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Introduction

During the past century, the classical picture of the vacuum as an empty object was challenged by a series of theoretical advances and experimental observations including the measurement of the Lamb shift [START_REF] Lamb | Fine structure of the hydrogen atom by a microwave method[END_REF] and the derivation of the Casimir effect [START_REF] Casimir | On the attraction between two perfectly conducting plates[END_REF] (see also [START_REF] Casimir | The influence of retardation on the London-van der Waals forces[END_REF]). The description of the vacuum as a complicated fluctuating system emerged. An intuitive picture for this system can be derived from the observation by Blackett and Occhialini [START_REF] Blackett | Some photographs of the tracks of penetrating radiation[END_REF] of the creation of electron-positron pairs when one provides a sufficient amount of energy to the vacuum. Since the energy-time uncertainty principle [START_REF] Mandelshtam | The uncertainty relation between energy and time in nonrelativistic quantum mechanics[END_REF] allows important fluctuations of energy during short time intervals, nothing prevents the vacuum from being the place of permanent creations and annihilations of pairs of virtual particles. This phenomenon affects the interactions between physical particles. It is in particular at the origin of the vacuum polarization. In presence of an external electromagnetic field, the virtual electron-positron pairs modify the distributions of charges and currents originally generated by the fields. The corrections with respect to the original distributions are computed using Quantum Electrodynamics (see e.g. [START_REF] Peskin | An introduction to quantum field theory[END_REF][START_REF] Greiner | Quantum electrodynamics[END_REF][START_REF] Dyson | Advanced quantum mechanics[END_REF]). This perturbative theory provides their value in terms of a power series with respect to the Sommerfeld fine-structure constant α = e 2 4πε 0 c .

Unfortunately, divergences appear at any order in the computations. In order to obtain a welldefined value, one has to appeal to complicated renormalization procedures, which provide corrections in an extremely accurate agreement with physical experiments in spite of their intricacy (see e.g. [START_REF] Gabrielse | New determination of the fine structure constant from the electron g value and QED[END_REF]).

Our goal in this survey is to describe recent mathematical results concerning simplified models for the vacuum polarization. The main difference with Quantum Electrodynamics lies in the non-perturbative nature of the models. The fine-structure constant α being fixed, the polarized vacuum is constructed by variational arguments. The main difficulty lies in the choice of the approximations to make in order to allow such a construction and to guarantee its relevance with respect to the perturbative computations of Quantum Electrodynamics.

The results in this survey are based on a seminal paper by Chaix and Iracane [START_REF] Chaix | From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism[END_REF] (see also [START_REF] Chaix | From quantum electrodynamics to mean field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation[END_REF]), which provides a mean-field framework for the analysis of the vacuum polarization. In this setting, the system under consideration is composed of the physical electrons and positrons, coupled with virtual ones which give account of the polarized vacuum. All of them interact with photons, the interactions being instantaneous. The electrons and positrons are described using an Hartree-Fock approximation. Under this approximation, and using renormalization procedures which are quite standard in the context of Quantum Electrodynamics, it becomes possible to define rigorously an energy for the system. The polarized vacuum is then mathematically constructed as a critical point of this energy. One can compare the expansions of its charge and current densities with respect to the fine-structure constant α to the ones provided by Quantum Electrodynamics, and check, at least in the purely electrostatic case, that the approximations made in order to fashion the simplified models are quite reasonable. This is in brief what we are going to describe in this survey. In the first section, we focus on the derivation of the two Hartree-Fock models that we are going to analyze mathematically. We provide some further details on the notion of polarized vacuum, as well as on the nature of an Hartree-Fock approximation. The second section is devoted to the mathematical analysis of our first model, the so-called Bogoliubov-Dirac-Fock model, which corresponds to the purely electrostatic case. We give rigorous existence results for the polarized vacuum, and check (in the reduced case) the relevance of our definitions with respect to Quantum Electrodynamics by computing an asymptotic expansion of the total charge density with respect to the finestructure constant α. In the third section, we consider the Pauli-Villars regulated model which takes account of the electromagnetic interactions with the photons. Our main results about this further model deal with its rigorous definition and with the mathematical construction of a polarized vacuum.

2 Derivation of the Hartree-Fock models for the vacuum polarization

The picture of the Dirac sea

In relativistic quantum mechanics, individual electrons are represented by spinors ψ ∈ L 2 (R 3 , C 4 ). This description originates in the works of Dirac [START_REF] Dirac | The quantum theory of the electron[END_REF][START_REF] Dirac | The quantum theory of the electron[END_REF][START_REF] Dirac | A theory of electrons and protons[END_REF], who introduced the formula

E c (ψ) = D m,0 (ψ), ψ L 2 (R 3 ,C 4 ) ,
for the computation of the kinetic energy of a relativistic electron. The free Dirac operator D m,0 is defined as

D m,0 = cα • (-i∇) + mc 2 β,
where , c and m stand respectively for the reduced Planck constant, the speed of light (in the free vacuum), and the (bare) mass of an electron. Without loss of generality, we can make a choice of units such that = 1 and c = 1. In the sequel, we adopt this choice, so that we drop the dependence on and c of the operator D m,0 .

The Dirac operator is a self-adjoint operator on L 2 (R 3 , C 4 ), with domain H 1 (R 3 , C 4 ) (see e.g. [START_REF] Thaller | The Dirac equation[END_REF]). The Dirac matrices α = (α 1 , α 2 , α 3 ) and β are given by the formulae

α k = 0 σ k σ k 0 and β = I 2 0 0 -I 2 ,
where the Pauli matrices σ 1 , σ 2 and σ 3 are equal to

σ 1 = 0 1 1 0 , σ 2 = 0 -i i 0 and σ 3 = 1 0 0 -1 .
The Dirac matrices are designed so as to satisfy the identity

D 2 m,0 = -∆ + m 2 I.
As a result, the spectrum of the free Dirac operator splits into two intervals according to the expression

σ(D m,0 ) = (-∞, -m] ∪ [m, +∞).
The spectrum is interpreted as the possible levels of kinetic energy for a relativistic electron, so that nothing prevents the kinetic energies to be arbitrarily negative. Such a phenomenon has never been observed in practice.

Dirac [START_REF] Dirac | The quantum theory of the electron[END_REF][START_REF] Dirac | The quantum theory of the electron[END_REF][START_REF] Dirac | A theory of electrons and protons[END_REF] by-passed the difficulty introducing the picture of the Dirac sea. In the free vacuum, an infinite number of virtual electrons completely fill in the levels of negative energy. The possible levels of energy for "physical" electrons are positive. The picture amounts to claiming that the free vacuum is not represented by a vanishing quantity, but instead is identified to the negative spectrum of the free Dirac operator. In the following where we will consider electrons in an Hartree-Fock state (see Subsection 2.2), the free vacuum will be more precisely identified to the negative spectral projector

P - m,0 = χ (-∞,0] (D m,0 ).
In presence of an additional external electromagnetic four-potential

A ext = (V ext , A ext ),
the nature of the vacuum is modified by the interactions between the virtual electrons and the external field. In the simplified Furry picture [START_REF] Furry | A symmetry theorem in the positron theory[END_REF], the vacuum is described through the introduction of the electromagnetic Dirac operator

D m,eAext = α • (-i∇ -eA ext ) + mβ + eV ext ,
which is written here in physical units such that the vacuum permittivity ε 0 is equal to 1/4π. The so-called dressed vacuum is identified to the negative spectral projector

P Furry m,Aext = χ (-∞,0] (D m,eAext ).
The virtual electrons of the dressed vacuum span the range of the projector P Furry m,eAext . They have no reason to remain identical to the virtual electrons in the free (or bare) vacuum which span the range of the projector P - m,0 . In general, the charge density of the vacuum does not remain constant. The dressed vacuum is polarized. In the case where the external field is strong enough, a positive eigenvalue can even appear in the spectrum of the electromagnetic Dirac operator D m,Aext , creating an hole in its negative spectrum. A (physical) electron-positron pair is produced, the electron being identified to the positive eigenvalue, while the hole is identified to the positron.

The Furry picture provides a good approximation for the polarization of the vacuum when the external fields are not too strong. In practice, the non-constant charge density of the polarized vacuum modifies the electromagnetic field. The virtual electrons react to the corrected field which in turn affects the nature of the polarization. In order to describe it more accurately, one has to look for more sophisticated models.

The Hartree-Fock approximation

In the Physics literature, vacuum polarization is described using Quantum Electrodynamics which provides extremely accurate computations for the charge and current densities of the polarized vacuum. On the mathematical level, this theory is far from being completely understood, in particular, due to the perturbative nature of its computations. In this subsection, we present a set of approximations which make possible the construction of non-perturbative models for the vacuum polarization. The main one consists in describing the electronic structures as Hartree-Fock states.

