Ulrik Brandes
email: ulrik.brandes@uni-konstanz.de

Sabine Cornelsen
email: sabine.cornelsen@uni-konstanz.de

Barbara Pampel
email: barbara.pampel@uni-konstanz.de

Arnaud Sallaberry
email: arnaud.sallaberry@labri.fr

Path-Based Supports for Hypergraphs

Keywords: graph algorithm, graph drawing, hypergraph, metro map layout

la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

A hypergraph is a pair H = (V, A) where V is a finite set and A is a (multi-)set of non-empty subsets of V . The elements of V are called vertices and the elements of A are called hyperedges. A support (or host graph) of a hypergraph H = (V, A) is a graph G = (V, E) such that each hyperedge of H induces a connected subgraph of G, i.e., such that the graph G[h] := (h, {e ∈ E, e ⊆ h}) is connected for every h ∈ A. See Fig. 1(b) for an example.

Applications for supports of hypergraphs are, e.g., in hypergraph coloring [START_REF] Král | Mixed hypercacti[END_REF][START_REF] Bujtás | Color-bounded hypergraphs, II: Interval hypergraphs and hypertrees[END_REF], databases [START_REF] Beeri | On the desirability of acyclic database schemes[END_REF], or hypergraph drawing [START_REF] Johnson | Hypergraph planarity and the complexity of drawing Venn diagrams[END_REF][START_REF] Kaufmann | Subdivision drawings of hypergraphs[END_REF][START_REF] Buchin | On planar supports for hypergraphs[END_REF][START_REF] Simonetto | Fully automatic visualisation of overlapping sets[END_REF]. E.g., see Fig. 1 for an application of a support for designing Euler diagrams. An Euler diagram of a hypergraph H = (V, A) is a drawing of H in the plane in which the vertices are drawn as points and each hyperedge h ∈ A is drawn as a simple closed region containing the points representing the vertices in h and not the points representing the vertices in V \ h. There are various well-formedness conditions for Euler diagrams, see e.g. [START_REF] Flower | Euler diagram generation[END_REF][START_REF] Simonetto | Fully automatic visualisation of overlapping sets[END_REF].

Recently, many papers have been devoted to the problem of deciding which classes of hypergraphs admit what kind of supports. It can be tested in linear time whether a hypergraph has a support that is a tree [START_REF] Tarjan | Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs[END_REF], a path or a cycle [START_REF] Buchin | On planar supports for hypergraphs[END_REF]. It can be decided in polynomial time whether a hypergraph has a tree support with bounded degrees [START_REF] Buchin | On planar supports for hypergraphs[END_REF] or a cactus support [START_REF] Brandes | Blocks of hypergraphs applied to hypergraphs and outerplanarity[END_REF]. A minimum weighted tree support can be computed in polynomial time [START_REF] Korach | The clustering matroid and the optimal clustering tree[END_REF]. It is N P-complete to decide whether a hypergraph has a planar support [START_REF] Johnson | Hypergraph planarity and the complexity of drawing Venn diagrams[END_REF], a compact support [START_REF] Johnson | Hypergraph planarity and the complexity of drawing Venn diagrams[END_REF][START_REF] Kaufmann | Subdivision drawings of hypergraphs[END_REF] or a 2-outerplanar support [START_REF] Buchin | On planar supports for hypergraphs[END_REF]. A support with the minimum

{v 1 } {v 2 } {v 3 } {v 4 } {v 5 } {v 6 } {v 7 } V h ′ h h 1 h 2 h 3 h 4 h 5 (a) Hasse diagram v 1 v 2 v 3 v 4 v 5 v 6 v 7 (b) tree support v 1 v 2 v 3 v 4 v 5 v 6 v 7
(c) metro map like drawing number of edges can be computed in polynomial time if the hypergraph is closed under intersections [START_REF] Buchin | On planar supports for hypergraphs[END_REF]. If the set of hyperedges is closed under intersections and differences, it can be decided in polynomial time whether the hypergraph has a planar or outerplanar support [START_REF] Brandes | Blocks of hypergraphs applied to hypergraphs and outerplanarity[END_REF].

v 1 v 2 v 3 v 4 v 5 v 6 v 7 (d) Euler diagram
In this paper we consider a restriction on the subgraphs of a support that are induced by the hyperedges. A support G of a hypergraph H = (V, A) is called path-based if the subgraph G[h] contains a Hamiltonian path for each hyperedge h ∈ A, i.e., G[h] contains a path that contains each vertex of h. This definition was motivated by by the aesthetics of metro map layouts. I.e., the hyperedges could be visualized as lines along the Hamiltonian path in the induced subgraph of the support like the metro lines in a metro map. See Fig. 2 for examples of metro maps, Fig. 3 for an example of natural sciences drawn in the metro map anthology, and Fig. 1(c) and 6(f) for a representation of some hyperedges in such a metro map like drawing. For metro map layout algorithms see, e.g., [START_REF] Nöllenburg | An improved algorithm for the metro-line crossing minimization problem[END_REF][START_REF] Wolff | Drawing subway maps: A survey[END_REF].

We briefly consider monotone, planar, and minimum path-based supports. Our main result is a characterization of those hypergraphs that have a path-based tree support and a polynomial time algorithm for constructing path-based tree supports if they exist. E.g., Fig. 1 shows an example of a hypergraph H = (V, A) that has a tree support but no path-based tree support. However, the tree support in Fig. 1(b) is a path-based tree support for (V, A \ {V }).

The contribution of this paper is as follows. In Section 2 we give the necessary definitions. We then briefly discuss monotone path-based supports in Section 3 and mention that finding a minimum path-based support or deciding whether there is a planar pathbased support, respectively, is N P-hard. We consider path-based tree supports in Sect. 4.

In Section 4.1 we review a method for computing tree supports using the Hasse diagram.

In Section 4.2 we show how to apply this method to test whether a hypergraph has a path-based tree support and if so how to compute one in polynomial time. Finally, in Section 4.3 we discuss the run time of our method. Local train map of Zurich (www.zvv.ch) and the metro map of Amsterdam (www.amsterdam.info). In (b) the union of all lines forms a tree.

Preliminaries

In this section, we give the necessary definitions that were not already given in the

A hypergraph H = (V, A) is closed under intersections if h 1 ∩ h 2 ∈ A ∪ {∅} for h 1 , h 2 ∈ A.

