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Abstract 

Water movement in unsaturated soils gives rise to measurable electrical potential differences 

that are related to the flow direction and volumetric fluxes, as well as to the soil properties 

themselves. Laboratory and field data suggest that these so-called streaming potentials may be 

several orders of magnitudes larger than theoretical predictions that only consider the 

influence of the relative permeability and electrical conductivity on the self potential (SP) 

data. Recent work has partly improved predictions by considering how the volumetric excess 

charge in the pore space scales with the inverse of water saturation. We present a new 

theoretical approach that uses the flux-averaged excess charge, not the volumetric excess 

charge, to predict streaming potentials. We present relationships for how this effective excess 

charge varies with water saturation for typical soil properties using either the water retention 

or the relative permeability function. We find large differences between soil types and the 

predictions based on the relative permeability function display the best agreement with field 

data. The new relationships better explain laboratory data than previous work and allow us to 

predict the recorded magnitudes of the streaming potentials following a rainfall event in sandy 

loam, whereas previous models predict three orders of magnitude too small values. We 

suggest that the strong signals in unsaturated media can be used to gain information about 

fluxes (including very small ones related to film flow), but also to constrain the relative 

permeability function, the water retention curve, and the relative electrical conductivity 

function. 
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1. Introduction 

 

Under unsaturated conditions, water fluxes are typically inferred from state variables 

(water content, capillary pressure, or temperature) (e.g. Tarantino et al. 2008, Vereecken et 

al., 2008). These local and typically disruptive measurements can be complemented with 

geophysical monitoring and subsequent inversion of geophysical data with a larger support-

volume that are sensitive to the above-mentioned state-variables (e.g., Kowalsky et al., 2005). 

Most of these techniques infer fluxes by data or model differencing in time or space, that is, 

they are not directly measuring the fluxes occurring at the time of the measurements. The self-

potential (SP) method, in which naturally occurring electrical potential differences are 

measured, provides data that are directly sensitive to water flow (e.g., Thony et al., 1997). The 

origin of this phenomenon is associated with water flow in a charged porous medium, such as 

a soil (or more precisely, with the drag of excess charge contained in the diffuse layer in the 

pore water that surrounds mineral surfaces). The source current density that creates the SP 

signals has several other possible contributors (e.g., related to redox and diffusion processes), 

but we focus here on streaming currents, which often tend to dominate in the vadose zone. 

The generation and behavior of streaming potentials in porous media under two-phase 

flow conditions have been investigated within an increasing number of publications, but 

no consensus has been reached concerning how to best model the SP source signals.  

Streaming potential responses has been studied at different scales and with different 

degrees of control (from the field to the laboratory). Thony et al. (1997) were the first to 

demonstrate experimentally a strong linear relationship between SP signals and water flux in 

unsaturated soils. Doussan et al. (2002) found based on long-term monitoring in a lysimeter 

that even if strong linear relationships are present during and after individual rainfall events, 

no linear relationship can explain data from different soil types and water content conditions. 

Perrier and Morat (2000) monitored SP signals at an experimental site for one year and 

proposed a means to explain observed daily variations by considering vadose zone processes. 

Suski et al. (2006) monitored an infiltration test from a ditch. Using surface-based SP 

monitoring data from a periodic pumping test, Maineult et al. (2008) observed a clear 

correlation between pumping and SP signal, but with a time-varying phase lag between the 

measured SP signals at the ground surface and the in situ pressure heads. This phase lag was 

explained by Revil et al. (2008) using an hysteretic flow model in the vadose zone. Recently, 

Linde et al. (2011) showed that SP sources in the vadose zone might strongly influence the 
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measured response in surface-based SP surveys, which has important ramifications as such 

surveys are often interpreted in terms of groundwater flow patterns only. 

Field experiments usually suffer from incomplete knowledge about the variation of 

relevant variables and boundary conditions with time. It is therefore often necessary to rely on 

well-controlled laboratory experiments when deriving equations governing streaming 

potentials under unsaturated conditions. Guichet et al. (2003), Revil and Cerepi (2004), Linde 

et al. (2007), Revil et al. (2007), Allègre et al. (2010), and Vinogradov and Jackson (2011) 

have all investigated streaming potentials in the laboratory using either soil or rock samples or 

1D column experiments. In addition to low-frequency signals associated with water flow, 

Haas and Revil (2009) demonstrated the existence of bursts in the electrical field associated 

with Haines jumps during drainage and imbibition experiments. At an intermediate scale 

between laboratory and field conditions, Doussan et al. (2002) conducted a six month 

monitoring experiment of SP signals, pressure, and temperature in a lysimeter under natural 

conditions (evaporation and rainfall recharge). These authors developed empirical 

relationships to relate SP measurements and water flux for different rainfall events, but no 

general relationship was found that could explain all the data. 

Different approaches have been invoked to explain and model SP signal generation 

under unsaturated conditions. Wurmstich and Morgan (1994) proposed an enhancement factor 

to the saturated streaming potential coupling coefficient equation to model the SP responses 

to a pumping tests of an oil reservoir. Darnet and Marquis (2004) and Sailhac et al. (2004) 

introduced Archie’s second law in the traditional Helmholtz-Smoluchowki definition of the 

streaming potential coupling coefficient to account for the partial water saturation, but 

ignored saturation-induced variations in the relative permeability and excess charge. This 

theory, like the one proposed by Wurmstich and Morgan (1994), predict an increase of the 

streaming potential coupling coefficient with decreasing water content, which is in 

contradiction with laboratory data that generally show decreases with a decreasing water 

content (among others, Guichet et al., 2003; Revil and Cerepi, 2004; Vinogradov and 

Jackson, 2011). Revil and Cerepi (2004) explained this behavior in terms of the increased 

relative importance of surface-related conduction mechanisms with a decreasing water 

saturation. Saunders et al. (2006) used the model of Revil and Cerepi (2004) to simulate 

streaming potentials during hydrocarbon recovery. Perrier and Morat (2000) suggested that 

the streaming potential coupling coefficient should scale with water saturation according to 

the ratio of relative permeability and relative electrical conductivity. Linde et al. (2007) and 

Revil et al. (2007) extended this model by suggesting that also the excess charge need to be 
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considered and they scaled it with the inverse of the water saturation. This scaling based on 

volume averaging is simplified as the volume averaged values are typically very different 

from the flux-averaged excess charge that influence measured streaming potentials (Linde et 

al., 2009). Recently, Jackson (2008; 2010) and Linde (2009) proposed models based on a 

capillary bundle that account for the pore size distribution of partially saturated porous media 

in the prediction of streaming potentials. The resulting predictions are strongly influenced by 

both the pore size distribution and the electrical double layer, but no attempts has been made 

to date to relate these models to available soil-specific hydrodynamic properties. The aim of 

the present contribution is to propose and test two different models based on soil 

hydrodynamic properties. 