The simplest way to introduce the Hartree-Fock approximation is probably to come back to the description of N classical electrons around a positive density of charge ν. In this situation, the electronic structure is described through the N -body Hamiltonian

H N ν = N i=1 - 1 2m ∆ x i -e 2 R 3 ν(y) |x i -y| dy + j>i e 2 |x i -x j | , (1) 
which acts on the space L 2 a ((R 3 ) N , C) of electronic states Ψ which are anti-symmetric with respect to the permutations of the variables x i (in order to guarantee the validity of the Pauli exclusion principle), and with a density |Ψ| 2 which depends symmetrically on the variables x i (so as to handle with undistinguishable electrons). The possible electronic structures correspond to the eigenfunctions of the Hamiltonian H N ν , the ground state structure corresponding to the minimal eigenvalue. The analysis of H N ν is rather involved (see [START_REF] Hunziker | The quantum N-body problem[END_REF][START_REF] Reed | Methods of modern mathematical physics IV. Analysis of operators[END_REF] for more details), so that several approximations have been suggested to simplify the description.

The Hartree-Fock approximation [START_REF] Hartree | The wave-mechanics of an atom with a non-coulomb central field[END_REF][START_REF] Fock | Näherungsmethode zur lösung des quantenmechanischen mehrkörperproblems[END_REF] restricts the analysis to the Hartree-Fock states Ψ which write as Slater determinants

Ψ(x 1 , . . . , x N ) = Ψ 1 ∧ • • • ∧ Ψ N (x 1 , . . . , x N ) = 1 √ N ! det Ψ i (x j ) 1≤i,j≤N ,
where Ψ 1 , . . ., Ψ N are N orthogonal wavefunctions in L 2 (R 3 , C). The Hartree-Fock states

Ψ 1 ∧ • • •∧ Ψ N are
the less correlated electronic structures. Their energy is given by the expression

E HF ν (Ψ 1 ∧ • • • ∧ Ψ N ) = 1 2m N i=1 R 3 |∇Ψ i | 2 - e 2 2 R 3 R 3 |γ Ψ (x, y)| 2 |x -y| dxdy -e 2 R 3 R 3 ν(x)ρ Ψ (y) |x -y| dxdy + e 2 2 R 3 R 3 ρ Ψ (x)ρ Ψ (y) |x -y| dxdy.
In this formula, γ Ψ refers to the one-body density operator with integral kernel

γ Ψ (x, y) = N i=1 Ψ i (x)Ψ i (y).
In other words, γ Ψ is the orthogonal projector on the linear space spanned by the wavefunctions Ψ i . Concerning the charge density ρ Ψ , it is equal to

ρ Ψ (x) = N i=1 |Ψ i (x)| 2 = γ Ψ (x, x).
In particular, the Hartree-Fock energy only depends on the one-body density operator γ Ψ through the identity

E HF ν (γ Ψ ) = 1 2m tr(-∆ γ Ψ ) - e 2 2 R 3 R 3 |γ Ψ (x, y)| 2 |x -y| dxdy -e 2 R 3 R 3 ν(x)ρ Ψ (y) |x -y| dxdy + e 2 2 R 3 R 3 ρ Ψ (x)ρ Ψ (y) |x -y| dxdy, (2) 
where tr(-∆ γ Ψ ) is the trace of the finite rank operator -∆ γ Ψ . As a consequence, the Hartree-Fock electronic structure can be computed in terms of an orthogonal projector, the Hartree-Fock ground state being identified to the projector which minimizes the energy E HF ν among all the possible projectors.

The picture is similar in the relativistic case. In Quantum Electrodynamics, the (formal) Hamiltonian describing an electronic structure in the presence of a (classical) external electromagnetic four-potential A ext = (V ext , A ext ) may be written in the Coulomb gauge as

H Aext = Ψ * (x) α • (-i∇ -eA(x) -eA ext (x)) + mβ Ψ(x) dx +e V ext (x)ρ(x) dx + e 2 2 ρ(x)ρ(y) |x -y| dx dy + 1 8π | curl A(x)| 2 dx. (3) 
In this expression, Ψ(x) refers to the second quantized field operator which annihilates an electron at x, while the vector A(x) is the magnetic field operator for the photons. The density operator ρ(x) is defined as

ρ(x) = 1 2 4 σ=1 [Ψ * σ (x), Ψ σ (x)], (4) 
where [a, b] = ab -ba (see [START_REF] Heisenberg | Bemerkungen zur diracschen theorie des positrons[END_REF][START_REF] Heisenberg | Folgerungen aus der diracschen theorie des positrons[END_REF][START_REF] Serber | A note on positron theory and proper energies[END_REF][START_REF] Schwinger | Quantum electrodynamics. I. A covariant formulation[END_REF][START_REF] Hainzl | A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics[END_REF][START_REF] Lewin | Renormalization of Dirac's polarized vacuum[END_REF] for more details about the Hamiltonian H Aext ).

The Hamiltonian H Aext acts on the Fock space F = F e ⊗ F ph , where F e is the fermionic Fock space for the electrons and F ph is the bosonic Fock space for the photons. As in the usual case, the main approximation in order to derive Hartree-Fock models for the description of relativistic electrons consists in restricting the Hamiltonian to states of the special form

Ω = Ω HF ⊗ Ω Coh ,
where Ω HF is an electronic Hartree-Fock state characterized by its one-body density matrix γ(x, y) = Ψ * (x)Ψ(y) Ω HF , and Ω Coh is a coherent state characterized by its classical magnetic potential

A(x) = A(x) Ω Coh .
In practice, this amounts to representing the electrons by an operator γ as in classical Hartree-Fock theory, while the photons are described by a magnetic potential A, which is nothing more than a classical vector field. The main difference with the classical case lies in the fact that the operator γ does not only take into account the physical electrons, but also the virtual ones representing the vacuum. In general, it is not anymore an orthogonal projector with finite rank, but with infinite one, which causes the apparition of divergences in the computation of the energy. Up to a universal constant which diverges in infinite volume, this energy is equal to

E Aext HF (γ, A) = tr D m,e(Vext,A+Aext) γ -1/2 + e 2 2 R 3 R 3 ρ γ-1/2 (x)ρ γ-1/2 (y) |x -y| dx dy - e 2 2 R 3 R 3 |(γ -1/2)(x, y)| 2 |x -y| dx dy + 1 8π R 3 | curl A(x)| 2 dx. ( 5 
)
This expression is similar to the one for the classical Hartree-Fock energy in [START_REF] Blackett | Some photographs of the tracks of penetrating radiation[END_REF]. The kinetic energy is now equal to tr(D m,0 (γ -1/2)), which amounts to replacing the classical operator -∆ by its relativistic version D m,0 . One also recovers the presence of the so-called direct and exchange electrostatic terms in the first, respectively second, line. The main difference lies in the property that the energy is not directly written in terms of the density operator γ, but in terms of the difference γ -1/2. This is a consequence of the charge-conjugation invariant choice (4) for the density operator ρ(x) (see [START_REF] Hainzl | The mean-field approximation in quantum electrodynamics. The no-photon case[END_REF] for more details). This property is particularly helpful when one attempts to give a rigorous meaning to the expression in [START_REF] Chaix | From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism[END_REF].

The energy in (5) presents major divergences. Since the operator D m,0 is unbounded and γ -1/2 has infinite rank when γ is a projector, the kinetic energy is not well-defined. Moreover, since γ -1/2 is not a compact operator, defining its kernel (γ -1/2)(x, y), and thereafter the density ρ γ-1/2 , is a further challenge. Similar divergences appear in Quantum Electrodynamics, in which regularization techniques have been developed in order to by-pass the difficulty. These techniques mainly rely on the introduction of an ultraviolet cut-off Λ in the model. In the sequel, we describe how it is possible to adapt two regularization techniques to provide a rigorous meaning to the energy in [START_REF] Chaix | From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism[END_REF] and construct a consistent Hartree-Fock model for the vacuum polarization. This leads to the construction of two different models. The first one is the Bogoliubov-Dirac-Fock model which does not take into account the effects due to the presence of photons, as well as of a possible external magnetic field. In the second one, handling with these effects is in contrast possible due to the use of a more ingenious regularization, the so-called Pauli-Villars regularization.

3 The Bogoliubov-Dirac-Fock model

Derivation and functional framework

The Bogoliubov-Dirac-Fock model was introduced by Chaix and Iracane in [START_REF] Chaix | From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism[END_REF] (see also [START_REF] Chaix | From quantum electrodynamics to mean field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation[END_REF]). It only takes into account kinetic and electrostatic aspects. The external magnetic potential A ext and the magnetic potential A for the photons are set equal to 0. Concerning the external electrostatic potential V ext , it is induced by an external charge density ν according to the Coulomb formula

V ext (x) = -e R 3 ν(y) |x -y| dy.
As a result, the formal Hartree-Fock energy for the one-body density operator γ reduces to the expression

E ν HF (γ) = tr D m,0 (γ -1/2) -α ρ γ-1/2 (x)ν(y) |x -y| dxdy + α 2 ρ γ-1/2 (x)ρ γ-1/2 (y) |x -y| dxdy - α 2 |(γ -1/2)(x, y)| 2 |x -y| dxdy, (6) 
where we have introduced the (bare) Sommerfeld fine-structure constant α = e 2 . Recall that in this formula, the function (γ -1/2)(x, y) refers to the (formal) kernel of the operator γ -1/2, while the density ρ γ-1/2 is (also formally) defined as

ρ γ-1/2 (x) = (γ -1/2)(x, x).
One can introduce a reduced version of the energy omitting the exchange electrostatic term according to the formula

E ν rHF (γ) = tr D m,0 (γ -1/2) -α ρ γ-1/2 (x)ν(y) |x -y| dxdy + α 2 ρ γ-1/2 (x)ρ γ-1/2 (y)
|x -y| dxdy.