We say that two hyperedges h

1 , h 2 overlap if h 1 ∩ h 2 = ∅, h 1 ⊆ h 2 , and h 2 ⊆ h 1 . A hypergraph H = (V, A) is connected if for any pair of vertices v, w ∈ V there is a sequence of hyperedges h 1 , . . . , h ℓ ∈ A such that v ∈ h 1 , w ∈ h ℓ , and h i ∩ h i+1 = ∅, i = 1, . . . ℓ -1.
The Hasse diagram of a hypergraph H = (V, A) is the directed acyclic graph with vertex set A ∪ {{v}; v ∈ V } and there is an edge (h 1 , h 2) if and only if h 2 h 1 and there is no set h ∈ A with h 2 h h 1 . Fig. 1(a) shows an example of a Hasse diagram. Let (v, w) be an edge of a directed acyclic graph. Then we say that w is a child of v and v a parent of w. For a descendant d of v there is a directed path from v to d while for an ancestor a of v there is a directed path from a to v. A source does not have any parents, a sink no children and an inner vertex has at least one parent and one child.

Path-Based Supports

In a metro map like drawing of a hypergraph vertices are drawn as disjoint simple closed regions in the plane and each hyperedge h is drawn as a curve C h with the end points within the regions of different vertices of h, visiting the region of every vertex of h exactly once, not visiting the vertices not in h, and such that the pieces of C h within the region of a vertex or between two such regions are simple. A path-based support of a hypergraph H = (V, A) is a graph G such that G[h] contains a spanning path for every hyperedge h ∈ A.

On one hand, a metro map like drawing of a hypergraph H = (V, A) induces a pathbased support G = (V, E) of H: For a hyperedge h ∈ A let p h : v 1 , . . . , v |h| be the In order to have a readable metro map like drawing of a hypergraph it is typically desirable to draw any curve representing a hyperedge without self intersection or even monotone.

Monotone Path-Based Supports

A drawing of a graph is a mapping of each vertex to a distinct point in the plane and of each edge to a simple curve between the image of its adjacent vertices not containing the image of any other vertex. In a straight-line drawing of a graph each edge is drawn as a line segment. Given a drawing of G, a path p of G is monotone with respect to a straight line ℓ -called the axis of monotonicity -if every line perpendicular to ℓ intersects the drawing of p in at most one point. Note that a path p in a straight-line drawing is monotone with respect to the axis ℓ if and only if the orthogonal projections of the vertices of p on ℓ appear along ℓ in the order induced by p. Proof. Let a drawing D of G that is monotone with respect to H = (V, A) be given and let p h , h ∈ A be a spanning path of G[h] that is monotone with respect to the axis ℓ h . If for each edge {v, w} of G the line segment between v and w does not contain any vertex of G other than v or w then the straight-line drawing of G in which the vertices are mapped to the same points as in D is monotone with respect to H.

Let G = (V, E) be a path-based support of a hypergraph H = (V, A). A
Consider now for two vertices v, w in a hyperedge h the distances dist h (v, w) between the orthogonal projections of v and w to ℓ h . Let ∆ be the minimum of all distances dist h (v, w) over all h ∈ A and v, w ∈ h with v = w. Let 0 < ε ≤ ∆/3. Consider now the vertices of V in an arbitrary order v 1 , . . . , v n , n = |V |. For k = 1, . . . , n, we can now place v k on the circle with radius ε around the position of v k in D but not on the intersection with the line through the already fixed drawings of v i and v j , 1 ≤ i < j < k. The corresponding straight-line drawing is monotone with respect to H with the axes of monotonicity ℓ h , h ∈ A.

Remark 2. Not every path based support of a hypergraph is monotone.

Proof. Consider the following hypergraph. Let I = {(i, j, k, ℓ);

1 ≤ i < j ≤ 5, 1 ≤ k < ℓ ≤ 5, i < k, {i, j} ∩ {k, ℓ} = ∅} be an index set representing unordered pairs of disjoint edges of the complete graph K 5 . Let V I = {v i ; i = 1, . . . , 5} ∪ {v i,j,k,ℓ,x ; (i, j, k, ℓ) ∈ I, x = 1, . . . , 3}, let h ijkℓ = {v i , v i,j,k,ℓ,1 , v j , v i,j,k,ℓ,2 , v k , v i,j,k,ℓ,3 , v ℓ }, (i, j, k, ℓ) ∈ I, let A I = {h ijkℓ ; (i, j, k, ℓ) ∈ I}, and let H I = (V I , A I). Let E contain the edges {v i , v i,j,k,ℓ,1 }, {v i,j,k,ℓ,1 , v j }, {v j , v i,j,k,ℓ,2 }, {v i,j,k,ℓ,2 , v k }, {v k , v i,j,k,ℓ,3 }, {v i,j,k,ℓ,3 , v ℓ } for (i, j, k, ℓ) ∈ I.
The resulting path-based support G = (V, E) of H I is shown in Fig. 4(a). Note that G[h ijkℓ] is a path for any hyperedge h ijkℓ ∈ A visiting the vertices v i , v j , v k , v ℓ in this order. Consider now any drawing of G. Since a K 5 is not planar, there are two straight line segments v i v j , v k , v ℓ , (i, j, k.ℓ) ∈ I that intersect. Hence, the path G[h ijkℓ] cannot be drawn monotonously.

Remark 3. Every hypergraph has a monotone path-based support.

Proof. Order the vertices of H = (V, A) with respect to an arbitrary ordering <. The support G < = (V, E <) of H with respect to the ordering < is constructed as follows.

