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SOME RESULTS ON THE LARGE TIME BEHAVIOR OF WEAKLY

COUPLED SYSTEMS OF FIRST-ORDER HAMILTON-JACOBI

EQUATIONS

VINH DUC NGUYEN

Abstract. Systems of Hamilton-Jacobi equations arise naturally when we study optimal
control problems with pathwise deterministic trajectories with random switching. In this
work, we are interested in the large time behavior of weakly coupled systems of first-order
Hamilton-Jacobi equations in the periodic setting. First results have been obtained by
Camilli-Loreti-Ley and the author (2012) and Mitake-Tran (2012) under quite strict con-
ditions. Here, we use a PDE approach to extend the convergence result proved by Barles-
Souganidis (2000) in the scalar case. This result permits us to treat general cases, for
instance, systems of nonconvex Hamiltonians and systems of strictly convex Hamiltonians.
We also obtain some other convergence results under different assumptions. These results
give a clearer view on the large time behavior for systems of Hamilton-Jacobi equations.

1. Introduction

1.1. Statement of the problem and recalls of the existing results. We study the large
time behavior of systems of Hamilton-Jacobi equations











∂ui
∂t

+Hi(x,Dui) +
m
∑

j=1

dijuj = 0 (x, t) ∈ TN × (0,+∞),

ui(x, 0) = u0i(x) x ∈ TN ,

i = 1, . . . ,m,(1.1)

where TN is the N -dimensional flat torus, Hi ∈ C(TN ×RN), u0i ∈ C(TN), and the coupling
D = (dij)i,j=1,...,m is monotone, i.e.,

dii ≥ 0, dij ≤ 0 for i 6= j and
m
∑

j=1

dij = 0 for all i(1.2)

and the system is fully coupled in some sense which will be precised later (see 1.13).
The aim of this work is to improve the first results obtained by Camilli-Ley-Loreti and the

author [5] and Mitake-Tran [18] and, more generally, to generalize to systems of the form (1.1),
the existing results for the case of a single Hamilton-Jacobi equation

(1.3)

{

∂u
∂t

+H(x,Du) = 0, (x, t) ∈ TN × (0,+∞),

u(x, 0) = u0(x) x ∈ TN .

It is convenient to start by recalling the existing results for (1.3), and the first results of [5, 18]
for systems and then to turn to our results.

The large time behavior has been extensively investigated using both PDE methods and
dynamical approaches. The desired result is to find a unique constant c ∈ R, the so-called
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2 VINH DUC NGUYEN

critical value or ergodic constant, and a solution v of the stationary equation

H(x,Dv) = c in TN(1.4)

such that

u(x, t) + ct → v(x) uniformly as t tends to infinity.(1.5)

The first results are of Fathi [8] and Namah-Roquejoffre [21] where the convexity of Hamilto-
nians plays a key role. The result of [8] was proved for uniformly convex Hamiltonians, i.e.,
there exists a constant α > 0 such that D2

ppH(x, p) ≥ αI, for all (x, p) ∈ TN ×RN .
In Davini-Siconolfi [6], the authors extended this result to strictly convex Hamiltonians,

i.e., for any 0 < λ < 1, x ∈ TN , p 6= q, we have

H(x, λp + (1− λ)q) < λH(x, p) + (1− λ)H(x, q).(1.6)

In [21], the result was proved for Hamiltonians of the form

H(x, p) = F (x, p) − f(x), with F (x, p) ≥ F (x, 0) = 0,

and F is coercive and convex with respect to p. In this framework, the set

Fscalar = {x0 ∈ T
N : f(x0) = minx∈TN f(x)}(1.7)

plays a crucial role. It appears to be a uniqueness set for the stationary equation (1.4), i.e.,
the solution of (1.4) is uniquely characterized by its value on this set.

