessibility domain of the fingers, such methods may not find a solution in

many situations (see for instance example 3 in section 5), since they can lead to object positions that are

out of finger access range. The second drawback is that some methods explore the configuration space at

a too low level [15], having a control approach rather than a motion planning one. As the configuration

space dimension of a dexterous manipulation system is very large, this leads to high computation times.

Therefore the associated proposed examples are always very simplistic (small reorientation of a sphere

or an egg-shaped object). Here, we emphasize the motion planning aspect of the dexterous manipulation

planning problem rather than the control one, in order to treat complex tasks. Of course, control inputs

always have to be ultimately computed and so at a moment a control approach must be considered.

We believe that the solutions computed by a motion planning method can serve as inputs for a planner

working at the control level so that control and motion planning approaches are complementary.

4



The goal of the proposed method is to solve the above weaknesses taking into account the specific

structure of the configuration space. The presented planner is inspired by our previous works on motion

planning for manipulation tasks [16], deriving from the works of [17]. To clarify the contribution of

the paper with respect to these works, we give in the next section a very brief description of them and

introduce the specificity of our method.

2.3 Contribution

An important contribution to manipulation planning was given in the mid 90s with the work published in

[16]. The authors proposed an original description of the problem. The considered system was composed

of a robot arm, equipped with a gripper, an object to manipulate and a set of static obstacles. Inside

the configuration space CS, two subspaces of particular interest were introduced: GRASP also called

CG and PLACEMENT also called CP. CG is the subspace of all the configurations where the robot

grasps the object and CP is the subspace of all the configurations where the object is placed (e.g. on the

floor or on a table) at a stable position. Two kinds of elementary paths were proposed by the authors

to solve manipulation task problems. The first one is a transfer path: a movement of the robot grasping

the object with a fixed grasp. The second one is a transit path: a movement of the robot alone, the

object being placed at a stable pose. Transfer paths are paths in CG and transit paths are paths in CP.

A solution of the manipulation planning problem is therefore a sequence of transfer and transit paths.

Instead of using these two kinds of path only to explore CS , the planning method proposed in [16]

relies on a topological property that characterizes the existence of solutions in CG ∩ CP. CG ∩ CP is the

subspace of all the configurations where the robot grasps the object placed at a stable position. The

originality of the method is to explore the different connected components of CG ∩ CP using paths in

this subspace. These paths correspond to simultaneous change of both grasp and robot configurations

and so are not admissible from the manipulation point of view. However, they can be transformed into

finite sequences of feasible transit and transfer paths, thanks to the reduction property introduced and

demonstrated in [17]. The exploration is performed by building a graph with a probabilistic method.

The different connected components of the graph exploring CG ∩ CP are then connected via transfer-

transit paths. This method gives very interesting results for many manipulation task problems and so

is a good start to develop a technique for planning manipulation with a multi-fingered hand.

This method, however, can not be directly employed for multi-fingered manipulation. Important

modifications have to be done. The first modification concerns the definition and the structure of the

configuration space that is quite different in the case of multi-fingered manipulation. Indeed, specific and

more numerous subspaces have to be introduced. Another modification concerns the elementary paths

that must be used to link the configurations; transit paths are no more valid as the object must always be

grasped by the hand. At last, an important new aspect is to take into account, the stability of the grasps

which is not considered in the previous work. All these modifications justify a complete redefinition

of the problem and the development of a new planning technique. These are the contributions of the

5



present paper and are detailed in next sections.

3 Problem Formulation and Hypothesis

3.1 Studied System and Configuration Space (CS)

The studied system is composed of an n-fingered hand and a rigid object to be manipulated. Each

finger is an open kinematic chain attached to the palm, which is assumed to be motionless. The object

movement will only result from the movements of the fingers. The object configuration, or pose, is

characterized by a position and an orientation and thus belongs to SE(3). The configuration space of

the object is noted CSobject.

The hand configuration is characterized by the joint parameters of its n fingers. Each finger i has mi

joints. If we note θi,k the value of the kth joint angle of the ith finger, the configuration vector of this finger

is ai = (θi,1, θi,2, . . . , θi,mi) ∈ Smi where S is the circle. So the configuration vector of the whole hand is

noted a = (a1,a2, . . . ,an). The configuration space of the hand is CShand = {Sm1 × Sm2 × . . .× Smn}

and the configuration space of the composite hand+object system is CS = CShand × CSobject.

We assume all contacts to be point contacts and the fingertips to be “sharp” enough to neglect the

effects of rolling on contact positions. Thus, a contact on the fingertip surface is supposed to occur at

a single point only. A contact is consequently characterized by its sole position on the object surface.