(7) In the sequel, we restrict our attention to the reduced energy in order to simplify the analysis. We will point out the results which remain available for the energy with exchange term (see [START_REF] Hainzl | A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics[END_REF][START_REF] Esteban | Variational methods in relativistic quantum mechanics[END_REF][START_REF] Lewin | Renormalization of Dirac's polarized vacuum[END_REF] and references therein for more details).

The critical points for the energy E ν rHF are solutions to the self-consistent equations

γ, D γ = 0,
where the Fock operator D γ is defined as

D γ = D m,0 + α ρ γ-1/2 -ν * 1 |x| .
An orthogonal projector γ * which minimizes the energy E ν rHF among all the possible projectors, is solution to the equation

γ * = χ (-∞,0] (D γ * ). (8) 
The projector γ * is interpreted as the polarized vacuum according to the picture of the Dirac sea. The spinors of the virtual electrons in the polarized vacuum span the range of γ * . In view of the self-consistent equation ( 8), they completely fill in the negative spectrum of the Fock operator

D γ * .
The model is fashioned to allow for a description of the electronic structure with N physical electrons around the charge density ν. When γ is an orthogonal projector with finite rank, its rank, or alternatively its trace, provides the number, or alternatively the total charge, of the electrons in the structure represented by γ. The ground state structure is defined as a minimizer γ N of the energy E ν rHF in the charge sector with charge N , that is among the orthogonal projectors with trace equal to N . Such a minimizer γ N (formally) satisfies the self-consistent equation

γ N = χ (-∞,µ N ] (D γ N ), (9) 
where µ N is the Fermi level of the electronic structure described by the operator γ N . Following again the picture of the Dirac sea, the projector

γ vac N = χ (-∞,0] (D γ N )
describes the virtual electrons of the vacuum polarized by the charge density ν and the N physical electrons. They are themselves given by the orthogonal projector

γ ph N = χ (0,µ N ] (D γ N ).
In particular, their energy is positive.

At this stage, it is necessary to emphasize that most of the definitions in the previous discussion are only formal. For example, any orthogonal projectors of finite trace must have a finite rank which cannot be consistent with the identity in [START_REF] Dirac | A theory of electrons and protons[END_REF]. However, it is possible to provide a rigorous meaning to the reduced Bogoliubov-Dirac-Fock model (defining for instance a notion of trace for projectors with infinite rank) by invoking regularization techniques.

In this direction, Hainzl, Lewin and Solovej [START_REF] Hainzl | The mean-field approximation in quantum electrodynamics. The no-photon case[END_REF] noticed that the model is well-defined in a finite-dimensional setting. They suggested to restrict the analysis to a box C L = [-L/2, L/2[ 3 of size L, with periodic boundary conditions, and to introduce an ultraviolet cut-off Λ in the Fourier domain. This amounts to assuming that the operators γ act on the finite-dimensional space

H L,Λ = Ψ = k∈R L,Λ a k exp i k, • R 3 , a k ∈ C 4 , where R L,Λ = {k ∈ (2π/L) Z 3 , s.t. |k| ≤ Λ}.
In this periodic framework, the reduced Hartree-Fock energy takes the form

E ν per (γ) = tr D m,0 (γ -1/2) -α C L C L ρ γ-1/2 (x)ν L (y)G L (x -y) dxdy + α 2 C L C L ρ γ-1/2 (x)ρ γ-1/2 (y)G L (x -y) dxdy. (10) 
In this definition, the function ν L is a periodic version of the charge density ν. It is equal to

ν L (x) = √ 2π L 3 k∈R L,Λ ν(k) exp i k, x R 3 ,
where ν refers to the Fourier transform of ν. In order to get a chance to define properly the Coulomb potentials in [START_REF] Dyson | Advanced quantum mechanics[END_REF], it is natural to assume that ν belongs to the Coulomb space

C(R 3 ) = f ∈ L 1 loc (R 3 , C), s.t. f 2 C = R 3 | f (k)| 2 |k| 2 dk < +∞ .
The periodic Coulomb kernel is similarly given by

G L (z) = 4π L 3 k∈(2π/L) Z 3 \{0} 1 |k| 2 exp i k, z R 3 + K L ,
where the constant K L is fixed so that G L is positive. Finally, the charge density ρ γ-1/2 is defined as

ρ γ-1/2 (x) = tr C 4 (γ -1/2)(x, x) = 1 L 3 (j,k)∈(R L,Λ ) 2 tr C 4 [γ -1/2](j, k) exp i j -k, x R 3 ,
where (γ -1/2)(x, y) is the kernel of the (finite-rank) operator γ -1/2.

In this setting, the periodic reduced Hartree-Fock energy is well-defined on the convex hull of orthogonal projectors on H L,Λ , which is defined as

G L,Λ = γ ∈ L(H L,Λ ), s.t. γ * = γ and 0 ≤ γ ≤ I .
Moreover, the energy owns a minimizer on G L,Λ , which can be interpreted as the polarized vacuum 1 .

Proposition ( [START_REF] Hainzl | The mean-field approximation in quantum electrodynamics. The no-photon case[END_REF]). Let m, α, Λ and L be positive numbers and consider a function ν ∈ C(R 3 ) such that ν is continuous on R 3 . There exists a minimizer γ ν L to the minimization problem inf

γ∈G L,Λ E ν per (γ).
When ν = 0, the minimizer γ 0 L is the negative spectral projector P - m,0,L of the restriction of the free Dirac operator D m,0 to the finite-dimensional space H L,Λ .

The operator γ ν L is identified to the polarized vacuum corresponding to the previous periodic setting. A simple way to describe the polarized vacuum in the full space is to consider the thermodynamic limit L → +∞ of the minimizers γ ν L . It turns out that the limit exists (when the ultraviolet cut-off Λ is fixed) and that it can be described using the reduced Bogoliubov-Dirac-Fock energy (see [START_REF] Hainzl | The mean-field approximation in quantum electrodynamics. The no-photon case[END_REF]). This energy is defined according to the formula

E ν rBDF (Q) = tr P - m,0 D m,0 Q -α R 3 ν(x)ρ Q (y) |x -y| dxdy + α 2 R 3 R 3 ρ Q (x)ρ Q (y) |x -y| dxdy. (11) 
The difference with respect to the reduced Hartree-Fock energy in [START_REF] Dirac | The quantum theory of the electron[END_REF] lies in the choice of a reference projector to compute the energy. More precisely, the energy is not directly expressed in terms of the projector γ, but in terms of its difference

Q = γ -P - m,0
, with the negative spectral projector P - m,0 of the free Dirac operator. In other words, the free vacuum energy is set equal to 0 and all the energies are computed with respect to this reference.

Hainzl, Lewin and Séré [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF] constructed a functional framework in which the reduced Bogoliubov-Dirac-Fock energy is well-defined and bounded from below. They observed the necessity to conserve an ultraviolet cut-off Λ in the model (see [START_REF] Hainzl | Self-consistent solution for the polarized vacuum in a no-photon QED model[END_REF]) assuming that the operators Q do not act on L2 (R 3 , C 4 ), but on the space

H Λ = Ψ ∈ L 2 (R 3 , C 4 ), s.t. supp Ψ ⊂ B(0, Λ) .
This assumption presents the major advantage to transform the operator D m,0 in a bounded operator. We will see in Subsection 3.3 below how to eliminate the ultraviolet cut-off Λ from this description of the polarized vacuum.

More precisely, the operators Q belong to the function space

S 0 Λ = T ∈ S 2 (H Λ ), s.t. P - m,0 T P - m,0 , (I -P - m,0 )T (I -P - m,0 ) ∈ S 1 (H Λ ) 2 , ( 12 
)
where S 1 (H Λ ) and S 2 (H Λ ) are the spaces of trace-class, respectively Hilbert-Schmidt, operators on H Λ . The trace-class conditions in [START_REF] Esteban | Variational methods in relativistic quantum mechanics[END_REF] originate in the property that a formal minimizer Q * of the energy E ν rBDF is in general not trace class (see Theorem 2 below). As a consequence, it is not so easy to define properly its kinetic energy. This is done extending the usual definition through the formula

tr P - m,0 T = tr P - m,0 T P - m,0 + tr (I -P - m,0 )T (I -P - m,0 ) , (13) 
which is well-defined when T is in S 0 Λ . Notice here that the quantity tr P - m,0

(T ) is equal to the trace of T when T is trace class.

Concerning the charge density ρ Q , its definition relies on the introduction of the ultraviolet cut-off Λ. Since the operator Q is Hilbert-Schmidt, it owns a kernel Q(x, y), which belongs to the space L 2 (R 3 × R 3 ). Moreover, its Fourier transform is supported into the product set B(0, Λ) × B(0, Λ) due to the presence of the cut-off. In particular, it is a smooth function so that the charge density ρ Q can be defined according to the identity

ρ Q (x) = tr C 4 Q(x, x).
With this last definition at hand, one can define properly the reduced Bogoliubov-Dirac-Fock energy 2 .

