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Abstract7

A path-based support of a hypergraphH is a graph with the same vertex set asH in which
each hyperedge induces a Hamiltonian subgraph. While it is NP-hard to decide whether
a path-based support has a monotone drawing, to determine a path-based support with
the minimum number of edges, or to decide whether there is a planar path-based support,
we show that a path-based tree support can be computed in polynomial time if it exists.

Keywords: graph algorithm, graph drawing, hypergraph, metro map layout8

1. Introduction9

A hypergraph is a pair H = (V,A) where V is a finite set and A is a (multi-)set of10

non-empty subsets of V . The elements of V are called vertices and the elements of A11

are called hyperedges. A support (or host graph) of a hypergraph H = (V,A) is a graph12

G = (V,E) such that each hyperedge of H induces a connected subgraph of G, i.e., such13

that the graph G[h] := (h, {e ∈ E, e ⊆ h}) is connected for every h ∈ A. See Fig. 1(b) for14

an example.15

Applications for supports of hypergraphs are, e.g., in hypergraph coloring [2, 3],16

databases [4], or hypergraph drawing [5, 6, 7, 8]. E.g., see Fig. 1 for an application17

of a support for designing Euler diagrams. An Euler diagram of a hypergraph H = (V,A)18

is a drawing of H in the plane in which the vertices are drawn as points and each hy-19

peredge h ∈ A is drawn as a simple closed region containing the points representing the20

vertices in h and not the points representing the vertices in V \ h. There are various21

well-formedness conditions for Euler diagrams, see e.g. [9, 8].22

Recently, many papers have been devoted to the problem of deciding which classes23

of hypergraphs admit what kind of supports. It can be tested in linear time whether a24

hypergraph has a support that is a tree [10], a path or a cycle [7]. It can be decided in25

polynomial time whether a hypergraph has a tree support with bounded degrees [7] or a26

cactus support [11]. A minimum weighted tree support can be computed in polynomial27

time [12]. It is NP-complete to decide whether a hypergraph has a planar support [5],28

a compact support [5, 6] or a 2-outerplanar support [7]. A support with the minimum29
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Figure 1: Three representations of the hypergraph H = (V,A) with hyperedges h1 = {v1, v2}, h2 =
{v2, v3}, h3 = {v3, v4}, h4 = {v4, v5}, h5 = {v5, v6}, h = {v2, v3, v4, v5}, h′ = {v2, v3, v4, v5, v7}, and
V = {v1, . . . , v7}.

number of edges can be computed in polynomial time if the hypergraph is closed under30

intersections [7]. If the set of hyperedges is closed under intersections and differences, it31

can be decided in polynomial time whether the hypergraph has a planar or outerplanar32

support [11].33

In this paper we consider a restriction on the subgraphs of a support that are induced34

by the hyperedges. A support G of a hypergraph H = (V,A) is called path-based if the35

subgraph G[h] contains a Hamiltonian path for each hyperedge h ∈ A, i.e., G[h] contains a36

path that contains each vertex of h. This definition was motivated by by the aesthetics of37

metro map layouts. I.e., the hyperedges could be visualized as lines along the Hamiltonian38

path in the induced subgraph of the support like the metro lines in a metro map. See39

Fig. 2 for examples of metro maps, Fig. 3 for an example of natural sciences drawn in the40

metro map anthology, and Fig. 1(c) and 6(f) for a representation of some hyperedges in41

such a metro map like drawing. For metro map layout algorithms see, e.g., [13, 14].42

We briefly consider monotone, planar, and minimum path-based supports. Our main43

result is a characterization of those hypergraphs that have a path-based tree support44

and a polynomial time algorithm for constructing path-based tree supports if they exist.45

E.g., Fig. 1 shows an example of a hypergraph H = (V,A) that has a tree support but46

no path-based tree support. However, the tree support in Fig. 1(b) is a path-based tree47

support for (V,A \ {V }).48

The contribution of this paper is as follows. In Section 2 we give the necessary defi-49

nitions. We then briefly discuss monotone path-based supports in Section 3 and mention50

that finding a minimum path-based support or deciding whether there is a planar path-51

based support, respectively, is NP-hard. We consider path-based tree supports in Sect. 4.52

In Section 4.1 we review a method for computing tree supports using the Hasse diagram.53

In Section 4.2 we show how to apply this method to test whether a hypergraph has a54

path-based tree support and if so how to compute one in polynomial time. Finally, in55

Section 4.3 we discuss the run time of our method.56
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(a) local trains of Zurich (b) metro of Amsterdam

Figure 2: Local train map of Zurich (www.zvv.ch) and the metro map of Amsterdam
(www.amsterdam.info). In (b) the union of all lines forms a tree.

2. Preliminaries57

In this section, we give the necessary definitions that were not already given in the58

introduction. Throughout this paper let H = (V,A) be a hypergraph. We denote by59

n = |V | the number of vertices, m = |A| the number of hyperedges, and N =
∑

h∈A |h|60

the sum of the sizes of all hyperedges of a hypergraph H. The size of the hypergraph H is61

then N + n+m. A hypergraph is a graph if all hyperedges contain exactly two vertices.62

A hypergraph H = (V,A) is closed under intersections if h1∩h2 ∈ A∪{∅} for h1, h2 ∈ A.63

We say that two hyperedges h1, h2 overlap if h1 ∩ h2 6= ∅, h1 6⊆ h2, and h2 6⊆ h1. A64

hypergraph H = (V,A) is connected if for any pair of vertices v, w ∈ V there is a sequence65

of hyperedges h1, . . . , hℓ ∈ A such that v ∈ h1, w ∈ hℓ, and hi ∩ hi+1 6= ∅, i = 1, . . . ℓ− 1.66

The Hasse diagram of a hypergraph H = (V,A) is the directed acyclic graph with67

vertex set A∪ {{v}; v ∈ V } and there is an edge (h1, h2) if and only if h2 ( h1 and there68

is no set h ∈ A with h2 ( h ( h1. Fig. 1(a) shows an example of a Hasse diagram. Let69

(v, w) be an edge of a directed acyclic graph. Then we say that w is a child of v and v70

a parent of w. For a descendant d of v there is a directed path from v to d while for an71

ancestor a of v there is a directed path from a to v. A source does not have any parents,72

a sink no children and an inner vertex has at least one parent and one child.73

3. Path-Based Supports74

In a metro map like drawing of a hypergraph vertices are drawn as disjoint simple75

closed regions in the plane and each hyperedge h is drawn as a curve Ch with the end76

points within the regions of different vertices of h, visiting the region of every vertex of77

h exactly once, not visiting the vertices not in h, and such that the pieces of Ch within78

the region of a vertex or between two such regions are simple. A path-based support of a79

hypergraph H = (V,A) is a graph G such that G[h] contains a spanning path for every80

hyperedge h ∈ A.81

On one hand, a metro map like drawing of a hypergraph H = (V,A) induces a path-82

based support G = (V,E) of H: For a hyperedge h ∈ A let ph : v1, . . . , v|h| be the83
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Figure 3: A map of modern science (www.crispian.net).

