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Laboratoire de Mathématiques LMV UMR 8100
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INTRODUCTION

This article is part of the authors’ program whose purpose is to prove the following conjecture
on Resolution of Singularities of threefolds in mixed characteristic. The conjecture is a special case
of Grothendieck’s Resolution conjecture for quasi-excellent schemes.

CONJECTURE 0.1 Let C be an integral regular excellent curve with function field F . Let S/F
be a reduced algebraic projective surface and X be a flat projective C-scheme with generic fiber
XF = S. There exists a birational projective C-morphism π : Y → X such that
(i) Y is everywhere regular.
(ii) π−1(RegX ) → RegX is an isomorphism.

Let us point out that the equicharacteristic techniques designed in [CP1] extend to the situation
described in the above conjecture. In particular, [CP1] theorem 3.3 extends and reduces conjecture
0.1 to the following variant:

CONJECTURE 0.2 Let A be an excellent DVR with quotient field F and residue characteristic
p > 0. Let (S, M, k) be a regular local ring of dimension three dominating A, essentially of finite
type over A with K := QF (S) of transcendence degree two over F . Let finally L/K be a finite field
extension and v be a valuation of L. Assume:
(i) L/K is cyclic Galois or purely inseparable of degree p.
(ii) v has rank one and is centered in S.

Then there exists a regular local ring T essentially of finite type over A with QF (T ) = L such
that v is centered in T .

Applying embedded resolution techniques for surfaces, it can be assumed that such a v is
centered in a local model of L of the form B = (S[X]/(h))(M,X) with h monic of degree p; more
precisely, h = Xp − gp−1X − f , f, g ∈ M and (g = 0 if charA = 0). In particular the Local Uni-
formization statement of conjecture 0.2 only involves certain hypersurface singularities (SpecB, x),
of multiplicity m(x) � p = chark, and embedded in an excellent fourfold (Z = SpecS[X], x). We
prove here:

MAIN THEOREM 0.3 Let (R, M, k = k(x) := R
M ) be an excellent regular local ring of dimension

four, (Z, x) := (SpecR, M) and (X, x) := (SpecR/(h), x) be a reduced hypersurface. Assume that
the multiplicity m(x) of (X,x) satisfies m(x) < p := chark(x). Let v be a valuation of K(X)
centered at x. Then there exists a finite sequence of local blowing ups

(X, x) =: (X0, x0) ←− (X1, x1) ←− · · · ←− (Xn, xn),
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where xi ∈ Xi, 0 � i � n is the center of v, each blowing up center Yi ⊂ Xi is permissible at xi (in
Hironaka’s sense), such that xn is regular.

The proof of theorem 0.3 builds upon classical Resolution of Singularities techniques. We use
systematically the Hironaka characteristic polyhedron and Hironaka’s invariants: the multiplicity
m(x) and τ -number τ(x) for the hypersurface singularity (X,x) := (SpecR/(h), x).

Since we are working without any ground field (at least when R is not equicharacteristic), the
Tschirnhausen trick (killing the degree (m(x)−1)-term in the equation) cannot be directly applied
even though m(x) < p. Rather, we use it for the initial face of the Hironaka polyhedron (theorem
II.5) to define well behaved invariants. The pair (m(x), τ(x)) is then further on completed to a
6-tuple ι(x) defined in IV.2.

The main technical part is concentrated in section VI. We consider projections to a two di-
mensional space to define a refined invariant in sections VI.3 and VI.4.1. Controlling the trans-
formation law for this refined invariant under blowing up is much harder but leads essentially to
the same formulæ as for the characteristic polygon of a surface singularity. The proof of the Main
Theorem follows rather easily from these computations (section VI.4.5).

It is worth pointing out that these techniques are global in nature and it is to be expected
that theorem 0.3 can be extended to a global version, i.e. without refering to a given valuation v
and using global blowing up centers. We use the valuation only at a few specific places (mostly in
section V) to make the argument quicker.

This article is organized as follows: section I states the reduction of the Main Theorem to the
case τ(x) = 1, immediate from [CJS]. This means that the initial form inx(h) can be written

inx(h) = λY m(x), λ ∈ k(x), λ �= 0, y a regular parameter of R, Y := inx(y).

Section II first recollects known material from [H1][H2] about characteristic polyhedra and asso-
ciated invariants (definition II.2). Special coordinates (z, u) := (z, u1, u2, u3) on R are said to be
fully prepared if they compute the Hironaka characteristic polyhedron Δ(h;u) and if the δ-initial
inδ(h) of h is Tschirnhausen transformed, i.e. has no term of degree m(x) − 1 (theorem II.5 and
definition II.5.3). The form inδ(h) is defined in II.2(iii) and is the sum of the initial forms of all
those terms in h contributing to the face of minimal order at x of Δ(h; u). In such special coordi-
nates, invariants d1, d2, d3, ε(x) (each of them is a nonnegative rational number) can be computed
from the polyhedron Δ(h; u) and the δ-initial inδ(h) (definition II.7). Theorem II.9 proves the
Main Theorem when ε(x) = 0, in which case only combinatorial blowing ups are used.

When ε(x) > 0, some preparations are required in order to get the locus

Σ := {y ∈ X : m(y) = m(x), τ(y) = τ(x), ε(y) > 0}

Zariski closed and of dimension at most one (theorems II.10 and II.11). Section III prepares
SpecR and constructs an equicharacteristic p normal crossings divisor

E ⊆ div(u1u2u3) ⊂ SpecR

which contains Σ (E = En in proposition III.1).
Section IV then provides some further invariants build up from the ideal of coefficients of

inδ(h) once this preparation is achieved: a refined directrix V ⊆< U1, U2, U3 > (definition IV.1)
and associated refined numerical invariant ι(x) (definition IV.2):

ι(x) := (m(x),−τ(x), ε(x),−ρ(x),−t(x),−e(x)).
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Section V introduces the notion of ε-permissible blowing up centers (definition V.1). For
curves, being ε-permissible is stronger than being Hironaka permissible (proposition V.2); blowing
up along an ε-permissible center does not increase the invariant ι(x) (proposition V.3). Fur-
thermore, ι(x) can be decreased by blowing up along ε-permissible centers except possibly when
V =< U3 > and (either div(u3) ⊆ E or E ⊆ div(u1u2)) (propositions V.4 and V.5).

Section VI proves the same result in these remaining cases (theorem VI.1), thus concluding
the proof of the Main Theorem. We now project to the (u1, u2)-space and define well prepared
coordinates by minimizing the induced image of Δ(h;u) by this projection (this requires choosing
special coordinates (z, u3)). There are further associated invariants β(u, z), C(u, z), γ(u, z) defined
in VI.4.1. The behaviour of these invariants by blowing up ε-permissible curves and closed points
are studied respectively in propositions VI.4.2 and VI.4.3. Section VI.4.5 contains the proof of
theorem VI.1 and is basically a consequence of the former computations.

The notation and assumption in the Main Theorem will be kept all along this article. The
proof will be made by induction on the multiplicity m(x) = ordx(h) of x ∈ X. Since it is assumed
that m(x) < p, (X, x) is already regular if p = 2, so we assume p � 3 from now on. The formal
completion of R with respect to M is denoted by R̂.

I BASIC INVARIANTS

Two basic invariants are attached to the hypersurface singularity (X, x) = (SpecR/(h), x).
The first invariant is its multiplicity m(x) (or m for short) of (X, x). The second invariant is τ(x)
(or τ for short), which is the dimension of the smallest k(x)-vector subspace T of M

M2 such that
inx(h) ∈ k(x)[T ] [H1, Ch.2, Lemma 10]. This vector space is called the directrix of inx(h).

Proving the Main Theorem in the cases dim(Z) − τ(x) ∈ {0, 1, 2}, i.e. τ(x) ∈ {2, 3, 4} is done
in [CJS]. So from now on, we assume that τ(x) = 1. Equivalently:

inx(h) = λY m, λ ∈ k(x), λ �= 0, y a regular parameter of R, Y := inx(y).

II CHARACTERISTIC POLYHEDRON

DEFINITION II.1
(i) An F -subset Δ ⊂ Rd

+ is a closed complex subset of Rd
+ such that v ∈ Δ implies v + Rd

+ ⊂ Δ.
(ii) A point v ∈ Δ is called a vertex if there is a positive linear form L on Rd (i.e. has strictly
positive coefficients) such that

{v} = Δ ∩ {A ∈ Rd|L(A) = 1}.

(iii) The essential boundary ∂Δ of an F -subset Δ is the subset of Δ consisting of those v ∈ Δ such
that v �∈ v′ + Rd

+ with v′ ∈ Δ unless v′ = v. We write Δ+ = Δ − ∂Δ.

For the next definition and proposition, we will forget the hypothesis dim(R) = 4: we will
have to use the notions defined there for different regular rings of dimension at most three. Given
a r.s.p. (y, u1, u2, . . . , ud) =: (y, u) of a regular local ring R and f ∈ R, there exists a finite sum
expansion

f =
∑
A,b

CA,by
buA, b ∈ N, A ∈ Nd. (1)

3



where each CA,b is a unit in R. This follows easily from the facts that R is Noetherian and the map
R ⊆ R̂ faithfully flat. We regard u as “fixed” parameters and y as “varying”, which is reflected in
the indexing below. Assume furthermore that

h ∈ M, h �∈ (u1, . . . , ud). (2)

We let R := R/(u1, . . . , ud), h ∈ R be the image of h and “ord” be the valuation of the discrete
valuation ring R. We extend our conventions by letting now

m := ordh � 1. (3)

Assumption (2) and notation (3) are maintained all along this article. Our original concern
is for τ(x) = 1, say inx(h) = λY m, 0 �= λ ∈ k(x) which fits into these conventions provided
Y = inx(y).

DEFINITION II.2
(i) The polyhedron Δ(h;u; y) ⊂ Rd

�0 is defined as the smallest F -subset containing all points of

S(h) :=
{

v =
A

m − b
|0 � b < m

}
.

The characteristic polyhedron Δ(h; u) ⊂ Rd
�0 is defined by the formula

Δ(h; u) :=
⋂

(ŷ,u1,...,ud)

Δ(h; u; ŷ), (4)

where the intersection runs over all r.s.p’s of R̂ of the form (ŷ, u1, . . . , ud).

(ii) For v ∈ ∂Δ(h; u; y), the v-initial of h is defined as

inv(h) :=
∑
A,b

CA,bY
bUA ∈ k[U, Y ] = k[U1, U2, . . . , Ud, Y ],

where CA,b ∈ k is the residue of CA,b and the sum ranges over such (A, b) that

CA,b �= 0, (b � m,A = 0) or (b < m and v =
A

m − b
).

(iii) For A ∈ Nd, let |A| := a1 + · · · + ad. We put

δ(h, u, y) := min
{ |A|

m − b
: CA,b �= 0, b < m

}
.

This is in fact an invariant of the polyhedron Δ(h;u; y) since

δ(h, u, y) = min{|v| : v ∈ Δ(h; u; y)}.

The δ-initial of h is defined as

inδ,u,y(h) :=
∑
A,b

CA,bY
bUA ∈ k(x)[U, Y ] = k(x)[U1, U2, . . . , Ud, Y ],
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where the sum ranges over such (A, b) that

CA,b �= 0, (b � m,A = 0) or (b < m and
|A|

m − b
= δ(h, u, y)).

(iv) More generally, let

L : (x1, x2, . . . , xd) 	→ L(x1, x2, . . . , xd) = λ1x1 + λ2x2 + . . . + λdxd, λ1, λ2, . . . , λd ∈ Q�0,

be a nonzero nonnegative linear form on Rd. We define

l(h, u, y) := min{L(A)|A ∈ Δ(h;u; y)} � 0.

We define a monomial valuation vL,h,u,y on R by setting

Iλ := ({ybuA|l(h, u, y)b + L(A) � λ}) ⊆ R,

for λ � 0 and vL,h,u,y(g) := min{λ ∈ Q|g ∈ Iλ} for any nonzero g ∈ R.

PROPOSITION II.3 Let L be a nonzero nonnegative linear form as above, and let

I := {i|λi > 0}, I ′ := {i|λi = 0} = {1, . . . , d}\I.

The graded algebra grvL,h,u,y
(R) of R w.r.t. vL,h,u,y is given by

(i) if l(h, u, y) �= 0, then

grvL,h,u,y
(R) =

R

(y, {ui}i∈I)
[Y, {Ui}i∈I ];

(ii) if l(h, u, y) = 0, then

grvL,h,u,y
(R) =

R

({ui}i∈I)
[{Ui}i∈I ].

In particular, we have grvL,h,u,y
(R) 
 k[Y,U1, U2, . . . , Ud] whenever L is positive.

The above proposition is obvious. One also checks easily the following:

REMARK II.3.1 Let v be a vertex of Δ(h, u, y). We have:
(i) inv(h) is independent of the presentation II.1 (1),
(ii) inv(h) �= inx(h),
(iii) L being a positive linear form L on Rd such that {v} = Δ∩{A ∈ Rd|L(A) = 1}, (cf. II.1(ii)),
then

inv(h) = invL,h,u,y
(h) ∈ grvL,h,u,y

(R) = k(x)[U1, U2, . . . , Ud, Y ].

When there is no ambiguity, we will write grδ(R) and inδ(h) ∈ grδ(R) instead of respectively
grvL,h,u,y

(R) and invL,h,u,y
(h), where L(x1, x2, . . . , xd) = x1 + x2 + . . . + xd.

REMARK II.4 With notations as above, we have:
δ(h, u, y) ∈ 1

m!N and δ(h, u, y) > 1 if (m = ordx(h) and < inx(h) >=< (inx(y))m >).

ASSUMPTIONS II.4.1 We now apply these constructions to the case R := OZ,x, dim(R) =
4; the element h ∈ R verifies assumptions II.1(2)(3) with m = ordx(h) < p = chark(x) and
< inx(h) >=< Y m >. In addition, X = Spec(R/(h)) is reduced.
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THEOREM II.5 Given (y, u1, u2, u3) =: (y, u) as above, there exists z ∈ R, z ≡ y mod(u1, u2, u3)
such that

Δ(h, u, z) = Δ(h, u) �= ∅, (1)

inδ,u,z(h) =
∑

A,b,b �=m(x)−1

CA,bz
bUA. (2)

Proof. Suppose Δ(h, u) = ∅, then, in R̂, we should have h = γzm, γ invertible in R̂ and z ∈ R̂

a local parameter: h should be nonreduced in R̂. By excellence, h should be nonreduced in R, in
contradiction with the hypothesis X reduced.