We use the pore size distribution and the excess charge distribution in the Gouy-

Chapman layer to derive the effective flux-averaged excess charge density dragged in the 

medium. The model for each soil type is derived from soil-specific hydrodynamic functions, 

namely the water retention and the relative permeability functions. For each of these 

functions, we evaluate for a range of soil textural classes how the effective excess charge in 

the pore water varies with the effective water saturation. The resulting relationships are then 

used to determine how the streaming potential coupling coefficient is expected to vary with 

the effective water saturation. The two approaches are evaluated against the laboratory data of 

Revil and Cerepi (2004) and the lysimeter monitoring data of Doussan et al. (2002). 

 

2 Soil hydrodynamic function-based models  

 

2.1 Governing equations and previous work 

 

The two equations that describe the SP response of a given source current density js (A 

m
-2

) is given by Sill (1983) 

j   E  j
S
,       [1] 

  j  0,       [2] 

where j (A m
-2

) is the total current density, 



  (S m
-1

) is the bulk electrical conductivity, 

E    (V m
-1

) is the electrical field, and 



  (V) is the electrical potential. The source 

current densities can be understood as forcing terms that perturb the geological system from 

electrical neutrality. This induces an electrical current that re-establishes electrical neutrality 

and the SP response are the associated voltage differences created by this current. In the 
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absence of external source currents it is possible to combine these equations to yield the 

following governing equation 

       j
S
.      [3] 

This partial differential equation can be solved using finite-element or finite-difference 

techniques given appropriate boundary conditions and exhaustive knowledge about the spatial 

distribution of  and the source current density js (e.g., Sill, 1983). In the field, the electrical 

conductivity distribution can be estimated using electrical resistivity tomography (e.g., 

Günther et al., 2006) or electromagnetic methods (e.g., Everett and Meju, 2005), while the 

influence of the uncertainty in these models can be evaluated through sensitivity tests (e.g., 

Minsley, 2007). The focus of this paper is on how to predict js from soil-specific 

hydrodynamic functions. 

Three sources of js may dominate in natural media: electrokinetic processes that are 

directly related to the water flux in the medium (related to the streaming current density j
S

EK ), 

redox processes, and electro-diffusion (see, among others Revil and Linde, 2006). Redox 

processes can create large SP signals but only under certain restrictive conditions (see 

discussion in Revil et al., 2009). In the present study, we restrict ourselves to electrokinetic 

processes that typically dominate in hydrological applications. The water flux follows 

Darcy’s law and can be described by the Darcy velocity 



u  (m s
-1

) defined by 

u  
k


w

 p
w
 

w
gz   K

w
H ,     [4] 

where k (m
2
) is the permeability, w (1.002 10

-3
 Pa s at T = 20 °C) is the dynamic viscosity, 

pw (Pa) is the water pressure, 
w

 is the water density (1000 kg m
-3

), g is the gravitational 

acceleration (9.81 m s
-2

), K
w

 (m s
-1

) is the hydraulic conductivity, and H (m) is the hydraulic 

head (m). In saturated media, the Darcy velocity is related to the pore water velocity v (m s
-1

) 

and the porosity   (-) by u   v . 

The streaming current density ( j
S

EK ) is typically described using the streaming 

potential coupling coefficient 



C
EK

 (V m
-1

) 

j
S

EK
 C

EK
H ,      [5] 

with 



C
EK

 defined as 

C
EK




 H
j 0

.      [6] 
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For water-saturated conditions (denoted by superscript sat), Revil and Leroy (2004) relate 

C
EK

sat  to the excess charge in the electrical double layer as 

C
EK

sat

Q

v

sat

k


sat

w

,      [7] 

where Q
v

sat

 1  f
Q Q v

 is the excess charge in the Gouy-Chapman layer per pore water 

volume with fQ the fraction of excess charge in the Stern layer and Q
v
 (C m

-3
) the total excess 

charge that counter balance the mineral surface charges. Equation [7] can be extended for 

partial saturation in a water-wet media for which we explicitly indicate a dependence of the 

material properties on the water saturation Sw 

C
EK

(S
w

) 
Q
v
(S

w
)

 (S
w

)

K
w

(S
w

)


w

.      [8] 

Note that several functions describing  (S
w

)  exist in the literature (among other Waxman and 

Smits, 1968; Rhoades et al., 1989). Laloy et al. (2011) recently published a study 

investigating the most appropriate pedo-electrical model for a loamy soil.  

It is also possible to express j
S

EK  at partial saturations as (Revil et al., 2007)  

j
S

EK
 Q

v
(S

w
)u.      [9] 

As a first approximation, Linde et al. (2007) and Revil et al. (2007) proposed that 

Q
v
(S

w
) scales with the inverse of Sw, that is,  



Q
v
(S

w
) 

Q
v

sat

S
w

.     [10] 

Linde (2009) shows that the effective excess charge Q
v

eff
(S

w
)  dragged in the pore space must 

be considered as a flux-averaged property that depends on the pore space geometry and the 

water phase (see also Jackson, 2010). Equation [10] that is based on volume-averaging is 

therefore only a valid expression for predicting SP signals when Q
v
(S

w
)  is evenly distributed 

throughout the pore space. 

In soil hydrology, soil hydrodynamic properties are described by the water retention 

and the relative permeability function. The first function describes the relationship between 

the water content, 
w

 (-), (or saturation, S
w

(-)) and the matric potential, h (m), whereas the 

second relates the hydraulic conductivity to the water content. Theoretical formulations of 

these hydrodynamic properties have often been derived by conceptualizing the soil as a 



 8 

bundle of cylindrical capillaries with a given size density distribution, tortuosity, and 

connectivity (e.g. Jury et al., 1991).  

In the following section 2.2, we describe the electrokinetic behavior and the electrical 

conductivity of a given capillary. Then in section 2.3 and 2.4 we present two approaches to 

determine Q
v

eff
(S

w
)  by defining the pore space as a bundle of capillaries that is derived either 

from the water retention function (i.e., the WR approach) or the relative permeability function 

(i.e., the RP approach). 

 

2.2 Effective excess charge in a capillary 

 

We consider a capillary with a radius R and a length Lc. We let r be the distance from 

the pore wall (r = 0) to the center of the capillary (



r  R ). The capillary is saturated by an 

electrolyte of N ionic species i, with concentration c
i

0

 (mol m
-3

), valence zi (-), and charge 



q
i
 ez

i
 (C), where e (1.6  10

-19
 C) is the elementary charge. The ionic strength I (mol m

-3
) of 

the electrolyte is 

I 
1

2
z
i

2
c
i

0
.

i 1

N

       [11] 

Note that the ionic strength is equal to the salinity for binary symmetric 1:1 electrolyte (e.g., 

NaCl). 

