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RESOLUTION OF SINGULARITIES OF THREEFOLDS IN MIXED CHARACTERISTIC: CASE OF SMALL MULTIPLICITY

INTRODUCTION

This article is part of the authors' program whose purpose is to prove the following conjecture on Resolution of Singularities of threefolds in mixed characteristic. The conjecture is a special case of Grothendieck's Resolution conjecture for quasi-excellent schemes. CONJECTURE 0.1 Let C be an integral regular excellent curve with function field F . Let S/F be a reduced algebraic projective surface and X be a flat projective C-scheme with generic fiber X F = S. There exists a birational projective C-morphism π : Y → X such that (i) Y is everywhere regular. (ii) π -1 (RegX ) → RegX is an isomorphism.

Let us point out that the equicharacteristic techniques designed in [CP1] extend to the situation described in the above conjecture. In particular, [CP1] theorem 3.3 extends and reduces conjecture 0.1 to the following variant: CONJECTURE 0.2 Let A be an excellent DVR with quotient field F and residue characteristic p > 0. Let (S, M, k) be a regular local ring of dimension three dominating A, essentially of finite type over A with K := QF (S) of transcendence degree two over F . Let finally L/K be a finite field extension and v be a valuation of L. Assume: (i) L/K is cyclic Galois or purely inseparable of degree p. (ii) v has rank one and is centered in S.

Then there exists a regular local ring T essentially of finite type over A with QF (T ) = L such that v is centered in T .

Applying embedded resolution techniques for surfaces, it can be assumed that such a v is centered in a local model of L of the form B = (S[X]/(h)) (M,X) with h monic of degree p; more precisely, h = X pg p-1 Xf , f, g ∈ M and (g = 0 if charA = 0). In particular the Local Uniformization statement of conjecture 0.2 only involves certain hypersurface singularities (SpecB, x), of multiplicity m(x) p = chark, and embedded in an excellent fourfold (Z = SpecS[X], x). We prove here:

MAIN THEOREM 0.3 Let (R, M, k = k(x) := R M )
be an excellent regular local ring of dimension four, (Z, x) := (SpecR, M) and (X, x) := (SpecR/(h), x) be a reduced hypersurface. Assume that the multiplicity m(x) of (X, x) satisfies m(x) < p := chark(x). Let v be a valuation of K(X) centered at x. Then there exists a finite sequence of local blowing ups

(X, x) =: (X 0 , x 0 ) ←-(X 1 , x 1 ) ←-• • • ←-(X n , x n ),
where x i ∈ X i , 0 i n is the center of v, each blowing up center Y i ⊂ X i is permissible at x i (in Hironaka's sense), such that x n is regular.

The proof of theorem 0.3 builds upon classical Resolution of Singularities techniques. We use systematically the Hironaka characteristic polyhedron and Hironaka's invariants: the multiplicity m(x) and τ -number τ (x) for the hypersurface singularity (X, x) := (SpecR/(h), x).

Since we are working without any ground field (at least when R is not equicharacteristic), the Tschirnhausen trick (killing the degree (m(x) -1)-term in the equation) cannot be directly applied even though m(x) < p. Rather, we use it for the initial face of the Hironaka polyhedron (theorem II.5) to define well behaved invariants. The pair (m(x), τ(x)) is then further on completed to a 6-tuple ι(x) defined in IV.2.

The main technical part is concentrated in section VI. We consider projections to a two dimensional space to define a refined invariant in sections VI. [START_REF]Resolution of surface singularities[END_REF] and VI.4.1. Controlling the transformation law for this refined invariant under blowing up is much harder but leads essentially to the same formulae as for the characteristic polygon of a surface singularity. The proof of the Main Theorem follows rather easily from these computations (section VI.4.5).

It is worth pointing out that these techniques are global in nature and it is to be expected that theorem 0.3 can be extended to a global version, i.e. without refering to a given valuation v and using global blowing up centers. We use the valuation only at a few specific places (mostly in section V) to make the argument quicker. This article is organized as follows: section I states the reduction of the Main Theorem to the case τ (x) = 1, immediate from [CJS]. This means that the initial form in x (h) can be written in x (h) = λY m(x) , λ ∈ k(x), λ = 0, y a regular parameter of R, Y := in x (y).

Section II first recollects known material from [H1][H2] about characteristic polyhedra and associated invariants (definition II.2). Special coordinates (z, u) := (z, u 1 , u 2 , u 3 ) on R are said to be fully prepared if they compute the Hironaka characteristic polyhedron Δ(h; u) and if the δ-initial in δ (h) of h is Tschirnhausen transformed, i.e. has no term of degree m(x) -1 (theorem II.5 and definition II.5.3). The form in δ (h) is defined in II.2(iii) and is the sum of the initial forms of all those terms in h contributing to the face of minimal order at x of Δ(h; u). In such special coordinates, invariants d 1 , d 2 , d 3 , (x) (each of them is a nonnegative rational number) can be computed from the polyhedron Δ(h; u) and the δ-initial in δ (h) (definition II.7). Theorem II.9 proves the Main Theorem when (x) = 0, in which case only combinatorial blowing ups are used.

When (x) > 0, some preparations are required in order to get the locus Σ := {y ∈ X : m(y) = m(x), τ(y) = τ (x), (y) > 0}

Zariski closed and of dimension at most one (theorems II. [START_REF]Uniformisation et désingularisation des surfaces[END_REF] and II.11). Section III prepares SpecR and constructs an equicharacteristic p normal crossings divisor E ⊆ div(u 1 u 2 u 3 ) ⊂ SpecR which contains Σ (E = E n in proposition III.1).

Section IV then provides some further invariants build up from the ideal of coefficients of in δ (h) once this preparation is achieved: a refined directrix V ⊆< U 1 , U 2 , U 3 > (definition IV.1) and associated refined numerical invariant ι(x) (definition IV.2): ι(x) := (m(x), -τ (x), (x), -ρ(x), -t(x), -e(x)).

Section V introduces the notion of -permissible blowing up centers (definition V.1). For curves, being -permissible is stronger than being Hironaka permissible (proposition V.2); blowing up along an -permissible center does not increase the invariant ι(x) (proposition V.3). Furthermore, ι(x) can be decreased by blowing up along -permissible centers except possibly when V =< U 3 > and (either div(u 3 ) ⊆ E or E ⊆ div(u 1 u 2 )) (propositions V.4 and V.5).

Section VI proves the same result in these remaining cases (theorem VI.1), thus concluding the proof of the Main Theorem. We now project to the (u 1 , u 2 )-space and define well prepared coordinates by minimizing the induced image of Δ(h; u) by this projection (this requires choosing special coordinates (z, u 3 )). There are further associated invariants β(u, z), C(u, z), γ(u, z) The notation and assumption in the Main Theorem will be kept all along this article. The proof will be made by induction on the multiplicity m(x) = ord x (h) of x ∈ X. Since it is assumed that m(x) < p, (X, x) is already regular if p = 2, so we assume p 3 from now on. The formal completion of R with respect to M is denoted by R.

I BASIC INVARIANTS

Two basic invariants are attached to the hypersurface singularity (X, x) = (SpecR/(h), x). The first invariant is its multiplicity m(x) (or m for short) of (X, x). The second invariant is τ (x) (or τ for short), which is the dimension of the smallest k(x)-vector subspace [START_REF]Resolution of singularities of an algebraic variety over a field of characteristic 0, I-II[END_REF]Ch.2,Lemma 10]. This vector space is called the directrix of in x (h).

T of M M 2 such that in x (h) ∈ k(x)[T ] [
Proving the Main Theorem in the cases dim(Z)τ (x) ∈ {0, 1, 2}, i.e. τ (x) ∈ {2, 3, 4} is done in [CJS]. So from now on, we assume that τ (x) = 1. Equivalently:

in x (h) = λY m , λ ∈ k(x), λ = 0, y a regular parameter of R, Y := in x (y). II CHARACTERISTIC POLYHEDRON DEFINITION II.1 (i) An F -subset Δ ⊂ R d + is a closed complex subset of R d + such that v ∈ Δ implies v + R d + ⊂ Δ. (ii) A point v ∈ Δ is called a vertex if there is a positive linear form L on R d (i.e. has strictly positive coefficients) such that {v} = Δ ∩ {A ∈ R d |L(A) = 1}. (iii) The essential boundary ∂Δ of an F -subset Δ is the subset of Δ consisting of those v ∈ Δ such that v ∈ v + R d + with v ∈ Δ unless v = v. We write Δ + = Δ -∂Δ.
For the next definition and proposition, we will forget the hypothesis dim(R) = 4: we will have to use the notions defined there for different regular rings of dimension at most three. Given a r.s.p. (y, u 1 , u 2 , . . . , u d ) =: (y, u) of a regular local ring R and f ∈ R, there exists a finite sum expansion

f = A,b C A,b y b u A , b ∈ N, A ∈ N d . ( 1 
)
where each C A,b is a unit in R. This follows easily from the facts that R is Noetherian and the map R ⊆ R faithfully flat. We regard u as "fixed" parameters and y as "varying", which is reflected in the indexing below. Assume furthermore that

h ∈ M, h ∈ (u 1 , . . . , u d ). (2) 
We let R := R/(u 1 , . . . , u d ), h ∈ R be the image of h and "ord" be the valuation of the discrete valuation ring R. We extend our conventions by letting now m := ordh 1.

(3) Assumption ( 2) and notation ( 3) are maintained all along this article. Our original concern is for τ

(x) = 1, say in x (h) = λY m , 0 = λ ∈ k(x) which fits into these conventions provided Y = in x (y). DEFINITION II.2 (i) The polyhedron Δ(h; u; y) ⊂ R d 0 is defined as the smallest F -subset containing all points of S(h) := v = A m -b |0 b < m . The characteristic polyhedron Δ(h; u) ⊂ R d 0 is defined by the formula Δ(h; u) := ( y,u 1 ,...,u d ) Δ(h; u; y), ( 4 
)
where the intersection runs over all r.s.p's of R of the form ( y, u 1 , . . . , u d ).

(ii) For v ∈ ∂Δ(h; u; y), the v-initial of h is defined as

in v (h) := A,b C A,b Y b U A ∈ k[U, Y ] = k[U 1 , U 2 , . . . , U d , Y ],
where C A,b ∈ k is the residue of C A,b and the sum ranges over such (A, b) that

C A,b = 0, (b m, A = 0) or (b < m and v = A m -b ). (iii) For A ∈ N d , let |A| := a 1 + • • • + a d . We put δ(h, u, y) := min |A| m -b : C A,b = 0, b < m .
This is in fact an invariant of the polyhedron Δ(h; u; y) since

δ(h, u, y) = min{|v| : v ∈ Δ(h; u; y)}.
The δ-initial of h is defined as

in δ,u,y (h) := A,b C A,b Y b U A ∈ k(x)[U, Y ] = k(x)[U 1 , U 2 , . . . , U d , Y ],
where the sum ranges over such (A, b) that

C A,b = 0, (b m, A = 0) or (b < m and |A| m -b = δ(h, u, y)).
(iv) More generally, let

L : (x 1 , x 2 , . . . , x d ) → L(x 1 , x 2 , . . . , x d ) = λ 1 x 1 + λ 2 x 2 + . . . + λ d x d , λ 1 , λ 2 , . . . , λ d ∈ Q 0 ,
be a nonzero nonnegative linear form on R d . We define l(h, u, y) := min{L(A)|A ∈ Δ(h; u; y)} 0.

We define a monomial valuation v L,h,u,y on R by setting

I λ := ({y b u A |l(h, u, y)b + L(A) λ}) ⊆ R,
for λ 0 and v L,h,u,y (g) := min{λ ∈ Q|g ∈ I λ } for any nonzero g ∈ R.

PROPOSITION II.3

Let L be a nonzero nonnegative linear form as above, and let

I := {i|λ i > 0}, I := {i|λ i = 0} = {1, . . . , d}\I.
The graded algebra

gr v L,h,u,y (R) of R w.r.t. v L,h,u,y is given by (i) if l(h, u, y) = 0, then gr v L,h,u,y (R) = R (y, {u i } i∈I ) [Y, {U i } i∈I ]; (ii) if l(h, u, y) = 0, then gr v L,h,u,y (R) = R ({u i } i∈I ) [{U i } i∈I ].
In particular, we have

gr v L,h,u,y (R) k[Y, U 1 , U 2 , . . . , U d ] whenever L is positive.
The above proposition is obvious. One also checks easily the following:

REMARK II.3.1 Let v be a vertex of Δ(h, u, y). We have: (i) in v (h) is independent of the presentation II.1 (1), (ii) in v (h) = in x (h), (iii) L being a positive linear form L on R d such that {v} = Δ ∩ {A ∈ R d |L(A) = 1}, (cf. II.1(ii)), then in v (h) = in v L,h,u,y (h) ∈ gr v L,h,u,y (R) = k(x)[U 1 , U 2 , . . . , U d , Y ].
When there is no ambiguity, we will write gr δ (R) and in δ (h

) ∈ gr δ (R) instead of respectively gr v L,h,u,y (R) and in v L,h,u,y (h), where L(x 1 , x 2 , . . . , x d ) = x 1 + x 2 + . . . + x d .
REMARK II.4 With notations as above, we have:

δ(h, u, y) ∈ 1 m! N and δ(h, u, y) > 1 if (m = ord x (h) and < in x (h) >=< (in x (y)) m >).
ASSUMPTIONS II.4.1 We now apply these constructions to the case R :

= O Z,x , dim(R) = 4; the element h ∈ R verifies assumptions II.1(2)(3) with m = ord x (h) < p = chark(x) and < in x (h) >=< Y m >.
In addition, X = Spec(R/(h)) is reduced.