Since Δ(h, u) �= ∅, Δ(h, u) may be defined by a finite number n of inequalities Li(x1, x2, x3) �
1, 1 � i � n, with Li(x1, x2, x3) = ai,1x1 + ai,2x2 + ai,3x3, ai,1, ai,2, ai,3 ∈ Q�0, Li �= 0. In a few
words:

Δ(h, u) = {(x1, x2, x3)|Li(x1, x2, x3) � 1, 1 � i � n}.

We choose L1(x1, x2, x3) = 1
δ(h,u) (x1 + x2 + x3), with δ(h, u) := min{|v| : v ∈ Δ(h, u)}.

Suppose (1) does not hold for (y, u). Then, with notations as in II.2(iv), some Li, 1 � i � n
satisfies

Li(Δ(h, u, y)) = [li(h, u, y),∞[�⊂ [1, +∞[ ⇔ li(h, u, y) < 1.

We skip the index i of Li and of li(h, u, y) to simplify the notations. Following II.2(iv), we define
the initial form of h with respect to L, u, y: in the case l(h, u, y) > 0

inL,u,y(h) :=
∑
A,b

CA,bY
bUA ∈ grL,u,y(R), (3)

with bl(h, u, y) + L(A) = ml(h, u, y), CA,b ∈ R
(ui)ai>0+(y) . In the case l(h, u, y) = 0, we have

inL,u,y(h) :=
∑
A,b

CA,bybUA ∈ grL,u,y(R), L(A) = 0, CA,byb ∈ R

(ui)ai>0
. (4)

Claim II.5.1 In (3) (resp. (4)), there exists A with CA,m−1 �= 0 ∈ R
(ui)ai>0

(resp. CA,m−1ym−1 �=
0 ∈ R

(ui)ai>0
).

Indeed, in the face with equation L(x1, x2, x3) = l(h, u, y) of Δ(h, u, y) there is at least a vertex
v which is solvable [H2,(3.8)]. Then inv(h) is collinear to an mth-power: Cv,m−1 �∈ M since m < p
and the claim is proved. Take A = v and let

y1 = y +
1
m

C−1
0,m

∑
A

CA,m−1u
A ∈ R. (5)

Note that, for any A with CA,m−1 �= 0, A ∈ Δ(h, u, y). So, for any i, 1 � i � n, and any A with
CA,m−1 �= 0, L(A) � l(h, u, y). So if in the expansion of II.2(1) we set

y = y1 −
1
m

C−1
0,m

∑
A

CA,m−1u
A,
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we get a new expansion

h =
∑
A,b

DA,by
b
1u

A, DA,b ∈ R× ∪ {0}, b ∈ N, A ∈ N3, (6)

and DA,b �= 0 ⇒ L(A) + bli(h, u, y) � m. So

l(h, u, y1) � l(h, u, y), 1 � i � n.

Suppose l(h, u, y1) = l(h, u, y). Then vL,u,y1(y) = vL,u,y1(y1) = l(h, u, y),

Y := inL,u,y1(y) = Y1 − inL,u,y1(
1
m

C−1
0,m

∑
A

CA,m−1u
A), Y1 := inL,u,y1(y1),

inL,u,y1(h) =
∑

A,b,L(A)+l(h,u,y)b=l(h,u,y)m

inL,u,y1(DA,b)Y b
1 (inL,u,y1(u

A)), (7)

inL,u,y1(h) =
∑

A,b,L(A)+l(h,u,y)b=l(h,u,y)m

inL,u,y1(CA,b)(Y1 − inL,u,y1(
1
m

C−1
0,m

∑
A

CA,m−1u
A))b, (8)

where (7) is the expansion of (8). In (7), the terms with b = m− 1 are all zero; in (6), DA,m−1 �= 0
implies L(A) + l(h, u, y1)b > ml(h, u, y1). By the claim, l(h, u, y1) = 1: a contradiction, hence

l(h, u, y1) > l(h, u, y).

Note that (5) is independent of the linear form L, so

li(h, u, y1) > li(h, u, y), for all i 1 � i � n.

By induction on the li(h, u, y)’s, we get (1). If (1) holds but not (2) for h, u, y, we make the change
of variable (3) and get (2).

PROPOSITION II.5.2 With notations as above, assume furthermore that (z, u) and (z′, u′)
satisfy (1) of the previous theorem. Then δ(h, u, z) = δ(h, u′, z′).

Proof. This is obvious if ui = u′
i, 1 � i � 3. On the other hand, the condition

inδ(h) �= λ(Z − Φ(U1, U2, U3))m for every Φ ∈ k(x)[U1, U2, U3] (9)

is preserved if z = z′ since δ(h, u, z) > 1 (remark II.4). In particular we have

δ(h, u, z) = δ(h, u′, z) � δ(h, u′, z′)

and we conclude by symmetry that δ(h, u, z) = δ(h, u′, z′).

DEFINITION II.5.3 When z ∈ R is such that (1) (resp. (2) holds), we say that (z, u) is prepared
(resp. δ-prepared). If both of (1) and (2) hold for z ∈ R, we say that (z, u) is fully prepared. If there
is no ambiguity on u = (u1, u2, u3), we simply say that z is prepared, δ-prepared, or fully-prepared.

If (z, u) is prepared, the invariant δ(h, u, z) will be henceforth denoted by δ(x).

THEOREM II.6 Let (y, u1, u2, u3) =: (y, u) be as before and E be a normal crossings divisor
E ⊆div(u1u2u3) ⊂ Spec(R). For a component div(ui) of E, we define

di(u, y) := inf{xi|(x1, x2, x3) ∈ Δ(h, u, y)},
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di(u) := inf{xi|(x1, x2, x3) ∈ Δ(h, u)}.
(i) Let z ∈ R be such that (z, u) = (z, u1, u2, u3) is prepared. Then

di(u) � 1 ⇔ V (z, ui) is a permissible blowing up center of Spec(R/(h)). (1)

(ii) We have di(u) > 0 if and only if Yi := V (h, ui)red is a regular surface.
(iii) Assume that di(u) > 0. Then di(u) = δ(ηi), where ηi ∈ Z is the generic point of Yi =
V (h, ui)red as above; in particular, di(u) is independent of the choice of a prepared (z, u) =
(z, u1, u2, u3) containing ui.

Proof of (ii). Take z ∈ R such that Δ(h, u) = Δ(h, u, z), so h = zmmod(ui) iff di(u) > 0 iff
Y := V (z, ui) = V (h, ui)red. We get

di(u) > 0 ⇔ (V (h, ui))red is regular at x.

Proof of (i). In that hypersurface case, Y := V (z, ui) ∈ SpecR permissible means h ∈ (z, ui)m

which is equivalent to di(u) � 1.

Proof of (iii). Let η be the generic point of Y = V (h, ui)red = V (z, ui). The following
equivalence is straightforward

di(u) = 1 ⇔ V (z, ui) is a permissible center of Spec(R/(h)) and τ(η) = 2.

If 0 < di(u) < 1, we obviously have di(u) = di(u, y) for every r.s.p. (y, u1, u2, u3) (with
< inx(h) >=< Y m >).

We turn to the case:

di(u) > 1 ⇔ V (z, ui) is a permissible center of Spec(R/(h)) and τ(ηi) = 1.

We claim that di(u) = δ(ηi). As V (z, ui) = V (h, ui)red, this will prove the invariance of di(u).
We take i = 1 and write η for η1 in the following lemma.

LEMMA II.6.1 Let (y, u1, u2, u3) be as above and assume that d1(u, y) > 1. Then

d1(u, y) = δ(h, u1, y), (1)

where the right hand side is computed w.r.t. the datum (h) ⊂ R(y,u1). If furthermore (y, u) is
prepared, then

d1(u) = δ(η). (2)

Proof. By II.1 (1), we have a finite expansion

h =
∑
A,b

CA,by
buA, CA,b ∈ R×, b ∈ N, A ∈ N3

that we rewrite as:

h =
∑
a1,b

(
∑
a2,a3

CA,bu
a2
2 ua3

3 ) ybua1
1 , A = (a1, a2, a3) ∈ N3.
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As d1(u, y) > 1, we have b + a1 > m for all b < m. Note that every
∑

a2,a3
CA,bu

a2
2 ua3

3 is invertible
in R(y,u1) = OZ,η. Then δ(h, u1, y) = inf{ a1

m−b |b < m} = d1(u, y): this is (1).
Now suppose that y, u1, u2, u3 is prepared. We claim that y, u1 is prepared w.r.t. the datum

(h) ⊂ R(y,u1). If not, then

inδ(h) =
∑

a1+bd1=d1m

(
∑
a2,a3

CA,bu
a2
2 ua3

3 ) Y bua1
1 ∈ grδ(R(y,u1)),

is proportional to an mth-power. So there exists some a1 with

a1 + (m − 1)d1 = d1m, and
∑
a2,a3

CA,bu
a2
2 ua3

3 �= 0,

so there exists some A with a1 +(m−1)d1 = d1m and CA,m−1 �= 0. Then, as in II.5(5), we change
the variable y by y1 = y + 1

mC−1
0,m

∑
A CA,m−1u

A ∈ R, we get a new expansion

h =
∑
A,b

DA,by
b
1u

A, DA,b ∈ R× ∪ {0}, b ∈ N, A ∈ N3.

Now DA,b �= 0 implies Li(A)
li(h,u,y) + b � m for each linear form Li such that

Δ(h, u) = {(x1, x2, x3)|Li(x1, x2, x3) � 1, 1 � i � n}.

This holds in particular for the linear form L(x1, x2, x3) = 1
d1

x1. Since y is supposed to be nonpre-
pared for u1, the unique vertex d1(u1, y) of Δ(h, u1, y) ⊂ R+ does not belong to Δ(h, u1, y1). We
get d1(u1, y1) > d1(u, y), a contradiction with the fact that Δ(h, u, y) was minimal.

DEFINITION and NOTATION II.7 Given (y, u1, u2, u3) =: (y, u), h reduced, with assump-
tions II.1(2)(3) and a normal crossings divisor E ⊂ div(u1u2u3) ⊂ Spec(R), we let di := di(u)
for each irreducible component div(ui) of E. We let di := 0 whenever div(ui) is not an irreducible
component of E.

We define ε(x,E) ∈ Q�0 (or ε(x) for short) by:

ε(x,E) = δ(x) −
∑

div(ui)⊂E

di.

These invariants appear in [CP2] Ch.1 (II.3.3) in an equal characteristic context. The following
remarks are obvious from the definitions.

REMARK II.8 We have
(i) ε(x,E) ∈ 1

m!N,
(ii) if ε(x,E) = 0, Δ(h, u) has only one vertex: the point v = (d1, d2, d3).

THEOREM II.9 Given (y, u1, u2, u3) =: (y, u) and a divisor E ⊂div(u1u2u3) ⊂ Spec(R) as
above, assume that ε(x,E) = 0. There exists a finite sequence of local blowing ups

(X, x) =: (X0, x0) ←− (X1, x1) ←− · · · ←− (Xn, xn),

where x0 = x, xi ∈ Xi, 0 � i � n is the center of v, each blowing up center Yi ⊂ Xi is permissible
in Hironaka’s sense, such that m(xn) < m(x).
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Proof. See the connection with [CP2] Ch.1 (II.4.6). Let z ∈ R be such that Δ(h, u, z) =
Δ(h, u). Then δ(x) =

∑
1�i�3 di. Let I ⊂ {1, 2, 3} satisfy the two following conditions:

P (for permissibility):
∑

i∈I di � 1,
M (for maximality): |I| minimal for P, i.e. the dimension of V(z, < ui, i ∈ I >) is maximal for P.

Note that I ⊂ {1, 2, 3} is not unique in general. Then we choose I with PM and we blow up
Z along V(z, < ui, i ∈ I >). Let e : Z ′ −→ Z denote this blowing up, X ′ be the strict transform
of X, x′ ∈ X ′ be a point above x, E′ ⊂ Z ′ be the reduced inverse image of E.

We claim that for either (m(x′),−τ(x′)) <lex (m(x),−τ(x)) or

((m(x′), τ(x′)) = (m(x), τ(x)) = (m(x), 1) and ε(x′) = 0 and δ(x′) < δ(x)) .

Since δ(h, u, y) ∈ 1
m!N, a descending induction on δ(x) reduces to m(x′) < m(x) or (m(x′) =

m(x), τ(x′) � 2). As stated in section I, this completes the proof.

Proof of the claim. We only treat the case I = {1, 2, 3}, the other cases being similar, if somewhat
simpler. By PM, I = {1, 2, 3} means

di > 0, di + dj < 1 when i �= j, 1 � i, j � 3. (1)

By [H3, thm.3, p.331], if m(x′) = m(x), then x′ lies on the strict transform of z = 0. The
variables u1, u2, u3 play symmetric roles; so after reordering, it can be assumed that x′ belongs to
the affine chart SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′. Let

(z′, u′
1, u

′
2, u

′
3) := (z/u1, u1, u2/u1, u3/u1).

Let
h = C0,mzm +

∑
|A|
δ(x)+b�m

CA,bz
bua1

1 u2
a2u3

a3 ,

be an expansion II.1(1) of h with (z, u) fully prepared (theorem II.5 and definition II.5.3),

h′ := h/um
1 = C0,mz′m +

∑
|A|
δ(x)+b=m

CA,bz
′bu(m−b)(δ(x)−1)

1 u′
2
a2u′

3
a3 + h′

1 (2)

where h′
1 ∈ I ′δ(x)

+ := (z′m+1
, z′bu(m−b)(δ(x)−1)+1

1 , 0 � b � m).
Since ε(x) = 0, CA,b invertible in (2) implies a2 = (m − b)d2, a3 = (m − b)d3. Note also that

δ(x)− 1 = d1 +d2 +d3 − 1 < d1 by (1). As d1 +d2 < 1 and d1 +d3 < 1, m(x′) = m(x) implies x′ =
(z′, u′

1, u
′
2, u

′
3). The coordinate change (z, u1, u2, u3) 	→ (z′, u′

1, u
′
2, u

′
3) is a monomial substitution,

so Δ(h′, u′, z′) is again minimal. With natural notations, we get (d′
1, d

′
2, d

′
3) = (δ(x) − 1, d2, d3),

ε(x′) = 0 and
δ(x′) = d′

1 + d′2 + d′
3 = δ(x) − 1 + d2 + d3 < δ(x)

provided < inx′(h′) >=< Z ′2 >, i.e. τ(x′) = τ(x) = 1.

THEOREM II.10 Given (y, u1, u2, u3) =: (y, u) and a divisor E ⊂div(u1u2u3) ⊂ Spec(R) as
above, assume that E is equicharacteristic p = chark(x) and

Singm(x)(X) ⊂ E.