We assume—as for silicate and aluminosilicate minerals—that the pore walls have a 

negative surface charge (the case of positive surface charge can be treated in an analogous 

manner). To assure electrical neutrality, there exists a balancing excess of cations in the pore 

water (counterions, while anions are called co-ions). Most of the excess charge is located 

close to the pore wall in the fixed Stern layer and the remaining part is distributed in the 

diffuse Gouy-Chapman layer, while the free electrolyte is defined by the absence of excess 

charge (e.g., Leroy and Revil, 2004). Figure 1a presents a sketch of the charge distribution in 

the different layers. 

The Stern layer contains only counterions (with or without their hydration shell) and 

its thickness is negligible for typical soils. For example, molecular dynamics simulations in a 

0.1 M NaCl–montmorillonite system shows that the thickness of the Stern layer is about 6.1 Å 

(Tournassat et al., 2009). The interface between the Stern layer and the Gouy-Chapman layer 

is assumed to correspond to the shear plane, which separates the stationary fluid (due to 

surface effects) and the moving fluid (see among others, Hunter, 1981; Revil et al., 2002). 
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The electrical potential along this plane is commonly assumed to correspond to the zeta 

potential 



  (V). This potential depends for a given mineral, among other things, on ionic 

strength, temperature, and pH (e.g., Revil et al., 1999). 

The thickness of the Gouy-Chapman layer corresponds roughly to two Debye lengths 

lD(Hunter, 1981) defined by 

l
D


 k
B
T

2 Ie
2

,       [12] 

where   
r


0
 (F m

-1
) is the pore water permittivity, kB (1.381 10

-23
 J K

-1
) is the 

Boltzmann constant, T (K) is the absolute temperature, 




0
 = 8.854  10

-12
 F m

-1
 is the 

permittivity of vacuum and r=80.1 at T=20C is the relative permittivity of water. The Gouy-

Chapman layer contains distributions of both anions and cations that are linked to the local 

electrical potential in the pore water   f (r ) . Pride (1994) expressed for the thin double 

layer assumption (i.e., the thickness of the double layer is small compared to the pore size) 

how the local electrical potential depends on the 



 -potential and the distance r from the shear 

plane as (see also Fig. 2a) 

 (r )   exp( r / l
D

) .     [13] 

This equation neglects the effects of the charges of the opposite capillary wall (for the case of 

overlapping Gouy-Chapman layers, see Gonçalvès et al., 2007), which is a valid assumption 

in most soils under typical conditions. The counterion and co-ion distributions c
i
 f (r )  in 

the pore-water follow (see Fig. 2b) 

c
i
(r )  c

i

0
exp 

q
i


k
B
T











,    [14] 

where c
i

0  is the ionic concentration of i far from the mineral surface (i.e., in the free 

electrolyte). The excess charge distribution Q
v
(r )  (C m

-3
) in the capillary is (excluding the 

Stern layer) given by (see Fig. 1b) 

Q
v
(r )  N

A
q
i
c
i
(r )

i 1

N

 ,     [15] 

with NA = 6.022  10
23

 mol
-1

 being Avogadro’s number. 

For a laminar flow rate, the velocity distribution v(r) in a capillary of radius R with a 

given hydraulic head vertical gradient dh dz  is approximated by the Poiseuille model (Fig. 

1c)  
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v(r ) 

w
g

4
w

R

2
 (R  r )

2 
dh

dz
,     [16] 

where  is the tortuosity of the capillary (Lc/L), where L is the length over which the pressure 

difference is applied. The average velocity v
R
 (m s

-1
) in the capillary is 

v
R



w
g

8
w

R

2 dh

dz
.     [17] 

By integration of the flux over the total area of the capillary, one can recover the flux-

averaged excess charge, that is, the effective excess charge carried by the water flux in the 

capillary Q
v

eff ,R  (C m
-3

) by 

Q
v

eff , R


Q
v

(r )v(r )r dr

r  0

R



v(r )r dr

r  0

R



.    [18] 

Figure 1 presents a conceptual view of the electrical double layer model (Fig. 1a), the 

calculated excess charge distribution using Eq. [15] (Fig. 1b), and the calculated pore fluid 

velocity using Eq. [16] (Fig. 1c). 
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Fig. 1. Distribution of charge and hydraulic flow in a capillary with a radius R = 4 lD saturated 

with a NaCl electrolyte (10
-3

 mol L
-1

, lD = 9.70  10
-9

 m): (a) sketch of the electrical double 

layer, (b) excess charge density (  = -70 mV) and (c) pore velocity distribution as a function 

of the distance from the pore wall normalized by the Debye length (lD). The arrows stand for a 

theoretical flow direction and intensity. Note that the Stern layer is compact and its thickness 

can often be neglected. 
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Fig. 2. Effect of surface charge on the pore water properties of a NaCl electrolyte of 10
-3

 mol 

L
-1

 (lD = 9.70  10
-9

 m) and   = -70 mV (Revil et al., 1999): (a) local potential of the 

electrical diffuse layer, (b) excess charge density. 

 

2.3 From the water retention function to an effective excess charge function 

 

In this section, we express the soil water retention curve in terms of an equivalent 

bundle of capillaries, which allows us to obtain a relationship between Q
v

eff  and the effective 

water saturation for a given soil type. The soil water retention function describes the 

functional relationship between the matric potential (capillary pressure) and water content (or 

saturation). 

The effective water saturation Se is defined as 

S
e


w
 

w

r

  
w

r
,      [19] 

where 
w
 S

w
  (-) is the water content and 

w

r  (-) is the residual water content after drainage. 

Van Genuchten (1980) relates Se to the soil matric potential h 
p
w


w
g

 (m) using the following 

function 
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S
e
 1  

VG
h 

nVG





 mVG

,    [20] 

where 




VG

 (m
-1

) corresponds to the inverse of the air entry matric potential, while 



n
VG

 and 



m
VG

 1 
1

n
VG

  are curve shape parameters. The air entry matric potential corresponds to the 

matric potential (he) at which the soil starts to desaturate. 

Another popular water retention function is the one of Brooks and Corey (1964) 

S
e


h
e

h











 BC

 for 



h  h
e
,     [21] 

S
e
 1   for 



h  h
e
,     [22] 

with he the air entry pressure (m) and 




BC

 a parameter related to the pore size distribution. 

By considering the soil as a bundle of capillaries and applying the Young-Laplace 

equation, it is possible to relate an equivalent radius Rj (m) to the capillaries j that drain at a 

specific matric potential by 



h 
2 cos 


w
gR

j

,      [23] 

where 



  (0.0727 N m
-1

 at T=20°C) is the surface tension of water, 



  is the contact angle 

(often considered to be 0°, which yields cos 



  = 1, see Bear, 1972). 