For each hyperedge {v 1 , . . . , v k } ∈ A with v 1 < • • • < v k the edge set E < contains the edges {v i-1 , v i }, i = 1, . . . , k. Assume now that in a drawing of G < the x-value of a vertex v is smaller than the x-value of the vertex w if v < w and that the edges are drawn monotonously in x-direction. Then for each hyperedge h = {v 1 , . . . , v k } ∈ A with Note that the problem of deciding whether a given support is a support with respect to an ordering and if so, finding such an ordering, is closely related to the betweenness problem [START_REF] Opatrny | Total ordering problem[END_REF]. and2. it is N P-complete to decide whether there exists an ordering < of the vertex set such that G is the support of H with respect to <, even if G has the minimum number of edges among all supports of H. Proof.

v 1 < • • • < v k the path p h : v 1 , . . . , v k is
Theorem 1. Given a support G of a hypergraph H 1. it is N P-hard to decide whether G is a monotone path-based support of H,
v 1 v 2 v 3 v 4 v 5 7 7 6 5 5 (a) maximum path-based support v 1 v 2 v 3 v 4 v 5 (b) minimum path-based support v 1 v 2 v 3 v 4 v 5 (
1. Consider an instance of the strictly monotone trajectory drawing problem consisting of a set of paths P on a set of vertices V t . It is N P-hard to decide whether the vertices can be mapped to points in the plane such that each path is monotone with respect to some axis (one for each path) [START_REF] Pampel | Constrained graph drawing[END_REF].

Consider the hypergraph H = (V, A) with V containing V t and for each path p ∈ P and each edge e ∈ p a vertex v ep . The set A contains for each path p ∈ P a hyperedge h p = {v,w}∈p {v, v {v,w}p , w} as well as the hyperedges {v, v {v,w}p } and {v {v,w}p , w}

for each edge {v, w} ∈ p. The graph G = (V, E) with E = p∈P e∈p {{v, v ep }; v ∈
e} is a path-based support of H and has the minimum number of edges among all supports of H. G is monotone if and only if P is drawable with each path monotone with respect to some axis. Consider the hypergraph H = (V, A) with V containing V b and for each constraint

c ∈ C vertices v c2 and v c4 . The set A contains for each c = (v c1 , v c3 , v c5) ∈ C a hyperedge h c = {v c1 , . . . , v c5 } and hyperedges h ci = {v ci , v c(i+1) } for 1 ≤ i ≤ 4. The graph G = (V, E) with E = c∈C {h ci ; 1 ≤ i ≤ 4} is a path-based support of

H and has the minimum number of edges among all supports of H.

There is an ordering

< of V such that G is the support of H with respect to < if and only if for each constraint c = (v c1 , v c3 , v c5) ∈ C the five vertices in h v are either ordered v c1 < v c2 < v c3 < v c4 < v c5 or v c5 < v c4 < v c3 < v c2 < v c1 . Since
the vertices v c2 and v c4 do not appear in a hyperedge h c ′ for any constraint c = c ′ it follows that there is an ordering < of V such that G is the support of H with respect to < if and only if V b can be totally ordered while satisfying all betweenness constraints in C.

Minimum Path-Based Supports

Assuming that each hyperedge contains at least one vertex, each hypergraph H = (V, A) has a monotone path-based support G = (V, E) with at most Nm edges. Just take the support G < with respect to an arbitrary ordering < of the vertex set V . It is, however, N P-hard to find an ordering that minimizes the number of edges among all path-based supports of H with respect to an ordering of the vertex set [START_REF] Johnson | Compressing large boolean matrices using reordering techniques[END_REF].

Further

Planar Path-Based Supports

A graph is planar if it has a drawing in which no pair of edges intersect but in common end points. For the application of Euler diagram like drawings, planar supports are of special interest. However, like for general planar supports, the problem of testing whether there is a path-based planar support is hard.

Theorem 3. It is N P-complete to decide whether a hypergraph -even if it is closed under intersections -has a path-based planar support.

Proof. The support that Johnson and Pollak [START_REF] Johnson | Hypergraph planarity and the complexity of drawing Venn diagrams[END_REF] constructed to prove that it is N Pcomplete to decide whether there is a planar support, was already path-based.

Path-Based Tree Supports

In this section we show how to decide in polynomial time whether a given hypergraph has a path-based tree support. If such a support exists, it is at the same time a path-based support of minimum size, a monotone path-based support [START_REF] Angelini | Monotone drawings of graphs[END_REF], and a planar path-based support. Moreover the intersection of any subset of hyperedges induces again a path in a path-based tree support. So far it is known how to decide in linear time whether there is a path-based tree support if V ∈ A [START_REF] Buchin | On planar supports for hypergraphs[END_REF].

{v1} {v2} {v3} {v4} {v5} {v6} {v7} V h 3 1 h 2 2 h 1 1 h 1 2 h 1 4 h 1 5 h 2 1 (a) Hasse diagram D {v1} {v2} {v3} {v4} {v5} {v6} {v7} V h 3 1 h 2 2 h 1 1 h 1 3 h 1 4 h 1 5 h 2 1 h 1 2 (b) Closure D {v1} {v2} {v3} {v4} {v5} {v6} {v7} V h 3 1 h s h 1 1 h 1 2 h 1 3 h 1 4 h 1 5 (c) Augmented D ′

Constructing a Tree Support from the Hasse Diagram

A support with the minimum number of edges and, hence, a tree support if one exists can easily be constructed from the Hasse diagram if the hypergraph is closed under intersections [START_REF] Buchin | On planar supports for hypergraphs[END_REF]. Note, however, that the number of intersections of any subset of hyperedges could be exponential in the size of the hypergraph.

that (h 1 ∪ • • • ∪ h k , {h 1 , . . . , h k }) is connected. Then h 1 ∪ • • • ∪ h k is a summary hyperedge.
Note that a summary hyperedge might not be in A. Let A ′ be the set of subsets of V containing the summary hyperedges, the hyperedges in A that are not implied, and the sources of D. For an example consider Fig. 5(c). In this example, the hyperedge h s is a summary hyperedge, h 3 1 and h 1 1 , . . . , h 1 5 are non-implied, and V is a source.

The augmented Hasse diagram of

H is the Hasse diagram D ′ of H ′ = (V, A ′). If
H has a tree support, then the augmented Hasse diagram has O(n + m) vertices and can be constructed in O(n 3 m) time [START_REF] Buchin | On planar supports for hypergraphs[END_REF] (without explicitly constructing the closure under intersection A). Further note that if H has a tree support and h ∈ A ′ is non-implied, then all children of h in D ′ are disjoint: Otherwise there would be a summary hyperedge between h and intersecting children.