Then the set {y ∈ X|m(y) = m(x), ε(y) > 0 and τ(y) = 1} is locally closed.
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Proof. It is well known that the set

{y ∈ X|m(y) = m(x), τ(y) � 2} ⊆ E

is locally closed. Suppose ε(x) = 0 for some closed point x ∈ E. We choose a r.s.p. (z, u1, u2, u3)
of R at x which is fully prepared. There is a finite expansion

h = C0,mzm +
∑

|A|
δ(x) �b

CA,bz
m−bua1

1 u2
a2u3

a3 (1)

with each CA,b invertible in R and ai � bdi), i = 1, 2, 3. Since ε(x) = 0, there exists CA,b such that
ai = bdi), i = 1, 2, 3, with b � 2 by full preparedness. Then the locus

{y ∈ X|m(y) = m(x), ε(y) = 0 or τ(y) � 2}

contains the intersection of Singm(x)(X) with the complement of the hypersurface V (CA,b).

THEOREM II.11 With assumptions as in II.10, assume furthermore ε(x) > 0 and let F be an
irreducible component of E with x ∈ F . Then

dim({y ∈ X|m(y) = m(x), ε(y) > 0 and τ(y) = 1} ∩ F ) � 1.

Proof. Say div(u1) is the given component. If d1 < 1, then dim({y ∈ X|m(y) = m(x)}∩F ) � 1
and the result is clear.

Assume now d1 > 1 and pick a fully prepared (y, u1) w.r.t. to datum h ⊂ Ry,u1 . There exists
a nonempty Zariski open set Ω ⊆ F such that for y ∈ Ω there is an expansion

h = γ0z
m +

∑
1�i�m

γiz
m−iuai

1 ,

with ai � id1, γi ∈ OX,y for i � 1. By definition of d1, some i � 2 satisfies (ai = id1 and γi �∈ (u1)).
By full preparedness, we have γ1 ∈ (u1) if a1 = d1. Let Ω′ be the intersection of Ω with complement
of the proper closed subset V (γi), so

Ω′ ⊆ {y ∈ X|m(y) = m(x), ε(y) = 0}.

Assume finally d1 = 1. The same construction now yields

Ω′ ⊆ {y ∈ X|m(y) = m(x), τ(y) � 2}.

III CONSTRUCTION OF THE DIVISOR E.

In this section, we reach the assumptions of II.10. We show they are stable under a class of
local permissible blowing ups which we will prove ahead are sufficient to prove theorem 0.3. We
stick to assumptions II.4.1.

PROPOSITION III.1 With assumptions as above, there exists a finite sequence of local blowing
ups

(Z, x) =: (Z0, x0) ←− (Z1, x1) ←− · · · ←− (Zn, xn),

11



where x0 = x, xi ∈ Xi (Xi denoting the strict transform of X), 0 � i � n, is the center of v, each
blowing up center Yi ⊂ Xi is permissible for Xi in Hironaka’s sense, such that one the following
properties holds:
(i) (m(xn),−τ(xn)) <lex (m(x),−τ(x)), or
(ii) (m(xn),−τ(xn)) = (m(x),−τ(x)) and there exists a (reduced) normal crossings divisor En ⊂
(Zn, xn) of equicharacteristic p = chark(xn) = chark(x) such that

Cxn(En)⊥Cxn(Xn)red, (1)

Sn := Singm(xn) ⊂ En, (2)

where Cxn
denotes the tangent cone and Singm(xn)(Xn) is the stalk at xn of the set of multiplicity

m(x).
Proof. We begin with the following lemma.

LEMMA III.2 With assumptions as above, assume furthermore that there exists a normal cross-
ings divisor E ⊂ (Z, x) such that

Cx(E)⊥Cx(X)red. (1)

Then for any local blowing up :
π : (Z ′, x′) −→ (Z, x)

of center Y ⊂ X, permissible for (X, x) and at normal crossing with E, we have (m(x′), τ(x′)) �
(m(x), τ(x)), where x′ ∈ X ′ is the center of v; if equality holds, then

Cx′(E′)⊥Cx′(X ′)red,

where E′ := π−1(E)red, X ′ the strict transform of X.
Proof. The normal crossing assumption implies that we can choose a r.s.p. (v1, v2, v3, v4) of
R := OZ,x such that Y = V (v1, .., ve) and E ⊆ div(v1 · · · v4). By permissibility, we have h ∈
(v1, . . . , ve)m(x). Assumption (1) means that < inx(h) >=< Zd >, where Z �∈< inx(vj), div(uj) ⊆
E >. Changing generators of the ideal of Y , we relabel parameters as (z, u1, u2, u3) with

E = div(u1 · · ·ud) ⊂ div(u1u2u3), I(Y ) = (z, {ui, i ∈ A}) for some A ⊆ {1, 2, 3}. (2)

If m(x′) = m(x), x′ belongs to the strict transform of div(z) by (1). Let i ∈ A such that ui

generates the ideal of the exceptional divisor of π in a neighbourhood of x′ and let z′ = z/ui. A
local equation for (X ′, x′) is h′ := h/u

m(x)
i , where

h′ ≡ γz′m(x) mod (ui, {uk, k �∈ A}),

and
E′ ⊂ div(ui ×

∏
j �=i,j∈A

(uj

ui

) ∏
k �∈A

uk),

which proves the lemma.

Proof of III.1. If Singm(x)(X) = {x}, take E = div(u1u2u3) with coordinates as in (2) above.
If dim(Singm(x)(X)) � 1, then any regular closed set Y ⊂ S := S0 is permissible for X. In any

case, we have (m(xn),−τ(xn)) � (m(x),−τ(x)) since centers are permissible.
Let (C, x) be any curve contained in S. Since it is assumed that v has rank one, xn does not

belong to the strict transform Cn of C in Xn for n >> 0 if we take Yi = {xi}, the center of v in
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Xi for i � 0. In particular, it can be assumed that the strict transform Sn of S in Xn has pure
dimension two. Take n = 0 in what follows.

We now apply classical embedded resolution theorems for S with dim(S) = 2 ([CJS] for suit-
able generality). This involves blowing up closed points or regular curves on the successive strict
transforms of S. By blowing up finitely closed many points as before, it can be assumed that
every blown up curve is equicharacteristic p = chark(x). We reach the following situation: the
strict transform Sn of S at xn is empty or an irreducible surface with normal crossings with the
(equicharacteristic) reduced exceptional divisor En of (Zn, xn) → (Z, x). If S itself is equicharac-
teristic, enlarge En to En ∪ S. Otherwise, we blow up finitely many times irreducible components
of S ∩En (i.e. equicharacteristic curves) to get xn �∈ Sn. This is possible again because v has rank
one.

IV REFINED DIRECTRIX, TRANSVERSENESS, ENCOMBREMENT

Assume that the conclusion of proposition III.1 (ii) holds. We will perform local blowing ups
which are permissible in Hironaka’s sense, with center Yn having normal crossing with En. Take
n = 0 in what follows, E = E0, and consider a local blowing up :

π : (Z ′, x′) −→ (Z, x)

of center Y ⊂ X, permissible for (X,x) and at normal crossing with E. We assume that

(m(x′), τ(x′)) = (m(x), τ(x)),

where x′ ∈ X ′ is the center of v. By lemma III.2, we have

Cx′(E′)⊥Cx′(X ′)red,

where E′ := π−1(E)red, X ′ the strict transform of X in Z ′.

DEFINITION and NOTATION IV.1 Let (z, u) be fully prepared with E ⊂div(u1u2u3) ⊂
Spec(R) as above. Let

F := inδ(h) = Zm +
∑

2�j�m

Zm−jFj(U1, U2, U3) ∈ grδ(R) = k(x)[Z, U1, U2, U3],

where Z = inδ(z), Ui = inδ(ui), 1 � i � 3 (notations of II.3.1). Each Fj is zero or homogeneous
of degree jδ(x); we have Fj = 0 if jδ(x) �∈ N.

We define the refined tangent ideal of X at x as the ideal

Ix := (Z,
∏

div(ui)⊂E

U−m!di
i F

m!
j

j , 1 � j � m) ⊂ k(x)[Z,U1, U2, U3].

We define the refined directrix of X at x as the smallest vector subspace V ⊆< U1, U2, U3 >
such that

{U−m!di
i F

m!
j

j | 1 � j � m, div(ui) ⊂ E} ⊆ k(x)[V].

Let ρ(x) := dim(V).

REMARK IV.1.1 The following holds:
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(i) U
�jdi�
i divides Fj, 2 � j � m, for 1 � i � 3 such that div(ui) ⊂ E.

(ii) Ix and V do not depend upon choices of z, u satisfying the assumptions.
(iii) the polynomials

U−m!di
i F

m!
j

j , 1 � j � m, 1 � i � 3

are zero or homogeneous of degree m!ε(x).

Statement (i) is a consequence of the definition of di. For (ii), suppose (z′, u′) is fully prepared,
where E ⊂ div(u′

1u
′
2u

′
3). Let

uj = a1,ju
′
1 + a2,ju

′
2 + a3,ju

′
3 + bjz, ai,j , bj ∈ R, 1 � i, j � 3,

for some matrix (ai,j) ∈ GL(3, R). Since τ(x) = 1, we have

degUj = degU ′
j =

1
δ(x)

< degZ = 1

in grδ. Computing w.r.t. the r.s.p. (z, u′), we get

inδ(h) = Zm +
∑

2�j�m

Zm−jF ′
j(U

′
1, U

′
2, U

′
3) ∈ grδ(R) = k(x)[Z, U ′

1, U
′
2, U

′
3],

with F ′
j(U

′
1, U

′
2, U

′
3) = Fj(M.(U ′

1, U
′
2, U

′
3)), M being the residue of M in GL(3, k(x)). Since (z′, u′)

is fully prepared, no term in Zm−1 occurs in inδ(h) ∈ k(x)[Z ′, U ′
1, U

′
2, U

′
3] and this implies that

< inδ(Z) >=< inδ(Z ′) >.
Statement (iii) immediately follows from definition II.7.

DEFINITION IV.2 Let E be a fixed normal crossings divisor and (z, u) be fully prepared (always
with the condition E ⊂ div(u1u2u3) ⊂ Spec(R)) as above.

We call “transverseness” index of x, denoted by t(x), the maximal dimension of a subspace of
V which is transverse to < Ui, div(ui) ⊂ E >. This is independent of the choice of a fully prepared
r.s.p. (z, u) by remark IV.1.1(ii).

We call “encombrement” of x, denoted by e(x), the minimum number of Ui’s among all possible
fully prepared (z, u) necessary to write a basis of V.

We define an invariant

ι(x) := (m(x),−τ(x), ε(x),−ρ(x),−t(x),−e(x)) ∈ N × {−4,−3,−2,−1} × Q�0 × {−3,−2,−1, 0}3.

For convenience, we extend the definition when τ(x) � 2 by letting ι(x) := (m(x),−τ(x), 0, 0, 0),
theorem 0.3 being already proved in this special case (section I). Note that ε(x) ∈ 1

m(x)!N, so any
decreasing sequence of values (for the lexicographical ordering) taken by ι is finite.

EXAMPLES IV.2.1 Assume p � 5.
(i) h = z3 + u2

1(u1 + u2 + u3)2, E = div(u1).
Then δ(x) = 4

3 , d1(x) = 2
3 , V =< U1 +U2 +U3 >, ρ(x) = 1, t(x) = 1, e(x) = 1: take the r.s.p.

(z, u1, u1 + u2 + u3, u3).
(ii) h = z3 + u2

1(u1 + u2 + u3)2, E = div(u1u2u3).
Then δ(x) = 4

3 , d1(x) = 2
3 , d2(x) = d3(x) = 0, V =< U1 + U2 + U3 >, ρ(x) = 1, t(x) = 0,

e(x) = 3: the only choice allowed upon (u1, u2, u3) is permuting or multiplying by a unit in R.
(iii) h = z3 + u2

1(u
2
1 + u2

2), E = div(u1).
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Then δ(x) = 4
3 , d1(x) = 2

3 , V =< U1, U2 >, ρ(x) = 2, t(x) = 1, e(x) = 2.

(iv) h = z3 + u2
1(u

2
1 + u2

2), E = div(u1u2).
Then δ(x) = 4

3 , d1(x) = 2
3 , d2(x) = 0, V =< U1, U2 >, ρ(x) = 2, t(x) = 0, e(x) = 2.

REMARK IV.2.2 The French “encombrement” was proposed by J. Giraud twenty years ago
(English: “cumbersomeness index” roughly).

V PERMISSIBLE BLOWING UPS, BEHAVIOUR OF THE INVARIANTS

We stick to the assumptions of the previous section and assume furthermore that ε(x) > 0.

DEFINITION V.1 An ε-permissible center (permissible center for short) Y at x is one of the
following:
(i) either Y := {x} = V (z, u1, u2, u3),
(ii) or Y := V (z, u1, u2) with (z, u) fully prepared,

d1 + d2 + ε(x) � 1 (1)

and
l(h, u, z) = m, (2)

where L denotes the linear form L(x1, x2, x3) = x1+x2
d1+d2+ε(x) (definition II.2).

PROPOSITION V.2 An ε-permissible center at x is permissible in Hironaka’s sense.

Proof. Indeed, we have just to look at the case of a curve V(z, u1, u2). In that latter case, as
d1 + d2 + ε(x) � 1, we have

ordη(h) � vL,h,u,z(h) = m,

where η is the generic point of V(z, u1, u2), so

ordη(h) = m,

which means exactly that V(z, u1, u2) is permissible in Hironaka’s sense.

PROPOSITION V.3 Let π : Z ′ −→ Z be the blowing up along an ε-permissible center Y at x,
X ′ be the strict transform of X (with transformed equation h′ at the center x′ ∈ X ′ of v). We
have:
(i) ι(x′) � ι(x) (definition IV.2). If equality holds (in which case we say that x′ is “very near” x),
then E′ := π−1(E)red is transverse to the directrix T ′ of X ′ at x′.
(ii) if Y = {x} and (m(x′),−τ(x′), ε(x′)) = (m(x),−τ(x), ε(x)), then x′ lies on

Projk(x)[Z, U1, U2, U3]/(Z,V) ⊂ Proj(grM(R)) = P3
k(x)

with notations as in IV.1. The refined directrix V ′ at x′ satisfies V ′ ≡ U−1V mod < U > where
U = inx′(u), u an equation of the exceptional divisor of π.