sequence of vertices of h in the order in which they are visited by the curve representing84

h. Starting with an empty set E add for every hyperedge h ∈ A with ph : v1, . . . , v|h| the85

edges {vi−1, vi}, i = 2, . . . , |h| to E. On the other hand, if we have a path-based support86

G of H and we fix for every hyperedge h ∈ A a spanning path ph of G[h] then this induces87

a metro map like drawing of H.88

In order to have a readable metro map like drawing of a hypergraph it is typically89

desirable to draw any curve representing a hyperedge without self intersection or even90

monotone.91

3.1. Monotone Path-Based Supports92

A drawing of a graph is a mapping of each vertex to a distinct point in the plane and93

of each edge to a simple curve between the image of its adjacent vertices not containing94

the image of any other vertex. In a straight-line drawing of a graph each edge is drawn95

as a line segment. Given a drawing of G, a path p of G is monotone with respect to a96

straight line ℓ – called the axis of monotonicity – if every line perpendicular to ℓ intersects97

the drawing of p in at most one point. Note that a path p in a straight-line drawing is98

monotone with respect to the axis ℓ if and only if the orthogonal projections of the vertices99

of p on ℓ appear along ℓ in the order induced by p.100

Let G = (V,E) be a path-based support of a hypergraph H = (V,A). A drawing of101

G is monotone with respect to H if for each hyperedge h ∈ A there is a spanning path102

ph of G[h] and a straight line ℓh such that ph is monotone with respect to the axis ℓh. G103

is a monotone path-based support of H if G has a monotone drawing with respect to H.104

Remark 1. If G has a monotone drawing with respect to a hypergraph H then G has105

a straight-line drawing that is monotone with respect to H with the same axes of mono-106

tonicity.107

Proof. Let a drawing D of G that is monotone with respect to H = (V,A) be given108

and let ph, h ∈ A be a spanning path of G[h] that is monotone with respect to the axis109

ℓh. If for each edge {v, w} of G the line segment between v and w does not contain any110

vertex of G other than v or w then the straight-line drawing of G in which the vertices111

are mapped to the same points as in D is monotone with respect to H.112
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Consider now for two vertices v, w in a hyperedge h the distances disth(v, w) between113

the orthogonal projections of v and w to ℓh. Let ∆ be the minimum of all distances114

disth(v, w) over all h ∈ A and v, w ∈ h with v 6= w. Let 0 < ε ≤ ∆/3.115

Consider now the vertices of V in an arbitrary order v1, . . . , vn, n = |V |. For k =116

1, . . . , n, we can now place vk on the circle with radius ε around the position of vk in D117

but not on the intersection with the line through the already fixed drawings of vi and vj ,118

1 ≤ i < j < k. The corresponding straight-line drawing is monotone with respect to H119

with the axes of monotonicity ℓh, h ∈ A. �120

Remark 2. Not every path based support of a hypergraph is monotone.121

Proof. Consider the following hypergraph. Let I = {(i, j, k, ℓ); 1 ≤ i < j ≤ 5, 1 ≤ k <122

ℓ ≤ 5, i < k, {i, j} ∩ {k, ℓ} = ∅} be an index set representing unordered pairs of disjoint123

edges of the complete graph K5. Let VI = {vi; i = 1, . . . , 5} ∪ {vi,j,k,ℓ,x; (i, j, k, ℓ) ∈124

I, x = 1, . . . , 3}, let hijkℓ = {vi, vi,j,k,ℓ,1, vj , vi,j,k,ℓ,2, vk, vi,j,k,ℓ,3, vℓ}, (i, j, k, ℓ) ∈ I, let125

AI = {hijkℓ; (i, j, k, ℓ) ∈ I}, and letHI = (VI , AI). Let E contain the edges {vi, vi,j,k,ℓ,1},126

{vi,j,k,ℓ,1, vj}, {vj , vi,j,k,ℓ,2}, {vi,j,k,ℓ,2, vk}, {vk, vi,j,k,ℓ,3}, {vi,j,k,ℓ,3, vℓ} for (i, j, k, ℓ) ∈ I.127

The resulting path-based support G = (V,E) of HI is shown in Fig. 4(a). Note that128

G[hijkℓ] is a path for any hyperedge hijkℓ ∈ A visiting the vertices vi, vj , vk, vℓ in this129

order. Consider now any drawing of G. Since a K5 is not planar, there are two straight130

line segments vivj , vk, vℓ, (i, j, k.ℓ) ∈ I that intersect. Hence, the path G[hijkℓ] cannot be131

drawn monotonously. �132

Remark 3. Every hypergraph has a monotone path-based support.133

Proof. Order the vertices of H = (V,A) with respect to an arbitrary ordering <. The134

support G< = (V,E<) of H with respect to the ordering < is constructed as follows.135

For each hyperedge {v1, . . . , vk} ∈ A with v1 < · · · < vk the edge set E< contains the136

edges {vi−1, vi}, i = 1, . . . , k. Assume now that in a drawing of G< the x-value of a137

vertex v is smaller than the x-value of the vertex w if v < w and that the edges are138

drawn monotonously in x-direction. Then for each hyperedge h = {v1, . . . , vk} ∈ A with139

v1 < · · · < vk the path ph : v1, . . . , vk is drawn monotonously with respect to the x-axis.140

See Fig 4(c) for an example. �141

Note that the problem of deciding whether a given support is a support with respect142

to an ordering and if so, finding such an ordering, is closely related to the betweenness143

problem [15].144

Theorem 1. Given a support G of a hypergraph H145

1. it is NP-hard to decide whether G is a monotone path-based support of H, and146

2. it is NP-complete to decide whether there exists an ordering < of the vertex set147

such that G is the support of H with respect to <,148

even if G has the minimum number of edges among all supports of H.149
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Figure 4: Three different supports for the hypergraph HI introduced in Section 3.1. The small black
vertices are the vertices vσ,x, σ ∈ I, x = 1, 2, 3. The thick red path indicates the hyperedge h1324.