Using Eq. [20 or 21] and Eq. [23] it is thus possible to relate, for a given Se, the size of 

the capillaries 



R
Se

 that drain at an incremental change in Se. This allows us to determine the 

range and capillary densities of a bundle corresponding to a soil with a given water retention 

curve. We define the capillary size distribution f
WR

R   as  

f
WR

R dR  S
e
R
Se 

Rm in

RSe

 .     [24] 

At the scale of the capillary bundle, the electrical formation factor can be expressed 

under saturated conditions, as 

1

F
 lim

 S  0




w










 

m
,     [25] 

where 
S

 is the surface conductivity and 
w

 is the electrical conductivity of the pore water, 

respectively, and m is the cementation index defined by Archie (1942). This exponent is 

inversely related to the connectivity of the pore space. We assume that the electrical tortuosity 

under saturated conditions =F1-m
 also describes the hydrological tortuosity (e.g., Lesmes 

and Friedman, 2005).  
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The normalized volumetric flux of water in the pore 



v (S
e
)  (m

3
 s

-1
 m

-2
 = m s

-1
) of the 

soil can be computed as the sum of the flux of all capillaries up to the size RSe 

v(S
e
) 

v
R

(R ) f
WR

(R )

Rm in

RSe

 dR

f
WR

(R )

Rm in

RSe

 dR

.     [26] 

This approach (WR) to calculate Q
v

eff
(S

e
) is based on flux-averaging all charges carried by all 

the capillaries as determined from the water retention curve. We thus define the effective 

excess charge Q
v

eff
(S

e
)  as 

Q
v

eff
(S

e
) 

Q
v

eff , R
v
R

(R ) f
WR

(R )

Rm in

RSe

 dR

v
R

(R ) f
WR

(R )

Rm in

RSe

 dR

.   [27] 

It is then possible to obtain C
EK

(S
w

)  by introducing the appropriate  (S
w

)  function, Eqs. [26] 

and [27] in Eq. [8]. Note that any hysteretic properties of primarily the water retention 

function (e.g. Mualem, 1984) but also  (S
w

)  (Knight, 1991) make the Q
v

eff
(S

e
)  function 

hysteretic. 

 

2.4 From the relative permeability function to the effective excess charge 

 

In this section, we present an alternative formulation to calculate Q
v

eff
(S

e
)  that we term 

the RP approach in which we use the relative permeability function. In this approach, we 

obtain an equivalent capillary distribution corresponding to a soil with a given relative 

permeability function that is then used to determine the Q
v

eff
(S

e
)  relationship. 

The relative permeability k
w

rel
(S

e
)  is defined as 

k
w

rel
(S

e
) 

K
w

(S
e
)

K
w

sat
,     [28] 

where K
w

(S
e
)  and K

w

sat , are the partially saturated and the fully saturated hydraulic 

conductivity (m s
-1

), respectively. 

Mualem (1976) proposes the following relationship to determine the relative hydraulic 

conductivity from the soil water retention curve 
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k
w

rel
S
e   S e



dS
e

h
0

Se



dS
e

h
0

1





























2

,     [29] 

where is a dimensionless parameter that accounts for hydraulic tortuosity and correlation 

between pores as a function of Se (a typical choice is  = 0.5). Van Genuchten (1980) 

introduced his soil water retention function (Eq. [20]) into Mualem’s model (Eq. [29]) 

resulting in the widely used van Genuchten-Mualem (VGM) model 

k
w

rel
S
e   S e


1  1  S

e

1 mVG 
mVG





2

.   [30] 

Another popular relative permeability function is the one of Brooks and Corey (1964) 

that uses a power-law function based on their 




BC

 (Eq. [21]) parameter 

k
w

rel
S
e   S e

2

 BC

 3

.     [31] 

We now derive a capillary size distribution f
RP
R   similarly as for f

WR
R   in Eq. 

[24]. Instead of using the water retention function and Eq. [23], we now use Eq. [17] together 

with the derivative of the relative permeability function [Eq. 30 or 31] to derive the equivalent 

R
Se
S
e  that drains at a given Se as 

R
Se

2
S
e  

8
w



w
g

K
w

sat

  
w

r 

k
w

rel
S
e 

S
e

.    [32] 

After having determined f
RP
R   from S

e
R
Se  , we replace f

WR
R   in Eq. [27] to determine 

the Q
v

eff
(S

e
)  relationship. One can then recover C

EK
(S

w
)  by inserting the resulting Q

v

eff
(S

e
)  

relationship, an appropriate  (S
w

)  function, and Eq. [32] into Eq. [8]. 

 

3. Results 

 

3.1 Prediction of the relative excess charge and coupling coefficient for a soil data set 

 

We first derive the Q
v

eff
(S

e
)  relationships of our two approaches using a database of 

hydrodynamic soil-specific functions (Carsel and Parrish, 1988) compiled from soil water 

retention measurements of more than 5000 soil samples that are grouped into 12 textural 

categories. We use the average values of the Van Genuchten parameter ( ,
w

r ,




VG

, and 



n
VG

) 
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and the saturated hydraulic conductivity ( K
w

sat ) for each textural category (see Table 1) to 

calculate the expected Q
v

eff
(S

e
)  function using the WR (section 2.3) and RP approach (section 

2.4). 

We hereafter consider the soils presented in Table 1 as being saturated by a NaCl 

electrolyte at T = 20°C with an ionic strength of I = 5  10
-3

 mol L
-1

. From the empirical 

relationship proposed by Worthington et al. (1990), this salinity yields a water conductivity 

equal to 
w

 = 0.0603 S m
-1

. Considering this electrolyte and its concentration, a typical zeta 

potential at the surface of silica minerals is 



  = -61.1 mV (Revil et al., 1999). We consider 

hereafter that all the capillary surfaces have this zeta potential. 

 

Table 1. Average values of the Van Genuchten water retention and relative permeability 

model parameters and saturated hydraulic conductivity of textural soil types (from Carsel and 

Parrish, 1988). 

 

Texture
 a.

   [-] 
w

r  [-] 




VG

 [m
-1

] 



n
VG

 [-] K
w

sat  [m s
-1

] Number of 

samples 
b.
 