Proposition ( [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF]). Let Λ > 0, α ≥ 0 and ν ∈ C(R 3 ). The energy E ν rBDF is well-defined on the set S 0 Λ .

The introduction of the reduced Bogoliubov-Dirac-Fock model is justified by taking the thermodynamic limit L → +∞ in the periodic model introduced by Hainzl, Lewin and Solovej in [START_REF] Hainzl | The mean-field approximation in quantum electrodynamics. The no-photon case[END_REF]. As a matter of fact, they established the following theorem (which remains available with a few minor changes in the case of the Bogoliubov-Dirac-Fock model with exchange term).

Theorem ( [START_REF] Hainzl | The mean-field approximation in quantum electrodynamics. The no-photon case[END_REF]). Let m, α and Λ be positive numbers and consider a function ν ∈ C(R 3 ) such that ν is continuous on R 3 . (i) When ν = 0, we have

γ 0 L = P - m,0,L . In particular, γ 0 L -P - m,0 L(H L,Λ ) → 0, (14) 
and

E ν per (γ 0 L ) → +∞, (15) 
as L → +∞.

(ii) There exists an operator Q * in S 0 Λ such that, up to a possible subsequence, we have

Q ν L (x, y) = γ ν L (x, y) -γ 0 L (x, y) → Q * (x, y), (16) 
as l → +∞, uniformly on any compact subset of

R 3 × R 3 . (iii) The operator Q * is a minimizer of the reduced Bogoliubov-Dirac-Fock energy E ν rBDF on the set Q Λ = Q ∈ S 0 Λ , s.t. Q * = Q and -P - m,0 ≤ Q ≤ I -P - m,0
. Moreover, we have

E ν per (γ ν L ) -E ν per (γ 0 L ) → E ν rBDF (Q * ) = min E ν rBDF (Q), Q ∈ Q Λ , (17) 
as L → +∞.

The choice of the projector P - m,0 as reference for a model in the full space is justified by the convergences in ( 14) and (15). In the thermodynamic limit L → +∞, the free vacuum is given by P - m,0 according to the original picture of the Dirac sea. Moreover, one has to subtract its infinite energy in order to handle with a reasonable model.

In this case, the convergences in ( 16) and [START_REF] Gravejat | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF] show that the polarized vacuum is actually described by the reduced Bogoliubov-Dirac-Fock model. More precisely, the polarized vacuum is identified to the projector γ * = P - m,0 + Q * corresponding to the minimizer Q * of the energy E ν rBDF on the set Q Λ . Let us recall now some elements about the construction of such a minimizer, as well as its main properties.

Construction of the polarized vacuum and the electronic structures with N electrons

The existence of the minimizer Q * was established by Hainzl, Lewin and Séré in [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF][START_REF] Hainzl | Self-consistent solution for the polarized vacuum in a no-photon QED model[END_REF].

Theorem ( [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF][START_REF] Hainzl | Self-consistent solution for the polarized vacuum in a no-photon QED model[END_REF]). Let Λ > 0, α ≥ 0 and ν ∈ C(R 3 ).

(i) The energy E ν rBDF is bounded from below on the set Q Λ . More precisely, we have

E ν rBDF (Q) + α 2 R 3 R 3 ν(x)ν(y) |x -y| dxdy ≥ 0, (18) 
for any Q ∈ Q Λ . When ν = 0, inequality (18) turns into an equality if and only if Q = 0.

(ii) The energy E ν rBDF owns a minimizer Q * on Q Λ , which is solution to the self-consistent equation

γ * = Q * + P - m,0 = χ (-∞,0) D * + δ * , (19) 
where the Fock operator D * is equal to

D * = D m,0 + α ρ Q * -ν * 1 |x| ,
while δ * refers to a finite-rank operator with range in the kernel of D * .

(iii) The charge density ρ Q * is uniquely determined. When the external charge density ν satisfies the condition 2

11 6 π 1 6 α ν C < m 1 2 , ( 20 
)
the minimizer Q * is also unique. In this case, the operator δ * is equal to 0, and

N * = tr P - m,0 Q * = 0. ( 21 
)
Remark. The previous theorem extends with a few minor changes to the Bogoliubov-Dirac-Fock model with exchange term (see [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF][START_REF] Hainzl | The mean-field approximation in quantum electrodynamics. The no-photon case[END_REF]). In this case, inequality [START_REF] Gravejat | Renormalization and asymptotic expansion of Dirac's polarized vacuum[END_REF] was first proved in [START_REF] Bach | On the stability of the relativistic electron-positron field[END_REF].

Once again, the fact that Q = 0 is the unique minimizer of the energy E 0 rBDF is consistent with the picture of the Dirac sea for the free vacuum. In presence of an external charge density ν, the polarized vacuum is described by the operator γ * = Q * + P - m,0 , which is not necessarily an orthogonal projector due to the presence of the finite-rank operator δ * . This defect is a common drawback of the reduced Hartree-Fock models (see e.g. [START_REF] Solovej | Proof of the ionization conjecture in a reduced Hartree-Fock model[END_REF]). It is possible to withdraw the operator δ * from the self-consistent equation satisfied by a minimizer of the Bogoliubov-Dirac-Fock energy with exchange term (see [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF][START_REF] Hainzl | The mean-field approximation in quantum electrodynamics. The no-photon case[END_REF]).

Under condition [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF], the kernel of the Fock operator D * is necessarily equal to 0, so that the operator δ * identically vanishes. In this case, one recovers the picture of the Dirac sea in which the polarized vacuum is identified to the negative spectral projector γ * of the Fock operator D * . It follows from [START_REF] Hainzl | Self-consistent solution for the polarized vacuum in a no-photon QED model[END_REF] that the polarized vacuum is globally neutral. The trace of Q * is indeed interpreted as the charge of the electronic structure represented by γ * since, at least formally, the charge of the negative projector P - m,0 , which gives account of the free vacuum, must be equal to 0. This is consistent with the observation that a weak electrostatic potential cannot produce physical electrons in the vacuum.

In another direction, one can ask for the behaviour of the minimizer Q * when Λ → +∞. It turns out that the model collapses in this limit.

Proposition ( [START_REF] Hainzl | Self-consistent solution for the polarized vacuum in a no-photon QED model[END_REF]). Let α ≥ 0 and ν ∈ C(R 3 ). We denote by Q Λ * a minimizer of the energy E ν rBDF on Q Λ for a positive number Λ. Then,

|D m,0 | 1 2 Q Λ * S 2 → 0 and α ρ Q Λ * -ν C → 0, as Λ → +∞. In particular, E ν rBDF (Q Λ * ) → - α 2 R 3 R 3 ν(x)ν(y) |x -y| dxdy, (22) 
as Λ → +∞.

In the limit Λ → +∞, the operators Q Λ * converge to 0, while their charge densities ρ Q Λ * tend to the function ν. The limit density is not the charge density of the limit operator. In other words, the model does not remain physically consistent in the limit Λ → +∞. In particular, taking this limit is not a way to eliminate the ultraviolet cut-off Λ. This property is related to the Landau pole phenomenon which was originally described by Landau [START_REF] Landau | On the quantum theory of fields[END_REF], and Landau and Pomeranchuk [START_REF] Landau | On point interaction in quantum electrodynamics[END_REF]. In Subsection 3.3, we will see how to deal with the ultraviolet cut-off by invoking renormalization arguments from Quantum Electrodynamics.

Concerning the description of the electronic structure with N electrons, recall that they are described by the minimizers Q N of the reduced Bogoliubov-Dirac-Fock energy E ν rBDF in the charge sectors

Q Λ (N ) = Q ∈ Q Λ , s.t. tr P - m,0 (Q) = N .
Solving this minimization problem is more involved than the construction of the polarized vacuum. The main difficulty arises in the fact that the charge sectors Q Λ (N ) are not stable under weak convergence in S 0 Λ . To our knowledge, the construction of the electronic structure with N electrons remains open for the Bogoliubov-Dirac-Fock model with exchange term. However, Hainzl, Lewin and Séré [START_REF] Hainzl | Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics[END_REF] proved the following Hunziker-van Winter-Zhislin condition (for both the reduced and original models).

Proposition ( [START_REF] Hainzl | Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics[END_REF]). Let Λ > 0, α ≥ 0 and ν ∈ C(R 3 ), and set

E ν rBDF (q) = inf Q∈Q Λ (q) E ν rBDF (Q), (23) 
for any real number q.

(i) Let q ∈ R. If E ν rBDF (q) < E ν rBDF (q -k) + E 0 rBDF (k), (24) 
for any k ∈ R * , then the minimization problem (23) owns a minimizer Q q .

(ii) In case of existence, a minimizer Q q is solution to the self-consistent equation

γ q = Q q + P - m,0 = χ (-∞,µq) D q + δ q , ( 25 
)
where µ q ∈ [-1, 1] is the Fermi level of the electronic structure. The Fock operator D q is defined as

D q = D m,0 + α ρ Qq -ν * 1 |x| .
The self-adjoint operator δ q is finite rank when µ q = ±1, trace class otherwise, and it ranges in the kernel of the operator D q -µ q I.