Proof.150

1. Consider an instance of the strictly monotone trajectory drawing problem consisting151

of a set of paths P on a set of vertices Vt. It is NP-hard to decide whether the152

vertices can be mapped to points in the plane such that each path is monotone with153

respect to some axis (one for each path) [16].154

Consider the hypergraph H = (V,A) with V containing Vt and for each path p ∈ P155

and each edge e ∈ p a vertex vep. The set A contains for each path p ∈ P a hyperedge156

hp =
⋃

{v,w}∈p{v, v{v,w}p, w} as well as the hyperedges {v, v{v,w}p} and {v{v,w}p, w}157

for each edge {v, w} ∈ p. The graph G = (V,E) with E =
⋃

p∈P

⋃

e∈p{{v, vep}; v ∈158

e} is a path-based support of H and has the minimum number of edges among all159

supports of H. G is monotone if and only if P is drawable with each path monotone160

with respect to some axis.161

2. Consider an instance of the betweenness problem consisting of a set of vertices Vb162

and a set of constraints C. Each constraint c ∈ C consists of a sequence of three163

vertices. It is NP-complete to decide whether the vertices can be totally ordered164

such that for each constraint c = (u, v, w) the vertex v is between the vertices u and165

w [15].166

Consider the hypergraph H = (V,A) with V containing Vb and for each constraint167

c ∈ C vertices vc2 and vc4. The set A contains for each c = (vc1, vc3, vc5) ∈ C a168

hyperedge hc = {vc1, . . . , vc5} and hyperedges hci = {vci, vc(i+1)} for 1 ≤ i ≤ 4.169

The graph G = (V,E) with E =
⋃

c∈C{hci; 1 ≤ i ≤ 4} is a path-based support of170

H and has the minimum number of edges among all supports of H.171

There is an ordering < of V such that G is the support of H with respect to <172

if and only if for each constraint c = (vc1, vc3, vc5) ∈ C the five vertices in hv are173

either ordered vc1 < vc2 < vc3 < vc4 < vc5 or vc5 < vc4 < vc3 < vc2 < vc1. Since174
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the vertices vc2 and vc4 do not appear in a hyperedge hc′ for any constraint c 6= c′175

it follows that there is an ordering < of V such that G is the support of H with176

respect to < if and only if Vb can be totally ordered while satisfying all betweenness177

constraints in C. �178

3.2. Minimum Path-Based Supports179

Assuming that each hyperedge contains at least one vertex, each hypergraph H =180

(V,A) has a monotone path-based support G = (V,E) with at most N −m edges. Just181

take the support G< with respect to an arbitrary ordering < of the vertex set V . It is,182

however, NP-hard to find an ordering that minimizes the number of edges among all183

path-based supports of H with respect to an ordering of the vertex set [17].184

Further, note that a path-based support that minimizes the number of edges among185

all path-based support of a hypergraph H with respect to some ordering of the vertex186

set might not be a path-based support of H with the minimum number of edges over all187

path-based supports of H. E.g., consider the hypergraph HI from the previous section188

(Fig. 4) or the hypergraph H with hyperedges {1, 2, 4}, {1, 3, 4}, and {2, 3, 4} for an189

easier example: the unique minimum path-based support of H is a star centered at 4190

which cannot be created from any ordering of the vertex set. The problem of finding a191

minimum path-based support remains, however, NP-hard.192

Theorem 2. It is NP-hard to minimize the number of edges among all path-based sup-193

ports (or among all monotone path-based supports) of a hypergraph – even if the hyper-194

graph is closed under intersections.195

Proof. Reduction from Hamiltonian path. Let G = (V,E) be a graph. Let H =196

(V,E ∪ {V } ∪ {{v}; v ∈ V }) and K = |E|. Note that any support of H contains G as a197

subgraph. Hence, H has a path-based support with at most K edges if and only if G is a198

path-based support of H which is true if and only if G contains a Hamiltonian path. �199

3.3. Planar Path-Based Supports200

A graph is planar if it has a drawing in which no pair of edges intersect but in common201

end points. For the application of Euler diagram like drawings, planar supports are of202

special interest. However, like for general planar supports, the problem of testing whether203

there is a path-based planar support is hard.204

Theorem 3. It is NP-complete to decide whether a hypergraph – even if it is closed205

under intersections – has a path-based planar support.206

Proof. The support that Johnson and Pollak [5] constructed to prove that it is NP-207

complete to decide whether there is a planar support, was already path-based. �208

4. Path-Based Tree Supports209

In this section we show how to decide in polynomial time whether a given hypergraph210

has a path-based tree support. If such a support exists, it is at the same time a path-based211

support of minimum size, a monotone path-based support [18], and a planar path-based212

support. Moreover the intersection of any subset of hyperedges induces again a path in a213

path-based tree support. So far it is known how to decide in linear time whether there is214

a path-based tree support if V ∈ A [7].215
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Figure 5: Illustration of the augmented Hasse Diagram for the hypergraph H = (V,A) indicated in 5(a).
A = A ∪ {h1

3
, {v2}, . . . , {v5}}. The two hyperedges h2

1
and h2

2
are both implied but no summery edges.

They are not present in the augmented Hasse diagram. The summary hyperedge hs is added to A′.

4.1. Constructing a Tree Support from the Hasse Diagram216

A support with the minimum number of edges and, hence, a tree support if one exists217

can easily be constructed from the Hasse diagram if the hypergraph is closed under inter-218

sections [7]. Note, however, that the number of intersections of any subset of hyperedges219

could be exponential in the size of the hypergraph.220

To construct a tree support of an arbitrary hypergraph H = (V,A), it suffices to221

consider the augmented Hasse diagram – a representation of “necessary” intersections of222

hyperedges. The definition is as follows. First consider the smallest set A of subsets of V223

that contains A and that is closed under intersections. Consider the Hasse diagram D of224

H = (V,A). Note that any tree support of H is also a tree support of H: The intersection225

of two subtrees is again a subtree.226

Let h1, . . . , hk be the children of a hyperedge h in D. The hyperedge h ∈ A is implied227

if the hypergraph (h1∪· · ·∪hk, {h1, . . . , hk}) is connected and non-implied otherwise. Let228

{h1, . . . , hk} be a maximal subset of the children of a non-implied hyperedge in A such229

that (h1∪ · · ·∪hk, {h1, . . . , hk}) is connected. Then h1∪ · · ·∪hk is a summary hyperedge.230

