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Abstract.

We consider a spatio-temporal 1 model to describe the spread of apple scab within an orchard composed of
several plots. The model is defined on a regular lattice and evolves in continuous time. Based on ordinal
categorical data observed only at some discrete instants we adopt a continuous time approach and apply a
Bayesian method for estimating unknown parameters.

1 Introduction

In this paper we propose a model for describing an epidemics of a plant disease evolving in space and time
and study statistical inference of the unknown parameters. The scientific literature is very rich about spatio-
temporal data and we refer the reader to the book of Cressie and Wikle (2011) for an exhaustive description
of associated models. The biological process under consideration can be seen as spatio-temporal process
evolving over a lattice and continuous in time, but the associated observations are ordinal categorical data
sparsely spaced in time.

Considering time as continuous or discrete component leads to two different approaches (see Mollison
(1977) for a general description of space-time models). The discrete time approach is used to analyse such
data by Chadoeuf et al. (1992), Guyon and Pumo (2007), Zhu. et al. (2008) among others. Following
the ideas of Gibson (1997), Rasmussen et al. (2007), Soubeyrand et al. (2009) etc. we adopt in this
work a continuous time approach and propose a Bayesian inference for estimating the unknown parameters.
Nevertheless in opposition to the above cited works where data are binary in our work we analyse ordered
categorical for space-time data which is new to our knowledge.

The model tends to describe the dynamic of apple scab within an orchard (a spatial lattice) by different
factors such as climatic conditions and different forms of pathogen. It is defined as a multivariate point process
(Daley and Vere-Jones, 2003), with spatial dependence. The main purpose of this work is to understand and
describe statistically the interaction between trees. We state conditions under which our model is uniquely
determined and point out the possible improvements that permits to adapt the model in similar situations.

The unknown parameters of the model are estimated using a Bayesian approach. We apply a MCMC
algorithm for a spatially homogeneous plot, study some statistical properties of associated estimators and
present some numerical studies. Let us note in addition that even if our model is well adapted for a spatially
homogeneous plot it can be extended for an orchard composed of several plots. Clearly in this case the
implementation is more difficult and the time execution more expensive, which is beyond the scope of this
paper.

The paper is organized as follows. The next section describes briefly the experiment and the data which
will serve us to define the model and illustrate the estimation method. In sections 3 and 4 we introduce
some notations and describe the model. Section 5 discusses simulation-based Bayesian inference and section
6 presents some numerical studies. Proofs and some technical details in relation with MCMC algorithm are
postponed to the Appendix.

1This work was supported by MODEMAVE research project from the Région Pays de la Loire.
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2 Data description

The data provides from an experiment conducted in a research center of Angers2 from 2004 to 2008 (Caffier
et al. (2010), Didelot et al. (2010). The objective of this experiment was to understand the spread of disease
on resistant apple cultivar, Ariane, after overcoming of the resistance gene (Vf). First scab symptoms were
observed in 2004 in this orchard. The orchard is composed of 16 plots separated by hedges that permits us
to consider them to be spatially independent. It was partially observed 4 or 5 times a year. Each plot was
composed of 78 trees regularly planted in 6 rows of 13 trees. In this paper we will concentrate our attention
on three plots not treated against scab (A1, A2, A3) and composed of Ariane cultivar. More precisely we are
interested in the spread of the inoculum over space and time. The observed variable will be called disease
score and corresponds for each tree to the ”visual estimation” of the proportion of scabbed leaves, a method
adapted from Lateur et al (1998). Considering an increasing scale 0 < a1 < a2 < · · · < a9 = 1 an expert
gives the score j−1 to a tree when he estimates that the proportion of scabbed leaves belongs to the interval
[aj−1, aj). From a statistical point of view the observations are ordered categorical data. More precisely we
will focus our attention to the study of the spread of the infection of a pure plot during a year. We present
in figure 1 the disease score of the plot A2 at observation days (60, 66, 101, 138 and 185) during the year
2008. The model proposed in this paper considers that the plot is spatially homogeneous.