If a tree support G = (V, E) of H exists, it can be constructed as follows [START_REF] Buchin | On planar supports for hypergraphs[END_REF]. Starting with an empty graph G, we proceed from the sinks to the sources of

D ′ . If h ∈ A ′
is not implied, choose an arbitrary ordering h 1 , . . . , h k of the children of h in D ′ . We assume that at this stage, G[h i], i = 1, . . . , k are already connected subgraphs of G. For j = 2, . . . , k, choose vertices v j ∈ j-1 i=1 h i , w j ∈ h j and add edges {v j , w j } to E.

If we want to construct a path-based tree support, then G[h j], j = 1, . . . , k are paths and as vertices v j+1 and w j for the edges connecting G[h j] to the other paths, we choose the end vertices of G[h j]. The only choices that remain are the ordering of the children of h and the choice of which end vertex of G[h j] is w j and which one is v j+1 . The implied hyperedges give restrictions on how these choices might be done.

Choosing the Connections: A Characterization

When we want to apply the general method introduced in Sect. 4.1 to construct a path-based tree support G, we need to make sure that we do not create vertices of degree greater than 2 in G[h] when processing non-implied hyperedges contained in an implied hyperedge h.

Definiton 1 (Conflicting Hyperedges). Two overlapping hyperedges h ′ , h ′′ ∈ A ′ have a conflict if there is some hyperedge in A ′ that contains both h ′ and h ′′ . Two overlapping

hyperedges h ′ , h ′′ ∈ A ′ have a conflict with respect to h ∈ A ′ if h ′ has a conflict with h ′′ , h ′ ∩ h ′′ ⊆ h and h is a child of h ′ or h ′′ .
In that case we say that h ′ and h ′′ are conflicting hyperedges of h. Let A ′ h be the set of conflicting hyperedges of h. Let A c h be the set of

children h i of h such that h ∈ A ′ hi .
E.g., consider the hypergraph in Fig. 5(c). Then h 3 1 and h 1 1 are both contained in the hyperedge V and they both contain {v 2 }. Hence, they have a conflict. Further, is the

intersection h 3 1 ∩ h 1 1 = {v 2 } contained in the child h s of h 3 1 . Hence, h 3

{h

′ , h 1 }, h ′ ∈ A ′ h , h 1 ∈ A c h if h ′ ∈ A ′
h1 and h ′ and h have a conflict with respect to

h 1 . 3. {h 1 , h 2 }, h 1 , h 2 ∈ A c h , h 1 = h 2 .
E.g., consider the hypergraph H = (V, A) in Fig. 5(c). Then the conflict graph C hs contains the edges {h 3 1 , h 1 5 } and {h 3 1 , h 1 1 } of type one, the edges {h 1 2 , h 1 1 } and {h 1 4 , h 1 5 } of type 2 and the edge {h 1 2 , h 1 4 } of type 3. (See the figure on the right.) Hence, C hs contains a cycle of odd length, reflecting that there is no suitable assignment of the end vertices of G[h s] to h 1 1 , h 1 5 and h 3 1 . 1. H has a tree support,

h 3 1 C h s : h 1 1 h 1 2 h 1

no hyperedge contains three pairwise overlapping hyperedges h

1 , h 2 , h 3 ∈ A ′ with h 1 ∩ h 2 = h 2 ∩ h 3 = h 1 ∩ h 3 ,

and

all conflict graphs C

h , h ∈ A ′ , |h| > 1 are bipartite.
From the observations before the definition of the conflict graph it is clear that the conditions of Theorem 4 are necessary for a path-based tree support. In the remainder of this section, we prove that the conditions are also sufficient.

In the following assume that the conditions of Theorem 4 are fulfilled. We show in Algorithm 1 how to construct a path-based tree support G of H. We consider the vertices of the augmented Hasse diagram D ′ from the sinks to the sources in a reversed topological order, i.e., we consider a hyperedge only if all its children in D ′ have already been considered. During the algorithm, a conflicting hyperedge h ′ of a hyperedge h is labeled with the end vertex v of G[h] if the path G[h ′ \ h] will be appended to v. We will call this label side h (h ′). Concerning the choice of the ordering of the children in Line 8 of Algorithm 1: the sets A c h , h ∈ A ′ contain at most two hyperedges -otherwise the subgraph of C h induced by A c h contains a triangle and, hence, is not bipartite.

Algorithm 1 constructs a tree support G of H [START_REF] Buchin | On planar supports for hypergraphs[END_REF]. Before we show that G is a pathbased tree support, we illustrate the algorithm with an example. Consider the hypergraph H in Fig. 6. We show how the algorithm proceeds h 5 1 and all its descendants in D ′ . For

A ′ h ∪ A c h , h non-source vertex of D ′ Output: path-based tree support G = (V, E) of H Data : labels side h (h ′) indicating the end vertex of G[h] to which h ′ \ h should be appended begin E ← ∅; foreach vertex h of D ′ in a reversed topological order of D ′ do if h = {v} for some v ∈ V then foreach vertex h ′ of C h do side h (h ′) ← v; else 8 Let h 1 , . . . , h k be the children of h such that h 2 , . . . , h k-1 / ∈ A c h ; if h is non-implied then Let w i , v i+1 , i = 1, . . . , k be the end vertices of G[h i] such that • side h1 (h) = v 2 if h ∈ A ′ h1 and • side h k (h) = w k if h ∈ A ′ h k ; Add the edges {v i , w i }, i = 2, . . . , k to E; else Let w 1 = v k+1 be the end vertices of G[h] such that • v k+1 / ∈ h 1 and • w 1 / ∈ h k ; if h 1 ∈ A c h then side h (h 1) ← v k+1 ; if h k ∈ A c h then side h (h k) ← w 1 ; Label the remaining vertices of C h with v k+1 or w 1
such that no two adjacent vertices have the same label; follows that side h1 (h ′′) is an end vertex of G[h], and especially, that h 1 and h share an end vertex. By construction it follows that side h (h 1) is the end vertex of h that is not in h 1 . Hence, side h (h ′′) ∈ h 1 and side h1 (h ′′) = side h (h ′′). By the inductive hypothesis it follows that side g (h