A finger that participates in the object grasp is called a “grasping finger” while a finger that does not

is called an “independent finger”. A k-fingered grasp is defined as a set of k grasping fingers and their

associated contact points and by the joint parameters of the independent fingers. For a given object

pose and a given contact point, the configuration of the corresponding grasping finger can be fully

determined as long as the finger inverse geometric model has only one solution. If not, as we use a

random sample-based planning technique (see next sections), one solution among the possible ones is

chosen randomly.

A grasp configuration is then defined by the positions of the contacts on the object surface. A k-

fingered grasp is represented by a vector gk = (u1, v1, . . . , uk, vk) ∈ R2k where (ui, vi) are the coordinates

of the ith contact position on the object surface.

CSfree is the set of all configurations that do not lead to collision except collisions due to grasp

contact i.e. contacts between fingertips and object surface. The admissible CSfree configurations are

the configurations corresponding to object grasps; the other ones systematically correspond to unstable

situations. We introduce a fundamental subspace called Grasp Subspace and noted GSk, that is the

subspace of all the configurations q with k grasping fingers and (n− k) independent fingers:

GSk =
{

q ∈ CSfree/ the object is grasped by any combination of k (among n) fingers
}

(1)

The system admissible configuration space is CSadmissible =
⋃

k∈J2;nK
GSk. An important inclusion

relation is GSk+1 ⊂ GSk,∀k ∈ J0, . . . , n − 1K. In fact, a (k+1)-fingered grasp is a particular case of a

6



k-fingered grasp (one of the independent fingers is in a configuration that makes it contact the object

surface). As there can be different possible combinations for the k grasping fingers, it is useful to

introduce the spaces noted GSi
k, i ∈ J1;Ck

nK, subspaces of GSk:

GSi
k =

{
q ∈ CSfree/ the object is grasped by a given combination of k (among n) fingers

}
(2)

Hence, ∀k ∈ J2;nK, GSk =
⋃

i∈J1;Ck
nK

GSi
k. Defining these subspaces is interesting because their

connectivity can be linked to the need for finger gaiting. Indeed, due to motion constraints, it is not

always possible to link two configurations belonging to the same GSk, whatever path type is chosen; for

instance, when the k grasping fingers change between two configurations, i.e. when the two configurations

belong to different GSi
k. It is then necessary to use a path in GSk+1 or in GSk−1\GSk (GSk−1 without

GSk ). This is illustrated by figure 1 showing, for a five-fingered hand, how intermediate configurations

in GS5 or GS3\GS4 are needed to connect two configurations in GS4. The need for subspace change is

equivalent to the need for finger gaiting (i.e. to perform finger relocations).

d

e

a

b c

GS5

GS4

d

c

e

a

b
a

d

c

GS4
e

b

c

d

e

a

b

GS4

c

GS3

d

e

a

b

d

e

a

b c

GS4

Figure 1: Two ways to link two four-fingered grasps (both belonging to GS4).

3.2 Constraints and Elementary Movements

A fundamental constraint concerning multi-fingered manipulation is grasp stability, as the object must be

held safely during the whole manipulation task. Among all existing stability criteria, we choose the force

closure one [18, 19]. A grasp satisfies the force closure property if an arbitrary force/torque wrench can

be exerted on the grasped object by applying appropriate contact forces. As we assume object and finger

movements to be slow enough to neglect inertial effects, we consider that satisfying force closure property

at each time is sufficient to guarantee system stability. The force closure property depends on the contact

positions and models (point contact with friction, soft contact with elliptic approximation, etc.) and

on the values of the possible associated friction coefficients. Another important constraint concerns the

kinematics of the system: Object motions are induced by the finger movements. Constraints on object

and finger motions lead us to introduce two fundamental kinds of local path, each one corresponding to

an elementary manipulation subtask: Grasp reconfiguration (or regrasping) and object displacement.

We call the first one regrasping path and the second one transfer path (by analogy with the transfer

path for pick and place problem [20]). During a regrasping path, the object is maintained immobile

and some fingers move to change the grasp while during a transfer path, the object is moved but the

7



grasp remains unchanged (figure 2). The manipulation is performed with a sequence of transfer and

regrasping paths.

Figure 2: Regrasping and transfer path examples for a planar four-fingered hand.

The goal of the dexterous manipulation planner is then to find such a sequence connecting two given

configurations in
⋃

k∈J2;nK
GSk while ensuring the grasp stability all along the path sequence.

4 Proposed planning method

The multi-fingered manipulation leads to a sequence of finger movements than can involve 2,3,. . . , to

n-fingered grasps. To each of these grasps is associated a subspace of CS. The solutions of a dexterous

manipulation planning problem consequently belong to
⋃

k∈J2;nK
GSk, the union of all the grasp subspaces.

The most exhaustive approach would be to explore this whole set. However, such an approach would

lead to prohibitive resolution times because of the very high dimension of the space to be explored.

Instead, we choose to favor the search for a solution inside GSn, for two reasons. The first reason is that

privileging GSn configurations advantages the most stable grasps and the second reason is that GSn is,

among all the grasp subspaces, the one with the smallest dimension, because it is the more constrained.