THEOREM II.5 Given (y, u 1 , u 2 , u 3 ) =: (y, u) as above, there exists z ∈ R, z ≡ y mod(u 1 , u 2 , u 3 ) such that

Δ(h, u, z) = Δ(h, u) = ∅, (1) 
in δ,u,z (h) = A,b,b =m(x)-1 C A,b z b U A . ( 2 
)
Proof. Suppose Δ(h, u) = ∅, then, in R, we should have h = γz m , γ invertible in R and z ∈ R a local parameter: h should be nonreduced in R. By excellence, h should be nonreduced in R, in contradiction with the hypothesis X reduced. Since Δ(h, u) = ∅, Δ(h, u) may be defined by a finite number n of inequalities 1) does not hold for (y, u). Then, with notations as in II.2(iv), some

L i (x 1 , x 2 , x 3 ) 1, 1 i n, with L i (x 1 , x 2 , x 3 ) = a i,1 x 1 + a i,2 x 2 + a i,3 x 3 , a i,1 , a i,2 , a i,3 ∈ Q 0 , L i = 0. In a few words: Δ(h, u) = {(x 1 , x 2 , x 3 )|L i (x 1 , x 2 , x 3 ) 1, 1 i n}. We choose L 1 (x 1 , x 2 , x 3 ) = 1 δ(h,u) (x 1 + x 2 + x 3 ), with δ(h, u) := min{|v| : v ∈ Δ(h, u)}. Suppose (
L i , 1 i n satisfies L i (Δ(h, u, y)) = [l i (h, u, y), ∞[ ⊂ [1, +∞[ ⇔ l i (h, u, y) < 1.
We skip the index i of L i and of l i (h, u, y) to simplify the notations. Following II.2(iv), we define the initial form of h with respect to L, u, y:

in the case l(h, u, y) > 0 in L,u,y (h) := A,b C A,b Y b U A ∈ gr L,u,y (R), (3) 
with bl(h, u, y) +(y) . In the case l(h, u, y) = 0, we have in L,u,y (h

+ L(A) = ml(h, u, y), C A,b ∈ R (u i ) a i >0
) := A,b C A,b y b U A ∈ gr L,u,y (R), L(A) = 0, C A,b y b ∈ R (u i ) a i >0 . ( 4 
)
Claim II.5.1 In (3) (resp. ( 4)), there exists

A with C A,m-1 = 0 ∈ R (u i ) a i >0 (resp. C A,m-1 y m-1 = 0 ∈ R (u i ) a i >0 ).
Indeed, in the face with equation L(x 1 , x 2 , x 3 ) = l(h, u, y) of Δ(h, u, y) there is at least a vertex v which is solvable [H2,(3.8)]. Then in v (h) is collinear to an m th -power: C v,m-1 ∈ M since m < p and the claim is proved. Take A = v and let

y 1 = y + 1 m C -1 0,m A C A,m-1 u A ∈ R. ( 5 
)
Note that, for any A with C A,m-1 = 0, A ∈ Δ(h, u, y). So, for any i, 1 i n, and any A with C A,m-1 = 0, L(A) l (h, u, y). So if in the expansion of II.2(1) we set

y = y 1 - 1 m C -1 0,m A C A,m-1 u A , we get a new expansion h = A,b D A,b y b 1 u A , D A,b ∈ R × ∪ {0}, b ∈ N, A ∈ N 3 , (6) 
and

D A,b = 0 ⇒ L(A) + bl i (h, u, y) m. So l(h, u, y 1 ) l(h, u, y), 1 i n. Suppose l(h, u, y 1 ) = l(h, u, y). Then v L,u,y 1 (y) = v L,u,y 1 (y 1 ) = l(h, u, y), Y := in L,u,y 1 (y) = Y 1 -in L,u,y 1 ( 1 m C -1 0,m A C A,m-1 u A ), Y 1 := in L,u,y 1 (y 1 ), in L,u,y 1 (h) = A,b,L(A)+l(h,u,y)b=l(h,u,y)m in L,u,y 1 (D A,b )Y b 1 (in L,u,y 1 (u A )), ( 7 
) in L,u,y 1 (h) = A,b,L(A)+l(h,u,y)b=l(h,u,y)m in L,u,y 1 (C A,b )(Y 1 -in L,u,y 1 ( 1 m C -1 0,m A C A,m-1 u A )) b , ( 8 
)
where ( 7) is the expansion of [START_REF]Modèle projectif régulier et désingularisation[END_REF]. In [START_REF]Contact maximal en caractéristique positive and petite multiplicité[END_REF], the terms with b = m -1 are all zero; in [START_REF]Polyèdre caractéristique et éclatements combinatoires[END_REF], D A,m-1 = 0 implies L(A) + l(h, u, y 1 )b > ml(h, u, y 1 ). By the claim, l(h, u, y 1 ) = 1: a contradiction, hence l(h, u, y 1 ) > l(h, u, y).

Note that ( 5) is independent of the linear form L, so

l i (h, u, y 1 ) > l i (h, u, y), for all i 1 i n.
By induction on the l i (h, u, y)'s, we get [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF]. If (1) holds but not (2) for h, u, y, we make the change of variable (3) and get [START_REF]Desingularization of embedded excellent surfaces[END_REF].

PROPOSITION II.5.2 With notations as above, assume furthermore that (z, u) and (z , u ) satisfy ( 1) of the previous theorem. Then δ(h, u, z) = δ(h, u , z ).

Proof. This is obvious if u i = u i , 1 i 3. On the other hand, the condition

in δ (h) = λ(Z -Φ(U 1 , U 2 , U 3 )) m for every Φ ∈ k(x)[U 1 , U 2 , U 3 ] (9) 
is preserved if z = z since δ(h, u, z) > 1 (remark II.4). In particular we have

δ(h, u, z) = δ(h, u , z) δ(h, u , z )
and we conclude by symmetry that δ(h, u, z) = δ(h, u , z ).

DEFINITION II.5.3 When z ∈ R is such that (1) (resp. ( 2) holds), we say that (z, u) is prepared (resp. δ-prepared). If both of ( 1) and ( 2) hold for z ∈ R, we say that (z, u) is fully prepared. If there is no ambiguity on u = (u 1 , u 2 , u 3 ), we simply say that z is prepared, δ-prepared, or fully-prepared. If (z, u) is prepared, the invariant δ(h, u, z) will be henceforth denoted by δ(x).

THEOREM II.6 Let (y, u 1 , u 2 , u 3 ) =: (y, u) be as before and E be a normal crossings divisor E ⊆div(u 1 u 2 u 3 ) ⊂ Spec(R). For a component div(u i ) of E, we define

d i (u, y) := inf{x i |(x 1 , x 2 , x 3 ) ∈ Δ(h, u, y)}, d i (u) := inf{x i |(x 1 , x 2 , x 3 ) ∈ Δ(h, u)}. (i) Let z ∈ R be such that (z, u) = (z, u 1 , u 2 , u 3 ) is prepared. Then d i (u) 1 ⇔ V (z, u i
) is a permissible blowing up center of Spec(R/(h)).

(1)

(ii) We have d i (u) > 0 if and only if Y i := V (h, u i ) red is a regular surface. (iii) Assume that d i (u) > 0. Then d i (u) = δ(η i ), where η i ∈ Z is the generic point of Y i = V (h, u i ) red as above; in particular, d i (u) is independent of the choice of a prepared (z, u) = (z, u 1 , u 2 , u 3 ) containing u i . Proof of (ii). Take z ∈ R such that Δ(h, u) = Δ(h, u, z), so h = z m mod(u i ) iff d i (u) > 0 iff Y := V (z, u i ) = V (h, u i ) red . We get d i (u) > 0 ⇔ (V (h, u i )) red is regular at x. Proof of (i). In that hypersurface case, Y := V (z, u i ) ∈ SpecR permissible means h ∈ (z, u i ) m which is equivalent to d i (u) 1.
Proof of (iii). Let η be the generic point of Y = V (h, u i ) red = V (z, u i ). The following equivalence is straightforward

d i (u) = 1 ⇔ V (z, u i ) is a permissible center of Spec(R/(h)) and τ (η) = 2. If 0 < d i (u) < 1, we obviously have d i (u) = d i (u, y) for every r.s.p. (y, u 1 , u 2 , u 3 ) (with < in x (h) >=< Y m >).
We turn to the case:

d i (u) > 1 ⇔ V (z, u i ) is a permissible center of Spec(R/(h)) and τ (η i ) = 1.
We claim that d i (u) = δ(η i ). As V (z, u i ) = V (h, u i ) red , this will prove the invariance of d i (u). We take i = 1 and write η for η 1 in the following lemma.

LEMMA II.6.1 Let (y, u 1 , u 2 , u 3 ) be as above and assume that d 1 (u, y) > 1. Then

d 1 (u, y) = δ(h, u 1 , y), ( 1 
)
where the right hand side is computed w.r.t. the datum (h) ⊂ R (y,u 1 ) . If furthermore (y, u) is prepared, then

d 1 (u) = δ(η). ( 2 
)
Proof. By II.1 [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF], we have a finite expansion

h = A,b C A,b y b u A , C A,b ∈ R × , b ∈ N, A ∈ N 3
that we rewrite as:

h = a 1 ,b ( a 2 ,a 3 C A,b u a 2 2 u a 3 3 ) y b u a 1 1 , A = (a 1 , a 2 , a 3 ) ∈ N 3 . As d 1 (u, y) > 1, we have b + a 1 > m for all b < m. Note that every a 2 ,a 3 C A,b u a 2 2 u a 3 3 is invertible in R (y,u 1 ) = O Z,η . Then δ(h, u 1 , y) = inf{ a 1 m-b |b < m} = d 1 (u, y): this is (1). Now suppose that y, u 1 , u 2 , u 3 is prepared. We claim that y, u 1 is prepared w.r.t. the datum (h) ⊂ R (y,u 1 ) . If not, then in δ (h) = a 1 +bd 1 =d 1 m ( a 2 ,a 3 C A,b u a 2 2 u a 3 3 ) Y b u a 1 1 ∈ gr δ (R (y,u 1 ) ),
is proportional to an m th -power. So there exists some a 1 with

a 1 + (m -1)d 1 = d 1 m, and a 2 ,a 3 C A,b u a 2 2 u a 3 3 = 0, so there exists some A with a 1 + (m -1)d 1 = d 1 m and C A,m-1 = 0.
Then, as in II.5( 5), we change the variable y by

y 1 = y + 1 m C -1 0,m A C A,m-1 u A ∈ R, we get a new expansion h = A,b D A,b y b 1 u A , D A,b ∈ R × ∪ {0}, b ∈ N, A ∈ N 3 . Now D A,b = 0 implies L i (A) l i (h,u,y) + b m for each linear form L i such that Δ(h, u) = {(x 1 , x 2 , x 3 )|L i (x 1 , x 2 , x 3 ) 1, 1 i n}.
This holds in particular for the linear form

L(x 1 , x 2 , x 3 ) = 1 d 1 x 1 . Since y is supposed to be nonpre- pared for u 1 , the unique vertex d 1 (u 1 , y) of Δ(h, u 1 , y) ⊂ R + does not belong to Δ(h, u 1 , y 1 ). We get d 1 (u 1 , y 1 ) > d 1 (u,
y), a contradiction with the fact that Δ(h, u, y) was minimal.

DEFINITION and NOTATION II.7 Given (y, u 1 , u 2 , u 3 ) =: (y, u), h reduced, with assumptions II.1(2)(3) and a normal crossings divisor E ⊂ div(u 1 u 2 u 3 ) ⊂ Spec(R), we let

d i := d i (u) for each irreducible component div(u i ) of E. We let d i := 0 whenever div(u i ) is not an irreducible component of E.
We define (x, E) ∈ Q 0 (or (x) for short) by:

(x, E) = δ(x) - div(u i )⊂E d i .
These invariants appear in [START_REF]Resolution of singularities of threefolds in positive characteristic. II[END_REF] Ch. 1 (II.3.3) in an equal characteristic context. The following remarks are obvious from the definitions.

REMARK II.8 We have

(i) (x, E) ∈ 1 m! N, (ii) if (x, E) = 0, Δ(h, u) has only one vertex: the point v = (d 1 , d 2 , d 3 ).
THEOREM II.9 Given (y, u 1 , u 2 , u 3 ) =: (y, u) and a divisor E ⊂div(u 1 u 2 u 3 ) ⊂ Spec(R) as above, assume that (x, E) = 0. There exists a finite sequence of local blowing ups

(X, x) =: (X 0 , x 0 ) ←-(X 1 , x 1 ) ←-• • • ←-(X n , x n ), where x 0 = x, x i ∈ X i , 0 i n is the center of v, each blowing up center Y i ⊂ X i is permissible in Hironaka's sense, such that m(x n ) < m(x).
Proof. See the connection with [START_REF]Resolution of singularities of threefolds in positive characteristic. II[END_REF] Ch. 1 (II.4.6). Let z ∈ R be such that Δ(h, u, z) = Δ(h, u). Then δ(x) = 1 i 3 d i . Let I ⊂ {1, 2, 3} satisfy the two following conditions: P (for permissibility): i∈I d i 1, M (for maximality): |I| minimal for P, i.e. the dimension of V(z, < u i , i ∈ I >) is maximal for P.

Note that I ⊂ {1, 2, 3} is not unique in general. Then we choose I with PM and we blow up Z along V(z, < u i , i ∈ I >). Let e : Z -→ Z denote this blowing up, X be the strict transform of X, x ∈ X be a point above x, E ⊂ Z be the reduced inverse image of E.

We claim that for either (m(x ), -τ , 1) and(x ) = 0 andδ(x ) < δ(x)) .