Barles and Souganidis [4] succeeded in relaxing a bit the convexity condition on H. Under
the two following sets of assumptions, the first generalizing [21] and the second generalizing [8],
they obtain the convergence (1.5). From now, we always denote dist(x,K) the usual distance
function which is defined to be plus infinity if K is empty, and ψ(η) is a positive constant
depending only on η. Assume that (1.4) is solved for c = 0 and we introduce the assumptions
on H (in general, the assumptions are made on H − c)































(i) |H(x, p)−H(y, p)| ≤ m(|x− y|(1 + |p|)),
where m is a nonnegative function such that m(0+) = 0.

(ii) There exists a, possibly empty, compact subset K of TN such that
(a) H(x, p) ≥ 0 on K × RN ,
(b) If dist(x,K) ≥ η > 0, H(x, p+ q) ≥ η and H(x, q) ≤ 0,

we have Hp(x, p+ q)p−H(x, p + q) ≥ ψ(η) > 0.

(1.8)

or






















(i) The function p 7→ H(x, p) is differentiable a.e. in x ∈ TN ,
(ii) There exists a, possibly empty, compact set K of RN such that

(a) H(x, p) ≥ 0 on K × RN ,
(b) If H(x, p) ≥ η > 0 and dist(x,K) ≥ η,

we have Hp(x, p)p−H(x, p) ≥ ψ(η) > 0.

(1.9)

Let us mention Fathi [9], Roquejoffre [22] for other related results in the periodic setting.
Some of these results have been also extended beyond the periodic setting, see Barles and
Roquejoffre [3], Ishii [12], Ichihara and Ishii [10], and for problems with periodic boundary
conditions, see for instance Mitake [15, 16, 17]. We refer also the reader to Ishii [11, 13] for
an overview.
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In the case of systems, we are interested in finding an ergodic constant vector (c1, . . . , cm) ∈
Rm and a function (v1, . . . , vm) such that

Hi(x,Dvi) +
m
∑

j=1

dijvj = ci, x ∈ TN , i = 1, . . . ,m(1.10)

and, for all i = 1, . . . ,m,

ui(x, t) + cit→ vi(x) uniformly as t tends to infinity,(1.11)

where u is the solution of (1.1).

First results for the system (1.1) were obtained in [5] and [18]. It was proved that (1.10)
has a solution ((c1, . . . , c1), v) ∈ R

m×W 1,∞(TN )m for convex, coercive Hamiltonians. By the
way, we extend this result to systems with a coupling matrix depending on x (see Theorem
2.2). The convergence (1.11) was obtained whenHi(x, p) = Fi(x, p)−fi(x) satisfying the same
properties as in [21] (see above and (1.17)). The set Fscalar defined in (1.7) was replaced by

F = {x0 ∈ T
N : fi(x0) = min

x∈TN
fj(x) for all i, j = 1, . . . ,m}.(1.12)

One of the main (and restrictive) assumption was to suppose that F 6= ∅, i.e., the fi’s attain
their minima at the same point with the same value. Then, they proved that F is also a
uniqueness set to derive the convergence. In this case, the interpretation of the convergence
in terms of optimal control of pathwise deterministic trajectories with random switching (see
[5, Section 6] and Appendix) is clear. One should rather drive the trajectories to a common
minimum of the fi’s since these latters play the role of the running costs of the control
problem.

The extension of such a result to the case F = ∅ was the most challenging issue which was
addressed in [5] and one of the motivation of this paper.

1.2. Main results. We need some conditions on the coupling. The irreducibility is a classical
assumption when dealing with systems of PDEs. Roughly speaking, when the coupling is
irreducible, the system is not separated into many smaller systems.

D is irreducible: if ∀ I  {1, · · · ,m}, there exist i ∈ I, j 6∈ I such that dij 6= 0.(1.13)

We also need the following assumption

D has a nonzero coefficients line: if there exists i such that dij 6= 0, ∀j.(1.14)

We assume that (1.1) has a unique solution u such that u+ ct ∈ W 1,∞(TN × (0,∞))m, and
(1.10) has a solution (c, v) ∈ Rm×W 1,∞(TN )m. By the change of function u(x, t) → u(x, t)+ct
and replacing Hi with Hi− ci, we may assume that c = 0. We now introduce our assumption
which replaces (1.9) (notice that when c 6= 0, the assumptions have to be written for Hi− ci).