Exploring GSn will be faster and so will be the resolution of the DMP problem.

So far, no other approach based upon the exploration of GSn has been proposed because there are

no kinematically feasible paths inside GSn that can link any pair of configurations. Indeed, two config-

urations in GSn may correspond to different object poses and to different grasps at the same time and

linking these two configurations would mean modifying independently object and grasp configurations.

This is not feasible because the object motion is necessarily induced by the finger motions. The orig-

inality of the proposed method is to bypass this impossibility, generalizing and exploiting a property

that was until now limited to pick-and-place problem. It is the reduction property, introduced in [17].

4.1 Paths in GSn and Reduction Property

To compute the paths inside GSn, we use the previously described representation: A configuration in

GSn corresponds to a situation where the object is grasped with n fingers and is so characterized by the

object pose and by the contact positions on the object surface i.e. by a vector (u1, v1, u2, v2, . . . , un, vn) ∈

8



R2n where (ui, vi) is the position of the ith contact on the object surface. By continuously modifying the

contact coordinates, the configuration changes in a continuous way, while maintaining all the contacts.

These contact parameters can replace the joint parameters and constitute new and less numerous DOFs

for the system. For instance, if the hand has four fingers with three DOFs each, the configuration vector

for a configuration in GSn (n = 4) has 14 dimensions (6 DOFs for the object and 2 for each of the four

grasping fingers) while for an unspecified configuration it has 18 dimensions (6 DOFs for the object and

3 for each of the four grasping fingers). This representation is used to characterize the configurations

and to compute paths inside GSn. An example of a path inside GS4 is illustrated in figure 3.

Figure 3: An example of a path computed inside GS4 for a planar four-fingered hand.

Of course, paths in GSn are not physically feasible because the object and the contacts can not move

independently. However, the reduction property [17] can be extended to the multi-fingered manipulation

case. This property states that any collision-free path inside GSn can be decomposed into a finite

sequence of transfer-regrasping paths. We give a demonstration of the extended property in appendix A.

4.2 Principle of the method

We now describe our approach for solving dexterous manipulation planning problems. The proposed

approach relies onto the structure of GSn. The main idea is to exploit the reduction property to

decompose the construction of the manipulation graph into the three following steps:

1. explore GSn and build a graph capturing GSn connectivity,

2. merge the connected components of the graph with transfer-regrasping paths (through GSn−1),

3. transform GSn portions of the solution path into a finite sequence of transfer and regrasping paths.

Figure 4 illustrates the principle of the proposed method in the case of a four-fingered hand. Due

to obstacles, joint limits or grasp instability, the GS4 space has several connected components (figure 4

(a)). A graph is built capturing the connectivity of GS4 (figure 4 (b)) and its connected components

are merged with transfer-regrasping paths (dashed curved lines) that pass through GS3 (figure 4 (c)) .

9



Figure 4: The topology of GS4, induced by the problem

constraints, can be captured in a graph.

4.2.1 The planning technique

We detail in this section our DMP technique. It is based upon the principle of the well-known Probabilis-

tic Roadmap Methods (PRM) [21, 22]. It could be summarized as follows: Initial and goal configurations

are the first nodes added to the graph. The graph is then developed inside GSn, using PRM techniques

(figure 4-b), and its connected components are merged using transfer-regrasping paths. These paths

are computed with a RRT technique [13] (figure 4-c). Graph construction step stops when the initial

and goal configurations belong to a same connected component. A solution path is then searched in the

graph using an A*-like algorithm. Once the manipulation path solution of the problem is found, paths

inside GSn are transformed into a finite number of transfer-regrasping paths. This transformation is

realized using the algorithm described in section 4.3. Then, regrasping and transfer paths are smoothed

using a probabilistic algorithm [21].

Graph Construction

The graph is built alternating two steps:

• Exploring GSn

• Merging its connected components with transfer-regrasping paths

Algorithm 1 presents the manipulation graph construction. qinit and qgoal are the start and goal con-

figurations respectively, G is the graph, CC the set of G connected components. l1 and l2 are the first

connected components of G containing respectively qinit and qgoal. The algorithm grows the graph

connected components and possibly adds new ones as long as these two initial components l1 and l2

are distinct. It ends with the merge of l1 and l2 (i.e. when l1 ≡ l2). The choice of the α parameter

is crucial because it has a strong impact on the algorithm convergence. Choosing a small value for

α encourages the sampling of GSn because more configurations are added for each transfer-regrasping

connection than for a step of the exploration of GSn.