Note that a summary hyperedge might not be in A. Let A′ be the set of subsets of V231

containing the summary hyperedges, the hyperedges in A that are not implied, and the232

sources of D. For an example consider Fig. 5(c). In this example, the hyperedge hs is a233

summary hyperedge, h3
1 and h1

1, . . . , h
1
5 are non-implied, and V is a source.234

The augmented Hasse diagram of H is the Hasse diagram D′ of H ′ = (V,A′). If235

H has a tree support, then the augmented Hasse diagram has O(n + m) vertices and236

can be constructed in O(n3m) time [7] (without explicitly constructing the closure under237

intersection A). Further note that if H has a tree support and h ∈ A′ is non-implied,238

then all children of h in D′ are disjoint: Otherwise there would be a summary hyperedge239

between h and intersecting children.240

If a tree support G = (V,E) of H exists, it can be constructed as follows [7]. Starting241

with an empty graph G, we proceed from the sinks to the sources of D′. If h ∈ A′
242

is not implied, choose an arbitrary ordering h1, . . . , hk of the children of h in D′. We243

assume that at this stage, G[hi], i = 1, . . . , k are already connected subgraphs of G. For244

j = 2, . . . , k, choose vertices vj ∈
⋃j−1

i=1 hi, wj ∈ hj and add edges {vj , wj} to E.245

If we want to construct a path-based tree support, then G[hj ], j = 1, . . . , k are paths246

and as vertices vj+1 and wj for the edges connecting G[hj ] to the other paths, we choose247
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the end vertices of G[hj ]. The only choices that remain are the ordering of the children248

of h and the choice of which end vertex of G[hj ] is wj and which one is vj+1. The implied249

hyperedges give restrictions on how these choices might be done.250

4.2. Choosing the Connections: A Characterization251

When we want to apply the general method introduced in Sect. 4.1 to construct a252

path-based tree support G, we need to make sure that we do not create vertices of degree253

greater than 2 in G[h] when processing non-implied hyperedges contained in an implied254

hyperedge h.255

Definiton 1 (Conflicting Hyperedges). Two overlapping hyperedges h′, h′′ ∈ A′ have256

a conflict if there is some hyperedge in A′ that contains both h′ and h′′. Two overlapping257

hyperedges h′, h′′ ∈ A′ have a conflict with respect to h ∈ A′ if h′ has a conflict with h′′,258

h′∩h′′ ⊆ h and h is a child of h′ or h′′. In that case we say that h′ and h′′ are conflicting259

hyperedges of h. Let A′
h be the set of conflicting hyperedges of h. Let Ac

h be the set of260

children hi of h such that h ∈ A′
hi
.261

E.g., consider the hypergraph in Fig. 5(c). Then h3
1 and h1

1 are both contained in the262

hyperedge V and they both contain {v2}. Hence, they have a conflict. Further, is the263

intersection h3
1 ∩ h

1
1 = {v2} contained in the child hs of h3

1. Hence, h3
1 has a conflict with264

h1
1 with respect to hs. Similarly does h3

1 have a conflict with h1
5 with respect to hs and265

we have on one hand A′
hs

= {h1
1, h

1
2, h

3
1}. On the other hand does hs have a conflict with266

h1
1 with respect to h1

2 and with h1
5 with respect to h1

4 and we have Ac
hs

= {h1
2, h

1
4}. Note267

that there might be hyperedges that have a conflict but not with respect to any of their268

children. As an example see the hyperedges h4
1 and h4

2 in Fig. 6(a). In the lemmas in this269

section, we will prove that it suffices if the algorithm considers only conflicts with respect270

to some child.271

Assume now that H has a path-based tree support G and let h′, h′′ ∈ A′ be such that272

h′ and h′′ have a conflict with respect to a child h of h′′. Since h′ ∪ h′′ is contained in a273

hyperedge it follows that G[h′∪h′′] is the subgraph of a path. Since in addition h′ and h′′
274

intersect and G[h′] and G[h′′] are paths, it follows that G[h′ ∪ h′′] is also a path. Hence,275

we have the following situation.276

h′

︷ ︸︸ ︷
h

︸ ︷︷ ︸

h′′

277

Note especially that among the two end vertices of G[h′′] exactly one is contained in h′
278

and that this end vertex is also an end vertex of G[h]. This yields the following three279

types of restrictions on the connections of the paths.280

1. G[h′ \ h] and G[h′′ \ h] must be paths that are attached to different end vertices of281

G[h].282

2. Assume further that h′′′ does also have a conflict with h′′ with respect to h. Then283

both, G[h′ \h] and G[h′′′ \h], must be appended to the common end vertex of G[h]284

and G[h′′].285

3. Assume further that h2, h1 ∈ Ac
h, h2 6= h1. Let hi ∈ A′

h have a conflict with h286

with respect to hi, i = 1, 2, respectively. Then G[hi \ h] has to be appended to287

the common end vertex of G[h] and G[hi]. Hence, G[h1 \ h] and G[h2 \ h] must be288

appended to different and vertices of G[h].289
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h1

︷ ︸︸ ︷
h2

︷ ︸︸ ︷
h1 h2

︸ ︷︷ ︸

h

290

E.g., consider the hypergraphH = (V,A) in Fig. 5(c). Then on one hand, h3
1 has a conflict291

with h1
1 and h1

5 with respect to hs. Hence, by the first type of restrictions G[h1
1 \ hs] and292

G[h1
5 \hs] must be appended to the same end vertex of G[hs], i.e. the end vertex of G[hs]293

to which G[h3
1 \ hs] is not appended. On the other hand, h1

1 and hs have a conflict with294

respect to h1
2, while h1

5 and hs have a conflict with respect to h1
4. Hence, by the third295

type of restrictions it follows that G[h1
1 \hs] and G[h1

5 \hs] must be appended to different296

end vertices of G[h]. Hence, there is no path-based tree support for H.297

This motivates the following definition of conflict graphs.298

Definiton 2 (Conflict Graph). The conflict graph Ch, h ∈ A′ is a graph on the vertex299

set A′
h ∪Ac

h. The conflict graph Ch contains the following three types of edges.300

1. {h′, h′′}, h′, h′′ ∈ A′
h if h′ and h′′ have a conflict with respect to h.301

2. {h′, h1}, h
′ ∈ A′

h, h1 ∈ Ac
h if h′ ∈ A′

h1
and h′ and h have a conflict with respect to302

h1.303

3. {h1, h2}, h1, h2 ∈ Ac
h, h1 6= h2.304

E.g., consider the hypergraph H = (V,A) in Fig. 5(c).
Then the conflict graph Chs

contains the edges {h3
1, h

1
5}

and {h3
1, h

1
1} of type one, the edges {h1

2, h
1
1} and {h

1
4, h

1
5}

of type 2 and the edge {h1
2, h

1
4} of type 3. (See the figure

on the right.) Hence, Chs
contains a cycle of odd length,

reflecting that there is no suitable assignment of the end
vertices of G[hs] to h1

1, h
1
5 and h3

1.

h
3
1

Chs
: h

1
1

h
1
2 h

1
4

h
1
5

type 1 type 1

type 2 type 2

type 3

305

Theorem 4. A hypergraph H = (V,A) has a path-based tree support if and only if306