(x )) < lex (m(x), -τ (x)) or ((m(x ), τ(x )) = (m(x), τ(x)) = (m(x)
Since δ(h, u, y) ∈ 1 m! N, a descending induction on δ(x) reduces to m(x ) < m(x) or (m(x ) = m(x), τ(x ) 2).
As stated in section I, this completes the proof.

Proof of the claim. We only treat the case I = {1, 2, 3}, the other cases being similar, if somewhat simpler. By PM, I = {1, 2, 3} means

d i > 0, d i + d j < 1 when i = j, 1 i, j 3. ( 1 
)
By [H3, thm.3, p.331], if m(x ) = m(x), then x lies on the strict transform of z = 0. The variables u 1 , u 2 , u 3 play symmetric roles; so after reordering, it can be assumed that x belongs to the affine chart SpecR

[z/u 1 , u 2 /u 1 , u 3 /u 1 ] ⊂ Z . Let (z , u 1 , u 2 , u 3 ) := (z/u 1 , u 1 , u 2 /u 1 , u 3 /u 1 ). Let h = C 0,m z m + |A| δ(x) +b m C A,b z b u a 1 1 u 2 a 2 u 3 a 3 ,
be an expansion II.1(1) of h with (z, u) fully prepared (theorem II.5 and definition II.5.3),

h := h/u m 1 = C 0,m z m + |A| δ(x) +b=m C A,b z b u (m-b)(δ(x)-1) 1 u 2 a 2 u 3 a 3 + h 1 (2) 
where

h 1 ∈ I δ(x) + := (z m+1 , z b u (m-b)(δ(x)-1)+1 1 , 0 b m). Since (x) = 0, C A,b invertible in (2) implies a 2 = (m -b)d 2 , a 3 = (m -b)d 3 . Note also that δ(x) -1 = d 1 + d 2 + d 3 -1 < d 1 by (1). As d 1 + d 2 < 1 and d 1 + d 3 < 1, m(x ) = m(x) implies x = (z , u 1 , u 2 , u 3 ). The coordinate change (z, u 1 , u 2 , u 3 ) → (z , u 1 , u 2 , u 3 ) is a monomial substitution, so Δ(h , u , z ) is again minimal. With natural notations, we get (d 1 , d 2 , d 3 ) = (δ(x) -1, d 2 , d 3 ), (x ) = 0 and δ(x ) = d 1 + d 2 + d 3 = δ(x) -1 + d 2 + d 3 < δ(x) provided < in x (h ) >=< Z 2 >, i.e. τ (x ) = τ (x) = 1.
THEOREM II.10 Given (y, u 1 , u 2 , u 3 ) =: (y, u) and a divisor E ⊂div(u 1 u 2 u 3 ) ⊂ Spec(R) as above, assume that E is equicharacteristic p = chark(x) and

Sing m(x) (X) ⊂ E.
Then the set {y ∈ X|m(y) = m(x), (y) > 0 and τ (y) = 1} is locally closed.

Proof. It is well known that the set

{y ∈ X|m(y) = m(x), τ(y) 2} ⊆ E
is locally closed. Suppose (x) = 0 for some closed point x ∈ E. We choose a r.s.p. (z, u 1 , u 2 , u 3 ) of R at x which is fully prepared. There is a finite expansion Proof. Say div(u 1 ) is the given component. If

h = C 0,m z m + |A| δ(x) b C A,b z m-b u a 1 1 u 2 a 2 u 3 a 3 (1) with each C A,b invertible in R and a i bd i ), i = 1, 2, 3. Since (x) = 0, there exists C A,b such that a i = bd i ), i = 1, 2,
d 1 < 1, then dim({y ∈ X|m(y) = m(x)}∩F )
1 and the result is clear.

Assume now d 1 > 1 and pick a fully prepared (y, u 1 ) w.r.t. to datum h ⊂ R y,u 1 . There exists a nonempty Zariski open set Ω ⊆ F such that for y ∈ Ω there is an expansion

h = γ 0 z m + 1 i m γ i z m-i u a i 1 ,
with a i id 1 , γ i ∈ O X,y for i 1. By definition of d 1 , some i 2 satisfies (a i = id 1 and γ i ∈ (u 1 )). By full preparedness, we have

γ 1 ∈ (u 1 ) if a 1 = d 1 .
Let Ω be the intersection of Ω with complement of the proper closed subset V (γ i ), so

Ω ⊆ {y ∈ X|m(y) = m(x), (y) = 0}.
Assume finally d 1 = 1. The same construction now yields

Ω ⊆ {y ∈ X|m(y) = m(x), τ(y) 2}.
III CONSTRUCTION OF THE DIVISOR E.

In this section, we reach the assumptions of II.10. We show they are stable under a class of local permissible blowing ups which we will prove ahead are sufficient to prove theorem 0.3. We stick to assumptions II.4.1.

PROPOSITION III.1 With assumptions as above, there exists a finite sequence of local blowing ups

(Z, x) =: (Z 0 , x 0 ) ←-(Z 1 , x 1 ) ←-• • • ←-(Z n , x n ),
where x 0 = x, x i ∈ X i (X i denoting the strict transform of X), 0 i n, is the center of v, each blowing up center Y i ⊂ X i is permissible for X i in Hironaka's sense, such that one the following properties holds:

(i) (m(x n ), -τ (x n )) < lex (m(x), -τ (x)), or (ii) (m(x n ), -τ (x n )) = (m(x), -τ (x)
) and there exists a (reduced) normal crossings divisor

E n ⊂ (Z n , x n ) of equicharacteristic p = chark(x n ) = chark(x) such that C x n (E n )⊥C x n (X n ) red , ( 1 
)
S n := Sing m(x n ) ⊂ E n , ( 2 
)
where C x n denotes the tangent cone and Sing m(x n ) (X n ) is the stalk at x n of the set of multiplicity m(x).

Proof. We begin with the following lemma.

LEMMA III.2 With assumptions as above, assume furthermore that there exists a normal cross-

ings divisor E ⊂ (Z, x) such that C x (E)⊥C x (X) red . ( 1 
)
Then for any local blowing up :

π : (Z , x ) -→ (Z, x)
of center Y ⊂ X, permissible for (X, x) and at normal crossing with E, we have (m(x ), τ( x)) (m(x), τ(x)), where x ∈ X is the center of v; if equality holds, then

C x (E )⊥C x (X ) red ,
where

E := π -1 (E) red , X the strict transform of X.
Proof. The normal crossing assumption implies that we can choose a r.s.p. x) . Assumption (1) means that < in x (h) >=< Z d >, where Z ∈< in x (v j ), div(u j ) ⊆ E >. Changing generators of the ideal of Y , we relabel parameters as (z, u 1 , u 2 , u 3 ) with

(v 1 , v 2 , v 3 , v 4 ) of R := O Z,x such that Y = V (v 1 , .., v e ) and E ⊆ div(v 1 • • • v 4 ). By permissibility, we have h ∈ (v 1 , . . . , v e ) m(
E = div(u 1 • • • u d ) ⊂ div(u 1 u 2 u 3 ), I(Y ) = (z, {u i , i ∈ A}) for some A ⊆ {1, 2, 3}. (2) 
If m(x ) = m(x), x belongs to the strict transform of div(z) by [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF]. Let i ∈ A such that u i generates the ideal of the exceptional divisor of π in a neighbourhood of x and let z

= z/u i . A local equation for (X , x ) is h := h/u m(x) i
, where

h ≡ γz m(x) mod (u i , {u k , k ∈ A}),
and

E ⊂ div(u i × j =i,j∈A u j u i k ∈A u k ),
which proves the lemma.

Proof of III.1. If Sing m(x) (X) = {x}, take E = div(u 1 u 2 u 3 ) with coordinates as in (2) above.
If dim(Sing m(x) (X)) 1, then any regular closed set Y ⊂ S := S 0 is permissible for X. In any case, we have (m(x n ), -τ (x n )) (m(x), -τ (x)) since centers are permissible.

Let (C, x) be any curve contained in S. Since it is assumed that v has rank one, x n does not belong to the strict transform C n of C in X n for n >> 0 if we take Y i = {x i }, the center of v in X i for i 0. In particular, it can be assumed that the strict transform S n of S in X n has pure dimension two. Take n = 0 in what follows.

We now apply classical embedded resolution theorems for S with dim(S) = 2 ([CJS] for suitable generality). This involves blowing up closed points or regular curves on the successive strict transforms of S. By blowing up finitely closed many points as before, it can be assumed that every blown up curve is equicharacteristic p = chark(x). We reach the following situation: the strict transform S n of S at x n is empty or an irreducible surface with normal crossings with the (equicharacteristic) reduced exceptional divisor

E n of (Z n , x n ) → (Z, x). If S itself is equicharac- teristic, enlarge E n to E n ∪ S.
Otherwise, we blow up finitely many times irreducible components of S ∩ E n (i.e. equicharacteristic curves) to get x n ∈ S n . This is possible again because v has rank one.

IV REFINED DIRECTRIX, TRANSVERSENESS, ENCOMBREMENT

Assume that the conclusion of proposition III.1 (ii) holds. We will perform local blowing ups which are permissible in Hironaka's sense, with center Y n having normal crossing with E n . Take n = 0 in what follows, E = E 0 , and consider a local blowing up :

π : (Z , x ) -→ (Z, x)
of center Y ⊂ X, permissible for (X, x) and at normal crossing with E. We assume that

(m(x ), τ(x )) = (m(x), τ(x)),
where x ∈ X is the center of v. By lemma III.2, we have

C x (E )⊥C x (X ) red ,
where E := π -1 (E) red , X the strict transform of X in Z .

DEFINITION and NOTATION IV.1 Let (z, u) be fully prepared with E ⊂div(u 1 u 2 u 3 ) ⊂ Spec(R) as above. Let

F := in δ (h) = Z m + 2 j m Z m-j F j (U 1 , U 2 , U 3 ) ∈ gr δ (R) = k(x)[Z, U 1 , U 2 , U 3 ],
where Z = in δ (z), U i = in δ (u i ), 1 i 3 (notations of II.3.1). Each F j is zero or homogeneous of degree jδ(x); we have

F j = 0 if jδ(x) ∈ N.
We define the refined tangent ideal of X at x as the ideal

I x := (Z, div(u i )⊂E U -m!d i i F m! j j , 1 j m) ⊂ k(x)[Z, U 1 , U 2 , U 3 ].
We define the refined directrix of X at x as the smallest vector subspace

V ⊆< U 1 , U 2 , U 3 > such that {U -m!d i i F m! j j | 1 j m, div(u i ) ⊂ E} ⊆ k(x)[V]. Let ρ(x) := dim(V).
REMARK IV.1.1 The following holds:

(i) U jd i i divides F j , 2 j m, for 1 i 3 such that div(u i ) ⊂ E.
(ii) I x and V do not depend upon choices of z, u satisfying the assumptions. (iii) the polynomials

U -m!d i i F m! j j , 1 j m, 1 i 3 are zero or homogeneous of degree m! (x).
Statement (i) is a consequence of the definition of d i . For (ii), suppose (z , u ) is fully prepared, where E ⊂ div(u 1 u 2 u 3 ). Let

u j = a 1,j u 1 + a 2,j u 2 + a 3,j u 3 + b j z, a i,j , b j ∈ R, 1 i, j 3, for some matrix (a i,j ) ∈ GL(3, R). Since τ (x) = 1, we have degU j = degU j = 1 δ(x) < degZ = 1
in gr δ . Computing w.r.t. the r.s.p. (z, u ), we get

in δ (h) = Z m + 2 j m Z m-j F j (U 1 , U 2 , U 3 ) ∈ gr δ (R) = k(x)[Z, U 1 , U 2 , U 3 ],
with

F j (U 1 , U 2 , U 3 ) = F j (M.(U 1 , U 2 , U 3 )), M being the residue of M in GL(3, k(x)). Since (z , u ) is fully prepared, no term in Z m-1 occurs in in δ (h) ∈ k(x)[Z , U 1 , U 2 , U 3 ] and this implies that < in δ (Z) >=< in δ (Z ) >.
Statement (iii) immediately follows from definition II.7.

DEFINITION IV.2

Let E be a fixed normal crossings divisor and (z, u) be fully prepared (always with the condition E ⊂ div(u 1 u 2 u 3 ) ⊂ Spec(R)) as above.

We call "transverseness" index of x, denoted by t(x), the maximal dimension of a subspace of V which is transverse to < U i , div(u i ) ⊂ E >. This is independent of the choice of a fully prepared r.s.p. (z, u) by remark IV.1.1(ii).

We call "encombrement" of x, denoted by e(x), the minimum number of U i 's among all possible fully prepared (z, u) necessary to write a basis of V.

We define an invariant

ι(x) := (m(x), -τ (x), (x), -ρ(x), -t(x), -e(x)) ∈ N × {-4, -3, -2, -1} × Q 0 × {-3, -2, -1, 0} 3 .
For convenience, we extend the definition when τ (x) 2 by letting ι(x) := (m(x), -τ (x), 0, 0, 0), theorem 0.3 being already proved in this special case (section I). Note that (x) ∈ 1 m(x)! N, so any decreasing sequence of values (for the lexicographical ordering) taken by ι is finite.