When q = N is a positive integer, the polarized vacuum is interpreted as the spectral projector γ vac N = χ (-∞,0] (D N ), while the electronic structure with N physical electrons is described by the spectral projector γ ph N = χ (0,µ N ] (D N ). When the electrostatic potential induced by the charge density ν is weak enough, that is under condition [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF], the equality

tr P - m,0 γ vac N -P - m,0 = 0,
holds, which means that the polarized vacuum is neutral. In this case,

tr P - m,0 γ ph N = tr P - m,0 γ N -P - m,0 = tr P - m,0 Q N = N.
In other words, the electronic structure really exhibits N physical electrons which fill in positive energy levels of the Fock operator D N .

In contrast, nothing rules out the possibility that q is a negative integer. In this situation, the minimizer Q q describes a positronic structure with |q| positrons. The Fermi level µ q is negative. The polarized vacuum is identified as before to the spectral projector γ vac q = χ (-∞,0] (D q ), while the |q| positrons are represented by the spectral projector γ ph q = χ (µq,0] (D q ). Checking the validity of condition [START_REF] Hainzl | The mean-field approximation in quantum electrodynamics. The no-photon case[END_REF] for the Bogoliubov-Dirac-Fock model with exchange term is widely open except for some weak-coupling or non-relativistic regimes (see [START_REF] Hainzl | Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics[END_REF] for more details). As a consequence, the existence for a given value of N of electronic structures with N electrons also remains an open problem. For the reduced model, it is possible to characterize precisely the numbers for which inequality ( 24) is fulfilled.

Theorem 1 ([17]). Let Λ > 0, α ≥ 0 and ν ∈ L 1 (R 3 ) ∩ C(R 3 ). Set Z = R 3

ν.

(i) There exist two constants q m ∈ [-∞, +∞] and q M ∈ [q m , +∞] such that the minimization problem (23) owns a minimizer Q q if and only if

q m ≤ q ≤ q M . (ii) Let q * = tr P - m,0 (Q * ),
where Q * is the absolute minimizer of the energy E ν rBDF on Q Λ . Then,

(q * , Z) ∈ [q m , q M ] 2 .
In particular, when condition (20) is fulfilled, the minimization problem (23) owns a minimizer Q q for any value of q ∈ [0, Z].

When the electrostatic potential induced by the charge density ν is weak enough, Theorem 1 guarantees the existence of electronic structures with N electrons for any integer N between 0 and Z. This is physically relevant in the sense that structures with N electrons are experimentally observed for N between 0 and Z + 1. On the other hand, Theorem 1 does not rule out the existence of electronic structures with an arbitrary number of electrons. To our knowledge, there are indeed no available upper bounds on |q m | and q M . Computing such ionization bounds is quite involved even for classical Hartree-Fock models (see [START_REF] Solovej | Proof of the ionization conjecture in a reduced Hartree-Fock model[END_REF][START_REF] Solovej | The ionization conjecture in Hartree-Fock theory[END_REF]). Concerning the reduced Bogoliubov-Dirac-Fock model, an additional difficulty lies in the sharpness of the ultraviolet cut-off Λ. Imposing such a sharp cut-off amounts to replacing the free Dirac operator D m,0 by the operator D Λ m,0 with Fourier transform

D Λ m,0 (p) = α • p + mβ 1 + χ(|p| 2 /Λ 2 ) , (26) 
where

χ(r) = 0 if 0 ≤ r < 1, and χ(r) = +∞ if r ≥ 1.
The discontinuity in the Fourier transform of D Λ m,0 is one of the source of troubles which prevents from computing upper bounds on |q m | and q M . A natural way to by-pass the difficulty consists in replacing the function χ in (26) by a smooth function. This has no major consequences on the previous analysis of the reduced Bogoliubov-Dirac-Fock model (see [START_REF] Gravejat | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF] for more details). In particular, Theorem 1 remains available with a smooth ultraviolet cut-off. Moreover, for the special choice

χ(r) = r 2 ,
and for α, α ν C and α ln Λ small enough, it is possible to compute the bounds

-K α,ν,Λ ≤ q m ≤ 0, (27) 
and

Z ≤ q M ≤ 2Z + K α,ν,Λ . (28) 
At the non-relativistic limit α → 0, Λ → +∞ and α ln Λ → 0, the positive number K α,ν,Λ satisfies K α,ν,Λ → 0.

In this limit, one recovers the bound computed by Lieb [START_REF] Lieb | Bound on the maximum negative ionization of atoms and molecules[END_REF] in the classical case, that is

q m = 0 and Z ≤ q M ≤ 2Z.
We refer to [START_REF] Gravejat | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF] for more precise statements about this topic, as well as for the proofs of ( 27) and ( 28) (which are essentially based on the arguments developed by Lieb in [START_REF] Lieb | Bound on the maximum negative ionization of atoms and molecules[END_REF]).

Charge renormalization for the polarized vacuum

A crucial ingredient in the proof of Theorem 1 is the following proposition.

Theorem 2 ([17]). Let Λ > 0 and α ≥ 0. Consider a function ν ∈ L 1 (R 3 ) ∩ C(R 3 ), with R 3 ν = Z ∈ R,
and denote by q m and q M , the two extremal values in Theorem 1 for the interval of existence of a minimizer Q q of the energy E ν rBDF on the charge sector Q Λ (q). Given any number q ∈ [q m , q M ], the charge density ρ Qq is an integrable function on R 3 . Its integral is given by

R 3 ν -ρ Qq = Z -q 1 + αB 0 Λ , ( 29 
)
where

B 0 Λ = 1 π Λ √ 1+Λ 2 0 z 2 -z 4 3 1 -z 2 dz. (30) 
In view of Theorem 2, a minimizer Q q is not a trace-class operator, at least when q = Z. Otherwise, the integral of its density would be equal to

R 3 ρ Qq = tr Q q = q,
which contradicts the fact that the number B 0 Λ in ( 30) is positive. The fact that the minimizers Q q are not trace class generates a difficulty in their physical interpretation. The total electrostatic potential V ph which is induced by the external charge density ν and the electrons represented by Q q , is defined by the Coulomb formula as

V ph (x) = α R 3 ν(y) -ρ Qq (y) |x -y| dy. ( 31 
)
When |x| is large enough, an approximation for the potential V ph is provided by the expression

V ph (x) ≈ α |x| R 3 ν -ρ Qq .
In view of ( 29), it follows that

V ph (x) ≈ α 1 + αB 0 Λ Z -q |x| = α Z -q |x| , (32) 
when |x| → +∞. Whereas the minimizer Q q is supposed to represent an electronic structure with q electrons, the potential V ph does not match the Coulomb formula for a potential induced by a total charge equal to Z -q.

At this stage, one could argue that it is sufficient to take the limit Λ → +∞ to solve the difficulty. This is not the case. The constant B 0 Λ is logarithmically divergent when Λ → +∞. One can check that

B 0 Λ = 2 3π ln(Λ) - 5 9π + 2 3π ln(2) + O Λ→+∞ 1 Λ 2 . ( 33 
)
As a consequence, the potential V ph vanishes in the limit Λ → +∞. This is another sign of the collapse of the model in this limit.

This logarithmic divergence also appears in Quantum Electrodynamics. This difficulty is solved by introducing a charge renormalization. Roughly speaking, charge renormalization consists in accepting the idea that the bare fine-structure constant α in the model is not the finestructure constant α ph which is experimentally observed. The physical fine-structure constant is defined according to the formula

α ph = α 1 + αB 0 Λ , (34) 
so that formula (32) matches with the limit at infinity of a Coulomb potential induced by a total charge equal to Z -q.

Modifying the definition of the fine-structure constant affects in turn the definition of the potential V ph in the sense that this potential must be equal to

V ph (x) = α R 3 ρ ph (y) |x -y| dy, (35) 
where ρ ph refers to the total charge density which is experimentally observed. In view of [START_REF] Landau | On point interaction in quantum electrodynamics[END_REF], one has to admit that the value of ρ ph is equal to

α ph ρ ph = α ph ν -ρ Qq . (36) 
A natural question is to ask for the physical relevance of the quantities α ph and ρ ph . Using Quantum Electrodynamics, one can compute a power series of ρ ph with respect to α ph (tending to 0), and check that the resulting computations are in agreement with physical measurements. In the case of the reduced Bogoliubov-Dirac-Fock model, one can ask for a similar property: does it remain possible to compute an expansion of ρ ph when α ph → 0, and to verify the consistence of the expansion with respect to the one provided by Quantum Electrodynamics ? The answer is positive provided one introduces a multiplicative renormalization as in Quantum Electrodynamics.