The drawback of a dense sampling is an increased computation time. However, if GSn has numerous

connected components, it will be necessary to try to connect them via transfer-regrasping paths. In

10



G = {qinit, qgoal} ; CC = {l1 = {qinit}, l2 = {qgoal}} ; α ∈]0; 1[1

if l1 ≡ l2 then2

END3

else4

while l1 6= l2 do5

randomly choose x ∈]0; 1[6

if x < α then7

explore(qinit,qgoal,G,CC)8

else9

connect components(G,CC)10

end11

end12

end13

Algorithm 1: Multi-fingered manipulation graph construction algorithm

this case, a value close to 1 should be chosen. Therefore the value of α must be tuned according to the

problem characteristics (concerning object size or shape complexity and environment obstacles). The

influence of this parameter and the way to choose it are discussed in section 5.2.

4.2.2 The explore() function

The main critical issue of the approach is to capture into a probabilistic roadmap the topology of GSn.

The idea is to explore this manifold as such. For this, we consider, as described above, that GSn is the

configuration space of a single system consisting of the hand grasping the object. Additional (virtual)

degrees of freedom are added at each contact in order to model the continuity of the grasp (and to

allow motion inside GSn). Exploring GSn could then be considered as a motion planning problem

involving several closed kinematic chains formed by the fingers and the grasped object. One needs to

generate configurations verifying chain closures. To solve this problem, RLG algorithm [23] is used.

Each chain is divided into an active part and a passive one. The active part configuration is randomly

chosen in the accessibility domain of the passive one. The passive part is calculated using the inverse

geometric models. In our case, the object represents the active part and the fingers the passive one. The

configuration of the object is randomly chosen in an approximation of the hand accessibility domain.

For each generated configuration, the grasp stability (i.e. force closure property) is checked. Only stable

configurations are added to the graph.

In addition, the explore() function tries to link the nodes of the graph (configurations in GSn) with

linear paths in GSn. It is thus necessary to know how to connect two configurations in this subspace.

Indeed, it is not obvious how to compute a movement that combines the continuous changes of both

object and grasp configurations. [20] had also to represent a grasp continuous change, for their robotic

11



arm manipulation planner. They simplified the problem by employing a simple geometry (a parallel-jaw

gripper grasping a parallelepiped bar). Thus, only three DOFs (two in translation and one in rotation)

are associated with the grasp. In the multi-fingered manipulation case, the problem is more complex

because the system has more DOFs and it is desirable to avoid reducing assumptions on the object

shape. To keep the generality of the approach, it is crucial to use a grasp parametrization allowing

continuous changes.

Since the grasp description needs the contact positions on the object surface, it is necessary to have

a parametrization of this surface to compute paths in GSn. So far, we have implemented star-shaped

objects that can be easily parametrized if their surface is approximated by a polyhedron. In a more

general case, the parametrization problem can be bypassed by randomly choose points on the object

surface and by computing continuous shortest paths on this surface to link these points. A solution is to

approximate the surface with a polyhedron. This approximation can be done with an arbitrarily chosen

precision. For instance, a geodesic computation algorithm [24] can find the shortest path between two

given object surface points. Finally, force-closure property is checked along each computed path in GSn.

In order to satisfy reduction property (allowing the transformation of GSn paths into a finite sequence of

transfer/regrasping paths), additional tests are performed. In fact, for a given configuration belonging

to a computed path inside GSn, the grasp stability is tested for all the grasps obtained by breaking

one contact at a time. This is necessary because, at this stage, we do not know yet which finger will

have to relocate after the decomposition of the path into a transfer-regrasping path sequence. For every

n-fingered grasp along a GSn path, the stabilities of n (n-1)-fingered grasps are consequently tested.

The (n− 1) stability tests are also performed for node generation.

4.2.3 The connect components() function

The connect components() function tries to merge two different connected components of the manip-

ulation graph using transfer-regrasping paths. The goal of the the transfer path is to bring the object

from its initial configuration to its goal one while the grasp is fixed; and the goal of the regrasping path

is to allow grasp change while the object keeps the same configuration. Computing such connections

requires that we solve multiple point-to-point path planning problems.

• Transfer path computation

The movement of the object during a transfer path is a linear trajectory between the two object

configurations. The contact positions on the object surface is constant during the movement, so

their motion in space is easily computed. The inverse kinematics models of the fingers are used

to make their tips follow the motion of their respective contact points. These inverse kinematics

models only consider the fingertip positions (not their orientations). The continuity of the joint

angles along the path must be checked so that the fingers do not jump from an inverse kinematic

solution branch to another.

• Regrasping path computation

12



To compute the regrasping paths, a collision-free trajectory for each independent finger has to be

planned. This is done using the RRT method [13].

4.3 Decomposition of the paths in GSn

This step is necessary to transform GSn portions of the solution path into a finite sequence of trans-

fer/regrasping paths. This is done by a dichotomic procedure that iteratively splits the GSn paths

into pieces whose endpoints can be connected by a composition of two collision-free regrasping/transfer

paths. The operation of the algorithm is very simple as described in algorithm 2.