EXAMPLES IV.2.1 Assume p 5. (i) h = z 3 + u 2 1 (u 1 + u 2 + u 3 ) 2 , E = div(u 1 ). Then δ(x) = 4 3 , d 1 (x) = 2 3 , V =< U 1 + U 2 + U 3 >, ρ(x) = 1, t(x) = 1, e(x) = 1: take the r.s.p. (z, u 1 , u 1 + u 2 + u 3 , u 3 ). (ii) h = z 3 + u 2 1 (u 1 + u 2 + u 3 ) 2 , E = div(u 1 u 2 u 3 ). Then δ(x) = 4 3 , d 1 (x) = 2 3 , d 2 (x) = d 3 (x) = 0, V =< U 1 + U 2 + U 3 >, ρ(x) = 1, t(x) = 0, e(x) = 3: the only choice allowed upon (u 1 , u 2 , u 3 ) is permuting or multiplying by a unit in R. (iii) h = z 3 + u 2 1 (u 2 1 + u 2 2 ), E = div(u 1 ). Then δ(x) = 4 3 , d 1 (x) = 2 3 , V =< U 1 , U 2 >, ρ(x) = 2, t(x) = 1, e(x) = 2. (iv) h = z 3 + u 2 1 (u 2 1 + u 2 2 ), E = div(u 1 u 2 ). Then δ(x) = 4 3 , d 1 (x) = 2 3 , d 2 (x) = 0, V =< U 1 , U 2 >, ρ(x) = 2, t(x) = 0, e(x) = 2. REMARK IV.2.2
The French "encombrement" was proposed by J. Giraud twenty years ago (English: "cumbersomeness index" roughly).

V PERMISSIBLE BLOWING UPS, BEHAVIOUR OF THE INVARIANTS

We stick to the assumptions of the previous section and assume furthermore that (x) > 0.

DEFINITION V.1 An -permissible center (permissible center for short) Y at x is one of the following:

(i) either Y := {x} = V (z, u 1 , u 2 , u 3 ), (ii) or Y := V (z, u 1 , u 2 ) with (z, u) fully prepared,
d 1 + d 2 + (x) 1
(1)

and l(h, u, z) = m, ( 2 
)
where L denotes the linear form L(x 1 , x 2 , x 3 ) = x 1 +x 2 d 1 +d 2 + (x) (definition II.2). PROPOSITION V.2 An -permissible center at x is permissible in Hironaka's sense.

Proof. Indeed, we have just to look at the case of a curve V(z, u 1 , u 2 ). In that latter case, as

d 1 + d 2 + (x) 1, we have ord η (h) v L,h,u,z (h) = m,
where η is the generic point of V(z, u 1 , u 2 ), so

ord η (h) = m,
which means exactly that V(z, u 1 , u 2 ) is permissible in Hironaka's sense.

PROPOSITION V.3

Let π : Z -→ Z be the blowing up along an -permissible center Y at x, X be the strict transform of X (with transformed equation h at the center x ∈ X of v). We have: (i) ι(x ) ι(x) (definition IV.2). If equality holds (in which case we say that x is "very near" x),

then E := π -1 (E) red is transverse to the directrix T of X at x . (ii) if Y = {x} and (m(x ), -τ (x ), (x )) = (m(x), -τ (x), (x)), then x lies on Projk(x)[Z, U 1 , U 2 , U 3 ]/(Z, V) ⊂ Proj(gr M (R)) = P 3 k(x)
with notations as in IV.1. The refined directrix V at x satisfies V ≡ U -1 V mod < U > where U = in x (u), u an equation of the exceptional divisor of π.

Proof. First assume that Y = {x}. By [H3, thm.3, p.331], if m(x ) = m(x), then x lies on the strict transform of z = 0. The variables u 1 , u 2 , u 3 play symmetric roles; so after reordering, it can be assumed that x belongs to the affine chart SpecR

[z/u 1 , u 2 /u 1 , u 3 /u 1 ] ⊂ Z . Let (z , u 1 , u 2 , u 3 ) := (z/u 1 , u 1 , u 2 /u 1 , u 3 /u 1 ).
We can choose a r.s.p. at x in the following way: if x is the origin, take (z , u 1 , u 2 , u 3 ); if x belongs to the strict transform of, say div(u 2 ), we can take (z , u

1 , u 2 , v 3 ) with v 3 = a λ a u 3 a , λ a ∈ R a unit or zero (the sum is finite) whose residue a λ a U 3 a ∈ k(x)[U 3 ] is an irreducible polynomial; in the general case u 2 (x )u 3 (x ) = 0, we take (z , u 1 , v 2 , v 3 ) where v c = a,b λ a,b,c u 2 a u 3 b , c = 2, 3
(sums are finite), λ a,b,c ∈ R a unit or zero, and

< a,b λ a,b,c U 2 a U 3 b , c = 1, 2 >⊂ k(x)[U 2 , U 3 ]
is a maximal ideal. Let

F := Z m + 2 j m Z m-j U a(1,j) 1 U a(2,j) 2 U a(3,j) 3 G j (U 1 , U 2 , U 3 ) := Z m + 2 j m Z m-j F j (U 1 , U 2 , U 3 ) := in δ (h) ∈ gr δ (R) = k(x)[Z, U 1 , U 2 , U 3 ], (1) 
with a(i, j) jd i , 2 j m, (3, j)) and G j not divisible by U i , 1 i 3.

1 i 3, G j ∈ k(x)[U 1 , U 2 , U 3 ] homogeneous, G j = 0 or deg(G j ) = jδ(x) -(a(1, j) + a(2, j) + a
Let h := h/u m 1 define the strict transform of h. We define the linear form

L (x 1 , x 2 , x 3 ) := x 1 δ(x) -1 with associated valuation v := v L ,h ,u ,z (definition II.2). We have in v (h ) = Z m + 2 j m Z m-j U 1 j(δ(x)-1) u 2 a(2,j) u 3 a(3,j) G j (1, u 2 , u 3 ) ∈ gr v (R ), (2) 
where gr

v (R ) = R /(z , u 1 )[Z , U 1 ].
Here, the meaning of G j (1, u 2 , u 3 ) is given by the inclusion

k(x) = R/M → R /(u 1 ) → R /(z , u 1 ).
By [START_REF]Desingularization of embedded excellent surfaces[END_REF],

x 1 = δ(x)-1 is the minimum value of the first coordinate of points in Δ(h , u 1 , v 2 , v 3 , z ). Since z is δ-prepared, no vertex of Δ(h , u 1 , v 2 , v 3 , z ) with first coordinate equal to x 1 = δ(x) -1 is solvable. We get d 1 (x ) = δ(x) -1,
and for at least one vertex (x 1 = δ(x) -1, x 2 , x 3 ), we have

x 2 + x 3 min{ ord x (u 2 a(2,j) u 3 a(3,j) G j (1, u 2 , u 3 )) j , 2 j m}.
In case x belongs to the strict transform of some div(u i ), i = 2, 3, we have d i (x ) = d i (x) for u i (x ) = 0 by II.6(iii). This leads to:

(x ) min{ ord x (u 2 a(2,j)-jd 2 u 3 a(3,j)-jd 3 G j (1, u 2 , u 3 )) j , 2 j m} (x) (3) 
with the convention: ord x (u i a ) = 0 when a ∈ Q + and u i (x ) = 0, ord x (u i a ) = a when u i (x ) = 0.

This proves (-τ (x ), (x )) (-τ (x), (x)).

Assume that (-τ (x ), (x )) = (-τ (x), (x)). Then

ord x ⎛ ⎝ div(u i )⊂E u i -m!(a(i,j)-jd i ) F j (1, u 2 , u 3 ) m! j ⎞ ⎠ = deg ⎛ ⎝ div(u i )⊂E U i -m!(a(i,j)-jd i ) F m! j j ⎞ ⎠
for each j with F j = 0. By [H3, Theorems 2 and 3], this means that x lies on

Projk(x)[Z, U 1 , U 2 , U 3 ]/(Z, V) ⊂ Projk(x)[Z, U 1 , U 2 , U 3 ] = P 3 k(x) . ( 4 
)
This proves the first assertion of (ii) in this case. All other assertions are easy consequences of (3) and of its explicitation [START_REF]Forme normale d'une fonction sur un k-schéma de dimension 3 and de caractéristique positive[END_REF].

Assume now that u 2 (x )u 3 (x ) = 0. If x is rational over x, i.e. u 2 (x ) = λ ∈ k(x), u 3 (x ) = μ ∈ k(x), we have I x ≡ (Z , G j (1, V 2 -λ, V 3 -μ) m! j , 2 j m) mod (U 1 ), ( 5 
)
where I x is the refined tangent ideal of x (cf. IV.1(ii)). This proves the last assertion of (ii) in this case. Finally, if x is not rational over x, then dim(V) = 1. We get

V =< aU 1 + bU 2 + cU 3 >, a, b, c ∈ k(x), (b, c) = (0, 0).
If b = 0, we take v 2 := a + bu 2 + cu 3 mod(u 1 ) and we get by IV.1.1

I x = (Z , V m! (x) 2 ) mod (U 1 ), (6) 
which proves the last assertion of (ii) in this case. All other assertions are easy as in the previous case.

We now consider blowing up along a curve Y = V (z, u 1 , u 2 ). By [H3, thm.3, p.331], if m(x ) = m(x), then x lies on the strict transform of z = 0. The variables u 1 , u 2 play symmetric roles; so after reordering, it can be assumed that x belongs to the affine chart SpecR

[z/u 1 , u 2 /u 1 , u 3 ] ⊂ Z . Let (z , u 1 , u 2 , u 3 ) := (z/u 1 , u 1 , u 2 /u 1 , u 3 ).
We can choose a r.s.p. at x in the following way: if x is the origin, take (z , u 1 , u 2 , u 3 ); otherwise take (z , u 1 , v 2 , u 3 ) where v v = a λ a u 3 a , λ a ∈ R a unit or zero (the sum is finite) whose

residue a λ a U 3 a ∈ k(x)[U 3 ] is an irreducible polynomial. With notations (1), since V(z, u 1 , u 2 ) is -permissible, we have a(3, j) = jd 3 , G j ∈ k(x)[U 1 , U 2 ].
Let h := h/u m 1 define the strict transform of h. Equation ( 2) gets replaced by

in v (h ) = Γ 0 Z m + 2 j m Z m-j U 1 j(δ(x)-1-d 3 ) u 2 a 2 u 3 jd 3 Γ j ∈ gr v (R ) = R /(z , u 1 )[Z , U 1 ], (2 * ) with Γ j ∈ R /(z , u 1 ) whose residue in R /(z , u 1 , u 3 ) is G j (1, u 2 ) for 2 j m, Γ 0 a unit.
By (2*), δ(x)-1-d 3 is the minimum value of the first coordinate of points in Δ(h , u 1 , v 2 , u 3 , z ). As in [START_REF]Sur le polyèdre caractéristique d'une singularité[END_REF] there is no Z m-1 , each vertex of Δ(h , u 1 , v 2 , u 3 , z ) with first coordinate equal to δ(x) -

1 -d 3 is not solvable. Then d 1 (x ) = δ(x) -1 -d 3 ,
and for at least one vertex (x 1 = δ(x) -1d 3 , x 2 , x 3 ), we have

x 2 + x 3 min{ ord x (u 2 a 2 u 3 a 3 G j (1, u 2 )) j , 2 j m}.
By theorem II.6(iii), we have

d 3 (x ) = d 3 . If u 2 (x ) = 0, this gives (x ) min{ ord x (u 3 a 3 -d 3 G j (1, u 2 )) j , 2 j m} (x).
If u 2 (x ) = 0, we also have d 2 (x ) = d 2 by II.6(iii). This leads to:

(x ) inh{ ord x (u 2 a 2 -d 2 u 3 a 3 -d 3 G j (1, u 2 )) j , 2 j m} (x)
with the convention: ord x (u i a ) = 0 when a ∈ Q + and u i (x ) = 0, ord x (u i a ) = a when u i (x ) = 0.

If (x ) = (x), then ord x ⎛ ⎝ div(u i )⊂E u i -m!(a(i,j)-jd i ) G j (1, u 2 ) m! j ⎞ ⎠ = deg ⎛ ⎝ div(u i )⊂E U i -m!(a(i,j)-jd i ) G m! j j ⎞ ⎠
for each j with G j = 0. By [H3, Theorems 2 and 3], this means that x lies on

Projk(x)[Z, U 1 , U 2 ]/(Z, V) ⊂ Projk(x)[Z, U 1 , U 2 ], ( 4 * ) 
where the latter is identified with π -1 (x) ⊂ Z . The proof now runs parallel to the case Y = {x}.

PROPOSITION V.4

With assumption as in V.3, assume e(x) = 3 and Y = {x}. Then x is not very near x, i.e. ι(x

) < ι(x) (definition IV.2). Proof. If ρ(x) = 3, this follows from V.3(ii), since Projk(x)[Z, U 1 , U 2 , U 3 ]/(Z, V) = ∅.
When ρ(x) = 2, we have t(x) < 2 necessarily: otherwise we should have

E ⊆ div(u 1 ), V =< U 2 , U 3 > mod (U 1 )
.

By a linear change on the free variables (u 2 , u 3 ), we would get

V =< U 2 , U 3 >,
i.e. e(x) = 2, a contradiction. When ρ(x) = 2, t(x) = 1, we can choose parameters such that

E = div(u 1 u 2 ), V =< U 3 , αU 1 + U 2 >, α ∈ k(x) × .
By proposition V.3(ii), we have

V ≡< U 3 , V 2 > mod (U 1 ),
Assume that ρ(x) = 2. Then V =< U 2 , U 3 > after possibly renumbering parameters. We can take π -1 (x) = div(u 1 ) locally at x and r.s.p.

(z , u 1 , u 2 , u 3 ) := (z/u 1 , u 1 , u 2 /u 1 , u 3 /u 1 ).