As a matter of fact, our model still contains an ultraviolet cut-off Λ whose value is unknown. In Quantum Electrodynamics, multiplicative renormalization consists in fixing the value of Λ so that the replacement of the bare fine-structure constant α by the physical one α ph amounts to a change of physical units (see [START_REF] Dyson | Advanced quantum mechanics[END_REF] for more details). In practice, the value of α ph is set equal to

α ph = Z 3 α, ( 37 
)
where Z 3 is a fixed positive number. The computations of the power series of ρ ph with respect to α ph are made for Z 3 fixed. This amounts to considering Λ as a function of α ph and Z 3 according to the identity

α ph B 0 Λ = 1 -Z 3 . (38) 
The coefficients of the resulting power series are surprisingly independent of the value of Z 3 . In other words, the perturbative computation of the density ρ ph is independent of the ultraviolet cut-off Λ provided it is fixed according to [START_REF] Pauli | Remarks on the polarization effects in the positron theory[END_REF]. Describing perturbatively the polarized vacuum or an electronic structure with N electrons does not really require to set the value of Λ.

This property remains true for the polarized vacuum when it is described by the reduced Bogoliubov-Dirac-Fock model.

Theorem 3 ([18]). Let m ∈ N and ν ∈ L 2 (R 3 ) ∩ C(R 3 ) such that R 3 ln 1 + |k| 2m+2 | ν(k)| 2 dk < +∞.
We denote by ρ ph (α ph , Z 3 ), the physical density associated to the minimizer Q * of the energy E ν rBDF on Q Λ according to formulae (34), ( 36) and (37) (i) Let 0 < ǫ < 1/2. There exist two positive numbers K and a, depending only on m, ǫ and ν, and a family of functions

(ν n ) 0≤n≤m in L 2 (R 3 ) ∩ C(R 3 ), such that ρ ph (α ph , Z 3 ) - m n=0 ν n α n ph L 2 ∩C ≤ Kα m+1 ph , (39) 
for any 0 ≤ α ph ≤ a and any ǫ ≤ Z 3 ≤ 1 -ǫ.

(ii) The function ν 0 is identically equal to ν, while the functions ν n are inductively defined as

ν 1 = U (ν 0 ), and ν n = U (ν n-1 ) + n j=3 n 1 +•••+n j =n-j F j ν n 1 , . . . , ν n j , (40) 
for n ≥ 2. In this expression, U refers to the Uehling operator defined as the Fourier multiplier corresponding to the function

U (k) = |k| 2 4π 1 0 z 2 -z 4 3 1 + |k| 2 (1-z 2 ) 4 dz = 12 -5|k| 2 9π|k| 2 + 4 + |k| 2 3π|k| 3 |k| 2 -2 ln 4 + |k| 2 + |k| 4 + |k| 2 -|k| . (41) 
The nonlinear maps F j (µ 1 , . . . , µ j ) are equal to the charge densities of the operators

Q j (µ 1 , . . . , µ j ) = 1 2π +∞ -∞ 1 D m,0 + iη j n=1 µ n * 1 | • | 1 D m,0 + iη dη.
(iii) In particular, the functions ν n do not depend on Z 3 , but only on the external charge density ν.

Beyond the fact that they do not depend on Z 3 , the values of the densities ν n are consistent with the perturbative computations of Quantum Electrodynamics. The function ν 0 is equal to the external charge density ν. This is exactly the total charge density of the system in the nonrelativistic case. The function ν 1 induces a Coulomb potential equal to the Uehling potential (see [START_REF] Serber | Linear modifications in the Maxwell field equations[END_REF][START_REF] Uehling | Polarization effects in the positron theory[END_REF]) given by

V Ueh (x) = α 2 ph ν 1 * 1 |x| = α 2 ph 3π +∞ 1 (t 2 -1)
1 2 2 t 2 + 1 t 4 R 3 e -2|x-y|t ν(y) |x -y| dy dt.
This potential is the first correction of the polarized vacuum density which is computed by Quantum Electrodynamics.

The proof of Theorem 3 is based on equation [START_REF] Greiner | Quantum electrodynamics[END_REF]. Assuming that condition (20) is satisfied, the operator δ * identically vanishes, so that we can invoke the Cauchy formula to write

Q * = - 1 2π +∞ -∞ 1 D * + iη - 1 D m,0 + iη dη = +∞ j=1 α j Q Λ,j . (42) 
Here, the operators Q Λ,j are given by

Q Λ,j = - 1 2π +∞ -∞ 1 D m,0 + iη Π Λ ν -ρ Q * * 1 | • | Π Λ 1 D m,0 + iη k dη.
Their dependence with respect to the ultraviolet cut-off Λ is explicit through the truncation operators Π Λ defined as

Π Λ (f ) = f 1 B(0,Λ) , for any f ∈ L 2 (R 3 , C 4 ).
Translated in terms of the Fourier transforms of the densities ρ Q * and ρ Q Λ,j , expansion [START_REF] Sabin | Static electron-positron pair creation in strong fields for a nonlinear Dirac model[END_REF] writes as

ρ Q * (k) = -αB Λ (k) ρ Q * (k) -ν(k) + F Λ α(ν -ρ Q * ) (k). (43) 
In this expression, the Fourier multiplier B Λ is equal to

B Λ (k) = 1 π Z Λ (|k|) 0 z 2 -z 4 3 (1 -z 2 ) 1 + |k| 2 4 (1 -z 2 ) dz + |k| 2π Z Λ (|k|) 0 z -z 3 3 √ 1 + Λ 2 -|k| 2 z dz,
where we have set

Z Λ (r) = √ 1 + Λ 2 -1 + (Λ -r) 2 r .
It is useful to write the function B Λ as [START_REF] Landau | On the quantum theory of fields[END_REF] (see [START_REF] Pauli | Remarks on the polarization effects in the positron theory[END_REF]). The nonlinear map F Λ in ( 42) is defined as

B Λ (k) = B 0 Λ -U Λ (k), where B 0 Λ = B Λ (0) is defined in
F Λ (µ) = n≥1 F Λ,2n+1 (µ, . . . , µ), (44) 
where F Λ,n (µ 1 , . . . , µ n ) stands for the charge density of the operator

T Λ,n (µ 1 , . . . , µ n ) = 1 2π +∞ -∞ 1 D m,0 + iη n j=1 Π Λ µ j * 1 | • | Π Λ 1 D m,0 + iη dη.
In particular, the functions F Λ,n identically vanish when n is even (see [START_REF] Furry | A symmetry theorem in the positron theory[END_REF]).

In the physical variables α ph and ρ ph , equation ( 42) reduces to

1 -α ph U Λ (k) ρ ph (k) + F Λ α ph ρ ph (k) = ν Λ (k), (45) 
with ν Λ (k) = ν(k) 1 B(0,2Λ) (k). At this stage, it is possible to substitute in [START_REF] Serber | A note on positron theory and proper energies[END_REF] the function ρ ph by the formal expansion

ρ ph = n≥0 ν Λ,n α n ph , (46) 
and compute the value of the coefficients ν Λ,n . They are inductively given by

ν Λ,0 = ν Λ , ν Λ,1 = U Λ (ν Λ ), and ν Λ,n = U Λ (ν Λ,n-1 ) + n j=3 n 1 +•••+n j =n-j F Λ,j ν Λ,n 1 , . . . , ν Λ,n j , (47) 
for any n ≥ 2. In this expression, U Λ refers to the Fourier multiplier associated to the function U Λ .

Expansion [START_REF] Pauli | On the invariant regularization in relativistic quantum theory[END_REF] is then proved into two steps. The formal expansion in ( 46) is first rigorously derived as a Taylor expansion of order m. This is summarized by the inequality

ρ ph - m n=0 ν Λ,n α n ph L 2 ∩C ≤ Kα m+1 ph , (48) 
for α ph small enough. On the other hand, one can check that the coefficients ν Λ,n converge at the limit Λ → +∞ to the functions ν n defined in [START_REF] Peskin | An introduction to quantum field theory[END_REF]. This follows from the convergences of the functions U Λ and F Λ,j to U , respectively F j , in the limit Λ → +∞. In particular, one can replace the coefficients ν Λ,n in ( 48) by the functions ν n , so as to obtain expansion [START_REF] Pauli | On the invariant regularization in relativistic quantum theory[END_REF].

However, we are not interested in the limit Λ → +∞, but in the limit α ph → 0, with an ultraviolet cut-off Λ fixed so that Z 3 = 1 -α ph B Λ remains constant. This last assumption is the crucial ingredient in the proof. In view of [START_REF] Lewin | A nonlinear variational problem in relativistic quantum mechanics[END_REF], this amounts to assuming that

Λ ≈ exp 3πZ 3 2α ph , (49) 
when α ph → 0. As a consequence, the Taylor series with respect to α ph of any negative powers of Λ identically vanish. In other words, terms controlled by inverse powers of Λ play no role in the expansion of ρ ph with respect to α ph . In particular, one can check that

ν Λ,n -ν n L 2 ∩C ≤ Kα m+1-n ph ,
for any 0 ≤ n ≤ m. Expansion (39) follows combining with [START_REF] Thaller | The Dirac equation[END_REF].

To conclude the derivation of Theorem 3, notice that the dependence on Z 3 is entirely contained in [START_REF] Uehling | Polarization effects in the positron theory[END_REF], so that it vanishes when a Taylor expansion of an inverse power of Λ is performed. This explains why the coefficients ν n do not depend on Z 3 .