3 Notations

Let us consider a plot of trees of size n = 78 indexed by i ∈ I = {1, ..., n} with a geographical structure which
will permits us to define a neighborhood set. To each tree i we associate the disease score Yi,t at instant t.
Let Y be the score process Y = (Yi,t)i∈I,t∈[0,EP ] taking values on {0, · · · , 8} where EP represents the end

of parasitic phase. This process is null at instant τ0 = 0 that is Yi,0 ≡ 0 ∀i ∈ I and observed at instants
τ1, · · · , τ5:

0 = τ0 < τ1 < τ2 < EA < τ3 < τ4 < τ5 = EP

where EA denotes the end of the infection providing from the ground (ascospore emission). The observed
process at points τ0, . . . , τ5 will be denoted Y

obs.
For each i ∈ I, let us denote T j

i the transition time that is the instant when the tree i changes the score
from j − 1 to j and Ji the latest disease score reached by the tree i. So Yi,EP = Ji, and:

T = {Ti : i ∈ I} =
{

T j
i , j = 1 . . . Ji : i ∈ I

}

. (1)

T is the set of unobserved transition instants which uniquely determines the score process known also as
latent variables. For each i ∈ I, we can then define the Poisson point process, with intensity given by (Daley
and Vere-Jones, 2003):

λi(t) = E [dYi,t | Ys : s < t] /dt. (2)

Let ∂(0) be some neighborhood set of a the origin point 0. Neglecting boundary effects for some of the
trees of the plot, the neighbors of a tree i are ∂(i) = i + ∂(0). We suppose that ∂(0) can be written as the

disjoint union of neighbors of type v, ∂(0) =
Nv
⋃

v=1
∂v(0) which defines the function v : ∂(0) → {1, · · · , nV }

such that v(ℓ) = v for each ℓ ∈ ∂v(0).
We consider the following observed variables (covariates):

• The PAD (potential ascospore dose) is a scalar giving an estimation of inoculum available on the
ground which starts up the infection. The value of PAD is estimated for each plot and is considered to
be homogeneous within each plot. It represents the stock of pathogen for primary infections.

• Every day d is characterized by one of nR levels of risk, denoted 0, · · · , nR − 1. The risk is obtained
by Pulsowin 3.1 software3 which is based on Mill’s curves (Mills and Laplante, 1951 and Olivier, 1986)
and distinguish 5 levels of risks depending on the temperature and the length of leaf humectation. It
is supposed to remain constant during a day. We will denote R the vector of length EP which d-th
component corresponds to the risk of the infection of the day d.

2INRA, UMR PAVE, 42 rue Georges Morel, F-49071 Beaucouz
3Pulsonic, Orsay, France
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Figure 1: Disease scores for the plot A2 at observed instants τ1, · · · , τ5.

4 The model

Let us denote Z = (R, PAD,a) where a = (a1, · · · , a9). We suppose that the process Yobs is a sample of a
Poisson point process with intensity λi(t,θ;Z) for the tree i at instant t. This intensity is obtained as the
product of two terms:

λi(t,θ;Z) = r(αRE(t)
)×



C(γ)× ρ(t) + gi(t;Ti,a) +
∑

ℓ∈∂(0)

gi+ℓ(t;Ti+ℓ,a)×K(ℓ, ηv(ℓ))



 (3)

where E(·) denotes the integer part function.
The first term r(αRE(t)

) describes climatic risk of infection for the day E(t), since as previously mentioned
the risk remains constant during a day. The second term describes the dispersion process of primary and
secondary infection, which represents the pathogen produced by lesions on trees. θ = (α, γ,η) are the
unknown parameters providing the contribution of different biological phenomena. The vector parameter
α corresponds to weather conditions, the scalar parameter γ corresponds to the primary infection and the
vector parameter η corresponds to the secondary infection. We will present now the functions r, C, ρ, gi and
K of the expression (3). This intensity can be seen as the superposition of two point processes ([14]), where
the first one represents the risk of infection by primary inoculum initiating the epidemics. Then the second
process appears when the first tree is infected.