1. H has a tree support,307

2. no hyperedge contains three pairwise overlapping hyperedges h1, h2, h3 ∈ A′ with308

h1 ∩ h2 = h2 ∩ h3 = h1 ∩ h3, and309

3. all conflict graphs Ch, h ∈ A′, |h| > 1 are bipartite.310

From the observations before the definition of the conflict graph it is clear that the311

conditions of Theorem 4 are necessary for a path-based tree support. In the remainder312

of this section, we prove that the conditions are also sufficient.313

In the following assume that the conditions of Theorem 4 are fulfilled. We show314

in Algorithm 1 how to construct a path-based tree support G of H. We consider the315

vertices of the augmented Hasse diagram D′ from the sinks to the sources in a reversed316

topological order, i.e., we consider a hyperedge only if all its children in D′ have already317

been considered. During the algorithm, a conflicting hyperedge h′ of a hyperedge h is318

labeled with the end vertex v of G[h] if the path G[h′ \ h] will be appended to v. We319

will call this label sideh(h
′). Concerning the choice of the ordering of the children in320

Line 8 of Algorithm 1: the sets Ac
h, h ∈ A′ contain at most two hyperedges – otherwise321

the subgraph of Ch induced by Ac
h contains a triangle and, hence, is not bipartite.322

Algorithm 1 constructs a tree support G of H [7]. Before we show that G is a path-323

based tree support, we illustrate the algorithm with an example. Consider the hypergraph324

H in Fig. 6. We show how the algorithm proceeds h5
1 and all its descendants in D′. For325

10



Algorithm 1: Path-based tree support

Input : augmented Hasse diagram D′ of a hypergraph H = (V,A)
fulfilling the conditions of Theorem 4;

conflict graphs Ch on vertex sets A′
h ∪Ac

h, h non-source vertex of D′

Output: path-based tree support G = (V,E) of H
Data : labels sideh(h

′)
indicating the end vertex of G[h] to which h′ \ h should be appended

begin
E ← ∅;
foreach vertex h of D′ in a reversed topological order of D′ do

if h = {v} for some v ∈ V then
foreach vertex h′ of Ch do

sideh(h
′)← v;

else
8 Let h1, . . . , hk be the children of h such that h2, . . . , hk−1 /∈ Ac

h;
if h is non-implied then

Let wi, vi+1, i = 1, . . . , k be the end vertices of G[hi] such that

• sideh1
(h) = v2 if h ∈ A′

h1
and

• sidehk
(h) = wk if h ∈ A′

hk
;

Add the edges {vi, wi}, i = 2, . . . , k to E;

else
Let w1 6= vk+1 be the end vertices of G[h] such that

• vk+1 /∈ h1 and

• w1 /∈ hk;

if h1 ∈ Ac
h then sideh(h1)← vk+1;

if hk ∈ Ac
h then sideh(hk)← w1;

Label the remaining vertices of Ch with vk+1 or w1

such that no two adjacent vertices have the same label;

end

11
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Figure 6: Illustration of Algorithm 1.
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the hyperedges h1
3, h

1
4, h

1
6, and h1

8 the conflict graphs are empty. For the other leaves we326

have327

sideh1

5
(h2

2) = sideh1

5
(h2

3) = sideh1

5
(h3

1) = sideh1

5
(h4

2) = v5,

sideh1

7
(h2

4) = sideh1

7
(h3

1) = v7, and

sideh1

9
(h2

4) = sideh1

9
(h4

1) = sideh1

9
(h2

5) = sideh1

9
(h2

6) = sideh1

9
(h2

7) = v9.

When operating h2
2 and h2

3, respectively, we add edges {v4, v5} and {v5, v6}, respec-328

tively, to G. While the conflict graph of h2
2 does only contain h1

5 with sideh2

2
(h1

5) = v4, the329

assignment of side in Ch2

3
is illustrated in Fig. 6(b). h2

4 has a conflict with respect to the330

children h1
7 and h1

9. Hence, we add edges {v7, v8} and {v8, v9} to G. The conflict graph331

of h2
4 is shown in Fig. 6(c). When operating h3

1 we can choose h1 = h2
3 and h2 = h1

7, since332

sideh2

3
(h3

1) = v6 and sideh1

7
(h3

1) = v7. We add the edge {v6, v7} to G. The conflict graph333

Ch3

1
is shown in Fig. 6(d). The hyperedge h4

1 is implied and we set sideh4

1
(h2

4) = v4. We334

can finally connect v3 to v4 or v9 when operating h5
1.335

To prove the correctness of Algorithm 1, it remains to show that all hyperedges of H336

induce a path in G. Since we included all inclusion maximal hyperedges of H in A′, it337

suffices to show this property for all hyperedges in A′. We start with a technical lemma.338

Lemma 5. Let h′ and h′′ be two overlapping hyperedges and let h′ be not implied. Then339

there is a hyperedge h ∈ A′ with h′ ∩ h′′ ⊆ h ( h′.340

Proof. Let hc ∈ A be maximal with h′ ∩ h′′ ⊆ hc ( h′. The hyperedge hc is a child of341

the non-implied hyperedge h′ in D. Consider the summary hyperedge h with hc ⊆ h ( h′.342

By definition of A′ it follows that h ∈ A′. �343

For an edge {v, w} of G let hvw be the intersection of all hyperedges of A′ that contain344

v and w. Note that hvw is not implied since v and w are contained in different children345

of hvw in D and {v, w} is an edge of the tree support G of H. Hence, hvw ∈ A′.346

Lemma 6. Let Conditions 1-3 of Theorem 4 be fulfilled and let G = (V,E) be the graph347

computed in Algorithm 1. Let h′, h′′ ∈ A′ have a conflict with respect to a child h of h′
348

and let G[h′] and G[h′′] be paths. Then349

1. sideg(h
′′) = sideh(h

′′) for all g ∈ A′ with h′ ∩ h′′ ⊆ g ⊆ h,350

2. sideh(h
′′) ∈ h′′,351

3. sideh(h
′′) is an end vertex of G[h′],352

4. G[h′ \ h′′] is a path, and353

5. sideh(h
′′) is adjacent in G to a vertex of h′′ \ h′.354

Proof. We prove the lemma by induction on the sum of the steps in which h′ and h′′
355

were considered in Algorithm 1. If h′ and h′′ had been considered in the first two steps,356

then at least one of them is a leaf of D′ and, hence, h′ and h′′ have no conflict. So there357

is nothing to show. Let now h′ and h′′ be considered in later steps. Let h′′ ∈ A′ have a358

conflict with h′ with respect to a child h of h′ and let G[h′] and G[h′′] be paths.359