end h 1 1 h 1 2 h 1 3 h 1 4 h 1 5 h 1 6 h 1 7 h 1 8 h 1 9 h 1 10 h 1 11 h 1 12 h 1 13 h 2 1 h 2 2 h 2 3 h 2 4 h 2 5 h 4 2 h 4 1 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 v 12 v 13 h 2 7 h 2 6 h 5 1 h 5 2 h 5 3 h 1 14 v 14 h 3 1 h 3 3 h 3 4 h 3 2 (a) augmented Hasse diagram D ′ of a hypergraph H side = v 5 side = v 6 h 3 1 h 2 2 h 1 5 (b) conflict graph of hyperedge h 2 3 side = v 7 side = v 9 h 1 7 h 1 9 h 2 5 h 4 1 (c) conflict graph of hyperedge h 2 4 h 4 2 h 2 3 side = v 5 side = v 7 h 1 7 h 2 2 (d) conflict graph of hyperedge h 3 1 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 v 12 v 13 v 1 v 2 v 3 v 14 (e) a path-based tree support of H v 9 v 3 v 4 v 5 v 6 v 7 v 8 v 10 v 14 v 13 v 12 v 11 v 1 v 2 (f)
′ h h ′ 1 h ′′ 1 h ′′ h vw h 1 h ′ ∩ h ′′ h c = h vw ∩ h ′′ = h vw ∩ h h vx h vx ∩ h v x w (a) augmented Hasse diagram D ′ h h ′ h ′′ h vx h vw h c x v w (b) tree support G
′′) = side h (h ′′) for h ∩ h ′′ ⊆ g ⊆ h 1 .
Since the labels in side h ′ ∩h ′′ (.) are the end vertices of

G[h ′ ∩ h ′′], it follows that side h (h ′′) ∈ h ′ ∩ h ′′ ⊂ h ′′ . 1. + 2. + 5. if h ′ ∩ h ′′ / ∈ A ′ : Let h ′′ 1 ⊆ h ′′ be minimal with h ′ ∩ h ′′ ⊂ h ′′ 1 . Since h ′ and h ′′ 1 overlap, there is an edge {v, w} ∈ E such that v ∈ h ′ ∩ h ′′ and w ∈ h ′′ 1 \ h ′ . We show that side h (h ′′) = v.
By Lemma 5 there is a child h c of h vw that contains h ∩ h vw . Since v ∈ h ∩ h vw , it follows that w / ∈ h c and, hence, v is an end vertex of h c .

Note that by the minimality of h

′′ 1 it follows that h ′ ∩ h ′′ ⊆ h vw . Since G[h ′′], G[h ′]
are paths, it follows that h c h and, hence, h c = h ∩ h vw . Let h p be minimal with h c h p ⊆ h. Then h p , h vw have a conflict with respect to h c and it follows from the inductive hypothesis on Property 5 that side hc

(h vw) = v. Let h ′ c be maximal with h c ⊆ h ′ c h.
By the inductive hypothesis on Property 1 it follows that side h ′ c (h vw) = v. Since h, h vw have a conflict with respect to h ′ c , it follows by the inductive hypothesis on Property 3 that v is an end vertex of h. In C h there is the

path h ′ c , h vw , h ′ , h ′′ . By construction, side h (h ′ c) is the end vertex of h that is not in h ′ c . Hence, side h (h vw) = side h (h ′′) = v. 3.: Let v = side h (h ′′). By the construction in Algorithm 1, v is an end vertex of G[h ′] if h ′ is non-implied. So assume that h ′ is implied and that v is not an end vertex of G[h ′]. Let w ∈ h ′ \ h be a neighbor of v in G. By Property 2, it follows that v ∈ h ′′ .
Let h c be the child of h vw that contains h vw ∩ h ′′ . By the inductive hypothesis on Property 4, it follows that G[h vw \ h ′′] is a path that contains w but not v. Hence,

h c = h vw ∩ h ′′ = h vw ∩ h. Let h ′ 1 , h ′′ 1 ∈ A ′ be minimal with h ′ ⊇ h ′ 1 h ′ ∩ h ′′ and h ′′ ⊇ h ′′ 1 h ′ ∩ h ′′ , respectively. Assume first that h ′ ∩ h ′′ ∈ A ′ . Then C h ′ ∩h ′′ contains the triangle h vw , h ′ 1 , h ′′ 1
, h vw and, hence, is not bipartite.

Assume now that h ′ ∩ h ′′ / ∈ A ′ . By the already proven part of Property 5 it follows that there is an edge {v, x} of G with x ∈ h ′′ 1 \h. We have

h c = h vw ∩h ′′ ⊇ h vw ∩h vx .
Further, the child of h vx that contains h vx ∩ h equals h vx ∩ h. Since h ′′ 1 is implied and h vx not, it follows that h ′′ 1 = h vx and, hence, h vx ⊇ h ′ ∩ h ′′ . Hence, either

h vx ∩ h ⊆ h vw ∩ h or h vw ∩ h h vx ∩ h h ′ ∩ h ′′ . In the first case let h 1 ∈ A ′ be minimal with h vw ∩ h h 1 ⊆ h. Then there is the triangle h vw , h vx , h 1 , h vw in C h∩hvw . In the latter case let h 1 ∈ A ′ be minimal with h vx ∩ h h 1 ⊆ h. Then there is the triangle h vw , h vx , h 1 , h vw in C h∩hvx .
4.: By the inductive hypothesis G[h\h ′′] is a path. Further, h and h ′ share side h (h ′′) ∈ h ′′ as a common end vertex. By the precondition of the lemma, G[h ′] is a path. Hence, Proof. Again, we prove the lemma by induction on the step in which h was considered in Algorithm 1. There is nothing to show if h had been considered in the first step. So assume that h ∈ A ′ and that G[h] contains a vertex v of degree greater than two.

G[h ′ \ h ′′] is a path. 5. if h ′ ∩ h ′′ ∈ A ′ : If h = h ′ ∩ h ′′ , let h 1 be the child of h with h ′ ∩ h ′′ ⊆ h 1 . By the inductive hypothesis side h1 (h ′′) is adjacent in G to a vertex of h ′′ \ h = h ′′ \ h ′ and by Property 1, side h1 (h ′′) = side h (h ′′). If h = h ′ ∩ h ′′ , let h ′′ 1 ∈ A ′ be minimal with h h ′′ 1 ⊆ h ′′ . Applying Property 3 with h ′′ 1 as "h ′ " and h ′ as "h ′′ " reveals that side h (h ′) is an end vertex of G[h ′′ 1]. Since G[h ′′ 1] is a path, it follows that some vertex of h ′′ 1 \ h is adjacent to side h (h ′′).
Let u 1 , u 2 , u 3 be the first three vertices connected to v in G. Let h i = h vui , i = 1, 2, 3.

