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Abstract.

We consider a spatio-temporal ! model to describe the spread of apple scab within an orchard composed of
several plots. The model is defined on a regular lattice and evolves in continuous time. Based on ordinal
categorical data observed only at some discrete instants we adopt a continuous time approach and apply a
Bayesian method for estimating unknown parameters.

1 Introduction

In this paper we propose a model for describing an epidemics of a plant disease evolving in space and time
and study statistical inference of the unknown parameters. The scientific literature is very rich about spatio-
temporal data and we refer the reader to the book of Cressie and Wikle (2011) for an exhaustive description
of associated models. The biological process under consideration can be seen as spatio-temporal process
evolving over a lattice and continuous in time, but the associated observations are ordinal categorical data
sparsely spaced in time.

Considering time as continuous or discrete component leads to two different approaches (see Mollison
(1977) for a general description of space-time models). The discrete time approach is used to analyse such
data by Chadoeuf et al. (1992), Guyon and Pumo (2007), Zhu. et al. (2008) among others. Following
the ideas of Gibson (1997), Rasmussen et al. (2007), Soubeyrand et al. (2009) etc. we adopt in this
work a continuous time approach and propose a Bayesian inference for estimating the unknown parameters.
Nevertheless in opposition to the above cited works where data are binary in our work we analyse ordered
categorical for space-time data which is new to our knowledge.

The model tends to describe the dynamic of apple scab within an orchard (a spatial lattice) by different
factors such as climatic conditions and different forms of pathogen. It is defined as a multivariate point process
(Daley and Vere-Jones, 2003), with spatial dependence. The main purpose of this work is to understand and
describe statistically the interaction between trees. We state conditions under which our model is uniquely
determined and point out the possible improvements that permits to adapt the model in similar situations.

The unknown parameters of the model are estimated using a Bayesian approach. We apply a MCMC
algorithm for a spatially homogeneous plot, study some statistical properties of associated estimators and
present some numerical studies. Let us note in addition that even if our model is well adapted for a spatially
homogeneous plot it can be extended for an orchard composed of several plots. Clearly in this case the
implementation is more difficult and the time execution more expensive, which is beyond the scope of this
paper.

The paper is organized as follows. The next section describes briefly the experiment and the data which
will serve us to define the model and illustrate the estimation method. In sections 3 and 4 we introduce
some notations and describe the model. Section 5 discusses simulation-based Bayesian inference and section
6 presents some numerical studies. Proofs and some technical details in relation with MCMC algorithm are
postponed to the Appendix.

1 This work was supported by MODEMAVE research project from the Région Pays de la Loire.



2 Data description

The data provides from an experiment conducted in a research center of Angers? from 2004 to 2008 (Caffier
et al. (2010), Didelot et al. (2010). The objective of this experiment was to understand the spread of disease
on resistant apple cultivar, Ariane, after overcoming of the resistance gene (Vf). First scab symptoms were
observed in 2004 in this orchard. The orchard is composed of 16 plots separated by hedges that permits us
to consider them to be spatially independent. It was partially observed 4 or 5 times a year. Each plot was
composed of 78 trees regularly planted in 6 rows of 13 trees. In this paper we will concentrate our attention
on three plots not treated against scab (A1, A2, A3) and composed of Ariane cultivar. More precisely we are
interested in the spread of the inoculum over space and time. The observed variable will be called disease
score and corresponds for each tree to the ”visual estimation” of the proportion of scabbed leaves, a method
adapted from Lateur et al (1998). Considering an increasing scale 0 < a1 < ag < -+ < ag = 1 an expert
gives the score j — 1 to a tree when he estimates that the proportion of scabbed leaves belongs to the interval
l[aj—1,a;). From a statistical point of view the observations are ordered categorical data. More precisely we
will focus our attention to the study of the spread of the infection of a pure plot during a year. We present
in figure 1 the disease score of the plot A2 at observation days (60, 66, 101, 138 and 185) during the year
2008. The model proposed in this paper considers that the plot is spatially homogeneous.