Proof. First assume that Y = {x}. By [H3, thm.3, p.331], if m(x′) = m(x), then x′ lies on the
strict transform of z = 0. The variables u1, u2, u3 play symmetric roles; so after reordering, it can
be assumed that x′ belongs to the affine chart SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′. Let

(z′, u′
1, u

′
2, u

′
3) := (z/u1, u1, u2/u1, u3/u1).
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We can choose a r.s.p. at x′ in the following way: if x′ is the origin, take (z′, u′
1, u

′
2, u

′
3); if x′

belongs to the strict transform of, say div(u2), we can take (z′, u′
1, u

′
2, v3) with v3 =

∑
a λau′

3
a, λa ∈

R a unit or zero (the sum is finite) whose residue
∑

a λaU3
a ∈ k(x)[U3] is an irreducible polynomial;

in the general case u′
2(x

′)u′
3(x

′) �= 0, we take (z′, u′
1, v2, v3) where vc =

∑
a,b λa,b,cu

′
2
a
u′

3
b, c = 2, 3

(sums are finite), λa,b,c ∈ R a unit or zero, and

<
∑
a,b

λa,b,cU2
aU3

b, c = 1, 2 >⊂ k(x)[U2, U3]

is a maximal ideal. Let

F := Zm +
∑

2�j�m

Zm−jU
a(1,j)
1 U

a(2,j)
2 U

a(3,j)
3 Gj(U1, U2, U3) :=

Zm +
∑

2�j�m

Zm−jFj(U1, U2, U3) := inδ(h) ∈ grδ(R) = k(x)[Z,U1, U2, U3], (1)

with a(i, j) � jdi, 2 � j � m, 1 � i � 3, Gj ∈ k(x)[U1, U2, U3] homogeneous, Gj = 0 or deg(Gj) =
jδ(x) − (a(1, j) + a(2, j) + a(3, j)) and Gj not divisible by Ui, 1 � i � 3.

Let h′ := h/um
1 define the strict transform of h. We define the linear form

L′(x′
1, x

′
2, x

′
3) :=

x′
1

δ(x) − 1

with associated valuation v′ := vL′,h′,u′,z′ (definition II.2). We have

inv′(h′) = Z ′m +
∑

2�j�m

Z ′m−j
U ′

1
j(δ(x)−1)

u′
2
a(2,j)

u′
3
a(3,j)

Gj(1, u′
2, u

′
3) ∈ grv′(R′), (2)

where grv′(R′) = R′/(z′, u′
1)[Z

′, U ′
1]. Here, the meaning of Gj(1, u′

2, u
′
3) is given by the inclusion

k(x) = R/M → R′/(u′
1) → R′/(z′, u′

1).

By (2), x′
1 = δ(x)−1 is the minimum value of the first coordinate of points in Δ(h′, u′

1, v2, v3, z
′).

Since z is δ-prepared, no vertex of Δ(h′, u′
1, v2, v3, z

′) with first coordinate equal to x′
1 = δ(x) − 1

is solvable. We get
d1(x′) = δ(x) − 1,

and for at least one vertex (x′
1 = δ(x) − 1, x′

2, x
′
3), we have

x′
2 + x′

3 � min{ordx′(u′
2
a(2,j)

u′
3
a(3,j)

Gj(1, u′
2, u

′
3))

j
, 2 � j � m}.

In case x′ belongs to the strict transform of some div(ui), i = 2, 3, we have di(x′) = di(x) for
u′

i(x
′) = 0 by II.6(iii). This leads to:

ε(x′) � min{ordx′(u′
2
a(2,j)−jd2u′

3
a(3,j)−jd3Gj(1, u′

2, u
′
3))

j
, 2 � j � m} � ε(x) (3)

with the convention: ordx′(u′
i
a) = 0 when a ∈ Q+ and u′

i(x
′) �= 0, ordx′(u′

i
a) = a when u′

i(x
′) = 0.

This proves (−τ(x′), ε(x′)) � (−τ(x), ε(x)).
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Assume that (−τ(x′), ε(x′)) = (−τ(x), ε(x)). Then

ordx′

⎛
⎝ ∏

div(ui)⊂E

u′
i
−m!(a(i,j)−jdi)Fj(1, u′

2, u
′
3)

m!
j

⎞
⎠ = deg

⎛
⎝ ∏

div(ui)⊂E

Ui
−m!(a(i,j)−jdi)F

m!
j

j

⎞
⎠

for each j with Fj �= 0. By [H3, Theorems 2 and 3], this means that x′ lies on

Projk(x)[Z, U1, U2, U3]/(Z,V) ⊂ Projk(x)[Z, U1, U2, U3] = P3
k(x). (4)

This proves the first assertion of (ii) in this case. All other assertions are easy consequences of (3)
and of its explicitation (4).

Assume now that u′
2(x

′)u′
3(x

′) �= 0. If x′ is rational over x, i.e. u′
2(x

′) = λ ∈ k(x), u′
3(x

′) =
μ ∈ k(x), we have

Ix′ ≡ (Z ′, Gj(1, V2 − λ, V3 − μ)
m!
j , 2 � j � m) mod (U ′

1), (5)

where Ix′ is the refined tangent ideal of x′ (cf. IV.1(ii)). This proves the last assertion of (ii) in
this case. Finally, if x′ is not rational over x, then dim(V) = 1. We get

V =< aU1 + bU2 + cU3 >, a, b, c ∈ k(x), (b, c) �= (0, 0).

If b �= 0, we take v2 := a + bu′
2 + cu′

3mod(u1) and we get by IV.1.1

Ix′ = (Z ′, V m!ε(x)
2 ) mod (U ′

1), (6)

which proves the last assertion of (ii) in this case. All other assertions are easy as in the previous
case.

We now consider blowing up along a curve Y = V (z, u1, u2).
By [H3, thm.3, p.331], if m(x′) = m(x), then x′ lies on the strict transform of z = 0. The

variables u1, u2 play symmetric roles; so after reordering, it can be assumed that x′ belongs to the
affine chart SpecR[z/u1, u2/u1, u3] ⊂ Z ′. Let

(z′, u′
1, u

′
2, u

′
3) := (z/u1, u1, u2/u1, u3).

We can choose a r.s.p. at x′ in the following way: if x′ is the origin, take (z′, u′
1, u

′
2, u

′
3);

otherwise take (z′, u′
1, v2, u

′
3) where vv =

∑
a λau′

3
a, λa ∈ R a unit or zero (the sum is finite) whose

residue
∑

a λaU3
a ∈ k(x)[U3] is an irreducible polynomial.

With notations (1), since V(z, u1, u2) is ε-permissible, we have

a(3, j) = jd3, Gj ∈ k(x)[U1, U2].

Let h′ := h/um
1 define the strict transform of h. Equation (2) gets replaced by

inv′(h′) = Γ0Z
′m +

∑
2�j�m

Z ′m−j
U ′

1
j(δ(x)−1−d3)u′

2
a2u′

3
jd3Γj ∈ grv′(R′) = R′/(z′, u′

1)[Z
′, U ′

1], (2∗)

with Γj ∈ R′/(z′, u′
1) whose residue in R′/(z′, u′

1, u
′
3) is Gj(1, u′

2) for 2 � j � m, Γ0 a unit.
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By (2*), δ(x)−1−d3 is the minimum value of the first coordinate of points in Δ(h′, u′
1, v2, u

′
3, z

′).
As in (1) there is no Z ′m−1, each vertex of Δ(h′, u′

1, v2, u
′
3, z

′) with first coordinate equal to δ(x)−
1 − d3 is not solvable. Then

d1(x′) = δ(x) − 1 − d3,

and for at least one vertex (x′
1 = δ(x) − 1 − d3, x

′
2, x

′
3), we have

x′
2 + x′

3 � min{ordx′(u′
2
a2u′

3
a3Gj(1, u′

2))
j

, 2 � j � m}.

By theorem II.6(iii), we have d3(x′) = d3. If u′
2(x

′) �= 0, this gives

ε(x′) � min{ordx′(u′
3
a3−d3Gj(1, u′

2))
j

, 2 � j � m} � ε(x).

If u′
2(x

′) = 0, we also have d2(x′) = d2 by II.6(iii). This leads to:

ε(x′) � inh{ordx′(u′
2
a2−d2u′

3
a3−d3Gj(1, u′

2))
j

, 2 � j � m} � ε(x)

with the convention: ordx′(u′
i
a) = 0 when a ∈ Q+ and u′

i(x
′) �= 0, ordx′(u′

i
a) = a when u′

i(x
′) = 0.

If ε(x′) = ε(x), then

ordx′

⎛
⎝ ∏

div(ui)⊂E

u′
i
−m!(a(i,j)−jdi)Gj(1, u′

2)
m!
j

⎞
⎠ = deg

⎛
⎝ ∏

div(ui)⊂E

Ui
−m!(a(i,j)−jdi)G

m!
j

j

⎞
⎠

for each j with Gj �= 0. By [H3, Theorems 2 and 3], this means that x′ lies on

Projk(x)[Z, U1, U2]/(Z,V) ⊂ Projk(x)[Z,U1, U2], (4∗)

where the latter is identified with π−1(x) ⊂ Z ′. The proof now runs parallel to the case Y = {x}.
PROPOSITION V.4 With assumption as in V.3, assume e(x) = 3 and Y = {x}. Then x′ is
not very near x, i.e. ι(x′) < ι(x) (definition IV.2).
Proof. If ρ(x) = 3, this follows from V.3(ii), since Projk(x)[Z,U1, U2, U3]/(Z,V) = ∅.

When ρ(x) = 2, we have t(x) < 2 necessarily: otherwise we should have

E ⊆ div(u1), V =< U2, U3 > mod (U1).

By a linear change on the free variables (u2, u3), we would get

V =< U2, U3 >,

i.e. e(x) = 2, a contradiction.
When ρ(x) = 2, t(x) = 1, we can choose parameters such that

E = div(u1u2), V =< U3, αU1 + U2 >, α ∈ k(x)×.

By proposition V.3(ii), we have

V ′ ≡< U ′
3, V

′
2 > mod (U ′

1),
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with E′ = div(u′
1), V ′

2 = inx′(a + u2/u1), where a ∈ R is a preimage of α. Then ρ(x′) � t(x′) � 2.
When ρ(x) = 2, t(x) = 0, then, up to a permutation on u1, u2, u3, we have E = div(u1u2u3)

and
V =< U1 + αU2, βU2 + U3, >, α ∈ k(x)×, β ∈ k(x).

By proposition V.3(ii), we can take π−1(x) = div(u2) locally at x′, and r.s.p.

(z′, v′
1, u

′
2, v

′
3) := (z/u2, u1/u2 + a, u2, u3/u2 + b),

where a, b ∈ R are preimages of α, β. In particular we get E ⊆ div(u′
2u

′
3). On the other hand, we

have
V ′ ≡< V ′

1 , V ′
3 > mod (U ′

2),

and this proves that t(x′) � 1.
When ρ(x) = 1, then e(x) = 3 implies E = div(u1u2u3) (so t(x) = 0) and

V =< αU1 + βU2 + U3, >, α, β ∈ k(x)×

up to renumbering parameters. By proposition V.3(ii), we can choose E′ ⊆ div(u′
1u

′
2), say π−1(x) =

div(u1) locally at x′ and r.s.p.

(z′, u′
1, v

′
2, v

′
3) := (z/u1, u1, v

′
2, a + bu2/u1 + u3/u1),

at x′, where a, b ∈ R are preimages of α, β. Since V ′
3 ∈ V ′⊕ < U1 >, we get t(x′) � 1.

PROPOSITION V.5 Let x satisfy the conclusion of proposition III.1(ii) and assume e(x) = 2.
There exists a finite sequence of local blowing ups

(Z, x) =: (Z0, x0) ←− (Z1, x1) ←− · · · ←− (Zn, xn), (1)

where x0 = x, xi ∈ Xi (Xi denoting the strict transform of X), 0 � i � n, is the center of v, each
blowing up center is Yi = {xi} such that ι(x′) < ι(x).

Proof. First assume that ρ(x) = 1. Then t(x) = 0, div(u2u3) ⊆ E and we have V =< αU2 + U3 >,
α ∈ k(x)× after possibly renumbering parameters. If x′ does not belong to the strict transform of
div(u2), we can take π−1(x) = div(u2) locally at x′, and r.s.p.

(z′, v′
1, u

′
2, v

′
3) := (z/u2, v

′
1, u2, a + u3/u2),

where a ∈ R is a preimage of α. In particular we get E′ ⊆ div(u′
1u

′
2), with u′

1 = u1/u2. On the
other hand, we have

V ′ ≡< V ′
3 > mod (U ′

2),

whence t(x′) � 1, so ι(x′) < ι(x). Assume now that x′ belongs to the strict transform of div(u2).
We can take π−1(x) = div(u1) locally at x′, and r.s.p.

(z′, u′
1, u

′
2, u

′
3) := (z/u1, u1, u2/u1, u3/u1).

We get E = div(u′
1u

′
2u

′
3) and

V ′ ≡< αU ′
2 + U ′

3 > mod (U ′
1).

If ι(x′) = ι(x), then V ′ =< αU ′
2 + U ′

3 > and iterate. Since the valuation v has rank one, say
v(u2) < nv(u1) for some n > 0, the process stops after iterating n times.
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Assume that ρ(x) = 2. Then V =< U2, U3 > after possibly renumbering parameters. We can
take π−1(x) = div(u1) locally at x′ and r.s.p.

(z′, u′
1, u

′
2, u

′
3) := (z/u1, u1, u2/u1, u3/u1).

We get div(u′
1) ⊆ E′ and

V ′ ≡< U ′
2, U

′
3 > mod (U ′

1),

hence < U ′
2 + α2U

′
1, U

′
3 + α3U

′
1 >⊆ V ′ for some α2, α3 ∈ k(x). If ι(x′) = ι(x), then equality holds;

moreover αi = 0 whenever div(ui) ⊆ E, i = 2 or i = 3.
Iterating, there exists a regular formal curve Ŷ ⊂ X passing through all points x, x1 :=

x′, . . . , xn, taking Yi = {xi} for each i � 0. By standard arguments, Ŷ ⊆ Singm(x)(X). Our
assumptions (beginning of section IV) force Ŷ ⊂ E, say Ŷ ⊂ div(u2). One concludes as in the case
ρ(x) = 1.

VI PROOF OF THE MAIN THEOREM.