We get div(u 1 ) ⊆ E and

V ≡< U 2 , U 3 > mod (U 1 ), hence < U 2 + α 2 U 1 , U 3 + α 3 U 1 >⊆ V for some α 2 , α 3 ∈ k(x). If ι(x ) = ι(x)
, then equality holds; moreover α i = 0 whenever div(u i ) ⊆ E, i = 2 or i = 3.

Iterating, there exists a regular formal curve Y ⊂ X passing through all points x, x 1 := x , . . . , x n , taking Y i = {x i } for each i 0. By standard arguments, Y ⊆ Sing m(x) (X). Our assumptions (beginning of section IV) force Y ⊂ E, say Y ⊂ div(u 2 ). One concludes as in the case ρ(x) = 1.

VI PROOF OF THE MAIN THEOREM.

By theorem II.9, a reduction in m = m(x) can be achieved when (x, E) = 0 for some normal crossings divisor E ⊆ div(u 1 u 2 u 3 ). The previous section (propositions V.4 and V.5) reduces theorem 0.3 to the only case (x) > 0, e(x) = 1. There remains to prove the following: THEOREM VI.1 Let x satisfy the conclusion of proposition III.1(ii) (w.r.t. E ⊆ div(u 1 u 2 u 3 )) and assume (x) > 0, e(x) = 1. There exists a finite sequence of local blowing ups

(Z, x) =: (Z 0 , x 0 ) ←-(Z 1 , x 1 ) ←-• • • ←-(Z n , x n ), (1) 
where

x 0 = x, x i ∈ X i (X i denoting the strict transform of X), 0 i n, is the center of v, each blowing up center Y i ⊂ X i is permissible in Hironaka's sense, such that (i) ι(x n ) < ι(x)
, and (ii) x n satisfies the conclusion of proposition III.1(ii) (w.r.t. the strict transform

E n of E in Z n ) if ((m(x n ), τ(x n )) = (m(x), τ(x)) and (x n ) > 0).
The proof is long, needing new invariants and the control of their behavior under permissible blowing ups. There are two different cases:

(i) t(x) = 0, e(x) = 1, (ii) t(x) = e(x) = 1.
In both cases, we choose the indices so that V =< U 3 >. We assume that (P1) (z, u) is fully prepared, and (P2) E ⊆ div(u 1 u 2 u 3 ).

VI.2 A new invariant B, preparation of the free variable (case (ii)).

Let us remind the convention

d i (x) = 0 for div(u i ) ⊂ E, 1 i 3. In particular, d 3 (x) = 0 in case (ii). For B ∈ Q + , define the monomial valuation v B by v B (z) = 1, v B (u 3 ) := 1 (x) + d 3 + d 1 +d 2 B =: Bv B (u 1 ) = Bv B (u 2 ).
We choose B ∈ N ∪ {+∞} maximal such that, up to the multiplication by an element of k(x) × , in v B (h) takes the following form:

in v B (h) = Z m + 1 j m Z m-j Φ j (U 1 , U 2 , U 3 ), with deg U 3 (Φ j ) j(d 3 + (x)), 1 j m, Φ j (U 1 , U 2 , U 3 ) = U jd 1 1 U jd 2 2 U jd 3 3 (λ j U j (x) 3 + P j (U 1 , U 2 , U 3 )) (1)
with λ j ∈ k(x) and (jd 1 , jd 2 , j (x)) ∈ N 3 whenever equality holds; furthermore, equality holds for some j, 2 j m.

Note that we necessarily have Φ

j (U 1 , U 2 , U 3 ) = λ j U j (x) 3
for some j if B < +∞, since B is taken to be maximal. Moreover, since (z, u) is fully prepared and V =< U 3 >, we necessarily have B 1 and deg

U 3 (Φ 1 ) < d 3 + (x).
This construction builds up a face of Δ(h, u, z) with equation

x 1 + x 2 B( (x) + d 3 ) + d 1 + d 2 + x 3 ( (x) + d 3 + d 1 +d 2 B ) = 1,
for some B which contains the point x := (d 1 , d 2 , (x) + d 3 ) and at least another point.

Let p be the projection p : R 3 -{x} -→ {x 3 = 0}.

For analytic computations, note that if M = z m-j u a 1 1 u a 2 2 u 3 a 3 is a monomial appearing with nonzero coefficient in some expansion II.1(1) of h and j 1, then M defines the point x M :

M = z m-j u a 1 1 u a 2 2 u 3 a 3 ↔ x M = ( a 1 j , a 2 j , a 3 j ) ∈ Δ(h, u, z),
and

p(x M ) = (d 1 + a 1 j -d 1 d 3 + (x) -a 3 j , d 2 + a 2 j -d 2 d 3 + (x) -a 3 j
).

( 2)

Then B + d 1 + d 2 is the minimum value x 1 + x 2 for points in p(Δ(h, u, z) ∩ {x 3 < (x) + d 3 }).
We define Δ 2 (h; u 1 , u 2 ; u 3 ) ⊆ (R + ) 2 by the formula

(d 1 , d 2 ) + Δ 2 (h; u 1 , u 2 ; u 3 ) := p(Δ(h, u, z) ∩ {x 3 < (x) + d 3 }).
The main idea is that Δ 2 (h; u 1 , u 2 ; u 3 ) acts as the characteristic polyhedron of a surface singularity and in the following, we mimic [CJS], [START_REF]Desingularization of embedded excellent surfaces[END_REF], all these following Hironaka.

In case (ii) (div(u 3 ) ⊂ E), we will require two extra conditions (to be achieved in VI.3 below by possibly changing u 3 ): (P3) there is no homogeneous

P ∈ k(x)[U 1 , U 2 ], P = 0, such that in v B (h) = Z m + 2 j m Z m-j λ j U jd 1 1 U jd 2 2 (U 3 + P (U 1 , U 2 )) j (x) , ( 3 
)
with the convention λ j = 0 when (jd

1 , jd 2 , j (x)) ∈ N 3 ; (P4) if B < +∞, let x 2 = (d 1 + A(1), β + d 2 )
be the vertex of Δ 2 (h; u 1 , u 2 ; u 3 ) with minimal first coordinate. Then x 2 does not vanish by changing u

3 to u 3 + γu α 1 u β 2 , γ ∈ R, γ invertible.

PROPOSITION VI.3 With assumptions as above, there exist

(z, u 1 , u 2 , u 3 ), z, u 3 ∈ R such that (P1)(P2) and (P3)(P4) (in case (ii) with B < ∞) are satisfied.
Proof. The conditions (P1)(P2) can be achieved easily. If (P3) or (P4) is not achieved, we make a translation on u 3 : we replace u 3 by u

3 + a 1 ,a 2 γ a 1 ,a 2 u a 1 1 u a 2 2 , γ a 1 ,a 2 ∈ R, (a 1 , a 2 ) ∈ p(Δ(h, u, z) ∩ {x 3 < (x) + d 3 }).
To achieve (P3), we take 3), which makes B increase if (P3) is not achieved. To achieve (P4) we change u 3 to u 3 + γu α 1 u β 2 as in (P4)), which makes (A(1), β) strictly increase for the lexicographical ordering . In both cases, this translation makes Δ 2 (h; u 1 , u 2 ; u 3 ) smaller. These translations may spoil (P1), so each must be followed by a translation on z to get again (P1). This translation makes Δ 2 (h; u 1 , u 2 ; u 3 ) not bigger. The process may be infinite, but since Δ 2 (h; u 1 , u 2 ; u 3 ) gets smaller at each step, this converges to some z, u 3 ∈ R. P2) and (P3)(P4) (in case (ii) with B < ∞) are satisfied is said to be well prepared. For such (z, u 1 , u 2 , u 3 ), the number B defined above is denoted by B(z, u 1 , u 2 , u 3 ) or B(x) for short, even if it may depend on the choice of (z, u 1 , u 2 , u 3 ).

a 1 ,a 2 γ a 1 ,a 2 U a 1 1 U a 2 2 := P (U 1 , U 2 ), P (U 1 , U 2 ) as in (

DEFINITION VI.3.1 With assumptions as above

, a r.s.p. (z, u 1 , u 2 , u 3 ), z, u 3 ∈ R such that (P1)(

VI.4.

We begin the proof of Theorem VI.1 by the special case B(x) = ∞.

When B(z, u 1 , u 2 , u 3 ) = ∞, Δ(h, u, z) has only one vertex with coordinates (d 1 , d 2 , (x) + d 3 ). Since (x) > 0, we have div(u 3 ) ⊂ E, hence t(x) = 1 (case (ii)) and E ⊆ div(u 1 u 2 ), d 3 = 0.
The proof is a variation of that of theorem II.9, checking carefully the algebraicity of the blowing up centers.

It has been assumed from section IV on that Sing m (X) ⊆ E, so (x, E) < 1 necessarily since V (z, u 3 ) ⊆ Sing m (X) otherwise.

By blowing up the surfaces V (z, u i ), div(u i ) ⊆ E, it can be assumed w.l.o.g. that d i < 1. Similarly, it can be assumed that

d 1 + d 2 < 1 by blowing up V (z, u 1 , u 2 ). Assume that V (z, u i , u 3 ) ⊆ Sing m (X) ⊆ E, i.e. d i + (x) 1, i = 1 or i = 2. Then C i := V (z, u i , u 3 ) is a formal irreducible component of Sing m (X)
. By excellence, its Zariski closure C i is a curve on X. On the other hand, C i is contained in V (z, u i ), so C i itself is a curve on X. By blowing up C i , we may assume that

d i + (x) < 1, i = 1, 2.
At this point, we have reached the situation of theorem II.9(1) and the proof therein extends without changes: we eventually get reduction in (m(x), τ(x)) by blowing up closed points. We observe that theorem VI.1 can also be phrased as follows in this case: E n can be enlarged to a new normal crossings divisor F n such that (x n , F n ) = 0.

From now on, we assume that

e(x) = 1, B(x) < ∞.
(Hyp)

DEFINITION VI.4.1 (New invariants)

We define A 1 , β by:

(d 1 + A 1 , β + d 2 ) is the vertex of minimal first coordinate of p(Δ(h, u, z) ∩ {x 3 < (x) + d 3 }).
We define A 2 by: d 2 + A 2 is the minimal second coordinate of the points of

p(Δ(h, u, z) ∩ {x 3 < (x) + d 3 }).
We define C(u, z) (or C(x) for short) by;

C(u, z) = B(u, z) -A 1 -A 2 .
Finally, we define γ(u, z) (or γ(x) for short) as follows:

(i) γ(u, z) := β(u, z) 0 if (E ⊆ div(u 1 ) and t(x) = 1); (ii) γ(u, z) := β(u, z) 0 if (E ⊆ div(u 1 u 3 ) and t(x) = 0); (iii) γ(u, z) := 1 + C(u, z)
1 otherwise, i.e if (E = div(u 1 u 2 ) and t(x) = 1 ) or if (E = div(u 1 u 2 u 3 ) and t(x) = 0). PROPOSITION VI.4.2 (Behaviour of the new invariants under blowing up along an -permissible curve). Assume that (Hyp) is true, (z, u) is well prepared and let

C i := V(z, u i , u 3 ), i = 1 or i = 2. Assume that C i is -permissible in X = Spec( R/(h)), for some i, i = 1, 2, then: (i) (x) + d 3 + d i 1, (ii) C i is algebraic, i.e., if in achieving (P3)(P4), we get z, u 3 ∈ R, then there exists a curve in Spec R whose formal completion is V(z, u i , u 3 ). (iii) let π i : (Z , x ) → (Z, x) be the blowing up along C i , X ⊂ Z the strict transform of X and x ∈ X the center of v, with ι(x ) = ι(x). Then: (iv) if i = 1 and x is the point of Z with parameters (z , u 1 , u 2 , u 3 ) := (z/u 1 , u 1 , u 2 , u 3 /u 1 ),
these are well-prepared parameters and

β(x ) = β(x), A 1 (x ) = A 1 (x) -1, A 2 (x ) = A 2 (x), d 1 (x ) = d 1 (x) + (x) + d 3 (x) -1, d 2 (x ) = d 2 (x), d 3 (x ) = d 3 (x); (v) if i = 2 and x is the point of Z with parameters (z , u 1 , u 2 , u 3 ) := (z/u 2 , u 1 , u 2 , u 3 /u 2 ),
these are well-prepared parameters and

β(x ) = β(x) -1, A 1 (x ) = A 1 (x), A 2 (x ) = A 2 (x) -1, d 2 (x ) = d 1 (x) + (x) + d 3 (x) -1, d 1 (x ) = d 1 (x). Proof of (i). Condition (i) is equivalent to h ∈ (z, u 3 , u i ) m .
Proof of (ii)(iii). Let us note that (ii) is clear when div(u 3 ) ⊂ E, because in that case, we do not make (P3)(P4), z, u 1 , u 3 ∈ R. When div(u 3 ) ⊂ E, we will prove that

(ii)' C i is the only analytic branch in div(u i ) ∩ Sing m (X) ∩ {y ∈ X : (y) > 0} not contained in div(u j ), j = 1, 2, j = i.
By II.10 II.11, this will prove (ii). We compute π i : X ⊂ Z -→ X ⊂ Z . By symmetry, we suppose i = 1. Let us expand:

h = A,m-j,0 j m C A,m-j z m-j u a 1 1 u a 2 2 u 3 a 3 , C A,m-j ∈ R, C A,m-j invertible or zero, C A,m-j = 0 ⇒ a 1 + a 2 + a 3 jδ(x), a i jd i , i = 1, 2, 3, C 0,0 invertible. Since h ≡ δz m mod(u 1 , u 2 , u 3 ), δ ∈ R a unit, X ∩ SpecR[u 1 /z, u 3 /z] ⊂ Z does not contain the point (z, u 1 /z, u 2 , u 3 /z). Assume now that x belongs to the affine chart SpecR[z/u 3 , u 1 /u 3 ] ⊂ Z . Let (z , u 1 , u 2 , u 3 ) := (z/u 3 , u 1 /u 3 , u 2 , u 3 ).
We have

h := u -m 3 h = C A,m-j z m-j u a 1 1 u a 2 2 u 3 a 1 +a 3 -j , (1) 
h = C 0,m z m + 2 j m γ j u 1 jd 1 u jd 2 2 u 3 j(d 1 +d 3 + (x)-1) modulo I + (z , u 1 , u 2 , u 3 ), (2) 
where, γ j ∈ R, γ j invertible or zero, γ j = 0 when one exponent is not integer,