For i = 1, . . . ,m






























(i) The function p 7→ Hi(x, p) is differentiable a.e. in x ∈ TN .

(ii) (Hi)p p−Hi ≥ 0 for a.e. (x, p) ∈ TN × RN ,

(iii) There exists a, possibly empty, compact set K of TN such that
(a) Hi(x, p) ≥ 0 on K × RN ,
(b) If Hi(x, p) ≥ η > 0 and dist(x,K) ≥ η, then (Hi)p p−Hi ≥ ψ(η) > 0.

(1.15)
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This assumption seems to be a natural extension of (1.9) to systems. The reasons to introduce
such an assumption is explained in Section 3. But let us make some comments and give some
motivations. In general, one does not know the exact value of c. However (1.15) can be applied
for some important cases: strictly convex Hamiltonians and some nonconvex Hamiltonians.

We are now able to state our main result, the proof of which is given in Section 3

Theorem 1.1. (Main convergence result) Suppose that D satisfies (1.13) and (1.14), Hi

satisfies (1.15). Then, the solution u = (u1, . . . , um) ∈W 1,∞(TN×(0,∞))m of (1.1) converges
uniformly to a solution (v∞1, . . . , v∞m) of (1.10) with (c1, . . . , cm) = 0.

In general, the existence of a Lipschitz continuous solution of (1.1) is followed by the
coercivity of the Hamiltonians (see Theorem 2.2).

Comparing (1.15) and (1.9), we realize that (1.15) (ii) is the only additional assumption,
which is crucial in the proof of (3.10) (see Theorem 3.2 (i)). The important examples sat-
isfying Theorem 1.1 are nonconvex Hamiltonians. The following example is drawn from [4]:
Hi(x, p) = ψi(x, p)Fi(x,

p
|p|) − fi(x), where fi ∈ C(TN) is nonnegative, Fi ∈ C(TN × RN ) is

strictly positive, and ψi(x, p) = |p + qi(x)|
2 − |qi(x)|

2 with qi ∈ C(TN ;RN ). Moreover, we
assume that K = {x ∈ TN : fi(x) = |qj(x)| = 0 for all i, j = 1, . . . ,m} 6= ∅. Under these
conditions, we can show that c = (0, . . . , 0) (see [5, Lemma 4.1, Theorem 4.2] for the same
calculations) and since

(Hi)p(x, p) p−Hi(x, p) = |p|2Fi(x,
p

|p|
) + fi(x),

it is clear that Hi satisfies (1.15) with K defined as above.
Sometimes, we cannot use directly (1.15). The following example is very typical from

mechanic. Notice that f1, f2 may not attain their minima at the same point.

(1.16)

{

∂u1
∂t

+ |Du1|
2 + u1 − u2 = f1(x),

∂u2
∂t

+ |Du2|
2 + u2 − u1 = f2(x).

However, and it is one of the main achievement of this paper, we will see below how our main
result Theorem 1.1 can be applied to give a full answer to this problem, see Theorem 1.2.
Roughly speaking, in some cases, Theorem 1.1 will not be applied directly but after a change
of Hamiltonians. The following result is an important application of Theorem 1.1 for systems
of strictly convex Hamiltonians.

Theorem 1.2. Suppose that D satisfies (1.13) and (1.14), Hi satisfies (1.6) and coercive in
p uniformly in x ∈ TN . Then, there exists c = (c1, ..., c1) and a solution v ∈ W 1,∞(TN )m of
(1.10) such that u+ ct→ v in C(TN)m, where u is the solution of (1.1).

We provide hereunder some formal ideas so that the reader can see how we use Theorem 1.1.
The general proof is given in Section 4.

We fix a Lipschitz continuous subsolution V of (1.10) and the associated ergodic constant
c = (c1, . . . , c1) (see Theorem 2.2). We assume that V is C1 to perform a formal proof. Set
wi = ui + c1t− Vi, it is clear that w is the bounded solution of

∂wi
∂t

+Hi(x,DVi +Dwi)−Hi(x,DVi)− gi(x) +

m
∑

j=1

dijwj = 0, i = 1, . . . ,m.