3 Notations

Let us consider a plot of trees of size n = 78 indexed by i € Z = {1, ...,n} with a geographical structure which
will permits us to define a neighborhood set. To each tree ¢ we associate the disease score Y; ; at instant ¢.
Let Y be the score process Y = (Evt)ieI,tE[O,EP] taking values on {0,---,8} where EP represents the end
of parasitic phase. This process is null at instant 79 = 0 that is Y; 0 = 0 Vi € Z and observed at instants
Ti, -+, Ts:
O=T0<TM<m<FA<Tm<Tu<T15=EFEP

where F'A denotes the end of the infection providing from the ground (ascospore emission). The observed
process at points 79, ..., 75 will be denoted Yobs,

For each i € Z, let us denote T} the transition time that is the instant when the tree ¢ changes the score
from j — 1 to j and J; the latest disease score reached by the tree i. So Y; gp = J;, and:

T:{Ti:ieI}:{Tf,j:l...Ji:ieI}. (1)

T is the set of unobserved transition instants which uniquely determines the score process known also as

latent variables. For each i € Z, we can then define the Poisson point process, with intensity given by (Daley
and Vere-Jones, 2003):

Ai(t) =FE[dY;: | Ys:s <t]/dt. (2)

Let 9(0) be some neighborhood set of a the origin point 0. Neglecting boundary effects for some of the

trees of the plot, the neighbors of a tree i are 9(i) = i + 9(0). We suppose that 9(0) can be written as the

N,
disjoint union of neighbors of type v, 9(0) = |J 9,(0) which defines the function v : 9(0) — {1,--- ,ny}
v=1

such that v(¢£) = v for each £ € 9,(0).
We consider the following observed variables (covariates):

e The PAD (potential ascospore dose) is a scalar giving an estimation of inoculum available on the
ground which starts up the infection. The value of PAD is estimated for each plot and is considered to
be homogeneous within each plot. It represents the stock of pathogen for primary infections.

e Every day d is characterized by one of ngr levels of risk, denoted 0,--- ,ng — 1. The risk is obtained
by Pulsowin 3.1 software® which is based on Mill’s curves (Mills and Laplante, 1951 and Olivier, 1986)
and distinguish 5 levels of risks depending on the temperature and the length of leaf humectation. It
is supposed to remain constant during a day. We will denote R the vector of length EP which d-th
component corresponds to the risk of the infection of the day d.

2INRA, UMR PAVE, 42 rue Georges Morel, F-49071 Beaucouz
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Figure 1: Disease scores for the plot A2 at observed instants 71, -- , 75.

4 The model

Let us denote Z = (R, PAD, a) where a = (a1,--- ,a9). We suppose that the process Y°* is a sample of a
Poisson point process with intensity \;(¢,8;Z) for the tree i at instant ¢. This intensity is obtained as the
product of two terms:

Ai(t,0;Z) = r(amrg,,) X |C(7) x p(t) + gi(t; Ti,a) + Z Give(t; Tiye,a) X K(€,my()) (3)
£ed(0)

where E(-) denotes the integer part function.

The first term r(ary,,,) describes climatic risk of infection for the day E(t), since as previously mentioned
the risk remains constant during a day. The second term describes the dispersion process of primary and
secondary infection, which represents the pathogen produced by lesions on trees. 6 = (a,v,7n) are the
unknown parameters providing the contribution of different biological phenomena. The vector parameter
a corresponds to weather conditions, the scalar parameter v corresponds to the primary infection and the
vector parameter 7) corresponds to the secondary infection. We will present now the functions r, C, p, g; and
K of the expression (3). This intensity can be seen as the superposition of two point processes ([14]), where
the first one represents the risk of infection by primary inoculum initiating the epidemics. Then the second
process appears when the first tree is infected.

r(-) is a positive and increasing function and o a vector parameter of ng components ag,- - ,Qng—1
satisfying the condition ap < -+ < apg—1.

The primary infection is given by the product C(v) x p(t). C(v) is a positive and bijective function
representing the infection providing from the ground. p(t) describes the quantity of available infection in
the ground at instant t all over the plot. It means that we suppose that this quantity is spatially uniformly
distributed. Clearly p(t) is a positive function defined on [0, F'A] since this phenomena is possible only during
this period.