γ j = C jd 1 ,jd 2 ,j(d 3 + (x)),m-j modulo M
when γ j is invertible and

I + (z , u 1 , u 2 , u 3 ) is generated by z m+1 , z m-j u 1 a u b 2 u c 3 , with 1 j m, a jd 1 , b jd 2 , c j(d 1 + d 3 + (x) -1), a+ b + c > j(d 1 + d 2 + d 1 + d 3 + (x) -1). Note that (2) implies d 3 (x ) d 1 + d 3 + (x) -1
, in fact there is equality. Otherwise, by [H2], there would exist t = z + γu e 3 , e 2), we get (x ) = 0: there is no x very near x in this chart. This gives the first statement in (iv). This gives also (ii)', because if there was a curve in div(u 2 ) ∩ Sing m (X) ∩ {y ∈ X : (y) > 0}, the strict transform of this curve would have a non empty intersection with our affine chart and there would exist in this chart some x with (x ) 1.

d 1 + d 3 + (x) -1, γ ∈ R, ord u i γ d i , i = 1, 2, with h = C 0,0 t m modulo I + (t, u 1 , u 2 , u 3 ). As I + (z , u 1 , u 2 , u 3 ) = I + (t, u 1 , u 2 , u 3 ) and, in (2), there is no term in z m-1 , this is impossible. As d 1 (x ) = d 1 (x) and d 2 (x ) = d 2 (x), by (

Proof of (iv). Now

x ∈ SpecR[z/u 1 , u 3 /u 1 ] ⊂ Z is the point with parameters (z , u 1 , u 2 , u 3 ) := (z/u 1 , u 1 , u 2 , u 3 /u 1 )
. Then, using the notations of (1),

h := u -m 1 h = C A,m-j z m-j u a 1 +a 3 -j 1 u a 2 2 u 3 a 3 , Δ(h , u , z
) is obtained as follows: take the convex hull of the set {(a+c-1, b, c)|(a, b, c) ∈ Δ(h, u, z)} and add R + 3 , then

∂(Δ(h , u , z )) ⊂ {(a + c -1, b, c)|(a, b, c) ∈ ∂(Δ(h, u, z))}, in(h , Δ ) u ,z = C 0,m Z m + 2 j m,A/j∈∂(Δ(h ,u ,z )) λ j,A Z m-j U 1 a 1 +a 3 -j U 2 a 2 U 3 a 3 ,
where the λ j,A ∈ k(x) are defined by:

in(h, Δ) u,z = C 0,m Z m + 2 j m, A j ∈∂(Δ(h,u,z)) λ j,A Z m-j U 1 a 1 +a 3 -j U 2 a 2 U 3 a 3 .
Let M be the set of monomials M = z m-j u a 1 +a 3 -j 1 u a 2 2 u 3 a 3 which appear with a non zero coefficient in the expansion of h , let M be the set of monomials M = z m-j u a 1 1 u a 2 2 u 3 a 3 which appear with a non zero coefficient in the expansion of h:

d 1 (x ) = inh M ∈M ( a 1 + a 3 -j j ) = d 1 + d 3 + (x) -1, d i (x ) = inh M ∈M ( a i j ) = d i , i = 2, 3. As x is very near x, (x) = (x ), δ(x ) = d 1 (x ) + d 2 (x ) + d 3 (x ) + (x). The only point on the first side of Δ(h , u , z ) is (d 1 (x ), d 2 (x), d 3 (x) + (x))
let p be the projection on x 3 = 0 from this vertex. A monomial M defines a point ( a 1 +a 3 j -1, a 2 j , a 3 j ) that we call also M , when a 3 < d 3 (x) + (x),

p (M ) = (d 1 (x ) + a 1 +a 3 j -1 -d 1 (x ) d 3 (x) + (x) -a 3 j , d 2 (x) + a 2 j -d 2 (x) d 3 (x) + (x) -a 3 j ), as a 1 +a 3 j -1-d 1 (x ) d 3 (x)+ (x)- a 3 j = a 1 j -d 1 (x) d 3 (x)+ (x)- a 3 j
-1 and by VI.3( 2)

p(M ) = (d 1 (x) + a 1 j -d 1 (x) d 3 (x) + (x) -a 3 j , d 2 (x) + a 2 j -d 2 (x) d 3 (x) + (x) -a 3 j ). We get p (Δ(h , u , z ) ∩ {x 3 < d 3 (x) + (x)}) -(d 1 (x ), d 2 (x )), i.e. the polyhedron p (Δ(h , u , z ) ∩ {x 3 < d 3 (x) + (x)}) translated by the vector -(d 1 (x ), d 2 (x )), from p(Δ(h, u, z) ∩ {x 3 < d 3 (x) + (x)}) -(d 1 (x), d 2 (x))
by making an horizontal translation of -1. This gives the other assertions of (iv). Mutatis mutandis, we get (v).

PROPOSITION VI.4.3 (Behaviour of the new invariants under blowing up a closed point).

Assume that (Hyp) is true and (z, u) is well prepared. Let π i : (Z , x ) → (Z, x) be the blowing up along x, X ⊂ Z the strict transform of X and x ∈ X the center of v, with ι(x ) = ι(x). Then (i) x belongs to the strict transform of V (z, u 3 ),

(ii) if x ∈ SpecR[z/u 1 , u 2 /u 1 , u 3 /u 1 ] ⊂ Z is the point (z , u 1 , u 2 , u 3 ) := (z/u 1 , u 1 , u 2 /u 1 , u 3 /u 1 ),
these parameters are well-prepared and

β(x ) β(x), A 1 (x ) = B(x) -1, A 2 (x ) = A 2 (x), C(u , z ) C(u, z), d 1 (x ) = d 1 (x) + d 2 (x) + d 3 (x) + (x) -1, d 2 (x ) = d 2 (x), d 3 (x ) = d 3 (x); (iii) if x ∈ SpecR[z/u 1 , u 2 /u 1 , u 3 /u 1 ] ⊂ Z and x = (z , u 1 , u 2 , u 3 ), then β(x ) 1 + C(u, z) 2 , A 1 (x ) = d(x) -1, d 1 (x ) = d 1 (x) + d 2 (x) + d 3 (x) + (x) -1, d 2 (x ) = 0, d 3 (x ) = d 3 (x),
where . denotes lower integral part. If moreover (E ⊆ div(u 1 u 3 ) and 0 < β(x)), then β(x ) β(x).

We have γ(x ) γ(x).

More precisely: if (x is not rational over x and γ(x) 3), then γ(x ) < γ(x); if (γ(x ) = γ(x) = 2 and x is not rational over x), then β(x) = 2, div(u 2 ) ⊂ E and β(x

) < β(x) = 2; (iv) if x ∈ SpecR[z/u 2 , u 1 /u 2 , u 3 /u 2 ] ⊂ Z is the point with parameters (z , u 1 , u 2 , u 3 ) := (z/u 2 , u 1 /u 2 , u 2 , u 3 /u 2 ),
these are well prepared parameters and

β(x ) = β(x) + A 1 (x) -1, A 1 (x ) = A 1 (x), A 2 (x ) = B(x) -1, d 2 (x ) = d 1 (x) + d 2 (x) + d 3 (x) + (x) -1, d 1 (x ) = d 1 (x), γ(x ) γ(x), C(u , z ) β(x) 2 .
Proof. (i) is a consequence of V.3(ii) and V.3(3).

Proof of (ii).

Write

h = C A,m-b z m-b u a 1 1 u a 2 2 u a 3 3 , C A,m-b ∈ R × or C A,m-b = 0,
where the sum runs along b m, A = 0 when b = 0, and A = (a 1 , a 2 , a 3 ) ∈ bΔ (h, u, z). Then

h := u -m 1 h = C A,m-j z m-j u a 1 +a 2 +a 3 -j 1 u 2 a 2 u 3 a 3 ,
and Δ(h , u , z ) is obtained as follows: take the convex hull of the set

{(a + b + c -1, b, c) + R + 3 |(a, b, c) ∈ Δ(h, u, z)}.
Let M be the set of monomials M = z m-j u a 1 +a 2 +a 3 -j 1 u 2 a 2 u 3 a 3 which appear with a non zero coefficient in the expansion of h , let M be the set of monomials M = z m-j u a 1 1 u a 2 2 u 3 a 3 which appear with a non zero coefficient in the expansion of h:

d 1 (x ) = inf M ∈M ( a 1 + a 2 + a 3 -j j ) = d 1 + d 2 + d 3 + (x) -1, d i (x ) = inf M ∈M ( a i j ) = d i (x), i = 2, 3.
As x is very near to x, (x) = (x ), δ(x

) = d 1 (x ) + d 2 (x ) + d 3 (x ) + (x). The only point on the first side of Δ(h , u , z ) is (d 1 (x ), d 2 (x), d 3 (x) + (x)).
Let p be the projection on x 3 = 0 from this vertex. A monomial M corresponds to a point x M ( a 1 +a 2 +a 3 j -1, a 2 j , a 3 j ). When a 3 < d 3 (x) + (x),

p (M ) = (d 1 (x ) + a 1 +a 2 +a 3 j -1 -d 1 (x ) d 3 (x) + (x) -a 3 j , d 2 (x) + a 2 j -d 2 (x) d 3 (x) + (x) -a 3 j ), Φ j (U 1 , U 2 , U 3 ) = U jd 1 1 U jd 2 2 U jd 3 3 (λ j U j (x) 3 + i∈Q + U a(i,j) 1 U b(i,j) 2 U j (x)-i 3 Q i,j (U 1 , U 2 )) (1) 
with λ j ∈ k(x), λ j = 0 if (jd 1 , jd 2 , j (x)) ∈ N 3 . In this expansion, we take:

Q i,j ∈ k(x)[U 1 , U 2 ], Q i,j = 0 or (U 1 |Q i,j and U 2 |Q i,j ), Q i,j = 0 when (jd 1 + a(i, j), jd 2 + b(i, j), jd 3 + j (x) -i) ∈ N 3 .
Note that at least one Q i,j , 2 j m is nonzero and at least one λ j , 2 j m is nonzero. By definition of C(u, z), when Q i,j = 0, deg(Q i,j )

iC (u, z), where deg is the usual homogeneous degree. When Q i,j = 0, let us denote d(i, j) =deg(Q i,j ). Then we have, with natural notations, the relation:

v B (u j (x) 3 ) = v B (U a(i,j) 1 U b(i,j) 2 U j (x)-i 3 Q i,j (U 1 , U 2 )) j (x)v B (u 3 ) = (j (x) -i)v B (u 3 ) + (a(i, j) + b(i, j) + d(i, j))v B (u 1 ) j (x)v B (u 3 ) = (j (x) -i)v B (u 3 ) + (a(i, j) + b(i, j) + d(i, j)) v B (u 3 ) B ,
which leads to:

a(i, j) + b(i, j) + d(i, j) -j(d 1 + d 2 ) = iB. (2)
Then, in the expansion of

U j (x)+jd 3 -i 3 U a(i,j) 1 U b(i,j) 2 Q i,j (U 1 , U 2 )
, the monomial with non zero coefficient and minimal exponent in

U 1 is U a(i,j) 1 U iB-a(i,j) 2 U j (x)+jd 3 -i 3
which gives the point (cf. VI.2(2))

(d 1 + a(i,j) j -d 1 d 3 + (x) -jd 3 +j (x)-i j , d 2 + iB-a(i,j) j -d 1 d 3 + (x) -jd 3 +j (x)-i j ) in p(Δ(h, u, z) ∩ {x 3 < (x) + d 3 }). As d 1 + a(i,j) j -d 1 d 3 + (x) -jd 3 +j (x)-i j = d 1 + a(i, j) -jd 1 i ,
we deduce that

A 1 (u, z) = inf{ a(i, j) -jd 1 i | 2 j m(x), 0 < i j (x), j (x)+jd 3 -i ∈ N, i ∈ Q, Q i,j = 0}. (3)
Similarly,

A 2 (u, z) = inf{ b(i, j) -jd 1 i | 2 j m(x), 0 < i j (x), j (x) + jd 3 -i ∈ N, i ∈ Q, Q i,j = 0} (4)
and, finally, by ( 2), when Q i,j = 0,

d(i, j) = i(B - a(i, j) -jd 1 i - b(i, j) -jd 1 i ) iC(u, z). (5) Since x ∈ SpecR[z/u 1 , u 2 /u 1 , u 3 /u 1 ] ⊂ Z , x is not the origin (z , u 1 , u 2 , u 3 ) = (z/u 1 , u 1 , u 2 /u 1 , u 3 /u 1 ),
and x belongs to the strict transform of V(z, u 3 ) then z (x ) = u 1 (x ) = u 3 (x ) = 0. We complete (z , u 1 , u 3 ) to a r.s.p. (z , u 1 , v , u 3 ) at x where

v = u 2 n + 0 a n-1 μ a u 2 n-a , μ a = 0 or μ a ∈ R × ,
for some irreducible polynomial

P := U 2 n + 0 a n-1 μ a U 2 n-a ∈ k(x)[U 2 ].
The following lemma will end the proof of VI. 