Here, gi(x) := −Hi(x,DVi) −
∑m

j=1 dijVj + c1 ≥ 0 and gi ∈ C(TN) for all i = 1, . . . ,m

since V is a C1 subsolution of (1.10). We define the new Hamiltonians Gi(x, p) = Hi(x, p +
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DVi) −Hi(x,DVi) − gi(x). Since Hi is coercive, the solutions u of (1.1) and v of (1.10) are
Lipschitz continuous. We aim at applying Theorem 1.1 to get the desired convergence, it is
then sufficient to check that (1.15) holds with K = ∅ and p bounded. This is done thanks to
the strict convexity of H.
This theorem extends the result of [6] to systems. It also gives a full answer to the Eikonal
type Hamiltonians case of [5, 18]: when the Hamiltonians are strictly convex, one has the
convergence regardless F defined in (1.12) is empty or not. In particular, we can prove the
convergence for (1.16).

We learnt very recently that Mitake and Tran [20] obtained the same result as Theorem 1.2
using a dynamical approach which corresponds, in the case of systems, to the method of [6].
Here, the result is a particular case of a general PDE approach.

1.3. Miscellaneous convergence results. We obtain some particular results under differ-
ent assumptions on the Hamiltonians. These results are not completely covered by the main
result and bring to light some interesting phenomena.

1.3.1. Hamiltonians of Eikonal type. We focus on the setting of Namah and Roquejoffre [21],
i.e., for the Hamiltonians of the form

Hi(x, p) = Fi(x, p)− fi(x), x ∈ TN , p ∈ RN ,

where Fi ∈ C(TN ×RN ), fi ∈ C(TN ), and for i = 1, · · · ,m,

Fi(x, ·) is convex, coercive in p uniformly in x ∈ TN and Fi(x, p) ≥ Fi(x, 0) = 0 .(1.17)

We can extend the results of [18, 5] when F defined in (1.12) is replaced by

S := {x0 ∈ T
N , fi(x0) = min

x∈TN
fi(x), for all i} 6= ∅.(1.18)

This latter condition means that the fi’s attain their minima at the same point but their value
at this point may be different.

The main point in this result is that it applies to convex Hamiltonians without the require-
ment to be strictly convex (in this better case, we can apply Theorem 1.2). The idea is that we
can find the explicit formula for ci together with a constant solution of the ergodic problem.
It is then possible to transform the system such that the new one satisfies the conditions of
Theorem 1.1. The problem is open if D depends on x.

Theorem 1.3. Suppose that D satisfies (1.13)-(1.14), and (1.17)-(1.18) hold. Then there
exist c = (c1, ..., c1) ∈ R

m and u∞ ∈ W 1,∞(TN )m solution of (1.10) such that u + ct → u∞
in C(TN)m, where u is the solution of (1.1).

1.3.2. The case when all Hamiltonians are identical. In [18], the authors obtained the con-
vergence of the solution of (1.1) with m = 2, H1 = H2 satisfying (1.8). The proof is based
on the ideas used for single equations, so it only works under the set of conditions (1.8). In
this setting, we can give a very easy proof of the convergence of solutions of (1.1) for a very
wide class of Hamiltonians. In fact, we observe that the convergence of solutions of systems is
actually inherited from the convergence of solution of the corresponding scalar equation. We
have the following theorem.