The crucial question of this paper concerns the spread of secondary infection that is the spread of infection
between trees. In order to propose a solution to this question we will firstly introduce the function g; which
estimates the proportion of scabbed leaves of the tree i at each instant ¢ € [0, EP]. Secondly we will introduce
the term K for modeling the spread of infection between trees.

Recall that the proportion of infected leaves for each tree is partially known only at instants 7g,--- , 75:
for instance, if Y;, = 1 then the value of the proportion of infected leaves at instant ¢ = 71 belongs
to the interval [aj,as). The function g; is such that gi(Tij;Tl-,a) = qj for j = 1,...,J;. Let us define
g:(T/ ", Ty,a) = (ay, + ay,4+1)/2. Supposing, as for the logistic growth models (Madden, Hughes, Van den
Bosch,2007 or Verhulst, 1845), that the proportion of infected leaves is proportional to the amount of leaves
affected and to the number of leaves that can still be affected, a direct calculation leads to the following



result:
0 t<T}

9i(t: Ti, a) :{ logit M MH=M (t—T)) + ;) TV <t<TI j=1..-J )

where logit(z) = log[z/(1 — z)] for x € (0,1), a; = logit(a;) for j = 1---J;, aj,41 = logit[(as, + aj,+1)/2]
and Ti‘]iﬂ = FEP.

The function g; is zero in the interval [0,7}!) and strictly increasing on [T}, EP] for each tree i such that
J; > 0. Furthermore it satisfies differential equation w = Bg(t; T;,a) (1—g(t; Ti,a)) for t € [T}, EP).
Note finally that alternative values are possible to define gi(TiJiH;Ti,a). The figure (2) represents the
function g; of a tree ¢ with simulated instants tg .
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Figure 2: Observations (filled points) and an estimation of the proportion of infected leaves represented by
the function g; (solid line) such that g;(¢]; T;,a) = a; for j =1,---,J; (empty points).

Let ¢ be a neighbor (of 0) of type v = v({). The function K (¢,n) describes the dispersion process and may
be any suitable function with n = 7, as unknown parameter for characterizing the type v of the neighborhood
set. We denote n the vector (n,,n = 1,--- ,ny) with ny components of unknown parameters. Clearly the
choice of the distance and neighborhood set depends on the application.

The next paragraph states the conditions under which the intensity parameter of the underlying Poisson
process is uniquely determined.

4.1 Identifiability conditions
The model 3 is well defined if \;(¢,0; Z) is an injective function of @ that is if 8,0’ are two points of  then :

{()\i(t, 0;7Z) = \i(t,6; Z)) Vi e Z,Vt e [O,EP]} =0=0 (5)
We prove the identifiability property in appendix under the following assumptions.
Condition 1 At least a tree i1 is contaminated during [0, EA]

Condition 2 For each v = 1,--- ,ny there exists a tree £ having i1 as a neighbor of type v. In particular
when the neighborhood set is symmetrical this condition is equivalent to: the tree iy has neighbors of each

type v

Condition 3 The function p is strictly positive in [0, EA] and not proportional to any of the growth functions
{gi : i € I} at any intervalle § of [0, EA] with positive length

Condition 4 For every £ € 9(0) the dispersal function K(£,n) is an injective function with respect to n

Condition 5 The function C(7) is a bijective and strictly positive function with respect to =y



The condition 1 is necessary since the infection can start up only during the interval (0, EA]. The condition
2 can be written:
Yoe{l,--- ,ny} HeT: i €d,¥) (6)

and in the symmetrical case:
Yoe{l,--- ,ny} I € 0,(i1)

The third condition is a slight restriction in the definition of the function p. The condition 4 is natural since
K is another way of the characterization of the type of a neighbor.
Let now give the identification property which is proved in appendix.

Lemma 6 The model (3) is well defined under conditions 1 to 5.