Clay 0.38 0.068 0.8 1.09 5.56  10
-7

 333 

Clay loam 0.41 0.095 1.9 1.31 7.22  10
-7

 360 

Loam 0.43 0.078 3.6 1.56 2.89  10
-6

 735 

Loamy sand 0.41 0.057 12.4 2.28 4.05  10
-5

 315 

Silt 0.46 0.034 1.6 1.37 6.94  10
-7

 83 

Silt loam 0.45 0.067 2.0 1.41 1.25  10
-6

 1093 

Silty clay 0.36 0.070 0.5 1.09 5.56  10
-8

 274 

Silty clay loam 0.43 0.089 1.0 1.23 1.94  10
-7

 631 

Sand 0.43 0.045 14.5 2.68 8.25  10
-5

 246 

Sandy clay 0.38 0.100 2.7 1.23 3.33  10
-7

 46 

Sandy clay loam 0.43 0.089 1.0 1.23 3.64  10
-6

 214 

Sandy loam 0.41 0.065 7.5 1.89 1.23  10
-5

 1183 

a. The textural groups correspond to the USDA classification scheme 

b. Average number of samples used to determine the parameters for each soil texture 

 

Figure 3 presents the evolution of the relative excess charge Q
v

eff , rel  (i.e., normalized 

by the value at full saturation) using the hydrodynamic properties of the various textural 

classes (Table 1) and the two proposed approaches. Both models predict an important increase 
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of Q
v

eff , rel  with decreasing saturation. This is consistent with the assumption of Linde et al. 

(2007), but the new models show much stronger increases at low saturations (three to seven 

orders of magnitudes depending on the soil type and approach used). The WR approach (Fig. 

3a) predicts increases of Q
v

eff , rel  that are several orders of magnitudes larger than for the RP 

approach (Fig. 3b). 

 

 

Fig. 3. The Q
v

eff , rel
(S

e
)  relationships computed by the WR (a.) and RP approaches (b.). The 

solid black lines correspond to the model of Linde et al. (2007) (Q
v
(S

w
)  Q

v

sat

S
w

) for the 

different soil types (the many neighboring lines arise due to differences in the residual water 

content among soil types). 

 

Jardani et al. (2007) propose the following empirical relationship between effective 

excess charge (Q
v

eff , sat ) and permeability k (m
2
) under saturated conditions 

log
10

(Q
v

eff , sat
)  0.82 log

10
(k )  9.23.    [33] 

Figure 4 displays the predicted Q
v

eff , sat  as a function of k for the two approaches. For each 

approach, the predictions closely follow a log-log relationship. The correspondence with the 

general trend of the experimental data is overall satisfactory, but the absolute values are rather 

bad for the WR approach (the permeability is over estimated and the Q
v

eff , sat  is 

underestimated). This is due to the simplification made in the WR approach when computing 

the permeability directly from the water retention function, while the RP approach use the 

permeability of Carsel and Parrish (1988) (calculated from K
w

sat  in Table 1). The resulting 

linear regression models  

log
10

(Q
v

eff , sat
)  0.77 log

10
(k )  9.14 ,   [34] 
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log
10

(Q
v

eff , sat
)  0.76 log

10
(k )  8.01 ,   [35] 

for the WR and RP approach, respectively, are rather similar to Eq. [33]. Sensitivity tests 

based on the ionic strength have shown that when I increases, Q
v

eff , sat  decreases (within half an 

order of magnitude for I  10
4

;10
1

   mol L
-1

), but the slope of the log-log relationship 

remains similar to Eq. [34] and [35]. These results indicate a strong relationship between Q
v

eff  

and k through the pore size distribution. 

 

 

Fig. 4. The predicted effective excess charge using the WR and RP approaches for the 

different soil textures in saturated conditions. The Jardani et al. (2007) empirical relationship 

is shown with other data. 

 

Following the proposed approaches, it is possible to predict the evolution of the 

streaming potential coupling coefficient from three soil specific parameters [Eq. 8]: 
w

(h ) , 

K
w

(h ) , and  (S
w

) . But, to the best of our knowledge, very few published datasets on soil 

samples are available that include all three relations. We use the data from Doussan and Ruy 

(2009) that measured these relationships for: Fontainebleau sand, Collias loam, and Avignon 

silty clay loam (Fig. 5). As pointed out by the authors, the data cannot be properly described 

by the traditional water retention and relative permeability functions. We used a cubic 

interpolation function to describe the parameter evolution with respect to matric potential. 
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Due to the significant standard deviation of the hydraulic conductivity data, we used the mean 

as proposed by Doussan and Ruy (2009). We extrapolated the relative permeability up to h = 

10
6
 m based on the last data points and van Genuchten Mualem parameters for corresponding 

soils. 

 

 

Fig. 5. Properties of three different soil types: (a.) water content and (b.) hydraulic 

conductivity as a function of matric potential, and (c.) electrical conductivity as a function of 

water content. Symbols correspond to measurements of Doussan and Ruy (2009), while the 

dashed lines represent the interpolations of the measurements used in this study. 

 

Figure 6 shows Q
v

eff , rel
(S

e
)  and C

EK

rel
(S

e
)  predicted from Eq. [8] using the WR and RP 

approaches. Figure 6a and 6b show that the predicted excess charges have a similar behavior 

as for the averaged Carsel and Parrish parameters (Fig. 3), with Q
v

eff
(S

e
)  varying strongly 

between soil types. From the predicted Q
v

eff , rel
(S

e
) , the interpolated K

w
(h )  (Fig. 5b), and 

 (S
w

)  (Fig. 5c), we predicted how the streaming potential coupling coefficient varies with 
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saturation (Fig. 6c and 6d). The behavior of C
EK

rel
(S

e
)  strongly depends on the different 

parameters. 

 

 

Fig. 6. Relative excess charge (a., b.) and streaming potential coupling coefficient (c., d.) as a 

function of Se predicted by the WR and RP approaches, respectively. These predictions have 

been calculated from the parameter functions showed in Fig. 5. The thin black lines in Fig. 6a. 

and 6b. correspond to the model of Linde et al. (2007) Q
v
(S

w
)  Q

v

sat

S
w

. 

 

3.2 Application to laboratory data 

 

We now apply the WR and RP approaches to the laboratory data of Revil and Cerepi 

(2004). These data include electrical conductivity, capillary pressure and streaming potential 

coupling coefficient as a function of saturation for two dolomite core samples. The NaCl 

brine used for the measurements had an ionic strength I = 8.6  10
-2

 mol L
-1

 and a 

conductivity of 
w

= 0.93 S m
-1

. For the electrical behavior, Revil and Cerepi (2004) use 
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Archie’s second law to model the relative electrical conductivity  rel
  (S

w
) 

sat
 S

w

n . The 

hydrological behavior is described using the Brooks and Corey model (Eqs. [21], [22], and 

[31]). Table 2 presents the parameters used by Revil and Cerepi (2004) to describe the 

electrical and hydrological properties of the two samples (Figs. 7a and 7b). 

 

Table 2. Electrical and hydrologic parameter values used for the dolomite samples. 

Sample Porosity 

  [-] 
a.
 

Electrical parameter Hydrological parameter 

m [-] 
a.
 n [-] 

a.
 S

w

r  [-]
 b.

 h
e
 [m]

 b.
  BC [-] 

b.
 