By theorem II.9, a reduction in m = m(x) can be achieved when ε(x,E) = 0 for some normal
crossings divisor E ⊆ div(u1u2u3). The previous section (propositions V.4 and V.5) reduces
theorem 0.3 to the only case ε(x) > 0, e(x) = 1. There remains to prove the following:

THEOREM VI.1 Let x satisfy the conclusion of proposition III.1(ii) (w.r.t. E ⊆ div(u1u2u3))
and assume ε(x) > 0, e(x) = 1. There exists a finite sequence of local blowing ups

(Z, x) =: (Z0, x0) ←− (Z1, x1) ←− · · · ←− (Zn, xn), (1)

where x0 = x, xi ∈ Xi (Xi denoting the strict transform of X), 0 � i � n, is the center of v, each
blowing up center Yi ⊂ Xi is permissible in Hironaka’s sense, such that
(i) ι(xn) < ι(x), and
(ii) xn satisfies the conclusion of proposition III.1(ii) (w.r.t. the strict transform En of E in Zn)
if ((m(xn), τ(xn)) = (m(x), τ(x)) and ε(xn) > 0).

The proof is long, needing new invariants and the control of their behavior under permissible
blowing ups. There are two different cases:
(i) t(x) = 0, e(x) = 1,
(ii) t(x) = e(x) = 1.

In both cases, we choose the indices so that V =< U3 >. We assume that
(P1) (z, u) is fully prepared, and
(P2) E ⊆ div(u1u2u3).

VI.2 A new invariant B, preparation of the free variable (case (ii)).

Let us remind the convention di(x) = 0 for div(ui) �⊂ E, 1 � i � 3. In particular, d3(x) = 0
in case (ii). For B ∈ Q+, define the monomial valuation vB by

vB(z) = 1, vB(u3) :=
1

ε(x) + d3 + d1+d2
B

=: BvB(u1) = BvB(u2).

We choose B ∈ N ∪ {+∞} maximal such that, up to the multiplication by an element of k(x)×,
invB (h) takes the following form:

invB
(h) = Zm +

∑
1�j�m

Zm−jΦj(U1, U2, U3),
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with
degU3

(Φj) � j(d3 + ε(x)), 1 � j � m,

Φj(U1, U2, U3) = U jd1
1 U jd2

2 U jd3
3 (λjU

jε(x)
3 + Pj(U1, U2, U3)) (1)

with λj ∈ k(x) and (jd1, jd2, jε(x)) ∈ N3 whenever equality holds; furthermore, equality holds for
some j, 2 � j � m.

Note that we necessarily have Φj(U1, U2, U3) �= λjU
jε(x)
3 for some j if B < +∞, since B is

taken to be maximal. Moreover, since (z, u) is fully prepared and V =< U3 >, we necessarily have
B � 1 and degU3

(Φ1) < d3 + ε(x).
This construction builds up a face of Δ(h, u, z) with equation

x1 + x2

B(ε(x) + d3) + d1 + d2
+

x3

(ε(x) + d3 + d1+d2
B )

= 1,

for some B which contains the point x := (d1, d2, ε(x) + d3) and at least another point.
Let p be the projection

p : R3 − {x} −→ {x3 = 0}.

For analytic computations, note that if M = zm−jua1
1 ua2

2 u3
a3 is a monomial appearing with nonzero

coefficient in some expansion II.1(1) of h and j � 1, then M defines the point xM :

M = zm−jua1
1 ua2

2 u3
a3 ↔ xM = (

a1

j
,
a2

j
,
a3

j
) ∈ Δ(h, u, z),

and

p(xM ) = (d1 +
a1
j − d1

d3 + ε(x) − a3
j

, d2 +
a2
j − d2

d3 + ε(x) − a3
j

). (2)

Then B + d1 + d2 is the minimum value x1 + x2 for points in p(Δ(h, u, z)∩ {x3 < ε(x) + d3}).
We define Δ2(h;u1, u2; u3) ⊆ (R+)2 by the formula

(d1, d2) + Δ2(h;u1, u2; u3) := p(Δ(h, u, z) ∩ {x3 < ε(x) + d3}).

The main idea is that Δ2(h;u1, u2;u3) acts as the characteristic polyhedron of a surface singularity
and in the following, we mimic [CJS],[2], all these following Hironaka.

In case (ii) (div(u3) �⊂ E), we will require two extra conditions (to be achieved in VI.3 below
by possibly changing u3):
(P3) there is no homogeneous P ∈ k(x)[U1, U2], P �= 0, such that

invB
(h) = Zm +

∑
2�j�m

Zm−jλjU
jd1
1 U jd2

2 (U3 + P (U1, U2))jε(x), (3)

with the convention λj = 0 when (jd1, jd2, jε(x)) �∈ N3;
(P4) if B < +∞, let x2 = (d1 + A(1), β + d2) be the vertex of Δ2(h;u1, u2; u3) with minimal first
coordinate. Then x2 does not vanish by changing u3 to u3 + γuα

1 uβ
2 , γ ∈ R, γ invertible.

PROPOSITION VI.3 With assumptions as above, there exist (z, u1, u2, u3), z, u3 ∈ R̂ such that
(P1)(P2) and (P3)(P4) (in case (ii) with B < ∞) are satisfied.
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Proof. The conditions (P1)(P2) can be achieved easily. If (P3) or (P4) is not achieved, we make a
translation on u3: we replace u3 by u3 +

∑
a1,a2

γa1,a2u
a1
1 ua2

2 , γa1,a2 ∈ R, (a1, a2) ∈ p(Δ(h, u, z) ∩
{x3 < ε(x) + d3}). To achieve (P3), we take∑

a1,a2

γa1,a2U
a1
1 Ua2

2 := P (U1, U2),

P (U1, U2) as in (3), which makes B increase if (P3) is not achieved. To achieve (P4) we change u3

to u3 +γuα
1 uβ

2 as in (P4)), which makes (A(1), β) strictly increase for the lexicographical ordering .
In both cases, this translation makes Δ2(h; u1, u2; u3) smaller. These translations may spoil

(P1), so each must be followed by a translation on z to get again (P1). This translation makes
Δ2(h; u1, u2; u3) not bigger. The process may be infinite, but since Δ2(h;u1, u2; u3) gets smaller at
each step, this converges to some z, u3 ∈ R̂.

DEFINITION VI.3.1 With assumptions as above, a r.s.p. (z, u1, u2, u3), z, u3 ∈ R̂ such that
(P1)(P2) and (P3)(P4) (in case (ii) with B < ∞) are satisfied is said to be well prepared. For such
(z, u1, u2, u3), the number B defined above is denoted by B(z, u1, u2, u3) or B(x) for short, even if
it may depend on the choice of (z, u1, u2, u3).

VI.4. We begin the proof of Theorem VI.1 by the special case B(x) = ∞.

When B(z, u1, u2, u3) = ∞, Δ(h, u, z) has only one vertex with coordinates (d1, d2, ε(x) + d3).
Since ε(x) > 0, we have div(u3) �⊂ E, hence t(x) = 1 (case (ii)) and E ⊆ div(u1u2), d3 = 0. The
proof is a variation of that of theorem II.9, checking carefully the algebraicity of the blowing up
centers.

It has been assumed from section IV on that Singm(X) ⊆ E, so ε(x,E) < 1 necessarily since
V (z, u3) ⊆ Singm(X) otherwise.

By blowing up the surfaces V (z, ui), div(ui) ⊆ E, it can be assumed w.l.o.g. that di < 1.
Similarly, it can be assumed that d1 + d2 < 1 by blowing up V (z, u1, u2).

Assume that V (z, ui, u3) ⊆ Singm(X) ⊆ E, i.e. di + ε(x) � 1, i = 1 or i = 2. Then
Ci := V (z, ui, u3) is a formal irreducible component of Singm(X). By excellence, its Zariski closure
Ci is a curve on X. On the other hand, Ci is contained in V (z, ui), so Ci itself is a curve on X.
By blowing up Ci, we may assume that di + ε(x) < 1, i = 1, 2.

At this point, we have reached the situation of theorem II.9(1) and the proof therein extends
without changes: we eventually get reduction in (m(x), τ(x)) by blowing up closed points. We
observe that theorem VI.1 can also be phrased as follows in this case: En can be enlarged to a
new normal crossings divisor Fn such that ε(xn, Fn) = 0.

From now on, we assume that

e(x) = 1, B(x) < ∞. (Hyp)

DEFINITION VI.4.1 (New invariants) We define A1, β by: (d1 + A1, β + d2) is the vertex of
minimal first coordinate of

p(Δ(h, u, z) ∩ {x3 < ε(x) + d3}).
We define A2 by: d2 + A2 is the minimal second coordinate of the points of

p(Δ(h, u, z) ∩ {x3 < ε(x) + d3}).

We define C(u, z) (or C(x) for short) by;

C(u, z) = B(u, z) − A1 − A2.
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Finally, we define γ(u, z) (or γ(x) for short) as follows:
(i) γ(u, z) := �β(u, z)� � 0 if (E ⊆ div(u1) and t(x) = 1);
(ii) γ(u, z) := �β(u, z)� � 0 if (E ⊆ div(u1u3) and t(x) = 0);
(iii) γ(u, z) := 1 + �C(u, z)� � 1 otherwise, i.e if (E = div(u1u2) and t(x) = 1 ) or if (E =
div(u1u2u3) and t(x) = 0).

PROPOSITION VI.4.2 (Behaviour of the new invariants under blowing up along an ε-permissi-
ble curve). Assume that (Hyp) is true, (z, u) is well prepared and let

Ci := V(z, ui, u3), i = 1 or i = 2.

Assume that Ci is ε-permissible in X̂ = Spec(R̂/(h)), for some i, i = 1, 2, then:
(i) ε(x) + d3 + di � 1,
(ii) Ci is algebraic, i.e., if in achieving (P3)(P4), we get z, u3 ∈ R̂, then there exists a curve in
Spec R whose formal completion is V(z, ui, u3).
(iii) let πi : (Z ′, x′) → (Z, x) be the blowing up along Ci, X ′ ⊂ Z ′ the strict transform of X and
x′ ∈ X ′ the center of v, with ι(x′) = ι(x). Then:
(iv) if i = 1 and x′ is the point of Z ′ with parameters

(z′, u′
1, u

′
2, u

′
3) := (z/u1, u1, u2, u3/u1),

these are well-prepared parameters and

β(x′) = β(x), A1(x′) = A1(x) − 1, A2(x′) = A2(x),

d1(x′) = d1(x) + ε(x) + d3(x) − 1, d2(x′) = d2(x), d3(x′) = d3(x);

(v) if i = 2 and x′ is the point of Z ′ with parameters

(z′, u′
1, u

′
2, u

′
3) := (z/u2, u1, u2, u3/u2),

these are well-prepared parameters and

β(x′) = β(x) − 1, A1(x′) = A1(x), A2(x′) = A2(x) − 1,

d2(x′) = d1(x) + ε(x) + d3(x) − 1, d1(x′) = d1(x).

Proof of (i). Condition (i) is equivalent to h ∈ (z, u3, ui)m.

Proof of (ii)(iii). Let us note that (ii) is clear when div(u3) ⊂ E, because in that case, we do not
make (P3)(P4), z, u1, u3 ∈ R. When div(u3) �⊂ E, we will prove that

(ii)’ Ci is the only analytic branch in div(ui) ∩ Singm(X) ∩ {y ∈ X : ε(y) > 0} not contained in
div(uj), j = 1, 2, j �= i.

By II.10 II.11, this will prove (ii). We compute πi : X ′ ⊂ Z ′ −→ X ′ ⊂ Z ′. By symmetry, we
suppose i = 1. Let us expand:

h =
∑

A,m−j,0�j�m

CA,m−jz
m−jua1

1 ua2
2 u3

a3 ,

CA,m−j ∈ R, CA,m−j invertible or zero, CA,m−j �= 0 ⇒ a1 + a2 + a3 � jδ(x), ai � jdi, i = 1, 2, 3,
C0,0 invertible.
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Since h ≡ δzm mod(u1, u2, u3), δ ∈ R a unit, X ′∩SpecR[u1/z, u3/z] ⊂ Z ′ does not contain the
point (z, u1/z, u2, u3/z). Assume now that x′ belongs to the affine chart SpecR[z/u3, u1/u3] ⊂ Z ′.
Let

(z′, u′
1, u

′
2, u

′
3) := (z/u3, u1/u3, u2, u3).

We have
h′ := u−m

3 h =
∑

CA,m−jz
′m−j

ua1
1 ua2

2 u′
3
a1+a3−j

, (1)

h′ = C0,mz′m +
∑

2�j�m

γju
′
1
jd1ujd2

2 u3
j(d1+d3+ε(x)−1) modulo I+(z′, u′

1, u2, u3), (2)

where, γj ∈ R, γj invertible or zero, γj = 0 when one exponent is not integer,

γj = Cjd1,jd2,j(d3+ε(x)),m−j modulo M

when γj is invertible and I+(z′, u′
1, u2, u3) is generated by

z′m+1
, z′m−j

u′
1
a
ub

2u
c
3,

with 1 � j � m,a � jd1, b � jd2, c � j(d1 +d3 +ε(x)−1), a+b+c > j(d1 +d2 +d1 +d3 +ε(x)−1).
Note that (2) implies d3(x′) � d1 + d3 + ε(x) − 1, in fact there is equality. Otherwise, by

[H2], there would exist t = z′ + γue
3, e � d1 + d3 + ε(x) − 1, γ ∈ R, orduiγ � di, i = 1, 2, with

h′ = C0,0t
m modulo I+(t, u′

1, u2, u3). As I+(z′, u′
1, u2, u3) = I+(t, u′

1, u2, u3) and, in (2), there is no
term in z′m−1, this is impossible. As d1(x′) = d1(x) and d2(x′) = d2(x), by (2), we get ε(x′) = 0:
there is no x′ very near x in this chart. This gives the first statement in (iv). This gives also (ii)’,
because if there was a curve in div(u2) ∩ Singm(X) ∩ {y ∈ X : ε(y) > 0}, the strict transform of
this curve would have a non empty intersection with our affine chart and there would exist in this
chart some x′ with ε(x′) � 1.

Proof of (iv). Now x′ ∈ SpecR[z/u1, u3/u1] ⊂ Z ′ is the point with parameters (z′, u′
1, u

′
2, u

′
3) :=

(z/u1, u1, u2, u3/u1). Then, using the notations of (1),

h′ := u−m
1 h =

∑
CA,m−jz

′m−j
ua1+a3−j

1 ua2
2 u′

3
a3 ,

Δ(h′, u′, z′) is obtained as follows: take the convex hull of the set {(a+c−1, b, c)|(a, b, c) ∈ Δ(h, u, z)}
and add R+3, then

∂(Δ(h′, u′, z′)) ⊂ {(a + c − 1, b, c)|(a, b, c) ∈ ∂(Δ(h, u, z))},

in(h′,Δ′)u′,z′ = C0,mZ ′m +
∑

2�j�m,A/j∈∂(Δ(h′,u′,z′))

λj,AZ ′m−j
U ′

1
a1+a3−j

U ′
2
a2U ′

3
a3 ,

where the λj,A ∈ k(x) are defined by:

in(h,Δ)u,z = C0,mZm +
∑

2�j�m, A
j ∈∂(Δ(h,u,z))

λj,AZm−jU1
a1+a3−jU2

a2U3
a3 .