5 MCMC estimation of the parameters

The estimation of the parameters with be based on the maximisation of

Ry |2) = [

dPp(Y°PS, T | Z) = / P(Y°PS | T,Z) Py(T | Z) dP(T). (7)
TeT T

As this expression is intractable, we adopt a Bayesian approach, considering 8 as a random variable (Robert
et al., 2004) by applying a MCMC based procedure using a Metropolis-Hastings algorithm where transition
times T are considered as latent variables. This approach has been already used in plant pathology domain
when Y is a binary valued process and when transition instants are not observed (see for instance Gibson,
1997; Gamerman and Lopes, 2006; Rasmussen et al., 2007; Soubeyrand et al., 2009 among others). We
generalize this approach in the case where Y is an ordinal categorical variable.

Considering 0 as a random variable the posterior distribution of @, T, up to a normalizing constant, can
be written as:

P(T,0| Y Z)x P(Y°" | T,0,Z)P(T | 6,Z) 7(6).

Recall that T; is the vector of transition instants (TZJ ) at which the tree ¢ changes the score from j — 1
to j for j = 1,---,.J;. Making an appropriate choice of T; for i € Z leads to P(Y°* | T,0,Z) = 1 which
simplifies the algorithm. The expression of P(T | 6,Z) is given by the following lemma and the prior
distribution distribution 7(@) will be described in the next paragraph.

Lemma 7 Lett = {tz :Vi,j} be a sample of transition events. Then:

Ji—1
P(T=t]6,2)=P(T! =t :i,j|6.2) =[] |[e™#" ] xt) (8)
i€T j=1
where the simplified notation Vi, j is used instead of i € Z,5 =1,--- ,J; and foru <v andi € L:

As(u,v) = / () dt. )

Note that in the above lemma, proved in the appendix, we have abused notation P (Tf = tf Vi, g6, Z)

for the density of the process under discussion. In the following we will use the simplified notation P(t | 8,Z)
and:

Ji
P(ta|0,2) =[] |[e™OFP - T n)
€A j=1

for any subset A of Z.



5.1 Sequential rules for the updating of parameters and transition events

In this paragraph we outline the MCMC algorithm carried out in two steps. In a first time we update
transition times by considering in order all the trees. In a second time we update each component «, =y, n of
the parameter 8 based on the decomposition:

P(0,T| Y, Z) x P(T|0,Z)7a(") 7 (-) Tn(").

Let us give a brief description of the different steps of the algorithm.

We will denote 7o (-), 7 (+), Ty (+) the prior distributions and ga(|-), ¢y(+|-), gn(-|-) the proposal distribu-
tions for the corresponding parameters. Details about these distributions are postponed in the appendix.

For each i € Z, let t{ be the current value of transition times and t} the candidate value furnished by
proposal distribution g¢(-|-) described in the appendix. Similarly let 8¢ = (a®, v, 1) be the current value of
the parameter 6 and 8™ the candidate value obtained by the associated proposal distributions.

For each ¢ € Z we replace t{ by t; with probability:

P(t:,t5 | 0°Z) q(t¢ | tF Pty t5, | 0°Z) q(tS | t]
min{L (8,6 167 2) 9(t | "))}:mm{L (&85 | 0, 2) alt? | )} (10)

C

Actually for both transition times (t7,t7,;) and (tf,t7,;) the associated intensities Ae(t)) are identical for
¢ € T\ N; where N(i) = {i} U9(i). The identity (10) follows since P(t},t7,; | 6°,Z) = P(t],t
6°.7) - P(t%\M | 6°,Z) and P(tf,t%\i | 0°,Z) = P(t‘;,tg(i) | 6°,Z) 'P(t%\/\/i | 6°,Z).