r(·) is a positive and increasing function and α a vector parameter of nR components α0, · · · , αnR−1

satisfying the condition α0 < · · · < αnR−1.
The primary infection is given by the product C(γ) × ρ(t). C(γ) is a positive and bijective function

representing the infection providing from the ground. ρ(t) describes the quantity of available infection in
the ground at instant t all over the plot. It means that we suppose that this quantity is spatially uniformly
distributed. Clearly ρ(t) is a positive function defined on [0, EA] since this phenomena is possible only during
this period.

The crucial question of this paper concerns the spread of secondary infection that is the spread of infection
between trees. In order to propose a solution to this question we will firstly introduce the function gi which
estimates the proportion of scabbed leaves of the tree i at each instant t ∈ [0, EP ]. Secondly we will introduce
the term K for modeling the spread of infection between trees.

Recall that the proportion of infected leaves for each tree is partially known only at instants τ0, · · · , τ5:
for instance, if Yi,τ1 = 1 then the value of the proportion of infected leaves at instant t = τ1 belongs

to the interval [a1, a2). The function gi is such that gi(T
j
i ;Ti,a) = aj for j = 1, . . . , Ji. Let us define

gi(T
Ji+1
i ;Ti,a) = (aJi

+ aJi+1)/2. Supposing, as for the logistic growth models (Madden, Hughes, Van den
Bosch,2007 or Verhulst, 1845), that the proportion of infected leaves is proportional to the amount of leaves
affected and to the number of leaves that can still be affected, a direct calculation leads to the following
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result:

gi(t;Ti,a) =

{

0 t < T 1
i

logit−1{ ãj+1−ãj

T
j+1
i

−T
j

i

(t− T j
i ) + ãj} T j

i ≤ t ≤ T j+1
i , j = 1 · · · Ji

(4)

where logit(x) = log[x/(1 − x)] for x ∈ (0, 1), ãj = logit(aj) for j = 1 · · · Ji, ãJi+1 = logit[(aJi
+ aJi+1)/2]

and T Ji+1
i = EP .

The function gi is zero in the interval [0, T 1
i ) and strictly increasing on [T 1

i , EP ] for each tree i such that

Ji > 0. Furthermore it satisfies differential equation ∂g(t;Ti,a)
∂t

= β g(t;Ti,a) (1− g(t;Ti,a)) for t ∈ [T 1
i , EP ].

Note finally that alternative values are possible to define gi(T
Ji+1
i ;Ti,a). The figure (2) represents the

function gi of a tree i with simulated instants tji .

Figure 2: Observations (filled points) and an estimation of the proportion of infected leaves represented by
the function gi (solid line) such that gi(t

j
i ;Ti,a) = aj for j = 1, · · · , Ji (empty points).

Let ℓ be a neighbor (of 0) of type v = v(ℓ). The function K(ℓ, η) describes the dispersion process and may
be any suitable function with η = ηv as unknown parameter for characterizing the type v of the neighborhood
set. We denote η the vector (ηv, n = 1, · · · , nV ) with nV components of unknown parameters. Clearly the
choice of the distance and neighborhood set depends on the application.

The next paragraph states the conditions under which the intensity parameter of the underlying Poisson
process is uniquely determined.

4.1 Identifiability conditions

The model 3 is well defined if λi(t,θ;Z) is an injective function of θ that is if θ,θ′ are two points of θ then :

{(

λi(t,θ;Z) = λi(t,θ
′;Z)

)

∀i ∈ I, ∀t ∈ [0, EP ]
}

⇒ θ = θ′ (5)

We prove the identifiability property in appendix under the following assumptions.