Let M′ be the set of monomials M ′ = z′m−j
ua1+a3−j

1 ua2
2 u′

3
a3 which appear with a non zero

coefficient in the expansion of h′, let M be the set of monomials M = zm−jua1
1 ua2

2 u3
a3 which

appear with a non zero coefficient in the expansion of h:

d1(x′) = inhM ′∈M′(
a1 + a3 − j

j
) = d1 + d3 + ε(x) − 1, di(x′) = inhM ′∈M′(

ai

j
) = di, i = 2, 3.
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As x′ is very near x, ε(x) = ε(x′), δ(x′) = d1(x′) + d2(x′) + d3(x′) + ε(x). The only point on the
first side of Δ(h′, u′, z′) is

(d1(x′), d2(x), d3(x) + ε(x))

let p′ be the projection on x3 = 0 from this vertex. A monomial M ′ defines a point (a1+a3
j −1, a2

j , a3
j )

that we call also M ′, when a3 < d3(x) + ε(x),

p′(M ′) = (d1(x′) +
a1+a3

j − 1 − d1(x′)

d3(x) + ε(x) − a3
j

, d2(x) +
a2
j − d2(x)

d3(x) + ε(x) − a3
j

),

as
a1+a3

j −1−d1(x
′)

d3(x)+ε(x)− a3
j

=
a1
j −d1(x)

d3(x)+ε(x)− a3
j

− 1 and by VI.3(2)

p(M) = (d1(x) +
a1
j − d1(x)

d3(x) + ε(x) − a3
j

, d2(x) +
a2
j − d2(x)

d3(x) + ε(x) − a3
j

).

We get
p′(Δ(h′, u′, z′) ∩ {x3 < d3(x) + ε(x)}) − (d1(x′), d2(x′)),

i.e. the polyhedron p′(Δ(h′, u′, z′)∩{x3 < d3(x)+ ε(x)}) translated by the vector −(d1(x′), d2(x′)),
from

p(Δ(h, u, z) ∩ {x3 < d3(x) + ε(x)}) − (d1(x), d2(x))

by making an horizontal translation of −1. This gives the other assertions of (iv). Mutatis mutandis,
we get (v).

PROPOSITION VI.4.3 (Behaviour of the new invariants under blowing up a closed point).
Assume that (Hyp) is true and (z, u) is well prepared. Let πi : (Z ′, x′) → (Z, x) be the blowing up
along x, X ′ ⊂ Z ′ the strict transform of X and x′ ∈ X ′ the center of v, with ι(x′) = ι(x). Then
(i) x′ belongs to the strict transform of V (z, u3),
(ii) if x′ ∈ SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′ is the point

(z′, u′
1, u

′
2, u

′
3) := (z/u1, u1, u2/u1, u3/u1),

these parameters are well-prepared and

β(x′) � β(x), A1(x′) = B(x) − 1, A2(x′) = A2(x), C(u′, z′) � C(u, z),

d1(x′) = d1(x) + d2(x) + d3(x) + ε(x) − 1, d2(x′) = d2(x), d3(x′) = d3(x);

(iii) if x′ ∈ SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′ and x′ �= (z′, u′
1, u

′
2, u

′
3), then

β(x′) � 1 +
⌊

C(u, z)
2

⌋
, A1(x′) = d(x) − 1,

d1(x′) = d1(x) + d2(x) + d3(x) + ε(x) − 1, d2(x′) = 0, d3(x′) = d3(x),

where �.� denotes lower integral part. If moreover (E ⊆ div(u1u3) and 0 < β(x)), then β(x′) � β(x).

We have
γ(x′) � γ(x).
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More precisely: if (x′ is not rational over x and γ(x) � 3), then γ(x′) < γ(x); if (γ(x′) = γ(x) = 2
and x′ is not rational over x), then β(x) = 2, div(u2) �⊂ E and β(x′) < β(x) = 2;
(iv) if x′ ∈ SpecR[z/u2, u1/u2, u3/u2] ⊂ Z ′ is the point with parameters

(z′, u′
1, u

′
2, u

′
3) := (z/u2, u1/u2, u2, u3/u2),

these are well prepared parameters and

β(x′) = β(x) + A1(x) − 1, A1(x′) = A1(x), A2(x′) = B(x) − 1,

d2(x′) = d1(x) + d2(x) + d3(x) + ε(x) − 1, d1(x′) = d1(x),

γ(x′) � γ(x), C(u′, z′) � β(x)
2

.

Proof. (i) is a consequence of V.3(ii) and V.3(3).

Proof of (ii). Write

h =
∑

CA,m−bz
m−bua1

1 ua2
2 ua3

3 , CA,m−b ∈ R× or CA,m−b = 0,

where the sum runs along b � m, A = 0 when b = 0, and A = (a1, a2, a3) ∈ bΔ(h, u, z). Then

h′ := u−m
1 h =

∑
CA,m−jz

′m−j
ua1+a2+a3−j

1 u′
2
a2u′

3
a3 ,

and Δ(h′, u′, z′) is obtained as follows: take the convex hull of the set

{(a + b + c − 1, b, c) + R+
3|(a, b, c) ∈ Δ(h, u, z)}.

Let M′ be the set of monomials M ′ = z′m−j
ua1+a2+a3−j

1 u′
2
a2u′

3
a3 which appear with a non zero

coefficient in the expansion of h′, let M be the set of monomials M = zm−jua1
1 ua2

2 u3
a3 which

appear with a non zero coefficient in the expansion of h:

d1(x′) = infM ′∈M′(
a1 + a2 + a3 − j

j
) = d1 + d2 + d3 + ε(x) − 1,

di(x′) = infM ′∈M′(
ai

j
) = di(x), i = 2, 3.

As x′ is very near to x, ε(x) = ε(x′), δ(x′) = d1(x′) + d2(x′) + d3(x′) + ε(x). The only point on the
first side of Δ(h′, u′, z′) is

(d1(x′), d2(x), d3(x) + ε(x)).

Let p′ be the projection on x3 = 0 from this vertex. A monomial M ′ corresponds to a point
xM ′ (a1+a2+a3

j − 1, a2
j , a3

j ). When a3 < d3(x) + ε(x),

p′(M ′) = (d1(x′) +
a1+a2+a3

j − 1 − d1(x′)

d3(x) + ε(x) − a3
j

, d2(x) +
a2
j − d2(x)

d3(x) + ε(x) − a3
j

),
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as
a1+a3

j −1−d1(x
′)

d3(x)+ε(x)− a3
j

=
a1
j −d1(x)

d3(x)+ε(x)− a3
j

− 1 and by VI.3(2)

p(M) = (d1(x) +
a1
j − d1(x)

d3(x) + ε(x) − a3
j

, d2(x) +
a2
j − d2(x)

d3(x) + ε(x) − a3
j

).

So we get
p′(Δ(h′, u′, z′) ∩ {x3 < d3(x) + ε(x)}) − (d1(x′), d2(x′))

from
p(Δ(h, u, z) ∩ {x3 < d3(x) + ε(x)}) − (d1(x), d2(x))

as follows: take the convex hull of the set

{(a + b − 1, b) + R+
2|(a, b) ∈ p(Δ(h, u, z) ∩ {x3 < d3(x) + ε(x)}) − (d1(x), d2(x))}.

These are the usual transformation laws of the characteristic polyhedra of surfaces see the
appendix of H. Hironaka in [3]. To get the other assertions of (ii), the proof runs along the same
lines as VI.4.2(1).

Proof of (iv). Mutatis mutandis, we get all assertions of (iv), except the last line that we prove
now. In fact, we get

p′(Δ(h′, u′, z′) ∩ {x3 < d3(x) + ε(x)}) − (d1(x′), d2(x′))

from
p(Δ(h, u, z) ∩ {x3 < d3(x) + ε(x)}) − (d1(x), d2(x))

as follows: take the convex hull of the set {(a, a+ b− 1)+ R+
2|(a, b) ∈ p(Δ(h, u, z)∩{x3 < d3(x)+

ε(x)}) − (d1(x), d2(x))}. We get A1(x′) = A1(x), β(x′) = β(x) + A1(x) − 1 and A2(x) = d(x) − 1.
Let us denote by (α2, β2) and (α3, β3) with α2 � α3, the coordinates of the (maybe equal)

vertices of the first side of p(Δ(h, u, z) ∩ {x3 < d3(x) + ε(x)}) − (d1(x), d2(x)).
Then (α2, α2 + β2 − 1) = (α2, B(x) − 1) is the vertex of smaller second coordinate of

p′(Δ(h′, u′, z′) ∩ {x3 < d3(x) + ε(x)}) − (d1(x′), d2(x′)).

Note that (A1(x), A1(x) + β(x) − 1) is the vertex of smaller first coordinate of

p′(Δ(h′, u′, z′) ∩ {x3 < d3(x) + ε(x)}) − (d1(x′), d2(x′)).

All this leads to:
A1(x′) = A1(x), A2(x′) = B(x) − 1,

C(u′, z′) � β(x′) − A2(x′) = A1(x) + β(x) − 1 − (B(x) − 1) = β(x) − (B(x) − A1(x)),

C(u′, z′) � α2 − A1(x′) = α2 − A1(x) � α2 + β2 − A1(x) = B(x) − A1(x).

Then either B(x) − A1(x) � β(x)
2 , then C(u′, z′) � β(x)

2 by the last inequality; or B(x) − A1(x) >
β(x)

2 , then C(u′, z′) < β(x)
2 by the first of the two inequalities just above. The inequality γ(x′) � γ(x)

is left to the reader.

Proof of (iii). Recall the notations and assumptions of VI.2(1). We write

27



Φj(U1, U2, U3) = U jd1
1 U jd2

2 U jd3
3 (λjU

jε(x)
3 +

∑
i∈Q+

U
a(i,j)
1 U

b(i,j)
2 U

jε(x)−i
3 Qi,j(U1, U2)) (1)

with λj ∈ k(x), λj = 0 if (jd1, jd2, jε(x)) �∈ N3. In this expansion, we take:

Qi,j ∈ k(x)[U1, U2], Qi,j = 0 or (U1 � |Qi,j and U2 � |Qi,j),

Qi,j = 0 when (jd1 + a(i, j), jd2 + b(i, j), jd3 + jε(x) − i) �∈ N3.

Note that at least one Qi,j , 2 � j � m is nonzero and at least one λj′ , 2 � j′ � m is nonzero.
By definition of C(u, z), when Qi,j �= 0, deg(Qi,j) � iC(u, z), where deg is the usual homo-

geneous degree. When Qi,j �= 0, let us denote d(i, j) =deg(Qi,j). Then we have, with natural
notations, the relation:

vB(ujε(x)
3 ) = vB(Ua(i,j)

1 U
b(i,j)
2 U

jε(x)−i
3 Qi,j(U1, U2))

jε(x)vB(u3) = (jε(x) − i)vB(u3) + (a(i, j) + b(i, j) + d(i, j))vB(u1)

jε(x)vB(u3) = (jε(x) − i)vB(u3) + (a(i, j) + b(i, j) + d(i, j))
vB(u3)

B
,

which leads to:
a(i, j) + b(i, j) + d(i, j) − j(d1 + d2) = iB. (2)

Then, in the expansion of U
jε(x)+jd3−i
3 U

a(i,j)
1 U

b(i,j)
2 Qi,j(U1, U2), the monomial with non zero

coefficient and minimal exponent in U1 is

U
a(i,j)
1 U

iB−a(i,j)
2 U

jε(x)+jd3−i
3

which gives the point (cf. VI.2(2))

(d1 +
a(i,j)

j − d1

d3 + ε(x) − jd3+jε(x)−i
j

, d2 +
iB−a(i,j)

j − d1

d3 + ε(x) − jd3+jε(x)−i
j

)

in p(Δ(h, u, z) ∩ {x3 < ε(x) + d3}). As

d1 +
a(i,j)

j − d1

d3 + ε(x) − jd3+jε(x)−i
j

= d1 +
a(i, j) − jd1

i
,

we deduce that

A1(u, z) = inf{a(i, j) − jd1

i
| 2 � j � m(x), 0 < i � jε(x), jε(x)+jd3−i ∈ N, i ∈ Q, Qi,j �= 0}. (3)

Similarly,

A2(u, z) = inf{b(i, j) − jd1

i
| 2 � j � m(x), 0 < i � jε(x), jε(x)+ jd3− i ∈ N, i ∈ Q, Qi,j �= 0} (4)
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and, finally, by (2), when Qi,j �= 0,

d(i, j) = i(B − a(i, j) − jd1

i
− b(i, j) − jd1

i
) � iC(u, z). (5)

Since x′ ∈ SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′, x′ is not the origin

(z′, u′
1, u

′
2, u

′
3) = (z/u1, u1, u2/u1, u3/u1),

and x′ belongs to the strict transform of V(z, u3) then z′(x′) = u′
1(x

′) = u′
3(x

′) = 0. We complete
(z′, u′

1, u
′
3) to a r.s.p. (z′, u′

1, v
′, u′

3) at x′ where

v′ = u′
2
n +

∑
0�a�n−1

μau′
2
n−a

, μa = 0 or μa ∈ R×,

for some irreducible polynomial

P := U2
n +

∑
0�a�n−1

μaU2
n−a ∈ k(x)[U2].

The following lemma will end the proof of VI.4.3(iii).

LEMMA VI.4.4 With hypotheses and notations as in VI.4.3(iii), let d := [k(x′) : k(x)]. We
have:
(i) A1(x′) = B(u, z) − 1;
(ii) if div(u3) ⊂ E, then

β(x′) � C(u, z)
d

� β(x)
d

(iii) in general,

β(x′) < 1 +
⌊

C(u, z)
d

⌋
, (1)

(iv) if (E ⊆ div(u1), 0 < β(x) and x′ is rational over x), then

β(x′) � β(x).

Proof. As x′ is very near to x, we have ε(x) = ε(x′), δ(x′) = d1(x′) + d2(x′) + d3(x′) + ε(x). As x′

is on the strict transform of div(u3) and not on the strict transform of div(u2), we get:

d2(x′) = 0, d3(x′) = d3(x).