The parameters are updated component by component in the order appearing in 6. The two first com-
ponents « and  are updated in a similar way. For instance the current value a° is replaced by a® with

probability:
P tC * C C Z o * C *
P(te | a%, 7%, n% Z) To(af) gla” | af)

Q] |

As there are no constraints on the components of the vector n we update sequentially all these components.
Using the simplifying notation n2,n? for n¢,...,n% 1,75, n2 415+ 7y, the candidate value 7, replaces the
current value 7S with probability:

P(t C ~C NS n* 7 C ¥ c c ¥
mzn{l, ( ‘ « ) Y 7”1015771)’ ) Wn(n:»%) q(’r’(. | 731)’771))} (12)
P(t | a®,v¢,m5,n5, Z) m(n5,n5) a(ng, n; | n°)

6 Numerical results

We will now present some numerical studies in relation with the data introduced in the 2nd section carried
out with R software*. We define r as the logit function and C' as the exponential of y* PAD. Following works
of Aylor (1998, 1999), we suppose that the quantity of ground infection p(t) is dispersed in time following
the density of a truncated Gaussian variable (Johnson et al., 1995) defined on [0, EA] centered in £2 and
standard error o,. The parameter o, will serve as a tunning parameter in MCMC simulations. The dispersal
function K is given by:

K (£, nv(e)) = exp[—ny(e) - d(0,£)]

where d(i, £) is the Euclidean distance between trees i and £. We apply the model (3) with initial neighborhood
0(0) = {1,2,3,4} as illustrated in figure 3. The type of the neighbor ¢ is ¢ that is v(¢) = £ and so n =
(m,n2,13,m4). We run a MCMC procedure with 50.000 iterations and burn-in-length of 8.000. The choice of
neighbors were determined by applying two criteria : the convergence and stability of posterior distribution
of all the components of 8. Neighbors whose dispersal parameter do not converge are removed from the
model, meaning that they can be omitted. The final neighborhood set for all the plots is composed of right
(1) and upper (2) neighbors that is n = (11,72). As expected for the final model, the simulations confirm the
independence of posterior distributions from the initial values 8, = (., V0, M,) of @ and T, of T. We present
here numerical results with a, = (0.01,0.02,0.03,0.04,0.05), v, = —6 and 7, = (10,10). Even though

4
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our main interest concerns the mean values of each scalar parameter, we firstly pay attention to assess the
statistical property of simulated chains by presenting some detailed results for the plot A2 and then give
some summary results for the three plots.

The results concerning the parameter n for the plot A2 are presented in figures 3 and 4. Clearly the
convergence properties are better satisfied for the model with neighborhood set defined with neighbors 1
and 2. For this model the density estimation for the two parameters 7; and 7 seems to be approximately
Gaussian as the theory tells us (see Th. 2.1, Geyer, 1992). In addition we calculate three initial sequence
estimators of the standard error of MCMC estimators, called positive, monotone and convex with lag = 453
as described in Geyer (Th. 3.2, 1992) and present them in Table 1. The proximity of three estimations is
another satisfactory property which confirms the choice of final neighborhood composed of two sites.

We use the ”positive” initial sequence estimators in the presentation of numerical results for the plot
Al, A2, A3 as suggested in general case (see for example Gelman and Rubin, 1992). A summary of the
parameter estimations for plots Al, A2 and A3 in the case of two neighbors is given in Table 2. It gives the
estimations (mean of simulated chains) and the functions K(1,7;), K(2,72) corresponding to 8 and based
on 95% confidence intervals (CI).

To conclude, for all plots the most influential neighbors are the right and upper (row) ones which match
up with the main wind direction during the saison. Their influence depends on local position of the plot in
the orchard and the level of PAD.
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Figure 3: Left: Neighborhood configurations with respectively 4, 3 and 2 sites. Right: Simulated chains
corresponding to parameters 7, 7 for the plot A2 with different neighborhood set: (a) o(0) = {1,2, 3,4},

(b) 0(0) = {172’4}a (C) 0(0) = {172}'

Initial sequence estimators for SD

Parameter | Mean estimation | Positive Monotone Convexe
m 0.9994 0.0235 0.0232 0.0226
72 0.2882 0.0050 0.0049 0.0047