Condition 1 At least a tree i1 is contaminated during [0, EA]

Condition 2 For each v = 1, · · · , nV there exists a tree ℓ having i1 as a neighbor of type v. In particular
when the neighborhood set is symmetrical this condition is equivalent to: the tree i1 has neighbors of each
type v

Condition 3 The function ρ is strictly positive in [0, EA] and not proportional to any of the growth functions
{gi : i ∈ I} at any intervalle δ of [0, EA] with positive length

Condition 4 For every ℓ ∈ ∂(0) the dispersal function K(ℓ, η) is an injective function with respect to η

Condition 5 The function C(γ) is a bijective and strictly positive function with respect to γ

4



The condition 1 is necessary since the infection can start up only during the interval (0, EA]. The condition
2 can be written:

∀v ∈ {1, · · · , nV } ∃ℓ ∈ I : i1 ∈ ∂v(ℓ) (6)

and in the symmetrical case:
∀v ∈ {1, · · · , nV } ∃ℓ ∈ ∂v(i1)

The third condition is a slight restriction in the definition of the function ρ. The condition 4 is natural since
K is another way of the characterization of the type of a neighbor.

Let now give the identification property which is proved in appendix.

Lemma 6 The model (3) is well defined under conditions 1 to 5.

5 MCMC estimation of the parameters

The estimation of the parameters with be based on the maximisation of

Pθ(Y
obs | Z) =

∫

T∈T

dPθ(Y
obs,T | Z) =

∫

T

P (Yobs | T,Z)Pθ(T | Z) dP (T). (7)

As this expression is intractable, we adopt a Bayesian approach, considering θ as a random variable (Robert
et al., 2004) by applying a MCMC based procedure using a Metropolis-Hastings algorithm where transition
times T are considered as latent variables. This approach has been already used in plant pathology domain
when Y is a binary valued process and when transition instants are not observed (see for instance Gibson,
1997; Gamerman and Lopes, 2006; Rasmussen et al., 2007; Soubeyrand et al., 2009 among others). We
generalize this approach in the case where Y is an ordinal categorical variable.

Considering θ as a random variable the posterior distribution of θ, T, up to a normalizing constant, can
be written as:

P (T,θ | Yobs,Z) ∝ P (Yobs | T,θ,Z)P (T | θ,Z)π(θ).

Recall that Ti is the vector of transition instants (T j
i ) at which the tree i changes the score from j − 1

to j for j = 1, · · · , Ji. Making an appropriate choice of Ti for i ∈ I leads to P (Yobs | T,θ,Z) = 1 which
simplifies the algorithm. The expression of P (T | θ,Z) is given by the following lemma and the prior
distribution distribution π(θ) will be described in the next paragraph.

Lemma 7 Let t = {tji : ∀i, j} be a sample of transition events. Then:

P (T = t | θ,Z) = P
(

T j
i = tji : ∀i, j | θ,Z

)

=
∏

i∈I



e−Λi(0,EP )
Ji−1
∏

j=1

λi(t
j
i )



 (8)

where the simplified notation ∀i, j is used instead of i ∈ I, j = 1, · · · , Ji and for u < v and i ∈ I:

Λi(u, v) =

∫ v

u

λi(t) dt. (9)

Note that in the above lemma, proved in the appendix, we have abused notation P
(

T j
i = tji : ∀i, j | θ,Z

)

for the density of the process under discussion. In the following we will use the simplified notation P (t | θ,Z)
and:

P (tA | θ,Z) =
∏

i∈A



e−Λi(0,EP ) ·
Ji
∏

j=1

λi(t
j
i )





for any subset A of I.
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5.1 Sequential rules for the updating of parameters and transition events

In this paragraph we outline the MCMC algorithm carried out in two steps. In a first time we update
transition times by considering in order all the trees. In a second time we update each component α, γ, η of
the parameter θ based on the decomposition:

P (θ,T | Yobs,Z) ∝ P (T | θ,Z)πα(·)πγ(·)πη(·).