With notations as in the proof of VI.4.3(ii):

h =
∑

CA,m−bz
m−bua1

1 ua2
2 ua3

3 , CA,m−b ∈ R× or CA,m−b = 0,

where the sum runs along b � m, A = 0 when b = 0, A = (a1, a2, a3) ∈ bΔ(h, u, z),

h′ := u−m
1 h =

∑
CA,m−jz

′m−j
ua1+a2+a3−j

1 u′
2
a2u′

3
a3 .
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Up to multiplying h by an unit, we may assume C0,m = 1 ∈ k(x). Then, with the notations of
II.2, we have

δ(x) = d1 + d2 + d3 + ε(x),

inδ,u,z(h) = Zm +
∑

2�j�m

μjZ
m−jU jd1

1 U jd2
2 U

jd3+jε(x)
3 , μj ∈ k(x), (1)

μj = 0 whenever (jd1, jd2, jd3 + jε(x)) �∈ N3, μj = Cjd1,jd2,jd3+jε(x),m−j ∈ k(x) otherwise. This
leads to

h′ = C0,mz′m +
∑

2�j�m

z′m−j
Cjd1,jd2,jd3+jε(x),m−ju

′
1
j(d1+d2+d3+ε(x)−1)

u′
2
jd2u′

3
jd3+jε(x) + h′

1 (2)

where h′
1 ∈ {z′m−j

u′
1
a(j)

, j ∈ N, a(j) > j(d1 + d2 + d3 + ε(x)− 1) = j(δ(x)− 1)}. As a consequence,

(δ(x) − 1, 0, d3(x) + ε(x))

is the vertex of smallest first coordinate of Δ(h′, u′
1, v

′, u′
3, t) and is not solvable. In the preparation,

we may replace z′ by t = z′ + λu′
1
a with a � δ(h) − 1, but, this cannot erase the vertex (δ(x) −

1, 0, d3(x) + ε(x)). We get
d1(x′) = δ(x) − 1.

Let us study the projection of Δ(h′, u′
1, v

′, u′
3, t)∩{x′

3 < d3 + ε(x′)} on x′
3 = 0, in particular we

are interested in the vertex of smallest first coordinate of this projection. Let w be the monomial
valuation on R′ := OX′,x′ defined by

w(z′) = 1, w(u′
3) =

1
ε(x) + d3 + d1+d2

B(u,z)−1

,

w(u′
1) =

1
(B(u, z) − 1)(ε(x) + d3) + d1 + d2

=
1

B(u, z) − 1
w(u′

3).

There is an expansion

inw(h′) = Z ′m +
∑

2�j�m

Z ′m−jΦ′
j(U

′
1, U

′
3) ∈ grw(R′) = R′/(z′, u′

1, u
′
3)[Z

′, U ′
1, U

′
3],

where
Φ′

j(U
′
1, U

′
3) = λjU

′
1
j(δ(x)−1)

u′
2

jd2
U ′

3
jε(x)+jd3+∑

0<i�jε(x),jε(x)+jd3−i∈N,i∈Q

U ′
3
jε(x)+jd3−i

U ′
1
a(i,j)+b(i,j)+d(i,j)+jε(x)+jd3−i−j

u′
2

b(i,j)
Qi,j(1, u′

2),

where d(i, j) = deg(Qi,j)u′
2 is the image of u′

2 in R′
(z′,u1,u′

3)
= k(x)[u′

2](v′), v′ being the image of v′

in R′
(z′,u1,u′

3)
. Let us recall that

inw(h′) ∈ grw(R′) :=
⊕

r∈Q�0

Ir

I+
r

,

with Ir = {a ∈ R′|w(a) � r}, I+
r = {a ∈ R′|w(a) > r}. By VI.4.3(2), inw(h′) =

Z ′m +
∑

2�j�m

Z ′m−j
U ′

1
j(δ(x)−1)[λjU

′
3
jε(x)+jd3 + U ′

3
jε(x)+jd3−i

U ′
1
i(B(u,z)−1)

u′
2

b(i,j)
Qi,j(1, u′

2)]. (3)
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This means that

1
(B(u, z) − 1)(ε(x) + d3) + d1 + d2

x′
1 +

1
ε(x) + d3 + d1+d2

B(u,z)−1

x′
3 = 1

is the defining equation of a face of Δ(h′, u′
1, v

′, u′
3).

VI.4.4.1 When div(u3) ⊂ E, then div(u′
3) ⊂ E′, we have just to make (P2) in the preparation,

we may replace z′ by t = z′ + r, r ∈ R′ and, as Z ′m−1 does not appear in (2), w(r) > 1,
w(t) = w(z′) = 1. This means that

1
(B(u, z) − 1)(ε(x) + d3) + d1 + d2

x′
1 +

1
ε(x) + d3 + d1+d2

B(u,z)−1

x′
3 = 1

is the defining equation of a face of Δ(h′, u′
1, v

′, u′
3, t). By VI.2(2),

A1(u′
1, v

′, u′
3, t) = B(u, z) − 1 and β(x′) = inf{ordx′(Qi,j(1, u′

2))/id}.

By VI.4.3(5), β(x′) � C(u, z)/d and this gives VI.4.4 in the case div(u3) ⊂ E.
VI.4.4.2 From now on, div(u3) �⊂ E, in particular d3(x) = 0. Then, to get (P1),...,(P4), we may
replace z′ by t = z′+r, r ∈ R′ and, as Z ′m(x)−1 does not appear in (2), w(r) > 1, w(t) = w(z′) = 1.
We possibly have to make the projection of Δ(h′, u′

1, v
′, u′

3, t)∩{x′
3 < d3 + ε(x′)} on x′

3 = 0 smaller
by changing u′

3 to v3 = u′
3 + λu′

1
a with a � B(u, z) − 1 and λ ∈ R′, λ not divisible by u′

1.

Assume that a > B(u, z)−1 (this is always the case when B(u, z) �∈ N). Then inw(v3) =inw(u′
3),

we get A1(u′
1, v

′, u′
3, t) = B(u, z) − 1 and

β(x′) = inf{ordx′(Qi,j(1, u′
2))/id}.

By VI.4.3(5),
β(x′) � C(u, z)/d

which gives VI.4.4 in this case.
VI.4.4.3 From now on,

B(u, z) ∈ N, a = B(u, z) − 1.

If there exists a couple (i, j0) such that in (3) above

λj0 = 0 and Qi,j0 �= 0,

then the translations t = z′ + r and v3 = u′
3 + λu′

1
a will not modify the term

U ′
3
j0ε(x)−i0U ′

1
i0(B(u,z)−1)

u′
2

b(i0,j0)
Qi0,j0(1, u′

2)

with i0 := min{i : Qi,j0 �= 0}. More precisely, in the expansion

inw(h′) = Tm +
∑

2�j�m

Tm−jU ′
1
j(δ(x)−1)[λjV3

jε(x) + μi,jU
′
3
jε(x)−i

U ′
1
i(B(u,z)−1) × V ′e(i,j)],

μi,j ∈ R′
(t,u′

1,u′
3)

, e(i, j) ∈ N, we will have

u′
2

b(i0,j0)
Qi0,j0(1, u′

2) = μi0,j0 × V ′e(i0,j0).
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Then
β(x′) � ordx′(Qi0,j0(1, u′

2))/id,

which, by VI.4.3(5), gives

A1(x′) = B(u, z) − 1, β(x′) � C(u, z)/d

and implies VI.4.4 in this case.
VI.4.4.4 From now on, we assume the implication:

Qi,j �= 0 ⇒ λj �= 0.

In particular, we have jε(x) ∈ N, jδ(x) ∈ N and all the indices i in (2)(3) are integers. Let us define

Fj ∈ grvB
(R) = k(x)[U1, U2, U3, Z]

by
Fj = λjU3

jε(x) +
∑

1�i�jε(x)−1

U3
jε(x)−iU1

a(i,j)U2
b(i,j)Qi,j(U1, U2).

F ′
j ∈ grw(R′) =

R′

(u′
1, u

′
3, z

′)
[U ′

1, U
′
3, Z

′] =
R′

(u′
1, u

′
3, z

′)
[U ′

1, U
′
3, T ]

by
F ′

j = λjU
′
3
jε(x) +

∑
1�i�jε(x)−1

U ′
3
jε(x)−i

U ′
1
i(B(u,z)−1)

u′
2

b(i,j)
Qi,j(1, u′

2),

so (3) can be rewritten:

inw(h′) = Tm(x) +
∑

2�j�m(x)

Tm(x)−jU ′
1
j(δ(x)−1)

F ′
j . (3′)

The preceeding remarks rewrite jε(x) �∈ N ⇒ Fj = 0, F ′
j = 0. Let

Gj = F
m!ε(x)
jε(x)

j , G′
j = F ′

j

m!ε(x)
jε(x) 2 � j � m, jε(x) ∈ N,

degU3(Gj) = m!ε(x) or Gj = 0, and degU ′
3
(G′

j) = m!ε(x) or G′
j = 0.

Let μ1, μ2 ∈ k(x), j1, j2, 2 � j1, j2 � m, let

G = μ1Gj1 + μ2Gj2 = μm!ε(x)U3
m!ε(x) +

∑
1�i�m!ε(x)−1

U3
m!ε(x)−iU1

a(i)U2
b(i)Qi(U1, U2),

where Qi = 0 or Qi neither divisible by U1 nor by U2. Let us denote d(i) :=deg(Qi). Assume that
for some i, Qi �= 0, then, by VI.4.3(5),

d(i) = i(B − a(i)
i

− b(i)
i

) � iC(u, z). (4)

Assume that not all Gj ’s are collinear in the k(x)-vector space grvB
(R). Then there is some

G �= 0 as above with λ = 0. Let

G = μ1Gj1 + μ2Gj2 =
∑

1�i�m!ε(x)−1

U3
m!ε(x)−iU1

a(i)U2
b(i)Qi(U1, U2),
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with some Qi �= 0. Let i0 := min{i : Qi0 �= 0}. Let

G′ = λG′
j1 + μG′

j2 =
∑

1�i�m!ε(x)−1

U ′
3
m!ε(x)−i

U ′
1
i(B(u,z)−1

u′
2

b(i)
Qi(1, u′

2).

Replacing U ′
3 by V3, we get

G′ = μ1G
′
j1 + μ2G

′
j2 = V3

m!ε(x)−i0U ′
1
i0(B(u,z)−1

u′
2

b(i0)
Qi0(1, u′

2) + H ′, degV3
H ′ < m!ε(x) − i0.

Then
A1(x′) = B(u, z) − 1, β(x′) � C(u, z)/d

which implies VI.4.4 in this case.

VI.4.4.5 From now on, we assume that all Gj ’s are collinear in the k(x)-vector space grvB
(R).

By (P3) for (z, u), any Gj �= 0 is not collinear to a (m!ε(x))th-power, any Fj �= 0 is not collinear
to a (jε(x))th-power. Take some Fj �= 0, and let

jε(x) = peq, (p, q) = 1. (5)

Let v3 = u′
3 + λu′

1
a, with a � B(u, z) − 1 and λ ∈ R′, λ not divisible by u′

1. Let

λ ∈ R′

(z′, u1, u′
3)

= k(x)[u′
2]v′ , b := ordv′(λ), β0 := mini(

ordv′(Qi,j(1, u′
2))

i
) � C(u, z)/d.

When b < β0, we have

A1(x′) = B(u, z) − 1, β(x′) = b < C(u, z)/d.

When b > β0, we have

A1(x′) = B(u, z) − 1, β(x′) = β0 � C(u, z)/d.

When b = β0 and there exists i < pe such that Qi,j �= 0, say i0 is the smallest such i, we get

F ′
j = λjV3

jε(x) + V3
jε(x)−i0U ′

1
i0(B(u,z)−1)

u′
2

b(i0,j)
Qi0,j(1, u′

2) + H ′
j , degV3

H ′
j < jε(x) − i0,

A1(x′) = B(u, z) − 1, β(x′) � ordv′(Qi0,j(1, u′
2))

i0
) � C(u, z)/d.

When b = β0 and for i � pe Qi,j = 0, then

F ′
j = λjV3

jε(x) + V3
jε(x)−pe

U ′
1
pe(B(u,z)−1)

λq + H ′
j , degV3

H ′
j < jε(x) − pe,

A1(x′) = B(u, z) − 1, β(x′) � b = β0 � C(u, z)/d.

When b = β0 and for i < pe Qi,j = 0 and λj
−1U

a(pe,j)
1 U

b(pe,j)
2 Qpe,j is a (pe)th-power, then

λj
−1U

a(pe,j)
1 U

b(pe,j)
2 Qpe,j = Upea

1 Upeb
2 Qpe

0 ,
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with a � A1(x), b � A2(x) and B0 := deg(Q0) � C(u, z). Let W3 := U3 + Ua
1 U b

2Q0, we get

Fj = λjW3
jε(x) +

∑
1+pe�i�jε(x)−1

W3
jε(x)−iU1

a0(i,j)U2
b0(i,j)Q0,i,j(U1, U2),

a0(i, j) � iA1(x), b0(i, j) � iA2(x), d0(i, j) := deg(Q0,i,j) � iC(u, z), or Q0,i,j = 0.

Let w3 ∈ R such that invB
(w3) = W3, then, with w′

3 = w3/u1, W ′
3 =inw(w′

3):

F ′
j = λjW

′
3
jε(x) + degW ′

3
< jε(x) − pe.

Let v3 = w′
3 + λ′u′

1
a′

, with a′ � B(u, z) − 1 and λ′ ∈ R′, λ′ not divisible by u′
1. Then we conclude

as above:
A1(x′) = B(u, z) − 1, β(x′) � b = β0 � C(u, z)/d.

VI.4.4.6 From now on, we assume VI.4.4.2,VI.4.4.3,VI.4.4.4,VI.4.4.5 and for i < pe Qi,j = 0
and λj

−1U
a(pe,j)
1 U

b(pe,j)
2 Qpe,j is NOT a (pe)th-power (c.f.(5)). In particular e � 1. Let us recall

the following elementary lemma [CP2, II.5.3.2].

Lemma VI.4.4.7 Let F (U1, U2) ∈ k(x)[U1, U2] be a homogeneous polynomial of degree d0 � 0, and
a, b ∈ N be such that Ua

1 U b
2F (U1, U2) �∈ (k(x)[U1, U2])p.

Let x′ ∈ Speck(x)[U2
U1

] be a closed point with ideal (v := P (1, U2
U1

)), P ∈ k(x)[U1, U2] a nonzero
homogeneous irreducible polynomial of degree d := [k(x′) : k(x)], unitary in U2.