Table 1: Estimations of parameters 71, 72 (mean of simulated chains) and different initial sequence estimates
of the standard error (SD) of the mean estimator for the plot A2.
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Figure 4:
of 8000)
Plot | o oy s as ay v m ne | K(Lm) K(2,m2)
Al -1.5180 -1.4148 -1.3374 -1.2304 -1.1036 | 0.3366 | 0.9269 0.3257 | 0.3139 0.2717
A2 | -1.5066 -1.4249 -1.3780 -1.2957 -1.2004 | 0.5311 | 0.9994 0.2882 | 0.2867  0.3158
0.7850

A3 -2.6022 -2.5393 -2.4867 -2.4110

-2.3233 | 2.6413 | 0.4750 0.0605 | 0.5523

Table 2: Estimation of parameters and some of their corresponding functions for the three plots

Conclusion

We present a spatial-temporal point process for modeling the spread of apple scab within an orchard composed
of several plots. The process is indexed by the sites of a fixed spatial lattice and continuous in time. We
estimate the parameters by using a Bayesian approach and implementing a MCMC algorithm. Based on
observations of the orchard at sparsely distributed times we present some numerical results that permits
us to determine the most infectious neighbors and quantify the probability of infection from one tree to a
neighbor. In order to increase the power of statistical inference our approach permits also to identify similar

plots that can be treated together in analyzing the data.

A Appendix

A.1 Proof of lemma 6
Omitting Z in (3) let @ and 8’ be such that:
\i(t,0) = \(t,0') VieIVtelo,EP].

Let i1 be the first infected tree satisfying the condition C1 at instant t}l, R=Rpgu yand 04y
) i1
1,t2). From (3) and as g¢(t) =0 Vt € ¢;, and £ € 9(iy) it follows that:

? Y19

p(t) [r(ar)C(y) = r(@R)C(Y)] + gi, (1) [r(ar) — r(ag)] =0Vt € d;,.

If ap # o/ then r(ag) # r(ay) and so:

[rar)C(7) — (@) C() |
rlog) —r(a)] €%

i, (t) = p(t)

which is in contradiction with condition 3 since d;, is an intervalle with positive length.

Equation (13) when ag = o/, implies:

p(t) [C(7) = C(H) =0 Vted,.

= [t}

min(E(t} )+

i1

(13)

As p is strictly positive in ]0, EA] and C(v) is a bijective function one obtains C(v) = C(y’) and so v = +'.



Let now consider a neighbor ¢y of i; of type v,. The tree i; being the unique infected tree since g, (t) = 0
for t € §;, one gets:

Z ge(t) [K(g — Loy Nv(e—y)) — K (£ — 507774,(@_@0))} =0 Vi€,
LeD(Lo)

that is, as 71 is a neighbor of type v, of £y
iy (t) [K(ll - 60777710) - K(Zl - 60777;0)] =0 vte 6i1

which implies 7,, = 7, since K is an injective function from condition 4. As from condition 2 there exists
at least one neighbor of each type it follows that n, =7, for all v € {1,--- ,ny }.

From condition ?? let fixe a day d with risk R, and an instant ¢4 of this day. Since v =+ and n, = 7, if
Ay (td, 9) =\ (td, 0/) then:

Led(i1

(rtar,) = r(en)) {COI) + 9000 + T,y st Eong) | =0

But vp(ta) + gi, (ta) + 2sca) 9e(ta) K (€, ny(e)) is strictly positive. Indeed if t4 < EA then C(v)p(ta) > 0
and if t; > EA > t}l then g;, (t4) > 0. Consequently r(ar,) = r(az, ) and ag, = oz which completes the
proof.

A.2 Proof of Lemma 7

We will omit @ in this paragraph. Recall that Vi, j meansi € Z,j =1,--- ,J;. Let us denote
PT:P(T{:t{ ;vm’)

and Ny = Y J; the total number of transition instants. Let us consider the ordered sequence of transitions
i=1,n

instants ¢(1) < --- < {(n,) such that {4 = Tfk’“ for some iy, ji. Writing ¢y = 0 and ¢(n,41) = EFP and using

the Markovian property we get:

Pr = P(TV=t:vi))

- p(TiJ: —tgy k=1, ,NJ)
N+l . .