Then h 1 , h 2 , h 3 are all three contained in h and its intersection contains v. Hence, any two of them have a conflict if and only if one of them is not contained in the other. A case distinction reveals that we wouldn't have appended all three, u 1 , u 2 and u 3 , to v. h 2 = h 3 : Since h 3 contains no vertex of degree higher than two, it follows that u 1 / ∈ h 3 ,

h 3 ∩ h 1 = {v}.
Hence, h 1 and h 3 have a conflict with respect to the common child {v}, contradicting that v is added in the middle of h 3 .

h 1 = h 2 or h 1 = h 3 :
These cases are analogous to the first case.

h 1 h 3 : Like in the first case it follows that u 2 / ∈ h 3 . Let h ′ i , i = 2,
(h 3) = v. If h ′ 3 = h 3 ∩ h 2 , let v ′ = v be the other end vertex of h ′ 2 . Since we know that side h ′ 2 (h 2) = v, it follows that side h ′ 2 (h 3) = v ′ .
Hence, by Lemma 6 Property 1 we can conclude that side h ′ 3 (h 3) = v ′ . In both cases we have a contradiction.

NOT-ANC NOT-ANC NOT-ANC

h 1 1 h 1 2 h 1 3 h 1 4 h 1 5 h 1 6 h 1 7 h 1 8 h 1 9 h 1 10 h 1 11 h 1 12 h 1 13 h 2 1 h 2 2 h 2 3 h 2 4 h 2 5 h 4 2 h 4 1 h 2 7 h 2 6 h 5 1 h 5 2 h 5 3 h 1 14 h 3 1 h 3 3 h 3 4 h 3 2 ANC ANC DESC(h 2 2) DESC(h 3

Conflict Computation and Run Time

In this section we show how to efficiently compute the conflicts and give an upper bound for the run time of testing whether a hypergraph has a path-based tree support and, if it exists, of constructing one.

Representing the hyperedges as sorted lists of their elements, all conflicts can be determined straight-forwardly in O(n 3 (n + m)) time. In the following, we show how this time bound can be improved.

We first compute candidates for conflicting pairs of hyperedges, which in the case of hypergraphs having a path-based tree support turn out to be a superset of the set of all conflicts. The idea is, that all potential conflicts lie on a path from an ancestor of h to one of h's descendants. The method can be found as pseudocode in Algorithm 2. First, all ancestors of h are marked in Procedure ancestor(h). Proof. Let G be a path-based tree support of a hypergraph and let h ′ and h have a conflict with respect to a child h c of h.

(h ′) = anc iff h h ′ label(h ′) = not-anc only if h ∪ h ′ not contained in any source of D ′ label(h ′) = desc(h c) iff h ′ ⊆ h c for exactly one child h c of h label(h ′) = multi-desc iff h ′ is contained in more than one child of h label(h ′) = not-conflict only if h ∩ h ′ not contained in any child of h and h ∪ h ′ contained in some source of D ′ label(h ′) = conflict(h c) only if h c ∩ h ′ = ∅ for a child h c of h and h ∪ h ′ contained in some source of D ′ ancestor(vertex h ′) begin foreach parent h ′′ of h ′ do label(h ′′) ← anc; ancestor(h ′′); end descendant(vertex h ′ , vertex h c) begin if label(h ′) = desc(h ′ c), h c = h ′ c then label(h ′) ← multi-desc; else label(h ′) ← desc(h c); foreach child h ′′ of h ′ do if label(h ′′) = multi-desc then descendant(h ′′ , h c); end up-search(vertex h ′ , vertex h c) begin foreach parent h ′′ of h ′ do if label(h ′′) ∈ {∅, conflict(h ′ c), h ′ c = h c } then up-search(h ′′ , h c); if label(h ′) = conflict(h ′ c), h c = h ′ c then label(h ′) ← not-conflict; else if label(h ′) = desc(h c) then if label(h ′′) ∈ {conflict(h c), anc, not-conflict} then label(h ′) ← conflict(h c); if label(h ′) = conflict(h c) then label(h ′) ← not
1. Let v be the end vertex of G[h] that is contained in h ′ . Then v and all its ancestors on the path from {v} to h c are labeled desc(h c) (and not multi-desc).

If there was a descendant of h

′ labeled desc(h ′ c) for a child h ′ c = h c of h, then h ′
contains a vertex of h that is not a contained in h c . Hence, h c does not contain h∩h ′ , contradicting that h and h ′ have a conflict with respect to h c . Hence, Algorithm 2

does not label h ′ with not-conflict.

For a path P in D ′ from h ′ to v let h P be the first vertex on P that is labeled desc(h c).

Assume that among all such vertices h P is the one to which the procedure up-search of Algorithm 2 is applied first. Then up-search(h P , h c) labels h ′ with conflict(h c).

Note, however, that the converse of Lemma 9 is not true. More precisely, if h ′ is labeled conflict(h c) in the end of Algorithm 2 applied to h then indeed do h and h ′ have a conflict, but h c does not have to contain h ∩ h ′ . The reason for this is that all descendants of h ′ that are no descendants of h c are descendants of several children of h and, hence, labeled multi-desc. Fig. 9 shows an example.

Conclusion

We have introduced path-based supports for hypergraphs. Hence, as a new model, we considered a restriction on the appearance of those subgraphs of a support that are induced by the hyperedges. We have discussed that monotone path-based supports are desirable. We have shown that it is N P-hard to decide whether a given path-based support is monotone or to find a path-based support with the minimum number of edges.

Further, it is N P-complete to decide whether there is a planar path-based support. As a main result, we characterized those hypergraphs that have a path-based tree support and we gave an algorithm that computes a path-based tree support in O(n 3 m) run time if it exists. Our algorithm completed the paths for the hyperedges in the order in which they appear in a reversed topological ordering of the augmented Hasse diagram. To connect these subpaths in the right order, we introduced a conflict graph for each hyperedge h and colored its vertices with the end vertices of the path induced by h.