E3 0.203 1.93 
a.
 2.70 0.36 2.40 0.87 

E39 0.159 2.49 
a.
 3.48 0.40 11.52 1.65 

a. From Revil and Cerepi (2004) 

b. Parameters fitted from Revil and Cerepi (2004) experimental results 

 

Figure 7c presents the predicted relative streaming potential coupling coefficients 

using the WR and RP approaches and the predictions of Revil et al. (2007) (see Eq. [10]). The 

relative streaming potential coupling coefficient predicted from the water retention function 

(Fig. 7b) fits the E3 sample measurements very well and provide satisfactory values for the 

E39 sample (Fig. 7c). For all samples, the RP approach tends to overestimate the relative 

streaming potential coupling coefficient. Note that the relative permeability function is not 

based on actual measurements, but was derived from the Brooks and Corey (1964) model that 

is based on the assumption that the 
BC

 describing the water retention function is appropriate 

to describe the relative permeability function (Eq. [31]). The volume averaging approach of 

Linde et al. (2007) (Eq. [10]) clearly underestimates C
EK

rel
(S

w
)  (see also discussion in Allègre 

et al., 2011). The predicted Q
v

eff
S
w  from the WR approach is at low saturations several 

orders of magnitude larger than the predictions of Linde et al. (2007) (e.g., 

Q
v

eff
(S

w

r
)  3.4  10

5
Q

v
(S

w

r
) ).  
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Fig. 7. Application of the proposed approaches to a data set obtained on two dolomite samples 

from Revil and Cerepi (2004): (a) Relative electrical conductivity, (b) matric potential, and 

(c) relative streaming potential coupling coefficient versus saturation. The two thin dashed 

lines in Fig 6c represents the predicted values for the approximation Q
v
(S

w
)  Q

v

sat

S
w

. 

 

3.3 Application to a lysimeter experiment 

 

We now apply our model to the experimental data acquired by Doussan et al. (2002) 

in a lysimeter with a 9 m
2
 surface and a 2 m height located at the INRA experimental field 

site in Avignon, France. The lysimeter was filled with a local sandy loam and instrumented to 

monitor unsaturated vertical hydraulic flux. The matric potential was monitored at two depths 

(30 and 40 cm below ground surface) using two tensiometers for a period of 6 months, while 

SP data were acquired—at two different locations—between the same two depth intervals 

using unpolarizable Pb/PbCl2 electrodes (Petiau, 2000) at a 20 cm distance from the 

tensiometers. The electrodes located at 30 cm depth were chosen as references. The SP data 

were corrected for temperature effects following Petiau (2000). The pore water conductivity 
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was measured punctually using suction cups at a depth of 35 cm. The soil cation exchange 

capacity (CEC) of the soil was measured under laboratory conditions using the Metson 

method (Metson, 1956). 

The water retention curve and the relative permeability function of the sandy loam 

were determined under laboratory conditions using the Wind evaporation method (Tamari et 

al., 1993). The two hydrodynamic functions could not be adequately fitted using the same van 

Genuchten parameters (see Table 3 for the individually best fitting van Genuchten 

parameters).  

 

Table 3. Soil properties of the sandy loam soil of Doussan et al. (2002). 

   [-] 
w

r  [-] 




VG

 [m
-1

] 



n
VG

 [-] K
w

sat  [m s
-1

] 

Water retention function 0.44 0 1.13 1.36 - 

Relative permeability function 0.44 0 0.28 1.33 1.25  10
-7

 

 

The electrical behavior of the soil was modeled using the Waxman and Smits (1968) 

model 

 
S
w

n

F

w


S

S
w











,     [36] 

with parameter values F = 4.54, n = 1.877 (the saturation index) and 
S

 = 0.109 S m
-1

. Due 

to rainwater infiltration and evaporation, the water conductivity was changing with time as 

inferred from the measurements in the suction cups (
w
 0.06; 0.20   S m

-1
). 

We now test our proposed approaches on rainfall events occurring during the 

monitoring period. The climatic conditions during the 6 months can be divided into two parts. 

No major rain event occurred during the first 90 days. Then a series of rainfall events 

occurred and we chose the five major events at days 91, 100, 107, 119, and 131. Following 

Doussan et al. (2002), we divide the rainfall events into an infiltration and a drainage phase. 

The infiltration phase correspond to an increase of the flux as the rainwater reaches the 

sensors, while the drainage part is characterized by the decrease of both water content and 

flux. In their interpretation, Doussan et al. (2002) established different relations between the 

SP signal and the water flux between these two phases. 
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A first analysis of these data can be done by investigating the evolution of Q
v

eff
(S

w
) . 

Considering the lysimeter as a 1D system, Eq. [3] yields 
d

dz
 j

S
. Combined with Eq. [9], 

it is possible to use this relationship to determine the effective excess charge from the 

measured quantities 

Q
v

eff
(S

w
) 

 (S
w

)

u

d

dz
.      [37] 

The SP gradient is calculated from the measured SP signals and the spacing between the two 

electrodes (10 cm). The Darcy velocity u is inferred from the matric potential measurements 

using the relative permeability function (at the electrode depths) and the electrical 

conductivity is predicted at the different inferred water saturations using Eq. [36]. 

Figure 8 compares Q
v

eff
(S

w
)  calculated by Eq. [37] with the ones predicted by the 

proposed approaches using the hydrodynamic function parameters of Table 3. We find that 

the RP approach provides much better results than the WR approach. For the first event, 

Q
v

eff is well predicted by the RP model, while the following events present an increasing 

discrepancy. It is possible that the drying-wetting in the soils could create hysteretic effects 

that may explain this observation. We also find that the experimentally inferred Q
v

eff  have a 

similar behavior with respect to Sw for both the infiltration and drainage phases. 
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Fig. 8. Effective excess charge as a function of saturation during the five considered rainfall 

events: (a) the infiltration and (b) the drainage phase. The solid blue and red lines represent 

the predicted values from the WR and RP approaches, respectively. The different symbols 

represent the Q
v

eff  calculated from the measured SP data of Doussan et al. (2002) for the 

different rainfall events (Eq. [37]). 

 

We now compare Q
v

eff  to the measured CEC. The total excess charge in the medium 

Q
v

 (Stern + Gouy-Chapman layer) can be calculated from the CEC through the following 

relationship (Waxman and Smits, 1968) 

Q
v
 

S

1  











 CEC .     [38] 

From the measurements, CEC = 5.2  10
-2

 mol kg
-1

, and considering the typical silica mineral 

density 
S

 = 2700  kg m
-3

, we find Q
v

 = 1.66  10
7
 C m

-3
, which is much higher than 

Q
v

eff , sat  = 851 C m
-3

 at saturation estimated from the RP approach. One reason for this 

discrepancy is that Q
v

sat

 1  f
Q Q v

, but even in pure clays, which have the highest f
Q

 

values, the typical observed values are f
Q
 0.75; 0.99  (Leroy and Revil, 2009). This makes 
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us conclude that the flux-averaged Q
v

eff , sat for this site is smaller than the volume-averaged 

Q
v

sat

by two to three orders of magnitudes.  