1. + 2. if h′ ∩ h′′ ∈ A′: There is nothing to show if h = h′ ∩ h′′. So let h1 be the child360

of h with h1 ⊇ h′ ∩ h′′. Then h, h′′ have a conflict with respect to h1. Hence,361

Ch contains the path h′, h′′, h1. By the inductive hypothesis on Property 3, it362
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hvx ∩ h

v xw

(a) augmented Hasse diagram D′

h

h
′h

′′

hvx

hvw

hc

x

v

w

(b) tree support G

Figure 7: Illustration of the proof of Lemma 6.3.

follows that sideh1
(h′′) is an end vertex of G[h], and especially, that h1 and h share363

an end vertex. By construction it follows that sideh(h1) is the end vertex of h364

that is not in h1. Hence, sideh(h
′′) ∈ h1 and sideh1

(h′′) = sideh(h
′′). By the365

inductive hypothesis it follows that sideg(h
′′) = sideh(h

′′) for h ∩ h′′ ⊆ g ⊆ h1.366

Since the labels in sideh′∩h′′(.) are the end vertices of G[h′ ∩ h′′], it follows that367

sideh(h
′′) ∈ h′ ∩ h′′ ⊂ h′′.368

1. + 2. + 5. if h′ ∩ h′′ /∈ A′: Let h′′
1 ⊆ h′′ be minimal with h′∩h′′ ⊂ h′′

1 . Since h
′ and369

h′′
1 overlap, there is an edge {v, w} ∈ E such that v ∈ h′ ∩ h′′ and w ∈ h′′

1 \ h
′. We370

show that sideh(h
′′) = v.371

By Lemma 5 there is a child hc of hvw that contains h ∩ hvw. Since v ∈ h ∩ hvw, it372

follows that w /∈ hc and, hence, v is an end vertex of hc.373

Note that by the minimality of h′′
1 it follows that h′ ∩ h′′ 6⊆ hvw. Since G[h′′], G[h′]374

are paths, it follows that hc ( h and, hence, hc = h∩ hvw. Let hp be minimal with375

hc ( hp ⊆ h. Then hp, hvw have a conflict with respect to hc and it follows from376

the inductive hypothesis on Property 5 that sidehc
(hvw) = v. Let h′

c be maximal377

with hc ⊆ h′
c ( h. By the inductive hypothesis on Property 1 it follows that378

sideh′

c
(hvw) = v. Since h, hvw have a conflict with respect to h′

c, it follows by the379

inductive hypothesis on Property 3 that v is an end vertex of h. In Ch there is the380

path h′
c, hvw, h

′, h′′. By construction, sideh(h
′
c) is the end vertex of h that is not in381

h′
c. Hence, sideh(hvw) = sideh(h

′′) = v.382

3.: Let v = sideh(h
′′). By the construction in Algorithm 1, v is an end vertex of G[h′] if383

h′ is non-implied. So assume that h′ is implied and that v is not an end vertex of384

G[h′]. Let w ∈ h′ \h be a neighbor of v in G. By Property 2, it follows that v ∈ h′′.385

Let hc be the child of hvw that contains hvw ∩ h′′. By the inductive hypothesis on386

Property 4, it follows that G[hvw \ h
′′] is a path that contains w but not v. Hence,387

hc = hvw ∩ h′′ = hvw ∩ h.388
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Let h′
1, h

′′
1 ∈ A′ be minimal with h′ ⊇ h′

1 ) h′ ∩ h′′ and h′′ ⊇ h′′
1 ) h′ ∩ h′′,389

respectively. Assume first that h′ ∩ h′′ ∈ A′. Then Ch′∩h′′ contains the triangle390

hvw, h
′
1, h

′′
1 , hvw and, hence, is not bipartite.391

Assume now that h′ ∩ h′′ /∈ A′. By the already proven part of Property 5 it follows392

that there is an edge {v, x} of G with x ∈ h′′
1 \h. We have hc = hvw∩h

′′ ⊇ hvw∩hvx.393

Further, the child of hvx that contains hvx ∩ h equals hvx ∩ h. Since h′′
1 is implied394

and hvx not, it follows that h′′
1 6= hvx and, hence, hvx 6⊇ h′ ∩ h′′. Hence, either395

hvx ∩ h ⊆ hvw ∩ h or hvw ∩ h ( hvx ∩ h ( h′ ∩ h′′. In the first case let h1 ∈ A′
396

be minimal with hvw ∩ h ( h1 ⊆ h. Then there is the triangle hvw, hvx, h1, hvw in397

Ch∩hvw
. In the latter case let h1 ∈ A′ be minimal with hvx ∩ h ( h1 ⊆ h. Then398

there is the triangle hvw, hvx, h1, hvw in Ch∩hvx
.399

4.: By the inductive hypothesis G[h\h′′] is a path. Further, h and h′ share sideh(h
′′) ∈ h′′

400

as a common end vertex. By the precondition of the lemma, G[h′] is a path. Hence,401

G[h′ \ h′′] is a path.402

5. if h′ ∩ h′′ ∈ A′: If h 6= h′ ∩ h′′, let h1 be the child of h with h′ ∩ h′′ ⊆ h1. By the403

inductive hypothesis sideh1
(h′′) is adjacent in G to a vertex of h′′ \ h = h′′ \ h′ and404

by Property 1, sideh1
(h′′) = sideh(h

′′).405

If h = h′∩h′′, let h′′
1 ∈ A′ be minimal with h ( h′′

1 ⊆ h′′. Applying Property 3 with406

h′′
1 as “h′” and h′ as “h′′” reveals that sideh(h

′) is an end vertex of G[h′′
1 ]. Since407

G[h′′
1 ] is a path, it follows that some vertex of h′′

1 \ h is adjacent to sideh(h
′′). �408

Lemma 7. If Conditions 1-3 of Theorem 4 are fulfilled, then all hyperedges in A′ induce409

a path in the graph G constructed in Algorithm 1.410

Proof. Again, we prove the lemma by induction on the step in which h was considered411

in Algorithm 1. There is nothing to show if h had been considered in the first step. So412

assume that h ∈ A′ and that G[h] contains a vertex v of degree greater than two.413

Let u1, u2, u3 be the first three vertices connected to v in G. Let hi = hvui
, i = 1, 2, 3.414

Then h1, h2, h3 are all three contained in h and its intersection contains v. Hence, any415

two of them have a conflict if and only if one of them is not contained in the other. A416

case distinction reveals that we wouldn’t have appended all three, u1, u2 and u3, to v.417

h2 = h3: Since h3 contains no vertex of degree higher than two, it follows that u1 /∈ h3,418

h3 ∩ h1 = {v}. Hence, h1 and h3 have a conflict with respect to the common child419