Figure 1 :

 1 Figure 1: Three representations of the hypergraph H= (V, A) with hyperedges h 1 = {v 1 , v 2 }, h 2 = {v 2 , v 3 }, h 3 = {v 3 , v 4 }, h 4 = {v 4 , v 5 }, h 5 = {v 5 , v 6 }, h = {v 2 , v 3 , v 4 , v 5 }, h ′ = {v 2 , v 3 , v 4 , v 5 , v7}, and V = {v 1 , . . . , v 7 }.

 Figure 2:Local train map of Zurich (www.zvv.ch) and the metro map of Amsterdam (www.amsterdam.info). In (b) the union of all lines forms a tree.

 introduction. Throughout this paper let H = (V, A) be a hypergraph. We denote by n = |V | the number of vertices, m = |A| the number of hyperedges, and N = h∈A |h| the sum of the sizes of all hyperedges of a hypergraph H. The size of the hypergraph H is then N + n + m. A hypergraph is a graph if all hyperedges contain exactly two vertices.

Figure 3 :

 3 Figure 3: A map of modern science (www.crispian.net).

 drawn monotonously with respect to the x-axis. See Fig 4(c) for an example.

Figure 4 :

 4 Figure 4: Three different supports for the hypergraph H I introduced in Section 3.1. The small black vertices are the vertices vσ,x, σ ∈ I, x = 1, 2, 3. The thick red path indicates the hyperedge h 1324 .

2 .

 2 Consider an instance of the betweenness problem consisting of a set of vertices V b and a set of constraints C. Each constraint c ∈ C consists of a sequence of three vertices. It is N P-complete to decide whether the vertices can be totally ordered such that for each constraint c = (u, v, w) the vertex v is between the vertices u and w [15].

Figure 5 :

 5 Figure 5: Illustration of the augmented Hasse Diagram for the hypergraph H = (V, A) indicated in 5(a). A = A ∪ {h 1 3 , {v 2 }, . . . , {v 5 }}. The two hyperedges h 2 1 and h 2 2 are both implied but no summery edges. They are not present in the augmented Hasse diagram. The summary hyperedge hs is added to A ′ .

 To construct a tree support of an arbitrary hypergraph H = (V, A), it suffices to consider the augmented Hasse diagram -a representation of "necessary" intersections of hyperedges. The definition is as follows. First consider the smallest set A of subsets of V that contains A and that is closed under intersections. Consider the Hasse diagram D of H = (V, A). Note that any tree support of H is also a tree support of H: The intersection of two subtrees is again a subtree. Let h 1 , . . . , h k be the children of a hyperedge h in D. The hyperedge h ∈ A is implied if the hypergraph (h 1 ∪• • •∪h k , {h 1 , . . . , h k }) is connected and non-implied otherwise. Let {h 1 , . . . , h k } be a maximal subset of the children of a non-implied hyperedge in A such

3 Theorem 4 .

 34 A hypergraph H = (V, A) has a path-based tree support if and only if

Algorithm 1 :

 1 Path-based tree support Input : augmented Hasse diagram D ′ of a hypergraph H = (V, A) fulfilling the conditions of Theorem 4; conflict graphs C h on vertex sets

 metro map like drawing of the sources of D ′

Figure 6 :

 6 Figure 6: Illustration of Algorithm 1.

 h

Figure 7 :

 7 Figure 7: Illustration of the proof of Lemma 6.3.

Lemma 7 .

 7 If Conditions 1-3 of Theorem 4 are fulfilled, then all hyperedges in A ′ induce a path in the graph G constructed in Algorithm 1.

4 .

 4 Test whether every hyperedge induces a path in G. If not, H does not have a path-based tree support. D ′ has O(n + m) vertices, O(n 2 + nm) edges, and can be computed in O(n 3 m) time if H has a tree support [7]. Algorithm 2 visits every edge of D ′ at most twice and, hence, runs in O(n 2 + nm) time for each of the O(n) inner vertices of D ′ . We may assume that the hyperedges are given as sorted lists of their elements. If not given in advance, these lists could straight forwardly be computed from D ′ in O(n 3 +mn 2) time by doing a graph search from each leaf. Now, for each of the O(n 2) pairs h, h ′ of inner vertices, it can be tested in O(n) time whether conflict h,h ′ contains h ∩ h ′ . The sum of the sizes of all conflict graphs is in O(n 2). Hence, Algorithm 1 runs in O(n 2 + mn) time. For each of the O(m) hyperedges h, it can be tested in O(n) time whether G[h] is a path. Hence, the overall run time is dominated by the computation of the augmented Hasse diagram and is in O(n 3 m).

 drawing of G is monotone with respect to H if for each hyperedge h ∈ A there is a spanning path p h of G[h] and a straight line ℓ h such that p h is monotone with respect to the axis ℓ h . G is a monotone path-based support of H if G has a monotone drawing with respect to H.

	Remark 1. If G has a monotone drawing with respect to a hypergraph H then G has
	a straight-line drawing that is monotone with respect to H with the same axes of mono-
	tonicity.

 , note that a path-based support that minimizes the number of edges among all path-based support of a hypergraph H with respect to some ordering of the vertex set might not be a path-based support of H with the minimum number of edges over all

path-based supports of H. E.g., consider the hypergraph H I from the previous section (Fig.

4

) or the hypergraph H with hyperedges {1, 2, 4}, {1, 3, 4}, and {2, 3, 4} for an easier example: the unique minimum path-based support of H is a star centered at 4 which cannot be created from any ordering of the vertex set. The problem of finding a minimum path-based support remains, however, N P-hard. Theorem 2. It is N P-hard to minimize the number of edges among all path-based supports (or among all monotone path-based supports) of a hypergraph -even if the hypergraph is closed under intersections. Proof. Reduction from Hamiltonian path. Let G = (V, E) be a graph. Let H = (V, E ∪ {V } ∪ {{v}; v ∈ V }) and K = |E|. Note that any support of H contains G as a subgraph. Hence, H has a path-based support with at most K edges if and only if G is a path-based support of H which is true if and only if G contains a Hamiltonian path.