 

3.4 Simulation of the SP response to a rainfall event 

 

We now compare the data of Doussan et al. (2002) with simulations of a single rainfall 

event and the associated modeled SP response. The numerical simulations were conducted 

using the finite element modeling software COMSOL Multiphysics 3.5 coupled with the 

scientific computing environment MATLAB. In the simulation, the water flow was computed 

using Richard’s equation with the van Genuchten parameterization (see Table 3 for the 

parameter values). Note that the residual water content was set to 
w

r  = 0.1 to reach 

convergence of the hydrological problem at the beginning of the rainfall event. The source 

current density was calculated from the computed Darcy velocity (Eq. [9]) and the Q
v

eff
(S

w
)  

was predicted using the RP approach. Considering the low conductivity of the rainwater (2.5 

 10
-3

 S m
-1

), the transport was simulated to also take variations of the pore water 

conductivity into account. The electrical conductivity model of Waxman and Smits (1968) 

was used with the parameters of Doussan et al. (2002). The electrical problem (Eq. [3]) was 

solved at different times to compute the SP signal arising from the hydrological simulation 

results. 

The simulation was performed considering a 2 m high and 0.05 m wide rectangle. The 

measurement points correspond to the lysimeter experiment (depths of 0.3 and 0.4 m). The 

geometry was discretized with a mesh with a side length smaller than 30 mm and a mesh 

refinement down to 5 mm from the surface down to the two measurement points. The 

hydrological boundary conditions were Neumann boundary conditions on the lateral sides (no 

water flow), a constant water table at the bottom, and imposed flux at the top (Fig. 9a). The 

system was assumed to be in hydrostatic equilibrium before the rainfall event with the initial 

level of the water table determining the water content distribution in the medium. The 

boundary conditions for the electrical problem were defined as a Neumann condition 

(electrical insulation) with a reference (  = 0 V) at a depth of 0.30 m as in Doussan et al., 

(2002).  

Figure 9 shows the simulation results for different initial water table levels at depths: 

WTini = 4.5, 5.5, 6.5, 7.5, and 8.5 m. These values were chosen to represent the range of the 
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experimental hydraulic head of Doussan et al. (2002) prior to rainfall event 1 (day 91). The 

imposed flux (Figure 9a) at the top corresponds to the rainfall intensity of event 1, which was 

interpolated from hourly data measured in the vicinity of the lysimeter. Figure 9b shows the 

variation of the matric potential at a depth of 0.35 m, while the corresponding SP signal 

between 0.40 and 0.30 m depth is shown in Fig. 9c. The initial level of the water table has 

clearly a strong influence on the SP response. 

 

 

Fig. 9. Predicted SP signals due to rainfall for different initial water table levels: (a) imposed 

flux from the climatic data of Doussan et al. (2002) for rainfall event 1 (day 91), (b) the 

modeled matric potential at 35 cm, and (c) the SP signal between 30 and 40 cm depth. Sandy 

Loam 1 and 2 SP data come from the lysimeter experiment of Doussan et al. (2002). The five 

dashed lines in Fig 9c represent the predicted SP values for the approximation 

Q
v
(S

w
)  Q

v

sat

S
w

. 

 

The new proposed model explains the experimental data much better than the model 

of Linde et al. (2007) (dashed lines in Fig. 9c). Considering WTini = 6.5 m, the normalized 



 28 

RMS computed for the model based on the RP approach is 52.3 %, while the signal predicted 

from the Linde et al. (2007) model has a RMS = 97.5 %. We believe that a better description 

of the initial hydrological conditions would further improve the simulation results of the RP 

approach. Indeed, it is unlikely to find a hydrostatic equilibrium in a natural soil under in-situ 

conditions. In addition, evaporation processes were not taken into account in the modeling. 

For the 6.5 m deep initial water table, Fig. 10 shows profiles of the simulated SP 

signal and the matric potential distribution over the first 0.50 m as a function of time (up to 10 

days). The SP response due to the rainfall event shows fairly large values at the surface (up 20 

mV). The signal peak is followed by a relaxation as the system returns to equilibrium. The 

relaxation time strongly depends on the water saturation. 

 

 

Fig. 10. (a) Streaming Potential signal and (b) matric potential as a function of depth in the 

medium at 0, 1, 2, 5 and 10 days for a water table at 4.5 m depth. Note that the reference 

electrode is at 0.3 m depth. 

 

The simulation results give additional confidence in the proposed approach to 

determine the variation of Q
v

eff  as a function of saturation using hydrodynamic functions. The 

results also demonstrate that it is possible to obtain fairly large SP signals within a partially 

saturated medium even when C
EK

rel
(S

w
)  decreases with Se as the gradients in hydraulic head 

can be very large, for example, due to a perturbation of an initially dry soil by a rainfall. 
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4. Discussion 

The two new approaches to predict soil-specific flux-averaged Q
v

eff
(S

e
)  have a higher 

predictive capacity than the model of Linde et al. (2007) and Revil et al. (2007). The primary 

reason for this improvement is that the volume-averaging used in the latter approach is based 

on the assumption of a uniform distribution of excess charge in the pore space. As shown in 

Fig. 9, the predictions based on Q
v
(S

w
)  Q

v

sat
S
w

is smaller than the measured SP signals by 3 

to 4 orders of magnitude, while the RP approach provides values in the same order of 

magnitude as the field data. This improvement is achieved by considering a more complex 

model of Q
v

eff
(S

e
)  derived from hydrodynamic functions that explicitly considers that Q

v

eff
(S

e
)  

is a flux-averaged property. We find that the RP approach is more reliable than the WR 

approach, which nevertheless provide rather good results in terms of relative variations with 

respect to water saturation. The better performance of the RP approach is likely caused by an 

improved inference of the equivalent pore size distribution compared with the WR approach.  

The numerical simulations highlight that the SP signals are strongly related to the 

distribution of excess charge in the pore space and the velocity distribution in the pore space 

(Fig. 1). The very important difference between the flux-averaged Q
v

eff  calculated from 

experimental results (Fig. 8) and the volume-averaged excess charge Q
v

 determined from 

CEC measurements (see section 3.3) is due to that a disproportionately large fraction of fluid 

flow takes place outside of the diffuse Gouy-Chapman layer.  

The results presented here explain how SP signals can significantly increase at low 

saturation even if the streaming potential coupling coefficient tends to decrease with 

saturation. This happens as the hydraulic head gradients in the unsaturated zone can be very 

large and it is the combined effects of the coupling coefficient and the hydraulic head that 

creates the SP signal for a 1-D system. Another explanation is offered by rewriting Eq. [37] as  

 
Q
v

eff
(S

w
)

 (S
w

)
u .