{v}, contradicting that v is added in the middle of h3.420

h1 = h2 or h1 = h3: These cases are analogous to the first case.421

h1 ( h3: Like in the first case it follows that u2 /∈ h3. Let h′
i, i = 2, 3 be the child of422

hi that contains v. Then h2 and h3 have a conflict with respect to h′
i, i = 2, 3.423

Since we add the edge {v, ui} to G when we process hi, it follows on one hand that424

sideh′

i
(hi) = v. On the other hand, since h1 is contained in h3 and v ∈ h1, it follows425

that h1 ⊆ h′
3. Hence, h′

3 has more than one vertex. If h′
3 6= h3∩h2, then v is the only426

end vertex of G[h′
3] that is contained in h2. By Lemma 6 Property 2 it follows that427

sideh′

3
(h2) = v and hence, sideh′

3
(h3) 6= v. If h′

3 = h3 ∩ h2, let v
′ 6= v be the other428

end vertex of h′
2. Since we know that sideh′

2
(h2) = v, it follows that sideh′

2
(h3) = v′.429

Hence, by Lemma 6 Property 1 we can conclude that sideh′

3
(h3) = v′. In both cases430

we have a contradiction.431
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Figure 8: Illustration of Algorithm 2. Computation of the potential conflicts for h4

1

h1 ( h2 or h2 ( h3: These cases are analogous to the third case.432

h1, h2, h3 pairwise overlapping: Then h1 ∩ h2 = h2 ∩ h3 = h1 ∩ h3 = {v}. Hence,433

Condition 2 of Theorem 4 is not fulfilled. �434

This completes the proof of Theorem 4. We conclude this section with the following435

corollary.436

Corollary 8. Algorithm 1 computes a path-based tree support of a hypergraph H if H437

has a path-based tree support, i.e., if and only if the conditions of Theorem 4 are fulfilled.438

4.3. Conflict Computation and Run Time439

In this section we show how to efficiently compute the conflicts and give an upper440

bound for the run time of testing whether a hypergraph has a path-based tree support441

and, if it exists, of constructing one.442

Representing the hyperedges as sorted lists of their elements, all conflicts can be443

determined straight-forwardly in O(n3(n+m)) time. In the following, we show how this444

time bound can be improved.445

We first compute candidates for conflicting pairs of hyperedges, which in the case446

of hypergraphs having a path-based tree support turn out to be a superset of the set447

of all conflicts. The idea is, that all potential conflicts lie on a path from an ances-448

tor of h to one of h’s descendants. The method can be found as pseudocode in Algo-449

rithm 2. First, all ancestors of h are marked in Procedure ancestor(h). The procedures450

descendant(hc, hc), hc child of h label those descendants of a child hc of h with desc(hc)451

that are not descendants of any other child of h. Finally, after all calls of up-search a452

hyperedge h′ is labeled conflict(hc) if and only if h′ is (1) a descendant of an ancestor453

of h, but neither a descendant nor an ancestor of h, (2) an ancestor of a descendant of454

the child hc of h that is not a descendant of another child of h, and (3) if all descendants455

h′ are descendants of hc or of at least two children of h. This implies especially that h456

and h′ have a conflict, if h′ is labeled conflict(hc).457

Before we show that h′ is labeled conflict(hc) if h and h′ have a conflict with respect458

to hc, we illustrate Algorithm 2 with an example. Figure 8 shows the computation of459

potential conflicts for the hyperedge h4
1 of the hypergraph H from Figure 6(a). The460

different methods are colored. h2
5 is the only hyperedge that can be in conflict with h4

1461

with respect to a child of h4
1 and if so, with respect to h2

4.462
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Algorithm 2: Conflict Computation.

Input : augmented Hasse diagram D′ of a hypergraph; vertex h
Output: for each child hc of h the vertices h′ with label(h′) = conflict(hc)
Data : there are the following vertex labels

label(h′) = anc iff h ( h′

label(h′) = not-anc only if h ∪ h′ not contained in any source of D′

label(h′) = desc(hc) iff h′ ⊆ hc for exactly one child hc of h
label(h′) = multi-desc iff h′ is contained in more than one child of h
label(h′) = not-conflict only if h ∩ h′ not contained in any child of h

and h ∪ h′ contained in some source of D′

label(h′) = conflict(hc) only if hc ∩ h′ 6= ∅ for a child hc of h
and h ∪ h′ contained in some source of D′

ancestor(vertex h′) begin
foreach parent h′′ of h′ do

label(h′′)← anc;
ancestor(h′′);

end

descendant(vertex h′, vertex hc) begin
if label(h′) = desc(h′

c), hc 6= h′
c then

label(h′)← multi-desc;

else
label(h′)← desc(hc);

foreach child h′′ of h′ do
if label(h′′) 6= multi-desc then

descendant(h′′, hc);

end

up-search(vertex h′, vertex hc) begin
foreach parent h′′ of h′ do

if label(h′′) ∈ {∅,conflict(h′
c), h

′
c 6= hc} then

up-search(h′′, hc);

if label(h′) = conflict(h′
c), hc 6= h′

c then
label(h′)← not-conflict;

else if label(h′) 6= desc(hc) then
if label(h′′) ∈ {conflict(hc),anc, not-conflict} then

label(h′)← conflict(hc);

if label(h′) 6= conflict(hc) then
label(h′)← not-anc;

end

begin
clear all labels;
label(h)← not-conflict;
ancestor(h);
foreach child hc of h do

descendant(hc, hc);

foreach vertex hd of D′ with label(hd) ∈ {desc(hc); hc child of h} do
up-search(hd, hc);

end 17



h
′ h

h1 h2 h3

Figure 9: h′ and h do not have a conflict with respect to any child of h but the label of h′ is conflict(h1)
in the end of Algorithm 2 applied to h. All descendants of h2 (black vertices) are labeled multi-desc.