- 1II P(Tf,f =t(k)’T5/ =t 1l<k)
k=1
Ny+1 ) )

= P (T3 =ty | T =) - (14)
k=1

Let fixe some k in {1,---,N3}. The event Ay : ”117: = t(k)\Ti]:: = t(y—1)” means "during the interval

(t(k—1), t(k)] only one event takes place : the score level of the tree iy increase by one at instant (3 ; no other
changes take place during this interval”. It follows that (see for exemple Daley et Jones, Vol; 1, pg. 23):

P (Tz{f = t() ’ T = t(kq)) = Nig (b)) - [[ e Mmoo (15)
ieT
tk)
since the successive events Ay, are independent for the different trees where A;(t(x—1),tx)) = | Ai(t)dt. In
t(k—1)

particular for the event Ay, 1 that is "No changes take place between () and ¢(n;41) = EP” we have:

P(ANJH) = He‘Ai(t<NJ>vt<NJ+1>) (16)
i€l



+
The result is a consequence of A;(0, EP) = Z i(t(k—1),t(x)) and equations 14, 15 et 16 since:

Ny+1
Pr = [ P(T0 =tw|T =te)
Ny+1
- H Niv b, He—/\i(f<k1>’t<k>)]
k=1 i€

Njy+1

J
i€l ': k=1
J

-1

i€Z [j=1

:(0,EP)

A.3 Priors and proposals

As no information is available we consider uniform prior distribution for the components =y, ) of the unknown
parameter 6. Their support are respectively [—10, 10] for v and [0, 20] for each component of 7. « satisfy
the property ag > - -+ > upp—1. Similarly we consider uniform priors for the components of o with supports
that assure the order property. The support for ag is [—5,5]. In a similar way we define uniform priors
for the transition times which satisfy two conditions. They satisfy order property for each tree i € Z, that
is t{ < tf H,Vj and the number of transitions times between two consecutive observation instants 74_1, 7%
equals Y; 41 — Yi k.

The proposal distributions are based on truncated Gaussian laws (Johnson and Kotz, 1995) centered at
the current value of the parameter. We denote Z, (1, 0) a truncated normal distribution centered in g,
standard error o truncated at a and b and z, (z; p, o) his density at a point x.

The proposal distributions for v and 7, for v = 1, -- -, ny are respectively z_10,10(7, 0+) and z_10,10(1;, oy, )
foro=1,--- ,ny.
Let o = (ag, -, o5, _1) be the candidate value where af ~ Z_55(c0,04,) and o ~ Zas | 5(0j,04,).

The proposal of a is given by:

nR—l
@) =2 55(05;00,000)  [[ Za;_,5(0);05,00,) (17)
j=1

"

q(e

Note that when t{ € [mk—1,Tx) the candidate t{* belongs also to the same interval [r;_1, 7). For each
tree ¢ € Z such that that J; > 1 the proposal distribution is given by:

Ji—1
q(t: ‘ tl) - Zmaw(O Thy— 1)77'197 1( i 17JT1 H Zma»L(tJ Lx —1),7'k (tz’ 7tz70T7) (18)

where k; ; = m}jn{k P TR > t{} When J; = 1 the proposal is defined only by the first term.

Let us note that we have in our possession the tunning parameters, 04,7 = 0,--- ,nr — 1, 04, 0y,, v
1,--- ,ny, opi,j = 1---8 to reach the required accepting rate for updated values for each of the parameters
and transition times. In our simulations we chose values producing accepting rates approaching 0.23 (Roberts
et al., 1997).

References

[1] Aylor D.E. (1998) The aerobiology of apple scab. Plant Disease, 82, 8, 838-849.

[2] Aylor D.E. (1999) Biophysical scaling and the passive dispersal of fungus spores: relationship to inte-
grated pest management. Agricultural and forest meteorology, 97, 275-292.

10



Chadoeuf J., Nandris D., Geiger J.P., Nicole M., Pierrat J.C. (1992) Modélisation spatio-temporelle
d’une épidémie par un processus de Gibbs: Estimation et Tests. Biometrics, 48, 1165-1175.

Cressie N., Wikle C.K. (2011) Statistics for spatio-temporal data. Wiley.