(i) A 1 (x ) = B(u, z) -1; (ii) if div(u 3 ) ⊂ E, then β(x ) C(u, z) d β(x) d (iii) in general, β(x ) < 1 + C(u, z) d , (1) 
(iv) if (E ⊆ div(u 1 ), 0 < β(x) and x is rational over x), then

β(x ) β(x).
Proof. As x is very near to x, we have (x) = (x ), δ(x ) = d 1 (x ) + d 2 (x ) + d 3 (x ) + (x). As x is on the strict transform of div(u 3 ) and not on the strict transform of div(u 2 ), we get:

d 2 (x ) = 0, d 3 (x ) = d 3 (x).
With notations as in the proof of VI.4.3(ii):

h = C A,m-b z m-b u a 1 1 u a 2 2 u a 3 3 , C A,m-b ∈ R × or C A,m-b = 0,
where the sum runs along b m, A = 0 when b = 0, A = (a 1 , a 2 , a 3 ) ∈ bΔ (h, u, z),

h := u -m 1 h = C A,m-j z m-j u a 1 +a 2 +a 3 -j 1 u 2 a 2 u 3 a 3 .
Up to multiplying h by an unit, we may assume C 0,m = 1 ∈ k(x). Then, with the notations of II.2, we have

δ(x) = d 1 + d 2 + d 3 + (x), in δ,u,z (h) = Z m + 2 j m μ j Z m-j U jd 1 1 U jd 2 2 U jd 3 +j (x) 3 , μ j ∈ k(x), (1) 
μ j = 0 whenever (jd 1 , jd 2 , jd 3 + j (x)) ∈ N 3 , μ j = C jd 1 ,jd 2 ,jd 3 +j (x),m-j ∈ k(x) otherwise. This leads to

h = C 0,m z m + 2 j m z m-j C jd 1 ,jd 2 ,jd 3 +j (x),m-j u 1 j(d 1 +d 2 +d 3 + (x)-1) u 2 jd 2 u 3 jd 3 +j (x) + h 1 (2)
where

h 1 ∈ {z m-j u 1 a(j) , j ∈ N, a(j) > j(d 1 + d 2 + d 3 + (x) -1) = j(δ(x) -1)}. As a consequence, (δ(x) -1, 0, d 3 (x) + (x))
is the vertex of smallest first coordinate of Δ(h , u 1 , v , u 3 , t) and is not solvable. In the preparation, we may replace z by t = z + λu 1 a with a δ(h) -1, but, this cannot erase the vertex (δ(x) -

1, 0, d 3 (x) + (x)). We get d 1 (x ) = δ(x) -1.
Let us study the projection of Δ(h , u 1 , v , u 3 , t) ∩ {x 3 < d 3 + (x )} on x 3 = 0, in particular we are interested in the vertex of smallest first coordinate of this projection. Let w be the monomial valuation on R := O X ,x defined by

w(z ) = 1, w(u 3 ) = 1 (x) + d 3 + d 1 +d 2 B(u,z)-1 , w(u 1 ) = 1 (B(u, z) -1)( (x) + d 3 ) + d 1 + d 2 = 1 B(u, z) -1 w(u 3 ).
There is an expansion

in w (h ) = Z m + 2 j m Z m-j Φ j (U 1 , U 3 ) ∈ gr w (R ) = R /(z , u 1 , u 3 )[Z , U 1 , U 3 ], where Φ j (U 1 , U 3 ) = λ j U 1 j(δ(x)-1) u 2 jd 2 U 3 j (x)+jd 3 + 0<i j (x),j (x)+jd 3 -i∈N,i∈Q U 3 j (x)+jd 3 -i U 1 a(i,j)+b(i,j)+d(i,j)+j (x)+jd 3 -i-j u 2 b(i,j) Q i,j (1, u 2 ), where d(i, j) = deg(Q i,j )u 2 is the image of u 2 in R (z ,u 1 ,u 3 ) = k(x)[u 2 ] (v ) , v being the image of v in R (z ,u 1 ,u 3 ) . Let us recall that in w (h ) ∈ gr w (R ) := r∈Q 0 I r I + r , with I r = {a ∈ R |w(a) r}, I + r = {a ∈ R |w(a) > r}. By VI.4.3(2), in w (h ) = Z m + 2 j m Z m-j U 1 j(δ(x)-1) [λ j U 3 j (x)+jd 3 + U 3 j (x)+jd 3 -i U 1 i(B(u,z)-1) u 2 b(i,j) Q i,j (1, u 2 )]. (3) 
This means that

1 (B(u, z) -1)( (x) + d 3 ) + d 1 + d 2 x 1 + 1 (x) + d 3 + d 1 +d 2 B(u,z)-1 x 3 = 1
is the defining equation of a face of Δ(h , u 1 , v , u 3 ). VI.4.4.1 When div(u 3 ) ⊂ E, then div(u 3 ) ⊂ E , we have just to make (P2) in the preparation, we may replace z by t = z + r, r ∈ R and, as Z m-1 does not appear in (2), w(r) > 1,

w(t) = w(z ) = 1. This means that 1 (B(u, z) -1)( (x) + d 3 ) + d 1 + d 2 x 1 + 1 (x) + d 3 + d 1 +d 2 B(u,z)-1 x 3 = 1 is the defining equation of a face of Δ(h , u 1 , v , u 3 , t). By VI.2(2), A 1 (u 1 , v , u 3 , t) = B(u, z) -1 and β(x ) = inf{ord x (Q i,j (1, u 2 ))/id}.
By VI.4.3(5), β(x ) C(u, z)/d and this gives VI.4.4 in the case div(u 3 ) ⊂ E. VI.4.4.2 From now on, div(u 3 ) ⊂ E, in particular d 3 (x) = 0. Then, to get (P1),...,(P4), we may replace z by t = z + r, r ∈ R and, as Z m(x)-1 does not appear in (2), w(r) > 1, w(t) = w(z ) = 1.

We possibly have to make the projection of Δ(h , u 1 , v , u 3 , t) ∩ {x 3 < d 3 + (x )} on x 3 = 0 smaller by changing u 3 to v 3 = u 3 + λu 1 a with a B(u, z) -1 and λ ∈ R , λ not divisible by u 1 .

Assume that a > B(u, z)-1 (this is always the case when If there exists a couple (i, j 0 ) such that in (3) above λ j 0 = 0 and Q i,j 0 = 0, then the translations t = z + r and v 3 = u 3 + λu 1 a will not modify the term

B(u, z) ∈ N). Then in w (v 3 ) =in w (u 3 ), we get A 1 (u 1 , v , u 3 , t) = B(u, z) -1 and β(x ) = inf{ord x (Q i,j (1, u 2 ))/id}.
U 3 j 0 (x)-i 0 U 1 i 0 (B(u,z)-1) u 2 b(i 0 ,j 0 ) Q i 0 ,j 0 (1, u 2 ) with i 0 := min{i : Q i,j 0 = 0}. More precisely, in the expansion in w (h ) = T m + 2 j m T m-j U 1 j(δ(x)-1) [λ j V 3 j (x) + μ i,j U 3 j (x)-i U 1 i(B(u,z)-1) × V e(i,j) ], μ i,j ∈ R (t,u 1 ,u 3
) , e(i, j) ∈ N, we will have 

u 2 b(i 0 ,j 0 ) Q i 0 ,j 0 (1, u 2 ) = μ i 0 ,j 0 × V e(i 0 ,j 0 ) . Then β(x ) ord x (Q i 0 ,j 0 (1, u 2 ))/id
Q i,j = 0 ⇒ λ j = 0.
In particular, we have j (x) ∈ N, jδ(x) ∈ N and all the indices i in (2)(3) are integers. Let us define

F j ∈ gr v B (R) = k(x)[U 1 , U 2 , U 3 , Z] by F j = λ j U 3 j (x) + 1 i j (x)-1 U 3 j (x)-i U 1 a(i,j) U 2 b(i,j) Q i,j (U 1 , U 2 ). F j ∈ gr w (R ) = R (u 1 , u 3 , z ) [U 1 , U 3 , Z ] = R (u 1 , u 3 , z ) [U 1 , U 3 , T ] by F j = λ j U 3 j (x) + 1 i j (x)-1 U 3 j (x)-i U 1 i(B(u,z)-1) u 2 b(i,j) Q i,j (1, u 2 ), so (3) 
can be rewritten:

in w (h ) = T m(x) + 2 j m(x) T m(x)-j U 1 j(δ(x)-1) F j . (3 ) 
The preceeding remarks rewrite j (x) ∈ N ⇒ F j = 0, F j = 0. Let

G j = F m! (x) j (x) j , G j = F j m! (x) j (x) 2 j m, j (x) ∈ N, deg U 3 (G j ) = m! (x) or G j = 0, and deg U 3 (G j ) = m! (x) or G j = 0. Let μ 1 , μ 2 ∈ k(x), j 1 , j 2 , 2 j 1 , j 2 m, let G = μ 1 G j 1 + μ 2 G j 2 = μ m! (x) U 3 m! (x) + 1 i m! (x)-1 U 3 m! (x)-i U 1 a(i) U 2 b(i) Q i (U 1 , U 2 ),
where

Q i = 0 or Q i neither divisible by U 1 nor by U 2 . Let us denote d(i) :=deg(Q i ).
Assume that for some i, Q i = 0, then, by VI.4.3(5),

d(i) = i(B - a(i) i - b(i) i ) iC(u, z). ( 4 
)
Assume that not all G j 's are collinear in the k(x)-vector space gr v B (R). Then there is some G = 0 as above with λ = 0. Let

G = μ 1 G j 1 + μ 2 G j 2 = 1 i m! (x)-1 U 3 m! (x)-i U 1 a(i) U 2 b(i) Q i (U 1 , U 2 ), with some Q i = 0. Let i 0 := min{i : Q i 0 = 0}. Let G = λG j 1 + μG j 2 = 1 i m! (x)-1 U 3 m! (x)-i U 1 i(B(u,z)-1 u 2 b(i) Q i (1, u 2 ).
Replacing U 3 by V 3 , we get

G = μ 1 G j 1 + μ 2 G j 2 = V 3 m! (x)-i 0 U 1 i 0 (B(u,z)-1 u 2 b(i 0 ) Q i 0 (1, u 2 ) + H , deg V 3 H < m! (x) -i 0 . Then A 1 (x ) = B(u, z) -1, β(x ) C(u, z)/d
which implies VI.4.4 in this case.

VI.4.4.5

From now on, we assume that all G j 's are collinear in the k(x)-vector space gr v B (R). By (P3) for (z, u), any G j = 0 is not collinear to a (m! (x)) th -power, any F j = 0 is not collinear to a (j (x)) th -power. Take some F j = 0, and let j (x) = p e q, (p, q) = 1.

(

) Let v 3 = u 3 + λu 1 a , with a B(u, z) -1 and λ ∈ R , λ not divisible by u 1 . Let λ ∈ R (z , u 1 , u 3 ) = k(x)[u 2 ] v , b := ord v (λ), β 0 := min i ( ord v (Q i,j (1, u 2 )) i ) C(u, z)/d. 5 
When b < β 0 , we have

A 1 (x ) = B(u, z) -1, β(x ) = b < C(u, z)/d.
When b > β 0 , we have

A 1 (x ) = B(u, z) -1, β(x ) = β 0 C(u, z)/d.
When b = β 0 and there exists i < p e such that Q i,j = 0, say i 0 is the smallest such i, we get

F j = λ j V 3 j (x) + V 3 j (x)-i 0 U 1 i 0 (B(u,z)-1) u 2 b(i 0 ,j) Q i 0 ,j (1, u 2 ) + H j , deg V 3 H j < j (x) -i 0 , A 1 (x ) = B(u, z) -1, β(x ) ord v (Q i 0 ,j (1, u 2 )) i 0 ) C(u, z)/d.
When b = β 0 and for i p e Q i,j = 0, then Q p e ,j = U p e a 1 U p e b 2 Q p e 0 , and the result is clear. The case Y = (z, u 2 , u 3 ) is similar. Assume now that Y = {x}. By symmetry on u 1 , u 2 , we assume A 2 (x) 1. If x ∈ SpecR[z/u 1 , u 2 /u 1 , u 3 /u 1 ] ⊂ Z and x is the point with parameters (z/u 1 , u 1 , u 2 /u 1 , u 3 /u 1 ) (origin of the first chart), we get A 1 (x ) = A 1 (x)+A 2 (x)-1, A 2 (x ) = A 2 (x), d 1 (x ) = d 1 (x)+d 2 (x)+d 3 (x)+ (x)-1, d 2 (x ) = d 2 (x).

F j = λ j V 3 j (x) + V 3 j (x)-p e
Since A 2 (x) 1 and V (z, u 2 , u 3 ) is not -permissible, we have If x ∈ SpecR[z/u 2 , u 1 /u 2 , u 3 /u 2 ] ⊂ Z and x is the point with parameters (z/u 2 , u 1 /u 2 , u 2 , u 3 /u 2 ) (origin of the second chart), we get A 2 (x ) = A 1 (x)+A 2 (x)-1, A 1 (x ) = A 1 (x), d 2 (x ) = d 1 (x)+d 2 (x)+d 3 (x)+ (x)-1, d 1 (x ) = d 1 (x).

We have A 1 (x) < 1: otherwise, as V (z, u 1 , u 3 ) is not -permissible, this would imply d 1 (x)+d 3 (x)+ (x) < 1, d 2 (x) + d 3 (x) + (x) 1, hence V (z, u 2 , u 3 ) -permissible since A 2 1: a contradiction. We now get A 1 (x) < 1 A 2 (x) and A 2 (x ) = A 1 (x) + A 2 (x) -1 < A 2 (x) which completes the proof of the claim. where x 0 = x, x i ∈ X i (X i denoting the strict transform of X), 0 i n, is the center of v, each blowing up center is Y i = {x i }.