Lemma 9. Let D′ be the augmented Hasse diagram of a hypergraph that has a path-based463

tree support and let h′ and h have a conflict with respect to a child hc of h. Then the label464

of h′ in the end of Algorithm 2 applied to D′ and h is conflict(hc).465

Proof. Let G be a path-based tree support of a hypergraph and let h′ and h have a466

conflict with respect to a child hc of h.467

1. Let v be the end vertex of G[h] that is contained in h′. Then v and all its ancestors468

on the path from {v} to hc are labeled desc(hc) (and not multi-desc).469

2. If there was a descendant of h′ labeled desc(h′
c) for a child h′

c 6= hc of h, then h′
470

contains a vertex of h that is not a contained in hc. Hence, hc does not contain h∩h′,471

contradicting that h and h′ have a conflict with respect to hc. Hence, Algorithm 2472

does not label h′ with not-conflict.473

For a path P in D′ from h′ to v let hP be the first vertex on P that is labeled desc(hc).474

Assume that among all such vertices hP is the one to which the procedure up-search of475

Algorithm 2 is applied first. Then up-search(hP , hc) labels h
′ with conflict(hc). �476

Note, however, that the converse of Lemma 9 is not true. More precisely, if h′ is labeled477

conflict(hc) in the end of Algorithm 2 applied to h then indeed do h and h′ have a478

conflict, but hc does not have to contain h∩h′. The reason for this is that all descendants479

of h′ that are no descendants of hc are descendants of several children of h and, hence,480

labeled multi-desc. Fig. 9 shows an example.481

Theorem 10. It can be tested in O(n3m) time whether a hypergraph has a path-based482

tree support and if so, such a support can be constructed within the same time bounds.483

Proof. Let H be a hypergraph. First test in linear time whether there is a tree support484

for H [10]. Let D′ be the augmented Hasse diagram of H. The method works in four485

steps.486

1. Start with an empty array conflict indexed with pairs of inner vertices of D′. Set487

conflicth,h′ ← hc if and only if h′ is labeled conflict(hc) in the end of Algorithm 2488

applied to D′ and h.489

2. For each pair h, h′ of inner vertices of D′, test whether conflicth,h′ contains h ∩ h′.490

Otherwise set conflicth,h′ ← ∅. Now, if H has a path-based tree support, then h, h′
491

has a conflict with respect to the child hc of h if and only if hc = conflicth,h′ .492

3. Apply Algorithm 1 to compute a support G. If the algorithm stops without com-493

puting a support, then H does not have a path-based tree support.494
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4. Test whether every hyperedge induces a path in G. If not, H does not have a495

path-based tree support.496

D′ has O(n +m) vertices, O(n2 + nm) edges, and can be computed in O(n3m) time if497

H has a tree support [7]. Algorithm 2 visits every edge of D′ at most twice and, hence,498

runs in O(n2 + nm) time for each of the O(n) inner vertices of D′.499

We may assume that the hyperedges are given as sorted lists of their elements. If not500

given in advance, these lists could straight forwardly be computed from D′ in O(n3+mn2)501

time by doing a graph search from each leaf. Now, for each of the O(n2) pairs h, h′ of502

inner vertices, it can be tested in O(n) time whether conflicth,h′ contains h ∩ h′.503

The sum of the sizes of all conflict graphs is in O(n2). Hence, Algorithm 1 runs in504

O(n2 + mn) time. For each of the O(m) hyperedges h, it can be tested in O(n) time505

whether G[h] is a path. Hence, the overall run time is dominated by the computation of506

the augmented Hasse diagram and is in O(n3m). �507

5. Conclusion508

We have introduced path-based supports for hypergraphs. Hence, as a new model,509

we considered a restriction on the appearance of those subgraphs of a support that are510

induced by the hyperedges. We have discussed that monotone path-based supports are511

desirable. We have shown that it is NP-hard to decide whether a given path-based512

support is monotone or to find a path-based support with the minimum number of edges.513

Further, it is NP-complete to decide whether there is a planar path-based support. As a514

main result, we characterized those hypergraphs that have a path-based tree support and515

we gave an algorithm that computes a path-based tree support in O(n3m) run time if it516

exists. Our algorithm completed the paths for the hyperedges in the order in which they517

appear in a reversed topological ordering of the augmented Hasse diagram. To connect518

these subpaths in the right order, we introduced a conflict graph for each hyperedge h519

and colored its vertices with the end vertices of the path induced by h.520

References521

[1] U. Brandes, S. Cornelsen, B. Pampel, A. Sallaberry, Path-based supports for hyper-522

graphs, in: C. Iliopoulos, W. Smyth (Eds.), Proceedings of the 21st International523

Workshop on Combinatorial Algorithms (IWOCA 2010), Vol. 6460 of Lecture Notes524

in Computer Science, Springer, 2011, pp. 20–33.525

[2] D. Král’, J. Kratochv́ıl, H.-J. Voss, Mixed hypercacti, Discrete Mathematics 286526

(2004) 99–113.527

[3] C. Bujtás, Z. Tuza, Color-bounded hypergraphs, II: Interval hypergraphs and hyper-528

trees, Discrete Mathematics 309 (2009) 6391–6401.529

[4] C. Beeri, R. Fagin, D. Maier, M. Yannakakis, On the desirability of acyclic database530

schemes, Journal of the Association for Computing Machinery 30 (4) (1983) 479–513.531

[5] D. S. Johnson, H. O. Pollak, Hypergraph planarity and the complexity of drawing532

Venn diagrams, Journal of Graph Theory 11 (3) (1987) 309–325.533

19



[6] M. Kaufmann, M. van Kreveld, B. Speckmann, Subdivision drawings of hypergraphs,534

in: I. G. Tollis, M. Patrignani (Eds.), Proceedings of the 16th International Sympo-535

sium on Graph Drawing (GD 2008), Vol. 5417 of Lecture Notes in Computer Science,536

Springer, 2009, pp. 396–407.537

[7] K. Buchin, M. van Kreveld, H. Meijer, B. Speckmann, K. Verbeek, On planar sup-538

ports for hypergraphs, in: D. Eppstein, E. R. Gansner (Eds.), Proceedings of the539

17th International Symposium on Graph Drawing (GD 2009), Vol. 5849 of Lecture540

Notes in Computer Science, Springer, 2010, pp. 345–356.541

[8] P. Simonetto, D. Auber, D. Archambault, Fully automatic visualisation of overlap-542

ping sets, Computer Graphics Forum 28 (3) (2009) 967–974.543

[9] J. Flower, A. Fish, J. Howse, Euler diagram generation, Journal on Visual Languages544

and Computing 19 (6) (2008) 675–694.545

[10] R. E. Tarjan, M. Yannakakis, Simple linear-time algorithms to test chordality of546

graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,547

SIAM Journal on Computing 13 (3) (1984) 566–579.548

[11] U. Brandes, S. Cornelsen, B. Pampel, A. Sallaberry, Blocks of hypergraphs applied549

to hypergraphs and outerplanarity, in: C. Iliopoulos, W. Smyth (Eds.), Proceedings550

of the 21st International Workshop on Combinatorial Algorithms (IWOCA 2010),551

Vol. 6460 of Lecture Notes in Computer Science, Springer, 2011, pp. 201–211.552

[12] E. Korach, M. Stern, The clustering matroid and the optimal clustering tree, Math-553

ematical Programming, Series B 98 (2003) 385 – 414.554
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