Let us give a brief description of the different steps of the algorithm.
We will denote πα(·), πγ(·), πη(·) the prior distributions and qα(·|·), qγ(·|·), qη(·|·) the proposal distribu-

tions for the corresponding parameters. Details about these distributions are postponed in the appendix.
For each i ∈ I, let t

c
i be the current value of transition times and t

∗
i the candidate value furnished by

proposal distribution qt(·|·) described in the appendix. Similarly let θc = (αc, γc,ηc) be the current value of
the parameter θ and θ∗ the candidate value obtained by the associated proposal distributions.

For each i ∈ I we replace t
c
i by t

∗
i with probability:

min

{

1,
P (t∗i , t

c
ī
| θc,Z) q(tci | t

∗
i )

P (tci , t
c
I\i | θ

c,Z) q(t∗i | tci )

}

= min

{

1,
P (t∗i , t

c
∂(i) | θ

c,Z) q(tci | t
∗
i )

P (tci , t
c
∂(i) | θ

c,Z) q(t∗i | tci )

}

(10)

Actually for both transition times (t∗i , t
c
I\i) and (tci , t

c
I\i) the associated intensities λℓ(t

j
ℓ) are identical for

ℓ ∈ I \ Ni where N (i) = {i} ∪ ∂(i). The identity (10) follows since P (t∗i , t
c
I\i | θc,Z) = P (t∗i , t

c
∂(i) |

θc,Z) · P (tcI\Ni
| θc,Z) and P (tci , t

c
I\i | θ

c,Z) = P (tci , t
c
∂(i) | θ

c,Z) · P (tcI\Ni
| θc,Z).

The parameters are updated component by component in the order appearing in θ. The two first com-
ponents α and γ are updated in a similar way. For instance the current value αc is replaced by α∗ with
probability:

min

{

1,
P (tc | α∗, γc,ηc,Z) πα(α

∗) q(αc | α∗)

P (tc | αc, γc,ηc,Z) πα(αc) q(α∗ | αc)

}

(11)

As there are no constraints on the components of the vector η we update sequentially all these components.
Using the simplifying notation ηa

v̄ , η
b
v for ηa1 , . . . , η

a
v−1, η

b
v, η

a
v+1, . . . , η

a
nV

the candidate value η∗v replaces the
current value ηcv with probability:

min

{

1,
P (t | αc, γc,ηc

v̄, η
∗
v ,Z) πη(η

c
v̄, η

∗
v) q(η

c | ηc
v̄, η

∗
v)

P (t | αc, γc,ηc
v̄, η

c
v,Z) πη(ηc

v̄, η
c
v) q(η

c
v̄, η

∗
v | ηc)

}

(12)

6 Numerical results

We will now present some numerical studies in relation with the data introduced in the 2nd section carried
out with R software4. We define r as the logit function and C as the exponential of γ ∗PAD. Following works
of Aylor (1998, 1999), we suppose that the quantity of ground infection ρ(t) is dispersed in time following
the density of a truncated Gaussian variable (Johnson et al., 1995) defined on [0, EA] centered in EA

2 and
standard error σρ. The parameter σρ will serve as a tunning parameter in MCMC simulations. The dispersal
function K is given by:

K(ℓ, ηv(ℓ)) = exp[−ηv(ℓ) · d(0, ℓ)]

where d(i, ℓ) is the Euclidean distance between trees i and ℓ. We apply the model (3) with initial neighborhood
∂(0) = {1, 2, 3, 4} as illustrated in figure 3. The type of the neighbor ℓ is ℓ that is v(ℓ) = ℓ and so η =
(η1, η2, η3, η4). We run a MCMC procedure with 50.000 iterations and burn-in-length of 8.000. The choice of
neighbors were determined by applying two criteria : the convergence and stability of posterior distribution
of all the components of θ. Neighbors whose dispersal parameter do not converge are removed from the
model, meaning that they can be omitted. The final neighborhood set for all the plots is composed of right
(1) and upper (2) neighbors that is η = (η1, η2). As expected for the final model, the simulations confirm the
independence of posterior distributions from the initial values θo = (αo, γo,ηo) of θ and To of T. We present
here numerical results with αo = (0.01, 0.02, 0.03, 0.04, 0.05), γo = −6 and ηo = (10, 10). Even though

4
cran.r-project.org
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our main interest concerns the mean values of each scalar parameter, we firstly pay attention to assess the
statistical property of simulated chains by presenting some detailed results for the plot A2 and then give
some summary results for the three plots.