     [39] 

This equation is as Eq. [37] only valid under 1-D conditions. At low water saturations we 

found (Fig. 3) that the increase in Q
v

eff
(S

w
)  might be larger than 1000 compared with 

saturated conditions and there is nothing unusual about  (S
w

)  decreasing with a factor of 10 

at lower saturations. This means that SP signals at low saturation might be as large as for 

saturated conditions even when the flux is 10
-4

 times smaller.  
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Equation [39] also highlights why it is unrealistic to expect a linear relationship 

between SP values and water flux over a large saturation range. Doussan et al. (2002) found 

that the linear regression models between SP values and water flux could be improved by 

considering the water content. They attribute this to variations in electrode contact, but is 

more likely caused by improved linearizations of the underlying non-linear relationship. The 

difference in the predictions compared with volume averaging is about 100 at low water 

saturations. This discrepancy explains why Linde et al. (2011) could not simulate the 

observed SP magnitudes observed on a gravel bar following rainfall. The increased sensitivity 

to water flow under unsaturated conditions might explain the slow and often incomplete 

relaxation of SP signals following drainage (e.g. Allègre et al., 2010).  

Our findings open up exciting possibilities of using the SP method to monitor very 

small flows at low saturations, such as those due to evaporation. This would necessitate co-

located measurements of bulk electrical conductivity, water saturation, and a good description 

of hydrodynamic soil properties.  

 

5. Conclusions 

Soil-specific water retention and relative permeability functions together with a 

relative conductivity function are needed to predict the streaming potential coupling 

coefficient under unsaturated conditions and hence SP signals. Most previous studies has 

ignored or severely underestimated the importance of accurately modeling the scaling of the 

effective excess charge, which we here predict from the above-mentioned soil-specific 

hydrodynamic functions. Using a capillary tube model, we find that the effective (flux-

averaged) excess charge is for typical soils two-to-three orders of magnitude larger than 

volume-averaged estimates, which translate to equally larger SP signals. The improvement 

with respect to existing theory is demonstrated against laboratory data and by comparing the 

modeled SP response caused by precipitation on a sandy loam with field data. For this data 

set, the initial water content, the water retention and relative permeability, as well as relative 

conductivity function was independently measured in the laboratory. The new theory predicts 

both the right magnitudes and the slow relaxation of the observed SP signal, while this was 

not possible using volume averaging. It is of course an advantage to have access to laboratory 

or in situ measurements of hydrodynamic functions, but the presented predictions based on 

the Carsel and Parrish (1988) database provide a rather good idea about the expected 

variations of Q
v

eff , rel
(S

w
)  for different soil types. 
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Our work provide a credible explanation for the often surprisingly large SP signals 

that are observed at low water saturation and it opens up the perspective of using SP signals to 

characterize film flow and evaporation processes. It also suggests that SP signals in the 

vadose zone can become a useful data source when estimating fluxes (or at least flux 

directions) in the unsaturated zone and for inverse modeling applications. It also highlights 

the importance of considering vadose zone processes in general SP surveys as flows that are 

10
-4

-10
-5

 times smaller than under saturated conditions may in dry soils lead to SP gradients 

of the same magnitude. 
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Notations 

 

Symbol Description Units 

 Electrical and electrochemical variables  

c
i

0  Ionic concentration of the species i in the free electrolyte mol m
-3

 

c
i
 Ionic concentration of species i mol m

-3
 



C
EK

 Streaming potential coupling coefficient V Pa
-1

 

CEC Cation Exchange Capacity mol kg
-1

 

E Electrical field V m
-1

 

fQ Fraction of the excess charge in the Stern layer - 

F Electrical formation factor - 

I Ionic strength mol m
-3

 

j Total current density A m
-2

 

js Source current density A m
-2

 

lD Debye length m 

m Electrical cementation index - 

n Electrical saturation index - 

N Number of ionic species i - 

qi Charge of the ionic species i C 



Q
v
 Volumetric excess charge C m

-3
 

Q
v
 Volume averaged excess charge C m

-3
 

Q
v

eff  Effective volumetric excess charge C m
-3

 

T Temperature K 

zi Ionic valence of the species i - 



  Dielectric permittivity F m
-1

 


r
 Relative dielectric permittivity of water - 

  Angular frequency Hz 



  Electrical potential of the porous medium V 

  Local electrical potential in the pore water V 



  Electrical conductivity of the medium S m
-1

 


w

 Water electrical conductivity S m
-1

 




S
 Surface electrical conductivity S m

-1
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

  Zeta potential V 

   

 Hydrological variables  

h Soil matric potential m 

he Air entry matric potential m 

H Hydraulic head m 

k Permeability m
2
 

Kw Hydraulic conductivity m s
-1

 

L Medium length m 

Lc Capillary length m 

m
VG

 Van Genuchten curve shape parameter - 

n
VG

 Van Genuchten curve shape parameter - 

pw Water pressure Pa 

r Distance from the porewall in a given capillary m 

R Radius of a given capillary m 

R
Se

 Equivalent capillary radius that drains a certain saturation m 

S
e
 Effective water saturation - 

S
w

 Water saturation - 

u Darcy velocity m s
-1

 

v Pore water velocity m s
-1

 


VG

 Van Genuchten inverse of the air entry pressure m
-1

 

  Surface tension of the water N m
-1

 

  Hydraulic tortuosity parameter as a function of saturation - 


BC

 Brooks and Corey pore size parameter - 

w Dynamic viscosity of the water Pa s
-1

 

  Porosity m
3 

m
-3

 


w
 Water density kg m

-3
 


w

 Volumetric water content m
3 

m
-3

 


w

r  Residual water content m
3 

m
-3

 

  Contact angle ° 

  Tortuosity of the media - 
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Sub/super-script Description 

BC Relative to the Brooks and Corey model 

EK Relative to ElectroKinetic phenomena 

i Relative to a given ionic species  

j Relative to a given capillary radius 

rel Value of a parameter relatively to its value at saturation 

R Value for a given capillary with a radius equal to R 

RP Relative to the Relative Permeability approach 

sat Parameter at saturation (Sw = 1) 

S Relative to the solid/surface 

VG Relative to the van Genuchten model 

w Relative to the water phase 

WR Relative to the Water Retention approach 

 

Physical constants Description Value 

e Elementary charge 1.6 0
-19

 C 

g Gravitational acceleration 9.82 m s
-2

 

kB Boltzmann constant 1.381 0
-23

 J K
-1

 

NA Avogadro’s number 6.022  10
23

 mol
-1

 




0
 Dielectric permittivity of vacuum 8.854  10

-12
 F m

-1
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