4 The Pauli-Villars regulated model

Formal derivation

A major restriction in the (reduced) Bogoliubov-Dirac-Fock model lies in its purely electrostatic nature which prevents, for instance, from describing the role played by photons in the vacuum polarization. Our goal is now to explain, at least formally, how to derive a more general Hartree-Fock model taking into account some features of the photons as well as of external magnetic fields. We refer to [START_REF] Gravejat | Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF] for more details (see also [START_REF] Lewin | A nonlinear variational problem in relativistic quantum mechanics[END_REF]).

The main difficulty arises in the choice of the regularization which we have to introduce in order to define the model properly. Recall that the formal Hartree-Fock energy for describing the polarized vacuum in the Coulomb gauge may be written according to [START_REF] Chaix | From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism[END_REF] as

E Aext HF (γ, A) = tr D m,e(Vext,A+Aext) γ -1/2 + e 2 2 R 3 R 3 ρ γ-1/2 (x)ρ γ-1/2 (y) |x -y| dx dy - e 2 2 R 3 R 3 |(γ -1/2)(x, y)| 2 |x -y| dx dy + 1 8π R 3 | curl A(x)| 2 dx.
The derivation of the (reduced) Bogoliubov-Dirac-Fock model from this energy consists in omitting some terms on one hand, introducing a regularization on the other hand. The regularization is based on the introduction of an ultraviolet cut-off Λ in the Fourier space. This choice breaks the magnetic gauge invariance corresponding to replace A by A + ∇ϕ, which is used in Quantum Electrodynamics to eliminate some divergences in the perturbative computations. As a result, a relevant model including photons and external magnetic fields cannot rely on a sharp ultraviolet cut-off.

In order to derive an alternative model, it is convenient to express the direct electrostatic term in [START_REF] Chaix | From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism[END_REF] in terms of the Coulomb potential

V γ-1/2 (x) = e R 3 ρ γ-1/2 (y) |x -y| dy,
according to the formula

e 2 2 R 3 R 3 ρ γ-1/2 (x)ρ γ-1/2 (y) |x -y| dx dy = e R 3 ρ γ-1/2 (x) V γ-1/2 (x) dx - 1 8π R 3 |∇V γ-1/2 (x)| 2 dx.
Since the potential V γ-1/2 solves the maximization problem e

R 3 ρ γ-1/2 (x) V γ-1/2 (x) dx - 1 8π R 3 |∇V γ-1/2 (x)| 2 dx = sup V e R 3 ρ γ-1/2 V - 1 8π R 3 |∇V | 2 ,
we can write the formal energy in ( 5) as

E Aext HF (γ, A) = sup V L Aext HF (γ, A).
where we have set A = (V, A). In this formula, the formal Hartree-Fock Lagrangian L Aext HF is given by

L Aext HF (γ, A) = tr D m,e(A+Aext) (γ -1/2) - e 2 2 R 3 R 3 |(γ -1/2)(x, y)| 2 |x -y| dx dy + 1 8π R 3 | curl A(x)| 2 -|∇V (x)| 2 dx.
We can also introduce a reduced Lagrangian omitting the exchange electrostatic term according to the formula

L Aext rHF (γ, A) = tr D m,e(A+Aext) (γ -1/2) + 1 8π R 3 | curl A(x)| 2 -|∇V (x)| 2 dx.
In the sequel, we restrict our attention to the reduced formalism. To our knowledge, the analysis of the original model remains largely open (see [START_REF] Gravejat | Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF] for more details).

The polarized vacuum is constructed as a minimizer of the formal reduced energy

E Aext rHF (γ, A) = sup V L Aext rHF (γ, A),
with respect to the one-body density matrix γ and the classical photon field A. The operator γ is an orthogonal projector as before, while the field A is divergence free due to the Coulomb gauge. In case of existence, a minimizer (γ * , A * ) is solution to the self-consistent equations

           γ * = χ (-∞,0] D m,e(A * +Aext) , -∆A * = 4π e j γ * -1/2 , -∆V * = 4π e ρ γ * -1/2 , div A * = div A ext = 0. ( 50 
)
in order to define a rigorous model. The first element in this direction is reminiscent from the (reduced) Bogoliubov-Dirac-Fock model. When A = A ext = 0, the negative spectral projector P - m,0 of the free Dirac operator formally solves the problem (51). However, the value of the minimum is equal to

inf γ L 0 rHF (γ, 0) = - 1 2 tr D m,0 ,
which is an infinite quantity. In order to deal with finite quantities, and since the situation under our consideration corresponds to the free vacuum, we define a relative energy according to the formula

E Aext rel (A) = 1 2 tr D m,0 -D m,e(A+Aext) + 1 8π R 3 | curl A| 2 -|∇V | 2 ,
so that the free vacuum now has a vanishing energy. Since this amounts to adding an infinite constant, this does not change the variational problem under our analysis, but we can now hope that the quantity E Aext rel (A) is finite provided A and A ext belong to some suitable function space. Actually, the energy remains divergent for large momenta. As a matter of fact, the operator |D m,0 | -|D m,e(A+Aext) | is not trace class when A + A ext = 0, so that its trace is not welldefined (see [START_REF] Nenciu | On regular external fields in quantum electrodynamics[END_REF] for more details). In order to remove these divergences, an ultraviolet cut-off is necessary. Various techniques from Quantum Electrodynamics are available. Our choice is to rely on a regularization proposed by Pauli and Villars in [START_REF] Pauli | On the invariant regularization in relativistic quantum theory[END_REF], which consists in introducing the functional

E Aext PV (A) = 1 2 tr J j=0 c j D m j ,0 -D m j ,e(A+Aext) + 1 8π R 3 | curl A| 2 -|∇V | 2 . ( 52 
)
In this expression, the index j = 0 corresponds to the physical electron-positron field. In particular, m 0 = m is the (bare) mass of the electron. The indices j = 1 and j = 2 describe fictitious heavy particle fields. Their role is to remove the worst ultraviolet divergences (the linear ones to be more precise). In order to reach this goal, it is well-known (see [START_REF] Pauli | On the invariant regularization in relativistic quantum theory[END_REF]) that the coefficients c j and the masses m j must fulfil the two conditions

J j=0 c j = J j=0 c j m 2 j = 0. (53) 
At least two additional distinct masses m 1 and m 2 are therefore necessary. In the sequel, we fix J = 2 and c 0 = 1. For this choice, the condition (53) is equivalent to

c 1 = m 2 0 -m 2 2 m 2 2 -m 2 1 and c 2 = m 2 1 -m 2 0 m 2 2 -m 2 1 .
In the limit m 1 → +∞ and m 2 → +∞, the regularization does not prevent a logarithmic divergence which is identical to the divergence of the constant B Λ in (33) (see Proposition 1). The divergence is best understood in terms of the averaged ultraviolet cut-off Λ defined as

log(Λ 2 ) = - 2 j=0 c j log(m 2 j ). (54) 
The value of Λ does not uniquely determine the masses m 1 and m 2 . In practice, they are chosen as functions of Λ such that the coefficients c 1 and c 2 remain bounded when Λ → +∞.

In the Coulomb gauge, the Pauli-Villars regulated energy E Aext PV is rigorously well-defined under the natural conditions that the fields B = curl A, B ext = curl A ext , E = -∇V and E ext = -∇V ext are square integrable (see Proposition 1). The polarized vacuum is described using a solution to the min-max problem min

A max V E Aext PV (A). (55) 
More precisely, it is identified to the projector

γ vac PV = χ (-∞,0] D m 0 ,e(A * +Aext)
where A * = (V * , A * ) is a saddle point for the problem (55). One can guarantee the existence of such a saddle point at least when the external electromagnetic field F ext = (E ext , B ext ) is weak enough.

Construction of the polarized vacuum

We now define properly the Pauli-Villars regulated energy in (52) before solving the min-max problem (55). The natural framework for defining the energy E Aext PV is provided by the Coulombgauge homogeneous Sobolev space

Ḣ1 div (R 3 ) = A = (V, A) ∈ L 6 (R 3 , R 4 ), s.t. div A = 0 and F = (-∇V, curl A) ∈ L 2 (R 3 , R 6 ) ,
which is an Hilbert space for the norm

A 2 Ḣ1 div (R 3 ) = ∇V 2 L 2 (R 3 ) + curl A 2 L 2 (R 3 ) = F 2 L 2 (R 3 ) .
When A ∈ Ḣ1 div (R 3 ), the integral in ( 52) is well-defined, but we have to provide a rigorous meaning to the first term in (52). This amounts to defining properly the functional

F PV A = 1 2 tr 2 j=0 c j D m j ,0 -D m j ,A , (56) 
for an arbitrary four-potential A ∈ Ḣ1 div (R 3 ). In this direction, we can establish the next proposition.