Let q1 = (o1, g1) and q2 = (o2, g2) be two configurations linked by a GSn path. o1 and o2 are

the configurations of the object and g1 and g2 the configurations of the grasp (the contact positions,

see section 4.1). The is transfer regrasping connection possible begins by computing a transfer path

from (o1, g1) and (o2, g1) followed by a a regrasping path from (o2, g1) and (o2, g2). If it fails, a re-

grasping path between (o1, g1) and (o1, g2) followed by a transfer path between (o1, g2) and (o2, g2) are

computed. If calculated paths are colliding (or not valid), the configuration halfway along the GSn

portion is generated (noted qinter) and the algorithm is recursively applied to two subpaths connecting

this intermediate configuration to the initial and the final ones (transform path function).When all the

necessary subdivisions are completed, the concatenation of all elementary subpaths is collision-free and

respects the manipulation constraints. The process is guaranteed to converge thanks to the reduction

property.

if (is transfer regrasping connection possible(q1,q2)==true ) then1

decomposition complete2

END3

else4

if ‖o1 − o2‖ ≥ ε then5

qinter ← intermediate configuration(q1,q2)6

transform path(q1,qinter)7

transform path(qinter,q2)8

else9

failure10

END11

end12

end13

Algorithm 2: Transforming paths inside GSn into a finite sequence of transfer-regrasping paths

13



5 Simulation Results and Analysis

5.1 Results

This section presents results obtained from computer simulations, for four different planning problems.

We have developed a planner written in C++ that uses the PQP library [25] for collision detection.

The simulated hand has four 3-DOF fingers (see figure 5). As the fingers have only 3 DOFs, the inverse

kinematics of the fingers has only one solution. If it is not the case, a solution to the inverse kinematics

problem is randomly chosen during the sampling phase. The contact model needed for force closure

test is the PCWF one (point contact with friction model) and the chosen friction coefficient is 0.8. The

graph is built using visibility-PRM method [26]. The computation times correspond to experiments

conducted on a PC equipped with an Intel Core2Duo processor (two 2.16 GHz processors) with 2GB

RAM. Actually, only one of the processors is employed as the planning program uses only one thread.

For each example, we give the resolution times and the number of generated nodes. All the results are

averaged on 200 trials. Minimal and maximal times are also given. No planning failures were reported

for any of the examples. The probabilistic completeness of the planner could be deduced from the PRM

method properties [27].

Figure 5: The geometry of the simulated hand.

The first example is very simple and is used for comparison with other existing methods as it is the

most common in literature. It concerns the reorientation of a sphere (figure 6). It is solved within a few

seconds. The parameter α is constant and set to 0.9.

Figure 6: Start and goal configurations for the sphere reorientation problem.

To confirm that exploring GS4 via paths in this particular space is advantageous, we also solved

this example using only “transfer+regrasping” and “regrasping+transfer” paths. We call the associated

14



method “classic method”. The classic method is just a visibility-PRM method [26] whose local method

is a single transfer-regrasping or regrasping-transfer sequence (both types are tested for each node con-

nection). This method favors a dense sampling of GSn (like classic techniques).

Table 1 shows some information on obtained results. The difference between the computing times of

the two methods is particularly noteworthy. The exploration of GS4 allows to considerably reduce the

number of samples that is necessary to solve the problem. Far less connections have to be tested and the

computation of a connection in GS4 is much faster than the computation of a connection like “trans-

fer+regrasping” or “regrasping+transfer” because the associated search space dimension is smaller.

Table 1: Results for the sphere example for both proposed and “classic” methods.

Method Proposed method Classic method

min mean max min mean max

resolution time (s) 0.4 5 21 53 580 2141

number of

generated nodes 1 41 186 90 858 2733

The purpose of the next example is to study the planner performance for an object whose shape is

not as smooth as it is for the sphere. It concerns the reorientation of a box-shaped object. α parameter

was initially set to 0.5 and decreased at each trial of connected component merging by a value 0.005 until

0.3. Results are still compared with the ones obtained with the classic method (table 2). Figure 7 shows

some steps of the solution obtained for this task. Here, GS4 has several connected components, unlike

for the previous example. The problem takes consequently more time to be solved but the exploration

of GS4 remains very interesting compared to the classic method.

Table 2: Results for the box example for both proposed and “classic” methods.

Method Proposed method Classic method

min mean max min mean max

resolution time (s) 1.2 57 204 54 763 5702

number

of generated nodes 14 155 433 138 1165 5703

The third problem’s interest comes from the fact that it cannot be solved by a method that first

computes the complete trajectory (from start to goal configuration) of the object alone. Such a method

15



Figure 7: Some steps of a solution obtained for the box problem.

would compute a simple rotation movement whereas the object has also to be translated to always

remain reachable by the fingers. The α parameter is constant and set to 0.6. Figure 8 shows some steps

of a solution found by our planner. Table 3 gives some information of the planner performance for this

example. Tests were not conducted with the classic method as it takes too much time (up to several

hours).