Daley D.J., Vere-Jones D. (2003) An Introduction to the Theory of Point Processes: Volume I: Elemen-
tary Theory and Methods, Second Edition. Springer-Verlag

Caffier V, Didelot F, Orain G, Lemarquand A, Parisi L (2010). Efficiency of association of scab control
methods on resistance durability of apple: the case study of cultivar Ariane. IOBC wprs Bulletin, 54,
327-330.

Didelot F, Caffier V, Baudin M, Orain G, Lemarquand A, Parisi L (2010b). Integrating scab control
methods with partial effects in apple orchards: the association of cultivar resistance, sanitation and
reduced fungicide schedules. IOBC wprs Bulletin, 54, 525-528.

Gamerman D., Lopes H.F. (2006) Markov Chain Monte Carlo, Stochastic Simulation for Bayesian
Inference. Chapman and Hall/CRC

Gadoury D.M., MacHardy W.E. (1986). Forecasting ascospore dose of Venturia inaequalis in commercial
apple orchards. Phytopathology, 76, 1128.

Gelman A., Rubin D.B. (1992) Inference from iterative simulation using multiple sequences (with dis-
cussion). Statistical Science, 7, 457-511.

Geyer C.J. (1992) Practical Markov Chain Monte Carlo. Statistical Science, 7, 4, 473-483.

Gibson G.J. (1997) Markov Chain Monte Carlo methods for fitting spatiotemporal stochastic models in
plant epidemiology. Applied Statistics, 46, 215-233.

Guyon X., Pumo B. (2007) Space-time estimation of a particle system model. Statistics, 41 (5), 395-407.

Ilian J., Penttinen A., Stoyan H., Stoyan D. (2008) Statistical analysis and modelling of spatial point
patterns. Wiley, Chichester.

Johnson N.L., Kotz S., Balakrishnan N. (1995) Continuous Univariate Distributions, Volume 2. Wiley-
Interscience

Lateur, M., Wagemans, C. and Populer, C. (1998). Evaluation of tree genetic resources as sources of
polygenic scab resistance in an apple breeding programme. Acta Horticulturae, 484, 35-42.

MacHardy (1996) Apple Scab : Biology, Epidemiology and Management. The American Phytopatholog-
ical Society (APS Press)

Madden L.V., Hughes G., Van Den Bosch F. (2007) The study of Plant Disease Epidemics. The American
Phytopathological Society (APS Press).

Mills W.D., Laplante A.A. (1951) Diseases and insects in the orchard. Cornell Extension Bulletin, 711.

Mollison D. (1977) Spatial contact models for ecological and epidemic spread, with discussion, J. of
Royal Statistical society B, 39, 283-326.

Olivier J.M. (1986) La tavelure du pommier, conduite d’une protection raisonnée. Adalia 1, 3-19.

Rasmussen J.G., Moller J., Aukema B.H., Raffa K.F., Zhu J. (2007) Continuous time modelling of
dynamical spatial lattice data observed at sparsely distributed times. J. of Royal Statistical society B,
69, 4, 701-713.

Robert C.P., Casella G. (2004) Monte Carlo Statistical Methods. Springer

Roberts G.O., Gelman A., Gilks W.R.. (1997) Weak Convergence and Optimal Scaling of Random Walk
Metropolis Algorithms. The annals of applied probability, 7, 110-120.

11



[25] Soubeyrand S., Laine A.-L., Hanski I., Penttinen A. (2009) Spatiotemporal Structure of Host-Pathogen
Interactions in a Metapopulation. The American Naturalist, 174, 308-320.

[26] Verhulst P.-F. Recherches mathématiques sur la loi d’accroissement de la population, Nouv. mém. de
l’Academie Royale des Sci. et Belles-Lettres de Bruxelles, 18, 1-41, 1845.

[27] Zhu J., Rasmussen J. G., Moller J., Aukema B., Raffa K. F. (2008) Spatial-temporal modeling of forest
gaps generated by colonization from below- and above-ground bark beetle species. J. of the American
Statistical Association, 103, 481, 162-177.

12