The results concerning the parameter η for the plot A2 are presented in figures 3 and 4. Clearly the
convergence properties are better satisfied for the model with neighborhood set defined with neighbors 1
and 2. For this model the density estimation for the two parameters η1 and η2 seems to be approximately
Gaussian as the theory tells us (see Th. 2.1, Geyer, 1992). In addition we calculate three initial sequence
estimators of the standard error of MCMC estimators, called positive, monotone and convex with lag = 453
as described in Geyer (Th. 3.2, 1992) and present them in Table 1. The proximity of three estimations is
another satisfactory property which confirms the choice of final neighborhood composed of two sites.

We use the ”positive” initial sequence estimators in the presentation of numerical results for the plot
A1, A2, A3 as suggested in general case (see for example Gelman and Rubin, 1992). A summary of the
parameter estimations for plots A1, A2 and A3 in the case of two neighbors is given in Table 2. It gives the
estimations (mean of simulated chains) and the functions K(1, η1), K(2, η2) corresponding to θ and based
on 95% confidence intervals (CI).

To conclude, for all plots the most influential neighbors are the right and upper (row) ones which match
up with the main wind direction during the saison. Their influence depends on local position of the plot in
the orchard and the level of PAD.

Figure 3: Left: Neighborhood configurations with respectively 4, 3 and 2 sites. Right: Simulated chains
corresponding to parameters η1, η2 for the plot A2 with different neighborhood set: (a) σ(0) = {1, 2, 3, 4},
(b) σ(0) = {1, 2, 4}, (c) σ(0) = {1, 2}.

Initial sequence estimators for SD
Parameter Mean estimation Positive Monotone Convexe

η1 0.9994 0.0235 0.0232 0.0226
η2 0.2882 0.0050 0.0049 0.0047

Table 1: Estimations of parameters η1, η2 (mean of simulated chains) and different initial sequence estimates
of the standard error (SD) of the mean estimator for the plot A2.
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Figure 4: Mean and histogram of simulated chain corresponding to η1 and η1 for the plot A2 (burn-in-length
of 8000)

Plot α0 α1 α2 α3 α4 γ η1 η2 K(1, η1) K(2, η2)
A1 -1.5180 -1.4148 -1.3374 -1.2304 -1.1036 0.3366 0.9269 0.3257 0.3139 0.2717
A2 -1.5066 -1.4249 -1.3780 -1.2957 -1.2004 0.5311 0.9994 0.2882 0.2867 0.3158
A3 -2.6022 -2.5393 -2.4867 -2.4110 -2.3233 2.6413 0.4750 0.0605 0.5523 0.7850

Table 2: Estimation of parameters and some of their corresponding functions for the three plots

Conclusion

We present a spatial-temporal point process for modeling the spread of apple scab within an orchard composed
of several plots. The process is indexed by the sites of a fixed spatial lattice and continuous in time. We
estimate the parameters by using a Bayesian approach and implementing a MCMC algorithm. Based on
observations of the orchard at sparsely distributed times we present some numerical results that permits
us to determine the most infectious neighbors and quantify the probability of infection from one tree to a
neighbor. In order to increase the power of statistical inference our approach permits also to identify similar
plots that can be treated together in analyzing the data.

A Appendix

A.1 Proof of lemma 6

Omitting Z in (3) let θ and θ′ be such that:

λi(t,θ) = λi(t,θ
′) ∀i ∈ I, ∀t ∈ [0, EP ].