Figure 8: Some steps of a solution obtained for the pencil reversing problem.

At last, we present a more complicated example involving two dexterous manipulation planning sub-

problems. The goal is first to steer an electric bulb into a plug and then to give it a screwing movement

(lift it up and rotate it around a vertical axis). We precise that the socket is just a cylindrical hole;

there is no grooves inside. The parameter α is constant and set to 0.8. Figure 9 illustrates some steps of

the solution found by our planner. Table 4 shows some information of the planner performance for this

example. As expected, the resolution time is much higher than for previous examples since it involves

16



Table 3: Results for the pencil example for the proposed method.

Method Proposed method

min mean max

resolution time (s) 87 699 2423

number of generated nodes 381 1896 6731

the computation of a path into a narrow passage which is a challenging task for most planning methods

in general and particularly for probabilistic methods. The obtained results remain very satisfying.

Figure 9: Some steps of a solution obtained for the bulb insertion problem.

Table 4: Results for the bulb example for the proposed method.

Method Proposed method

min mean max

resolution time (s) 18 1019 5545

number of generated nodes 28 836 4369

5.2 Influence of the α parameter

So far we chose the values of α that gave what appears to be the best results. The importance of

this parameter led us to study its influence on the planner capacity. Therefore experiments measuring

the evolution of the resolution time with respect to α, for the first two examples of section 5.1 was

conducted. 200 tests were performed for each value of α.

17



Figure 10: Evolution of the resolution time with respect to the α parameter of the sphere (left) and the

box (right) examples.

Logically, figure 10 reveals that the resolution time increases as α decreases (sphere reorientation prob-

lem). As GS4 has only one connected component, it is useless and more time consuming to search for

paths in a space of higher dimension as it is done at each connection attempt using regrasping path. In

the second example (box problem - figure 10), it is essential to search for regrasping path connections.

As the exploration of GS4 is achieved quickly, the crucial step is merging the connected components of

the graph. The bigger is α, the more time the resolution will need and in the extreme case where α = 1,

the planner can not find a solution. α must so be chosen small if the domain in which the grasp can vary

continuously is small, for instance when the object shape is very sharp or if the environment constrains

the finger movements. However, the generation of configurations in GS4 must also be realized as well as

the exploration of this subspace. Therefore it is interesting to find a trade-off, using initially a big value

of α and decreasing it progressively, e.g. making α vary inversely with the graph size (node number

of the graph). As often with the probabilistic methods, the choice of the best value for this parameter

remains an issue that would need to be further investigated.

6 Conclusion

We have presented a new generic method for the multi-fingered manipulation motion planning problem

with an n-fingered hand. It is based upon a particular description of the configuration space. This

description relies on the definition of the grasp subspaces GSk, that are the subspaces of all the config-

urations corresponding to k-fingered grasps. The proposed resolution method favors the exploration of

GSn building a probabilistic graph in this subspace. The main originality of our method is to explore

mainly GSn via special paths that are linear paths inside GSn. This greatly reduces the need to compute

regrasping movement trajectories and so the resolution time of the method. The connected components

of the graph are merged using elementary paths that pass through GSn−1. Multi-fingered manipulation

18



tasks have been simulated and have confirmed the validity of the method and very good computing

times. In some rare situations, it may be necessary to break more than one contact at a time which is

not allowed by the method.

Possible improvements concern the optimization of the computed paths. Another future work could

concern the treatment of deformable contacts that offer better grasping possibilities because they permit

contacts on sharp parts of the object surface like edges.

REFERENCES

[1] Li, Z., Canny, J., Sastry, S., “On Motion Planning for Dexterous Manipulation, Part I: The Problem

Formulation”, Proceedings of the IEEE Conference on Robotics and Automation, Scottsdale, USA,

pp. 775 - 780 (1989).

[2] Montana,D. “The Kinematics of Multi-Fingered Manipulation”, IEEE Transactions on Robotics

and Automation, Vol. 11, pp. 491- 503 (1995).

[3] Han, L., Li, Z., Trinkle, J.C., Qin, Z., Jiang, S., “The Planning and Control of Robot Dextrous

Manipulation”, Proceedings of the IEEE International Conference on Robotics and Automation,

San Francisco, USA, pp. 263-269 (2000).

[4] Xu,J. and Li,Z., “Kinematic Modelling of Multifingered Hand’s Finger Gaits as Hybrid Automa-

ton”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,

Edmonton, Canada, pp. 3252-3257, (2005).

[5] Rus, D., “In-hand Dexterous Manipulation of 3D piecewise-smooth objects” International Journal

of Robotics Research, Vol. 18, No. 4, 355-381 (1999).

[6] Sudsang, A., Phoka, T., “Regrasp Planning for a 4-Fingered Hand Manipulating a Polygon”, Pro-

ceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan, Vol.