If ι(x 1 ) = ι(x), and is not the origin of a chart (viz. case 3 in VI.4.5.4), then x 1 verifies the assumptions of VI.4.5.1 by lemma VI. 4.4(iii).

Assume now that ι(x i ) = ι(x) and x i is the origin of a chart for all i 0. By VI.4.3(ii)(iv), x i verifies the assumptions of VI.4.5.5 and C(x i+1 ) C(x i ) for all i 0. It is then a very well known fact that C(x i ) = 0 for i >> 0, i.e. the assumptions of VI. 

(Z, x) =: (Z 0 , x 0 ) ←-(Z 1 , x 1 ) ←-• • • ←-(Z n , x n ) ← • • • ,
where x 0 = x, x i ∈ X i (X i denoting the strict transform of X), 0 i n, is the center of v, each blowing up center is Y i = {x i }.

Assume that ι(x i ) = ι(x) for all i 0. There exists some i 0 and a well prepared r.s.p. (z i , u 1,i , u 2,i , u 3,i ) at x i (w.r.t. the reduced inverse image of E in Z i ) such that one of the following holds:

(i) γ(u i , z i ) < γ(u, z); (ii) β(u i , z i ) < 1; (iii) C(u i , z i ) < 1;

Proof. This breaks up in three cases: Case 1. for all i 0, the point x i is the origin of one of the two charts of VI.4.3, i.e. we are always in one of the cases VI.4.3(ii)(iv). Then C(u i , z i ) = 0 for i >> 0 (see VI.4.5.5 above). Case 2. for all i 0, (x i is rational over x and belongs to the first chart), i.e. x i is a rational point not on the strict transform of div(u 1 ). By VI.4.3(ii)(iii), x 1 has a r.s.p. of the form (z/u 1 , u 1 , u 2 /u 1 + μ 1 , u 3 /u 1 ) for some μ 1 ∈ R. A well prepared r.s.p. is of the form

z/u 1 + λ 1 u 1 , u 1 , u 2 /u 1 + μ 1 , u 3 /u 1 + μ 2 u 1 , λ 1 , μ 1 , μ 2 ∈ R,
with μ 2 = 0 if div(u 3 ) ⊆ E. Then there exists a regular formal curve C of the form C = V ( z, u 2 , u 3 ) on Spec( R/(h), transverse to E i for all i 0, u 3 = u 3 if div(u 3 ) ⊆ E, whose strict transform goes through all points x i , i 0. Necessarily C ⊆ Sing m (X), so we may assume that C ⊂ div(u j ) ⊆ E for j = 2 or j = 3. In particular, we may take u j = u j for j = 2 or j = 3. This implies that v(u j ) > v(u n 1 ) = nv(u 1 ) for all n 1: a contradiction, since our given valuation v has rank one. Case 3. E ⊆ div(u 1 u 3 ) and we are not in case 2, i.e. there exists i 0 0 such that either x i 0 +1 is not rational over x i 0 or E i 0 +1 has one more component than E i 0 ), i 0 minimal. Suppose β(x i 0 ) 1.

If x i 0 +1 is not rational over x i 0 , we get Let i 1 > i 0 be the largest index such that E i has as many components as E i 0 for i 0 i i 1 . We may assume i 1 < +∞ by case 1 and we have γ(x i 1 ) = 2 = 1 + C(u i 1 , z i 1 ) .

By VI.4.4(iii), we get β(x i 1 +1 ) < 2. Now the point x i 1 +1 falls into case 2 above or into case 3 with (1) not satisfied. This concludes the proof in case 3.

The end of the proof of VI.4.5.7 is just a logical game: we reach the assumption E ⊆ div(u 1 u 3 ) for some point x i , i 0 provided we are not in case 1.

defined in VI. 4 . 1 .

 41 The behaviour of these invariants by blowing up -permissible curves and closed points are studied respectively in propositions VI.4.2 and VI.4.3. Section VI.4.5 contains the proof of theorem VI.1 and is basically a consequence of the former computations.

  3, with b 2 by full preparedness. Then the locus {y ∈ X|m(y) = m(x), (y) = 0 or τ (y) 2} contains the intersection of Sing m(x) (X) with the complement of the hypersurface V (C A,b ). THEOREM II.11 With assumptions as in II.10, assume furthermore (x) > 0 and let F be an irreducible component of E with x ∈ F . Then dim({y ∈ X|m(y) = m(x), (y) > 0 and τ (y) = 1} ∩ F ) 1.

By 3

 3 From now on, B(u, z) ∈ N, a = B(u, z) -1.

U 1 p 2 Q

 12 e (B(u,z)-1)λ q + H j , deg V 3 H j < j (x)p e , A 1 (x ) = B(u, z) -1, β(x ) b = β 0 C(u, z)/d.When b = β 0 and for i < p e Q i,j = 0 and λ j p e ,j is a (p e ) th -power, thenλ j -1 U a(p e ,j) 1 U b(p e ,j) 2

d 2

 2 (x) + d 3 (x) + (x) < 1, d 1 (x) + d 3 (x) + (x) 1 and A 1 (x) < 1. We get d 1 (x) > d 2 (x) and d 1 (x ) = d 1 (x) + d 2 (x) + d 3 (x) (x) -1 < d 1 (x), A 1 (x ) < A 1 (x) A 2 (x ) = A 2 (x) which proves the claim. If x ∈ SpecR[z/u 1 , u 2 /u 1 , u 3 /u 1 ] ⊂ Zand x is not the above point, we have VI.4.5.2(2) at x for some well prepared r.s.p. (z , u ) at x by lemma VI.4.4(ii)(iii).

VI. 4 . 5 . 5

 455 Proof of Theorem VI.1 in the case C(u, z) < 1, div(u 1 u 2 ) ⊆ E.We perform the sequence of local blowing ups(Z, x) =: (Z 0 , x 0 ) ←-(Z 1 , x 1 ) ←-• • • ←-(Z n , x n ) ← • • • ,

6 7 .

 67 End of the proof of Theorem VI.1. As our invariants C(u, z), β(u, z) are discrete, the next lemma shows that we will reach one of the cases (ii) β(u, z) < 1 or (iii) C(u, z) < 1. This ends the proof of theorem VI.1 (see comments right after VI.4With assumptions as in VI.4.3, consider the sequence of local blowing ups

+ x 2 x

 2 β(x) β(x i 0 ) > β(x i 0 +1 )by VI.4.3(ii)(iii) and VI.4.4(iii): note that C(u, z) β(u, z) since div(u 2 ) ⊂ E and 1 for every x 1.If E i 0 +1 has one more component than E i 0 , we haveC(u i 0 +1 , z i 0 +1 ) β(x i 0 ) 2 β(x) 2by VI.4.3(ii)(iii)(iv). This gives VI.4.5.7(iii) if 1 β(x) < 2. Now, γ(x i 0 +1 ) = 1 + C(u i 0 +1 , z i 0 +1 ) , γ(x) = β(x) , so we get VI.4.5.7(i) if β(x) > 2. Assume that β(x i 0 ) = β(x) = 2.(1)Since γ(x) = 2, we get VI.4.5.7(i) unless γ(x i ) = 2 for i 0 by proposition VI.4.3.

4.3(iii).

  

LEMMA VI.4.4 With hypotheses and notations as in VI.4.3(iii), let d := [k(x ) : k(x)]. We have:

with E = div(u 1 ), V 2 = in x (a + u 2 /u 1 ), where a ∈ R is a preimage of α. Then ρ(x ) t(x ) 2.

When ρ(x) = 2, t(x) = 0, then, up to a permutation on u 1 , u 2 , u 3 , we have E = div(u 1 u 2 u 3 ) and

By proposition V.3(ii), we can take π -1 (x) = div(u 2 ) locally at x , and r.s.p.

(z , v 1 , u 2 , v 3 ) := (z/u 2 , u 1 /u 2 + a, u 2 , u 3 /u 2 + b),

where a, b ∈ R are preimages of α, β. In particular we get E ⊆ div(u 2 u 3 ). On the other hand, we have

and this proves that t(x ) 1.

When ρ(x) = 1, then e(x) = 3 implies E = div(u 1 u 2 u 3 ) (so t(x) = 0) and

up to renumbering parameters. By proposition V.3(ii), we can choose E ⊆ div(u 1 u 2 ), say π -1 (x) = div(u 1 ) locally at x and r.s.p.

PROPOSITION V.5 Let x satisfy the conclusion of proposition III.1(ii) and assume e(x) = 2.

There exists a finite sequence of local blowing ups

where

Proof. First assume that ρ(x) = 1. Then t(x) = 0, div(u 2 u 3 ) ⊆ E and we have V =< αU 2 + U 3 >, α ∈ k(x) × after possibly renumbering parameters. If x does not belong to the strict transform of div(u 2 ), we can take π -1 (x) = div(u 2 ) locally at x , and r.s.p.

where a ∈ R is a preimage of α. In particular we get E ⊆ div(u 1 u 2 ), with u 1 = u 1 /u 2 . On the other hand, we have

whence t(x ) 1, so ι(x ) < ι(x). Assume now that x belongs to the strict transform of div(u 2 ). We can take π -1 (x) = div(u 1 ) locally at x , and r.s.p.

We get E = div(u 1 u 2 u 3 ) and V ≡< αU 2 + U 3 > mod (U 1 ).

If ι(x ) = ι(x), then V =< αU 2 + U 3 > and iterate. Since the valuation v has rank one, say v(u 2 ) < nv(u 1 ) for some n > 0, the process stops after iterating n times.

as

as follows: take the convex hull of the set

These are the usual transformation laws of the characteristic polyhedra of surfaces see the appendix of H. Hironaka in [START_REF]Resolution of surface singularities[END_REF]. To get the other assertions of (ii), the proof runs along the same lines as VI.4.2(1).

Proof of (iv). Mutatis mutandis, we get all assertions of (iv), except the last line that we prove now. In fact, we get

as follows: take the convex hull of the set {(a, a

Let us denote by (α 2 , β 2 ) and (α 3 , β 3 ) with α 2 α 3 , the coordinates of the (maybe equal) vertices of the first side of p (Δ(h, u, z) 

All this leads to:

2 by the first of the two inequalities just above. The inequality γ(x ) γ(x) is left to the reader.

Proof of (iii).

Recall the notations and assumptions of VI.2(1). We write

Let w 3 ∈ R such that in v B (w 3 ) = W 3 , then, with w 3 = w 3 /u 1 , W 3 =in w (w 3 ):

Let v 3 = w 3 + λ u 1 a , with a B(u, z) -1 and λ ∈ R , λ not divisible by u 1 . Then we conclude as above: Q p e ,j is NOT a (p e ) th -power (c.f.( 5)). In particular e 1. Let us recall the following elementary lemma [CP2,

There exists an integer c 0 such that

with γ invertible in T . We have the following estimates for c:

Let f < e be the integer defined by: j), where d 0 :=deg(Q 0 ). In particular,

Then,

By lemma VI.4.4.7,

Furthermore, by (i) above, c 1 + d 0 d , so:

By (ii),

which is VI.4.4(iii). Now VI.4.4(iv) is a consequence of (iii) above.

VI.4.5

Proof of Theorem VI.1: some cases with γ(u, z) = 1.

The strategy to make the proof is to make a list of different subcases covering this case, from the easiest to the most difficult and to prove them up to the former ones.

All cases ( β(u, z) < 1 and div(u 1 u 2 ) ⊂ E) are covered by VI.4.5.3 below. All cases with (γ(u, z) < 1 and div(u 1 u 2 ) ⊆ E) are dealt with in VI.4.5.6. This includes in particular all remaining cases with β(u, z) < 1 since C(u, z) β(u, z) for div(u 1 u 2 ) ⊆ E (see definition VI.4.1).

LEMMA VI.4.5.1 With assumptions as in VI.4.3, assume furthermore that

(

There exist well prepared parameters (z , u ) at x such that

Proof. This is a direct consequence of lemma VI.4.4.

LEMMA VI.4.5.2 With assumptions as in VI.4.3, assume furthermore that

Let π : (Z , x ) → (Z, x) be the blowing up along C 1 , X ⊂ Z the strict transform of X and x ∈ X the center of v and assume ι(x ) = ι(x). Then (z , u ) = (z/u 1 , u 1 , u 2 , u 3 /u 1 ) are well prepared parameters at x and we have

Proof. This follows from proposition VI. 

(3) In that special case, we have β(u, z) = A 2 (u, z). When A 2 (u, z) < 1 and A 1 (u, z) < 1, VI.4.5.1 gives the result. Let us see the other cases:

(

Case 1. d 3 (x)+ (x) 1. We may assume A 2 (u, z) 1 by symmetry on u 1 , u 2 . Then C := (z, u 2 , u 3 ) is an -permissible algebraic curve by proposition VI.4.2 and we get

A descending induction on A 2 (x) and VI.4.5.2 give the result. From now on, we assume

We blow up {x} in this case. By proposition VI.4.3(ii) or (iv), we have (max i=1,2 {A i (x)}, max i=1,2 {d i (x)}, n(x)) < lex (max i=1,2 {A i (x )}, max i=1,2 {d i (x )}, n(x )). [START_REF]Resolution of surface singularities[END_REF] Note that this ends the proof of the case C(u, z) = 0, since (3) can repeat but finitely many times. To prove the claim, first assume that Y = (z, u 1 , u 3 ). By proposition VI.4.2, we have