Let i1 be the first infected tree satisfying the condition C1 at instant t1i1 , R = RE(t1
i1

) and δi1 = [t1i1 ,min(E(t1i1)+

1, tj2i2 ). From (3) and as gℓ(t) = 0 ∀t ∈ δi1 and ℓ ∈ ∂(i1) it follows that:

ρ(t) [r(αR)C(γ)− r(α′
R)C(γ′)] + gi1(t) [r(αR)− r(α′

R)] = 0 ∀t ∈ δi1 . (13)

If αR 6= α′
R then r(αR) 6= r(α′

R) and so:

gi1(t) = ρ(t)
[r(αR)C(γ)− r(α′

R)C(γ′)]

[r(αR)− r(α′
R)]

∀t ∈ δi1

which is in contradiction with condition 3 since δi1 is an intervalle with positive length.
Equation (13) when αR = α′

R implies:

ρ(t) [C(γ)− C(γ′)] = 0 ∀t ∈ δi1 .

As ρ is strictly positive in ]0, EA] and C(γ) is a bijective function one obtains C(γ) = C(γ′) and so γ = γ′.
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Let now consider a neighbor ℓ0 of i1 of type vo. The tree i1 being the unique infected tree since gℓ0(t) = 0
for t ∈ δi1 one gets:

∑

ℓ∈∂(ℓ0)

gℓ(t)
[

K(ℓ− ℓ0, ηv(ℓ−ℓ0))−K(ℓ− ℓ0, η
′
v(ℓ−ℓ0)

)
]

= 0 ∀t ∈ δi1

that is, as i1 is a neighbor of type vo of ℓ0

gi1(t)
[

K(i1 − ℓ0, ηvo
)−K(i1 − ℓ0, η

′
vo
)
]

= 0 ∀t ∈ δi1

which implies ηvo
= η′vo

since K is an injective function from condition 4. As from condition 2 there exists
at least one neighbor of each type it follows that ηv = η′v for all v ∈ {1, · · · , nV }.

From condition ?? let fixe a day d with risk Ro and an instant td of this day. Since γ = γ′ and ηv = η′v if
λi1(td,θ) = λi1(td,θ

′) then:

(

r(αRo
)− r(α′

Ro
)
)

{

C(γ)ρ(td) + gi1(td) +
∑

ℓ∈∂(i1)
gℓ(td)K(ℓ, ηv(ℓ))

}

= 0

But γρ(td) + gi1(td) +
∑

ℓ∈∂(i1)
gℓ(td)K(ℓ, ηv(ℓ)) is strictly positive. Indeed if td < EA then C(γ)ρ(td) > 0

and if td ≥ EA ≥ t1i1 then gi1(td) > 0. Consequently r(αRo
) = r(α′

Ro
) and αRo

= α′
Ro

which completes the
proof.

A.2 Proof of Lemma 7

We will omit θ in this paragraph. Recall that ∀i, j means i ∈ I, j = 1, · · · , Ji. Let us denote

PT = P
(

T j
i = tji : ∀i, j

)

and NJ =
∑

i=1,n

Ji the total number of transition instants. Let us consider the ordered sequence of transitions

instants t(1) < · · · < t(NJ) such that t(k) = T jk
ik

for some ik, jk. Writing t(0) = 0 and t(NJ+1) = EP and using
the Markovian property we get:

PT = P
(

T j
i = tji : ∀i, j

)

= P
(

T jk
ik

= t(k) : k = 1, · · · , NJ

)

=

NJ+1
∏

k=1

P
(

T jk
ik

= t(k)

∣

∣

∣
T jl
il

= t(l) : l < k
)

=

NJ+1
∏

k=1

P
(

T jk
ik

= t(k)

∣

∣

∣
T

jk−1

ik−1
= t(k−1)

)

. (14)

Let fixe some k in {1, · · · , NJ}. The event Ak : ”T jk
ik

= t(k)|T
jk−1

ik−1
= t(k−1)” means ”during the interval

(t(k−1), t(k)] only one event takes place : the score level of the tree ik increase by one at instant t(k) ; no other
changes take place during this interval”. It follows that (see for exemple Daley et Jones, Vol; 1, pg. 23):