2, pp. 2671- 2676 (2003).

[7] Trinkle, J.C., Hunter, J., “A Framework For Planning Dexterous Manipulation”, Proceedings of

the IEEE Conference on Robotics and Automation, Sacramento, USA, pp. 775 - 780 (1991).

[8] Cherif, M., Gupta, K., “Planning Quasi-Static Motions for Reconfiguring Objects with a Multi-

fingered Robotic Hand”, IEEE Transactions on Robotics and Automation, Vol. 4, pp. 491-503

(1999).

[9] Goodwine,B., Burdick,J., “Motion Planning for Kinematic Stratified Systems with Application to

Quasi-Static Legged Locomotion and Finger Gaiting”, IEEE Transactions on Automatic Control,

Vol. 18, pp. 209-222 (2002).

19



[10] Harmati,I., Lantos,B., Payandeh,S., “On Fitted Stratified and Semi-Stratified Geometric Manipu-

lation Planning with Fingertip Relocations”, The International Journal of Robotics Research, Vol.

21, pp. 489-510 (2002).

[11] Goodwine,B., “Stratified Motion Planning with Application to Robotic Finger Gaiting”, Proceed-

ings of the IFAC World Congress,1998, Beijing (1998).

[12] Yashima, M., Yamaguchi, H., “Dynamic Motion Planning Whole Arm Grasp Systems Based on

Switching Contact Modes”, Proceedings of the 2002 IEEE International Conference on Robotics

and Automation, Washington D.C., USA, pp. 2492 - 2496 (2002).

[13] LaValle,S.M., Kuffner,J.J., “Rapidly-exploring Random Trees: Progress and Prospects”, Algorith-

mic and Computational Robotics: New Directions, A K Peters, Wellesley, MA, pp. 293-308 (2001).

[14] Han, L., Trinkle, J.C., “Dextrous Manipulation by Rolling and Finger Gaiting”, Proceedings of the

IEEE International Conference on Robotics and Automation, Leuven, Belgium, pp. 730-735 (1998).

[15] Yashima, M., Shiina, Y., Yamaguchi, H., “Randomized Manipulation Planning for A Multi-Fingered

Hand by Switching Contact Modes”, Journal of the Robotics Society of Japan, pp. 788 - 797 (2004).

[16] Siméon, T., Cortés, J., Sahbani, A., Laumond, J.-P., “A General Manipulation Task Planner”,

Algorithmic Foundations of Robotics, Springer-Verlag, Vol. 5, pp. 311-328 (2003).

[17] Alami, R., Laumond, J.-P., Siméon, T. “Two manipulation planning algorithms”, Algorithmic

Foundations of Robotics WAFR94, Springer Verlag (1994).

[18] Bicchi, A., “On the closure properties of robotic grasping”, The International Journal of Robotics

Research, Vol. 14, #4, (1995).

[19] Liu, Y.-H., “Qualitative test and force optimization of 3D frictional form-closure grasps using linear

programming”, IEEE Transactions on Robotics and Automation, Vol. 15, pp. 163-173 (1999).

[20] Sahbani, A., Siméon, T., Cortés, J., “A probabilistic algorithm for manipulation planning under

continuous grasps and placements”, Proceedings of the IEEE International Conference on Intelligent

Robots and Systems, Washington D.C., USA, pp. 1560 - 1565 (2002).

[21] Kavraki, L., Latombe, J.C., “Randomized Preprocessing of Configuration Space for Fast Path

Planning“, Proceedings of the IEEE International Conference on Robotics and Automation, San

Diego, USA, pp. 2138-2139 (1994).

[22] Overmars, M., Svestka, P., “A Probabilistic learning approach to motion planning”, Algorithmic

Foundations of Robotics, Springer-Verlag, San Francisco, USA, pp. 19 - 37 (1994).

[23] Cortés, J., Siméon, T., Laumond, J.-P., “A Random Loop Generator for Planning the Motions of

Closed Kinematic Chains using PRM Methods”, Proceedings of the IEEE International Conference

on Robotics and Automation, Washington D.C., pp. 2141 - 2146 (2002).

20



[24] Lanthier,M. and Maheshwari,A. and Sack,J.-R., “Approximated Weighted Shortest Paths on Poly-

hedral Surface“, Proceedings on the 13th Annual ACM Symposium on Computational Geometry,

Nice, France, pp. 274-283 (1997).

[25] Gottschalk, S., Lin, M.C., Manocha,D., “OBBTree: A Hierarchical Structure for Rapid Interference

Detection”, Proceedings of ACM Siggraph’96, New Orleans, USA, pp. 171 - 180 (1996).

[26] Siméon, T., Laumond, J.-P., Nissoux, C., “Visibility-based probabilistic roadmaps for motion plan-

ning”, Journal of Advanced Robotics, Vol. 14, pp. 477- 494 (2000).