Proposition 1 ([16]

). Assume that the coefficients c j and the masses m j satisfy

c 0 = 1, m 2 > m 1 > m 0 > 0 and 2 j=0 c j = 2 j=0 c j m 2 j = 0. ( 57 
) (i) Let T A = 1 2 2 j=0 c j D m j ,0 -D m j ,A . (58) 
Given any A ∈ L 1 (R 3 )∩ Ḣ1 div (R 3 ), the operator tr C 4 T A is trace class on L 2 (R 3 , C). In particular, the quantity F PV (A) is well-defined by the expression

F PV (A) = tr tr C 4 T A . (59) 
(ii) The functional F PV can be uniquely extended to a continuous mapping on Ḣ1 div (R 3 ). (iii) Let A ∈ Ḣ1 div (R 3 ). We have

F PV (A) = F 2 (F ) + R(A), (60) 
where F = (E, B), with E = -∇V and B = curl A. The functional R is continuous on Ḣ1 div (R 3 ) and satisfies

|R(A)| ≤ K 2 j=0 |c j | m j F 4 L 2 + 2 j=0 |c j | m 2 j F 6 L 2 , (61) 
for a universal positive number K.

(iv) The functional F 2 is the non-negative and bounded quadratic form on L 2 (R 3 , R 4 ) given by

F 2 (F ) = 1 8π R 3 M (k) B(k) 2 -E(k) 2 dk, (62) 
where

M (k) = - 2 π 2 j=0 c j 1 0 u(1 -u) log m 2 j + u(1 -u)|k| 2 du. ( 63 
)
The function M is positive and satisfies the uniform estimate

0 < M (k) ≤ M (0) = 2 log(Λ) 3π , ( 64 
)
where Λ is given by (54).

The proof of Proposition 1 relies on a perturbative expansion of the operator T A . Invoking the formula

|T | = 1 2π R 2 - iω T + iω + iω T -iω dω,
the operator T A may be written as Expanding with respect to the powers of A leads to the expression

T A = 1 4π R 2 
T A = 5 n=1 T n (A) + T ′ 6 (A) = 1 4π 5 n=1 R R n (ω, A) + R n (-ω, A) dω + 1 4π R R ′ 6 (ω, A) + R ′ 6 (-ω, A) dω, with R n (ω, A) = 2 j=0 c j iω D m j ,0 + iω α • A -V 1 D m j ,0 + iω n ,
for 1 ≤ n ≤ 5, and

R ′ 6 (ω, A) = 2 j=0 c j iω D m j ,A + iω α • A -V 1 D m j ,0 + iω 6 .
Due to the conditions (57), the operators tr C 4 T n (A) and tr C 4 T ′ 6 (A) are trace class on L 2 (R 3 ) when A belongs to L 1 (R 3 ) ∩ Ḣ1 div (R 3 ). The quantity F PV (A) in ( 59) is therefore well-defined. Moreover, it depends Hölder continuously on A ∈ Ḣ1 div (R 3 ), so that it can be extended to the space Ḣ1 div (R 3 ).

Let us emphasize the introduction of the C 4 -trace here. The operators T n (A) and T ′ 6 (A) are probably not trace class without taking first the C 4 -trace (except when A = 0). Defining F PV as in (59) extends the formal definition (56) to the case where T A is not a trace-class operator. The two definitions remain identical when T A is trace class.

Concerning the second order operator tr C 4 T 2 (A), an explicit computation leads to the formula tr tr C 4 T 2 (A) = F 2 (F ), where F 2 (F ) is defined in (62). The Fourier multiplier M in (62) describes the linear response of the virtual electrons in the polarized vacuum. In view of the convergence

lim Λ→∞ 2 log Λ 3π -M (k) = U (k), ( 65 
)
where U is the Uehling multiplier given by [START_REF] Reed | Methods of modern mathematical physics IV. Analysis of operators[END_REF], the function M appears as the Pauli-Villars equivalent of the function B Λ in the reduced Bogoliubov-Dirac-Fock model. This similarity in the two models results from the gauge and relativistic invariances in Quantum Electrodynamics.

It follows from (65) that the self-consistent equations of the charge and current densities corresponding to a (possible) solution A * to the min-max problem (55) are very similar to the equation ( 43) for the charge density ρ Q * of a minimizer Q * of the reduced Bogoliubov-Dirac-Fock model. Even if this was not done in [START_REF] Gravejat | Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF], the renormalization technique applied to define a physical charge density ρ ph and to compute its perturbative expansion with respect to α ph in the case of the reduced Bogoliubov-Dirac-Fock model is likely to work the same with the Pauli-Villars regulated model corresponding to the energy E Aext PV . This however requires to construct first a solution A * to the min-max problem (55). The construction is possible when the external electromagnetic four-potential A ext is small enough. In this case, one can deduce from the expression of the second-order functional F 2 in (62) that the energy E Aext PV owns a local saddle point geometry close to the four-potential A = 0. The existence of a (local) solution to the min-max problem (55) follows using tools from convex analysis. Theorem 4 ( [START_REF] Gravejat | Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF]). Assume that the coefficients c j and the masses m j satisfy the conditions (57). (i) There exists a positive number r such that, given any four-potential A ext ∈ Ḣ1 div (R 3 ) such that

e A ext Ḣ1 div (R 3 ) < r √ m 0 8 , (66) 
there exists a unique solution A * ∈ Ḣ1 div (R 3 ) to the min-max problem Its construction is only local and only available for small enough external electromagnetic fields.

E Aext PV (A * ) = max ∇V L 2 < r √ m 0 4e inf curl A L 2 < r √ m 0 4e E Aext PV (A) = min curl A L 2 < r √ m 0 4e sup ∇V L 2 < r √ m 0 4e E Aext PV (A). (67) 
To our knowledge, the existence of a global solution to the min-max problem ( 55) remains an open problem. A first attempt to answer this question could concern the property that A = 0 is the unique global saddle point of the energy E 0 PV . The construction of a (local) minimizer in large external electromagnetic fields is another appealing problem, in particular since it certainly requires to understand the phenomenon of production of electron-positron pairs (see [START_REF] Sabin | Static electron-positron pair creation in strong fields for a nonlinear Dirac model[END_REF] for a first analysis of this phenomenon).

  j ,A + iω -iω D m j ,A -iω -iω D m j ,0 + iω + iω D m j ,0 -iω dω.

(= 2 j=0c

 2 ii) When A ext = 0, the solution A * is equal to 0.(iii) four-potential A * is a solution to the nonlinear equations-∆V * = 4πe ρ * , -∆A * = 4πe j * ,(68)where ρ * ∈ C(R 3 ) and j * ∈ C(R 3 ) are defined asρ * (x) = tr C 4 Q * (x, x) and j A (x) = tr C 4 α Q * (x, x). (69)In this expression, the function Q * (x, y) refers to the kernel of the locally trace-class operatorQ * j χ (-∞,0] D m j ,e(A * +Aext) .(70)According to the previous derivation of the Pauli-Villars regulated energy, the polarized vacuum is identified to the projector γ vac PV = χ (-∞,0] D m 0 ,e(A * +Aext) .

Extending the minimization problem under consideration to a convex hull like GL,Λ is standard in Hartree-Fock theory. The construction of minimizers is simplified, and it turns out that they still solve the initial problem (see e.g.[START_REF] Lieb | Variational principles for many-fermion systems[END_REF]).

The original Bogoliubov-Dirac-Fock energy with exchange term is also well-defined on a set similar to S 0 Λ .

In this expression, the charge density ρ γ * -1/2 and the charge current j γ * -1/2 are given by ρ γ * -1/2 (x) = tr C 4 (γ * -1/2)(x, x) and j γ * -1/2 (x) = tr C 4 α(γ * -1/2)(x, x) , where (γ * -1/2)(x, y) refers as above to the (formal) kernel of the operator γ * -1/2. The first equation in (50) is consistent with the picture of the Dirac sea since the minimizer γ * is the negative spectral projector of the Fock operator D m,e(A * +Aext) . The equations for the electromagnetic four-potential A * = (V * , A * ) are well-known in the Physics literature (see e.g. [START_REF] Engel | Relativistic density functional theory: foundations and basic formalism[END_REF]).

Regarding the construction of electronic structures with N electrons, a charge constraint of the form tr γ -1/2 = N, is added as for the reduced Bogoliubov-Dirac-Fock model. The equations for the minimizers

where µ N is the Fermi level of the electronic structure. According to the picture of the Dirac sea, the physical electrons are identified to the projector γ ph N = χ (0,µ N ] (D m,e(A N +Aext) ), while the virtual electrons of the polarized vacuum are represented by

). The model describes a positronic structure with |N | positrons when N is a negative integer. In the sequel, we focus on the construction of the polarized vacuum. Constructing electronic or positronic structures also remains an open problem.

Instead of maximizing the Lagrangian L Aext rHF (γ, A) with respect to V and then minimizing the resulting quantity with respect to γ and A, one can follow the alternative strategy which consists in minimizing first with respect to γ, and then looking for a saddle point with respect to V and A. We do not claim that we are solving exactly the same problem in this way, but this alternative strategy provides a polarized vacuum which is consistent with the self-consistent equations (50) (see Theorem 4). Moreover, the problem is simplified. The unique minimizer of the minimization problem

is indeed explicitly given by

with a value for the minimum equal to

In order to construct the polarized vacuum, it only remains to solve a min-max problem which only depends on V and A, namely

where |T | stands for the absolute value of the operator T .

At this stage, it is necessary to acknowledge that most of the previous discussion is only formal. We now have to introduce regularization techniques from Quantum Electrodynamics