P
(

T jk
ik

= t(k)

∣

∣

∣
T

jk−1

ik−1
= t(k−1)

)

= λik(t(k)) ·
∏

i∈I

e−Λi(t(k−1),t(k)) (15)

since the successive events Ak are independent for the different trees where Λi(t(k−1), t(k)) =
t(k)
∫

t(k−1)

λi(t)dt. In

particular for the event ANJ+1 that is ”No changes take place between t(NJ) and t(NJ+1) = EP” we have:

P (ANJ+1) =
∏

i∈I

e−Λi(t(NJ),t(NJ+1)) (16)

9



The result is a consequence of Λi(0, EP ) =
NJ+1
∑

k=1

Λi(t(k−1), t(k)) and equations 14, 15 et 16 since:

PT =

NJ+1
∏

k=1

P
(

T jk
ik

= t(k)

∣

∣

∣
T

jk−1

ik−1
= t(k−1)

)

=

NJ+1
∏

k=1

[

λik,t(k)

∏

i∈I

e−Λi(t(k−1),t(k))

]

=
∏

i∈I





Ji
∏

j=1

λi(t
j
i ) ·

NJ+1
∏

k=1

e−Λi(t(k−1),t(k))





=
∏

i∈I





Ji
∏

j=1

λi(t
j
i ) · e

−Λi(0,EP )



 .

A.3 Priors and proposals

As no information is available we consider uniform prior distribution for the components γ,η of the unknown
parameter θ. Their support are respectively [−10, 10] for γ and [0, 20] for each component of η. α satisfy
the property α0 > · · · > αnR−1. Similarly we consider uniform priors for the components of α with supports
that assure the order property. The support for α0 is [−5, 5]. In a similar way we define uniform priors
for the transition times which satisfy two conditions. They satisfy order property for each tree i ∈ I, that
is tji < tj+1

i , ∀j and the number of transitions times between two consecutive observation instants τk−1, τk
equals Yi,k+1 − Yi,k.

The proposal distributions are based on truncated Gaussian laws (Johnson and Kotz, 1995) centered at
the current value of the parameter. We denote Za,b(µ, σ) a truncated normal distribution centered in µ,
standard error σ truncated at a and b and za,b(x;µ, σ) his density at a point x.

The proposal distributions for γ and ηv for v = 1, · · · , nV are respectively z−10,10(γ, σγ) and z−10,10(ηj , σηj
)

for v = 1, · · · , nV .
Let α∗ = (α∗

0, · · · , α
∗
nR−1) be the candidate value where α∗

0 ∼ Z−5,5(α0, σα0
) and α∗

j ∼ Zα∗

j−1,5
(αj , σαj

).
The proposal of α is given by:

q(α∗ | α) = z−5,5(α
∗
0;α0, σα0

) ·
nR−1
∏

j=1

zα∗

j−1,5
(α∗

j ;αj , σαj
) (17)

Note that when tji ∈ [τk−1, τk) the candidate tj,∗i belongs also to the same interval [τk−1, τk). For each
tree i ∈ I such that that Ji > 1 the proposal distribution is given by:

q(t∗i | ti) = zmax(0,τki,1−1),τki,1
(t1,∗i ; t1i , σT 1)

Ji−1
∏

j=2

z
max(tj−1,∗

i
,τki,j−1),τki,j

(tj,∗i ; tji , σT j ) (18)

where ki,j = min
k

{k : τk ≥ tji}. When Ji = 1 the proposal is defined only by the first term.

Let us note that we have in our possession the tunning parameters, σαj
, j = 0, · · · , nR − 1, σγ , σηv

, v =
1, · · · , nV , σT j , j = 1 · · · 8 to reach the required accepting rate for updated values for each of the parameters
and transition times. In our simulations we chose values producing accepting rates approaching 0.23 (Roberts
et al., 1997).
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