[27] Ladd, A. M., Lydia E. Kavraki “Measure Theoretic Analysis of Probabilistic Path Planning”, IEEE

Transactions on Robotics and Automation, Volume 20, Number 2, pp. 229 - 242 (2004).

APPENDIX

A Reduction property proof

Here we give a proof of the reduction property that derives from [17].

Hypothesis H: The robot hand avoids all forbidden contacts i.e. all contacts with environment obsta-

cles and between any two of its bodies that are not connected by a joint. Accepted contacts are grasp

contacts (fingertip/object contacts) and contacts between any two bodies linked by a joint.

The reduction property is then stated as follows:

Reduction property:

Under the hypothesis H, any two configurations of a same connected component of GSn can be connected

by a finite regrasping and transfer path sequence.

Proof:

Let a and b be two configurations of a same connected component of GSn. There exists a path linking

a and b i.e. a continuous function p : [0, 1] → GSn such as p(0) = a and p(1) = b.

The object configuration (a vector in SE(3)) is noted qo and the grasp configuration (the positions onto

the object surface of n contact points) is noted qg. As mentioned in section 3, knowing qo and qg allows

to compute, in a unique way, the robot hand configuration qr. Let f be the function used to compute

the robot hand configuration from the object and grasp configurations:

f : CSobject × CSgrasp → CSrobot

(qo, qg) 7→ qr

(3)

CSobject is the configuration space of the object alone (CSobject = SE(3)).

CSgrasp is the configuration space of the grasp, characterized by the positions of n points on the object

surface. Its topology depends on the topology of the object surface; e.g., if this surface is topologically

21



equivalent to a sphere, CSgrasp = (S2)n. CSrobot is the configuration space of the robot. The robot

configurations are characterized by a vector of joint parameters.

Let pr be the projection of p onto CSrobot, po the projection of p onto CSobject and pg the projection of

p onto CSgrasp. Let c = p(t), t ∈ [0, 1] be any configuration along the path p. According to hypothesis

H, pr(t) is included in an open set of CSrobot,free, the collision-free configuration space of the robot. So

there exists an open ball Bε ⊂ CSrobot,free, centered on pr(t), with a radius ε > 0.

f(qo, qg) is computed from the inverse geometric models of the fingers. These models receive, as an input,

the contact positions, depending on object and grasp configurations. The geometric models are assumed

to be continuous. Consequently, f is also continuous, meaning that ∀(q0
o , q0

g) ∈ CSobject × CSgrasp:

∃η > 0, such as‖qo − q0
o‖ < η and ‖qg − q0

g‖ < η,

⇒ ‖f(qo, qg)− f(q0
o , q0

g)‖ < ε (4)

where the used norms are norms associated to corresponding spaces (SE(3), CSgrasp et CSrobot). Besides,

p continuity yields directly the continuity of po and pg because the object trajectory is continuous along

p and the trajectories of the contact points on the object surface are also continuous along p, by

construction of paths in GSn. Consequently, we have the following continuity relation:

∃η > 0, such as ∀(τ, σ) ∈]t− η, t + η[×]t− η, t + η[,

f(po(τ), pg(σ)) ∈ Bε (5)

Let c1 = p(τ1) and c2 = p(τ2) be any two configurations along p such as (τ1, τ2) ∈]t−η; t+η[×]t−η; t+η[.

Let us prove that c1 and c2 can be connected by a transfer path followed by a regrasping path.

Let us consider the path p1:

p1 : [τ1, τ2] → CSobject × CSgrasp

τ 7→ (po(τ), pg(τ1))
(6)

p1 is a transfer path from (po(τ1), pg(τ1)) to (po(τ2), pg(τ1)).

According to (5) we have:

∀τ ∈ [τ1, τ2], f(po(τ), pg(τ1)) ∈ Bε (7)

so the robot configuration along path p1 belong to Bε and p1 is collision-free.

Let us consider the path p2:

p2 : [τ1, τ2] → CSobject × CSgrasp

τ 7→ (po(τ2), pg(τ))
(8)

p2 is a regrasping path from (po(τ2), pg(τ1)) to (po(τ2), pg(τ2)).

According to (5) we have:

∀τ ∈ [τ1, τ2], f(po(τ2), pg(τ)) ∈ Bε (9)

22



so the robot configuration along path p2 belong to Bε and p2 is collision-free. c1 and c2 can consequently

be connected by p1 followed by p2. As the path pr seen as a set (i.e. the image of [0, 1] by function pr)

is a compact set included in an open subset of CSrobot,free, there exists a finite number of open balls of

CSrobot,free whose union contains pr (there exists a finite covering of [0, 1]). The local transformation

described above can be realized on each part of pr covering. The path p between a and b can be

decomposed in a finite number of transfer-regrasping sequences.

23