 3 be the child of h i that contains v. Then h 2 and h 3 have a conflict with respect to h ′ i , i = 2, 3.Since we add the edge {v, u i } to G when we process h i , it follows on one hand that side h ′ i (h i) = v. On the other hand, since h 1 is contained in h 3 and v ∈ h 1 , it follows

	that h 1 ⊆ h ′ 3 . Hence, h ′ 3 has more than one vertex. If h ′ 3 = h 3 ∩h 2 , then v is the only end vertex of G[h ′ 3] that is contained in h 2 . By Lemma 6 Property 2 it follows that
	side h ′ 3 (h 2) = v and hence, side h ′ 3

 Figure 8: Illustration of Algorithm 2. Computation of the potential conflicts for h 4 1 h 1 h 2 or h 2 h 3 : These cases are analogous to the third case.h 1 , h 2 , h 3 pairwise overlapping: Then h 1 ∩ h 2 = h 2 ∩ h 3 = h 1 ∩ h 3 = {v}. Hence,Algorithm 1 computes a path-based tree support of a hypergraph H if H has a path-based tree support, i.e., if and only if the conditions of Theorem 4 are fulfilled.

	ANCESTOR(h 4 1)			NOT-ANC
	DESCENDANT(h 2 2 , h 2 2)		NOT-CONFLICT
	DESCENDANT(., h 3 1)		
	DESCENDANT(h 2 4 , h 2 4)	1)	
	UP-SEARCH(., h 3 1)		
	UP-SEARCH(., h 2 4)	DESC(h 3 1)	CONFLICT(h 2 4)
		DESC(h 2 4)	NOT -ANC NOT-ANC
	DESC(h 2 2)	DESC(h 3 1)	DESC(h 2 4) DESC(h 2 4)
	MULTI-DESC MULTI-DESC
	Condition 2 of Theorem 4 is not fulfilled.
	This completes the proof of Theorem 4. We conclude this section with the following
	corollary.		
	Corollary 8.		

 The procedures descendant(h c , h c), h c child of h label those descendants of a child h c of h with desc(h c) that are not descendants of any other child of h. Finally, after all calls of up-search a hyperedge h ′ is labeled conflict(h c) if and only if h ′ is (1) a descendant of an ancestor of h, but neither a descendant nor an ancestor of h, (2) an ancestor of a descendant of the child h c of h that is not a descendant of another child of h, and (3) if all descendants h ′ are descendants of h c or of at least two children of h. This implies especially that h and h ′ have a conflict, if h ′ is labeled conflict(h c).Before we show that h ′ is labeled conflict(h c) if h and h ′ have a conflict with respect to h c , we illustrate Algorithm 2 with an example. Figure8shows the computation of Conflict Computation.Input : augmented Hasse diagram D ′ of a hypergraph; vertex h Output: for each child h c of h the vertices h ′ with label(h ′) = conflict(h c) Data : there are the following vertex labels label

	Algorithm 2:
	potential conflicts for the hyperedge h 4 1 of the hypergraph H from Figure 6(a). The different methods are colored. h 2 5 is the only hyperedge that can be in conflict with h 4 1 with respect to a child of h 4 1 and if so, with respect to h 2 4 .

 Figure9: h ′ and h do not have a conflict with respect to any child of h but the label of h ′ is conflict(h 1) in the end of Algorithm 2 applied to h. All descendants of h 2 (black vertices) are labeled multi-desc.Lemma 9. Let D ′ be the augmented Hasse diagram of a hypergraph that has a path-based tree support and let h ′ and h have a conflict with respect to a child h c of h. Then the label of h ′ in the end of Algorithm 2 applied to D ′ and h is conflict(h c).

	-anc; label(h) ← not-conflict; end begin clear all labels; ancestor(h); foreach child h end h ′ h 1 h 2 h 3 h

c of h do descendant(h c , h c); foreach vertex h d of D ′ with label(h d) ∈ {desc(h c); h c child of h} do up-search(h d , h c);

 Theorem 10. It can be tested in O(n 3 m) time whether a hypergraph has a path-based tree support and if so, such a support can be constructed within the same time bounds.Proof. Let H be a hypergraph. First test in linear time whether there is a tree support for H[START_REF] Tarjan | Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs[END_REF]. Let D ′ be the augmented Hasse diagram of H. The method works in four steps.1. Start with an empty array conflict indexed with pairs of inner vertices of D ′ . Set conflict h,h ′ ← h c if and only if h ′ is labeled conflict(h c) in the end of Algorithm 2 applied to D ′ and h.2. For each pairh, h ′ of inner vertices of D ′ , test whether conflict h,h ′ contains h ∩ h ′ .Otherwise set conflict h,h ′ ← ∅. Now, if H has a path-based tree support, then h, h ′ has a conflict with respect to the child h c of h if and only if h c = conflict h,h ′ .

3. Apply Algorithm 1 to compute a support G. If the algorithm stops without computing a support, then H does not have a path-based tree support.

the hyperedges h 1 3 , h 1 4 , h 1 6 , and h 1 8 the conflict graphs are empty. For the other leaves we have side h 1 5 (h 2 2) = side h 1 5 (h 2 3) = side h 1 5 (h 3 1) = side h 1 5 (h 4 2) = v 5 , side h 1 7 (h 2 4) = side h 1 7 (h 3 1) = v 7 , and side

When operating h To prove the correctness of Algorithm 1, it remains to show that all hyperedges of H induce a path in G. Since we included all inclusion maximal hyperedges of H in A ′ , it suffices to show this property for all hyperedges in A ′ . We start with a technical lemma.

Lemma 5. Let h ′ and h ′′ be two overlapping hyperedges and let h ′ be not implied. Then

The hyperedge h c is a child of the non-implied hyperedge h ′ in D. Consider the summary hyperedge h with h c ⊆ h h ′ .

By definition of A ′ it follows that h ∈ A ′ .

For an edge {v, w} of G let h vw be the intersection of all hyperedges of A ′ that contain v and w. Note that h vw is not implied since v and w are contained in different children of h vw in D and {v, w} is an edge of the tree support G of H. Hence, h vw ∈ A ′ . Lemma 6. Let Conditions 1-3 of Theorem 4 be fulfilled and let G = (V, E) be the graph computed in Algorithm 1. Let h ′ , h ′′ ∈ A ′ have a conflict with respect to a child h of h ′ and let G[h ′] and G[h ′′] be paths. Then

is a path, and

Proof. We prove the lemma by induction on the sum of the steps in which h ′ and h ′′ were considered in Algorithm