Let A ∈ T ′ := k(x)[U1,
U2
U1

](U1,v) be such that Ua+b+d0
1 (resp. Ua+b+d0

1 vb) divides Ap in T ′ if
P �= U2 (resp. P = U2). There exists an integer c � 0 such that

Ua+b+d0
1 (

U2

U1
)bF (1,

U2

U1
) + Ap ≡ Ua+b+d0

1 (
U2

U1
)bγvc mod(Ua+b+d0+1

1 T ′),

with γ invertible in T ′. We have the following estimates for c:

(i) if P �= U2 (resp. P = U2), then c � 1 + d0
d (resp. c � d0);

(ii) if P �= U2, then c < p(1 + � d0
pd�) (equivalently: for every N ∈ N such that d0

pd < N , we have
c < Np);
(iii) if d0 � 1 and b = 0, then c � i.

Let f < e be the integer defined by:

λj
−1U

a(pe,j)
1 U

b(pe,j)
2 Qpe,j = Qph

0 , Q0 is not a pth − power.

Let
Q0 =: (Ua

1 U b
2F (U1, U2)),

with pha = a(pe, j), phb = b(pe, j), phd0 = d(pe, j), where d0 :=deg(Q0). In particular,

d0 � pe−hC(u, z).

Then,

F ′
j = λj(V3

jε(x) + V3
jε(x)−pe

λ−1
j (U ′

1
pe(B(u,z)−1)

u′
2

b(i0,j)
Qi0,j(1, u′

2) + λ
pe

) + degV3
< jε(x) − pe).
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By lemma VI.4.4.7, (u′
2

b(i0,j)
Qi0,j(1, u′

2) + λ
pe

) = (γv′c)(p
h) �= (0), so

A1(x′) = B(u, z) − 1, peβ(x′) � phc.

Furthermore, by (i) above, c � 1 + d0
d , so:

peβ(x′) � ph(1 +
d0

d
) � ph + ph pe−hC(u, z)

d
= ph +

peC(u, z)
d

,

β(x′) � 1
p

+
C(u, z)

d
.

By (ii),

peβ(x′) < php(1 +
⌊

d0

pd

⌋
) � pf+1(1 +

⌊
pe−hC(u, z)

pd

⌋
), β(x′) < 1 +

⌊
C(u, z)

d

⌋
,

which is VI.4.4(iii). Now VI.4.4(iv) is a consequence of (iii) above.

VI.4.5 Proof of Theorem VI.1: some cases with γ(u, z) = 1.

The strategy to make the proof is to make a list of different subcases covering this case, from
the easiest to the most difficult and to prove them up to the former ones.

All cases ( β(u, z) < 1 and div(u1u2) �⊂ E) are covered by VI.4.5.3 below. All cases with
(γ(u, z) < 1 and div(u1u2) ⊆ E) are dealt with in VI.4.5.6. This includes in particular all
remaining cases with β(u, z) < 1 since C(u, z) � β(u, z) for div(u1u2) ⊆ E (see definition VI.4.1).

LEMMA VI.4.5.1 With assumptions as in VI.4.3, assume furthermore that

A1(u, z) < 1, β(u, z) < 1. (1)

There exist well prepared parameters (z′, u′) at x′ such that

(A1(u′, z′), β(u′, z′)) <lex (A1(u, z), β(u, z)), and β(u′, z′) < 1.

Proof. This is a direct consequence of lemma VI.4.4.

LEMMA VI.4.5.2 With assumptions as in VI.4.3, assume furthermore that

β(u, z) < 1, A1(u, z) � 1, (d1(x) + d3(x) + ε(x) � 1 or E ⊆ div(u1u3)). (2)

Then C1 := V (z, u1, u3) is an ε-permissible algebraic curve on X.
Let π : (Z ′, x′) → (Z, x) be the blowing up along C1, X ′ ⊂ Z ′ the strict transform of X and

x′ ∈ X ′ the center of v and assume ι(x′) = ι(x). Then (z′, u′) = (z/u1, u1, u2, u3/u1) are well
prepared parameters at x′ and we have

(A1(u′, z′), β(u′, z′)) = (A1(u, z) − 1, β(u, z)).

Proof. This follows from proposition VI.4.2.
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REMARK VI.4.5.3 Lemmas VI.4.5.1 VI.4.5.2 prove theorem VI.1 when (Hyp) is true and

β(u, z) < 1, A1(u, z) � 1, (d3(x) + ε(x) � 1 or E ⊂ div(u1u3)). (3)

Indeed, d3(x) + ε(x) = d3(x′) + ε(x′) if ι(x′) = ι(x) after blowing up. If E ⊆ div(u1u3), then
E′ ⊆ div(u′

1u
′
3), so condition (3) remains stable after blowing up. A descending induction on

A1(u, z) ends the proof.

VI.4.5.4 Proof of Theorem VI.1 in the case C(u, z) = 0.

In that special case, we have β(u, z) = A2(u, z). When A2(u, z) < 1 and A1(u, z) < 1, VI.4.5.1
gives the result. Let us see the other cases:

A1(u, z) � 1 or A2(u, z) � 1. (1)

Case 1. d3(x)+ε(x) � 1. We may assume A2(u, z) � 1 by symmetry on u1, u2. Then C := (z, u2, u3)
is an ε-permissible algebraic curve by proposition VI.4.2 and we get

A1(x′) = A1(x), A2(x′) = A2(x) − 1, C(u′, z′) = 0

after blowing up along C if ι(x′) = ι(x). A descending induction on A2(x) and VI.4.5.2 give the
result. From now on, we assume

d3(x) + ε(x) < 1. (2)

Case 2. d3(x) + di(x) + ε(x) < 1, i = 1 and i = 2. We blow up {x} in this case. By proposition
VI.4.3(ii) or (iv), we have

d3(x′) = d3(x), d2(x′) = d2(x), d1(x′) = d1(x) + d2(x) + d3(x) + ε(x) − 1 < d1(x), C(u′, z′) = 0,

δ(x′) = d1(x′) + d2(x′) + d3(x′) + ε(x′) < δ(x)

if ι(x′) = ι(x) and x′ is the origin of a chart. Otherwise, lemma VI.4.4(ii)(iii) gives VI.4.5.2(2)
at x′ for some well prepared r.s.p. (z′, u′).

Case 3. d3(x) + ε(x) < 1, d3(x) + di(x) + ε(x) � 1 for some i = 1 or i = 2, Aj(x) � 1, j = 1, 2. We
choose an ε-permissible blowing up center Y as follows:
if V(z, ui, u3), for i = 1, 2 are ε-permissible, then Y := (z, ui, u3) with

(Ai(x), di(x)) � (Ai′(x), di′(x)), {i, i′} = {1, 2};

if V(z, ui, u3) is ε-permissible for a unique i ∈ {1, 2}, then Y := (z, ui, u3);
if V(z, ui, u3) is not ε-permissible for i ∈ {1, 2}, then Y := {x}.

Let n(x) := 2 if (A1(x), d1(x)) = (A2(x), d2(x)), n(x) := 1 otherwise. If ι(x′) = ι(x), we claim
that x′ satisfies VI.4.6.3(2) or falls into cases 1,2 above, or there is a well prepared r.s.p. (z′, u′)
at x′ with C(u′, z′) = 0 and

(maxi=1,2{Ai(x)},maxi=1,2{di(x)}, n(x)) <lex (maxi=1,2{Ai(x′)},maxi=1,2{di(x′)}, n(x′)). (3)

Note that this ends the proof of the case C(u, z) = 0, since (3) can repeat but finitely many
times. To prove the claim, first assume that Y = (z, u1, u3). By proposition VI.4.2, we have

A1(x′) = A1(x) − 1, A2(x′) = A2(x), d1(x′) = d1(x) + d3(x) + ε(x) − 1 < d1(x), d2(x′) = d2(x)
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and the result is clear. The case Y = (z, u2, u3) is similar.
Assume now that Y = {x}. By symmetry on u1, u2, we assume A2(x) � 1. If x′ ∈

SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′ and x′ is the point with parameters (z/u1, u1, u2/u1, u3/u1) (origin
of the first chart), we get

A1(x′) = A1(x)+A2(x)−1, A2(x′) = A2(x), d1(x′) = d1(x)+d2(x)+d3(x)+ε(x)−1, d2(x′) = d2(x).

Since A2(x) � 1 and V (z, u2, u3) is not ε-permissible, we have

d2(x) + d3(x) + ε(x) < 1, d1(x) + d3(x) + ε(x) � 1 and A1(x) < 1.

We get d1(x) > d2(x) and d1(x′) = d1(x) + d2(x) + d3(x)ε(x) − 1 < d1(x), A1(x′) < A1(x) �
A2(x′) = A2(x) which proves the claim.

If x′ ∈ SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′ and x′ is not the above point, we have VI.4.5.2(2) at
x′ for some well prepared r.s.p. (z′, u′) at x′ by lemma VI.4.4(ii)(iii).

If x′ ∈ SpecR[z/u2, u1/u2, u3/u2] ⊂ Z ′ and x′ is the point with parameters (z/u2, u1/u2, u2, u3/u2)
(origin of the second chart), we get

A2(x′) = A1(x)+A2(x)−1, A1(x′) = A1(x), d2(x′) = d1(x)+d2(x)+d3(x)+ε(x)−1, d1(x′) = d1(x).

We have A1(x) < 1: otherwise, as V (z, u1, u3) is not ε-permissible, this would imply d1(x)+d3(x)+
ε(x) < 1, d2(x) + d3(x) + ε(x) � 1, hence V (z, u2, u3) ε-permissible since A2 � 1: a contradiction.
We now get A1(x) < 1 � A2(x) and A2(x′) = A1(x) + A2(x) − 1 < A2(x) which completes the
proof of the claim.

VI.4.5.5 Proof of Theorem VI.1 in the case C(u, z) < 1, div(u1u2) ⊆ E.

We perform the sequence of local blowing ups

(Z, x) =: (Z0, x0) ←− (Z1, x1) ←− · · · ←− (Zn, xn) ← · · · ,

where x0 = x, xi ∈ Xi (Xi denoting the strict transform of X), 0 � i � n, is the center of v, each
blowing up center is Yi = {xi}.

If ι(x1) = ι(x), and is not the origin of a chart (viz. case 3 in VI.4.5.4), then x1 verifies the
assumptions of VI.4.5.1 by lemma VI.4.4(iii).

Assume now that ι(xi) = ι(x) and xi is the origin of a chart for all i � 0. By VI.4.3(ii)(iv),
xi verifies the assumptions of VI.4.5.5 and C(xi+1) � C(xi) for all i � 0. It is then a very well
known fact that C(xi) = 0 for i >> 0, i.e. the assumptions of VI.4.5.4 are satisfied.

VI.4.5.6 End of the proof of Theorem VI.1. As our invariants C(u, z), β(u, z) are discrete, the
next lemma shows that we will reach one of the cases (ii) β(u, z) < 1 or (iii) C(u, z) < 1. This ends
the proof of theorem VI.1 (see comments right after VI.4.5.).

LEMMA VI.4.5.7. With assumptions as in VI.4.3, consider the sequence of local blowing ups

(Z, x) =: (Z0, x0) ←− (Z1, x1) ←− · · · ←− (Zn, xn) ← · · · ,

where x0 = x, xi ∈ Xi (Xi denoting the strict transform of X), 0 � i � n, is the center of v, each
blowing up center is Yi = {xi}.

Assume that ι(xi) = ι(x) for all i � 0. There exists some i � 0 and a well prepared r.s.p.
(zi, u1,i, u2,i, u3,i) at xi (w.r.t. the reduced inverse image of E in Zi) such that one of the following
holds:
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(i) γ(ui, zi) < γ(u, z);
(ii) β(ui, zi) < 1;
(iii) C(ui, zi) < 1;

Proof. This breaks up in three cases:
Case 1. for all i � 0, the point xi is the origin of one of the two charts of VI.4.3, i.e. we are always
in one of the cases VI.4.3(ii)(iv). Then C(ui, zi) = 0 for i >> 0 (see VI.4.5.5 above).

Case 2. for all i � 0, (xi is rational over x and belongs to the first chart), i.e. xi is a ratio-
nal point not on the strict transform of div(u1). By VI.4.3(ii)(iii), x1 has a r.s.p. of the form
(z/u1, u1, u2/u1 + μ1, u3/u1) for some μ1 ∈ R. A well prepared r.s.p. is of the form

z/u1 + λ1u1, u1, u2/u1 + μ1, u3/u1 + μ2u1, λ1, μ1, μ2 ∈ R,

with μ2 = 0 if div(u3) ⊆ E. Then there exists a regular formal curve C of the form C = V (ẑ, û2, û3)
on Spec(R̂/(h), transverse to Ei for all i � 0, û3 = u3 if div(u3) ⊆ E, whose strict transform goes
through all points xi, i � 0. Necessarily C ⊆ Singm(X), so we may assume that C ⊂ div(uj) ⊆ E
for j = 2 or j = 3. In particular, we may take ûj = uj for j = 2 or j = 3. This implies that
v(uj) > v(un

1 ) = nv(u1) for all n � 1: a contradiction, since our given valuation v has rank one.

Case 3. E ⊆ div(u1u3) and we are not in case 2, i.e. there exists i0 � 0 such that either xi0+1 is
not rational over xi0 or Ei0+1 has one more component than Ei0), i0 minimal. Suppose β(xi0) � 1.

If xi0+1 is not rational over xi0 , we get

β(x) � β(xi0) > β(xi0+1)

by VI.4.3(ii)(iii) and VI.4.4(iii): note that C(u, z) � β(u, z) since div(u2) �⊂ E and

1 +
⌈x

2

⌉
� x for every x � 1.

If Ei0+1 has one more component than Ei0 , we have

C(ui0+1, zi0+1) � β(xi0)
2

� β(x)
2

by VI.4.3(ii)(iii)(iv). This gives VI.4.5.7(iii) if 1 � β(x) < 2.
Now, γ(xi0+1) = 1 + �C(ui0+1, zi0+1)�, γ(x) = �β(x)�, so we get VI.4.5.7(i) if β(x) > 2.
Assume that

β(xi0) = β(x) = 2. (1)

Since γ(x) = 2, we get VI.4.5.7(i) unless γ(xi) = 2 for i � 0 by proposition VI.4.3.
Let i1 > i0 be the largest index such that Ei has as many components as Ei0 for i0 � i � i1.

We may assume i1 < +∞ by case 1 and we have

γ(xi1) = 2 = 1 + �C(ui1 , zi1)�.

By VI.4.4(iii), we get β(xi1+1) < 2. Now the point xi1+1 falls into case 2 above or into case 3 with
(1) not satisfied. This concludes the proof in case 3.

The end of the proof of VI.4.5.7 is just a logical game: we reach the assumption E ⊆ div(u1u3)
for some point xi, i � 0 provided we are not in case 1.
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