Theorem 1.4. Suppose that D(x) = (dij(x))1≤i,j≤m, where the dij ’s are continuous functions
and for any x ∈ TN , D(x) satisfies (6.1). Assume that Hi = H for all i = 1, . . . ,m and
the solution of equation (1.3) converges as t tends to infinity. Then any solution u(., t) ∈
BUC(TN × (0,∞))m of (1.1) converges to a solution v of (1.4).
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1.4. Organization of the paper. In Section 2, preliminary results for the coupling are
given, the ergodic problem for coercive Hamiltonians is solved and basic properties of the
solutions like existence, uniqueness and Lipschitz regularity are presented. Next sections are
devoted to the proofs of the theorems stated in the introduction. Section 3 contains the proof
of Theorem 1.1, which is the most technical and involved part. Next, we give the proof of
Theorem 1.2 in Section 4. Since the ideas of this proof are based on the ideas used in the
proof Theorem 1.1, we strongly recommend the reader to read it after reading Section 3. The
proof of Theorem 1.3 is given in Section 5 and the proof of Theorem 1.4 is given in Section 6.

Notations: Since we only work with viscosity solutions in this paper, we will drop the term
“viscosity” hereafter. We denote by C(TN)m (BUC(TN)m, W 1,∞(TN )m) the set of functions
u = (u1, . . . , um), where ui : T

N → R is continuous (bounded uniformly continuous, Lipschitz
continuous respectively) for all i = 1, . . . ,m.

Acknowledgments. I would like to thank O. Ley without whom I would have never finished
this paper. I thank G. Barles who gave me a lot of useful advice to improve the first version of
this work and M. Camar-Eddine for useful discussions. I thank H. Mitake and H. V. Tran for
letting the author know about their recent work. Last but not least, I thank the two referees
for their careful reading and their suggestions for this paper.

2. Some preliminary results

In this section, we state the results for the coupling matrices which may depend on x.
The reason is that we can solve the ergodic problem- Theorem 2.2 in that case which is an
interesting result by itself.

2.1. Preliminaries on coupling matrices. We begin with a key property of irreducible
matrices.

Lemma 2.1. ([5]) Suppose that D(x) = (dij(x))1≤i,j≤m, where the dij ’s are continuous
functions and for any x ∈ TN , D(x) satisfies (1.13). Then, for all x ∈ TN , D(x) is de-
generate of rank m − 1, ker(D(x)) = span{(1, · · · , 1)} and the real part of each nonzero
complex eigenvalue of D(x) is positive. Moreover there exists a positive continuous function
Λ = (Λ1, . . . ,Λm) : T

N → Rm such that Λ(x) > 0 and D(x)TΛ(x) = 0 for all x ∈ TN .

2.2. Ergodic problem for systems of Hamilton-Jacobi equations with coercive

Hamiltonians. The classical result for first-order Hamilton-Jacobi equations is due to Lions-
Papanicolaou-Varadhan [14]. In general, the ergodic problem (1.4) is solved in the following
way: we first prove a gradient bound for the regularized equation λvλ +H(x,Dvλ) = 0. Due
to the coercivity of H, this gradient bound is independent of λ. Since vλ may not be bounded,
we make a change of function wλ = vλ − vλ(x0) in the equation. It follows |Dwλ| ≤ L and
wλ is uniformly bounded thanks to the compactness of TN . And then, the requirements of
Ascoli’s theorem are fulfilled. However, for systems with a x-dependent coupling matrix, the
change of variable wλi = vλi −v

λ
i (x0) leads to additional terms in the system which are difficult

to control. That is why we required the coupling matrix to be independent of x to prove [5,
Theorem 4.3], see also [18]. Here we can overcome this difficulty by noting that we only need
the uniform bound for vλi − vλ1 (x0) (see the estimate (7.6)) and hence the change of variable
wλi = vλi − vλ1 (x0) turns out to be a good one since it does not appear additional terms. Let
us point out that we cannot use the gradient bound to obtain the bound for vλi − vλ1 (x0).
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Theorem 2.2. Suppose that D(.) satisfies the conditions of Lemma 2.1, Hi(x, .) is coercive
in p uniformly in x. Then, there is a solution ((c1, ..., c1), v) ∈ R

m ×W 1,∞(TN )m to (1.10)
with (c1, ..., c1) ∈ kerD(x) for all x ∈ TN . Moreover, (c1, ..., c1) is unique in kerD.

The proof is given in Appendix.

2.3. Maximum principle and compactness properties of the solution. The following
results are proven in [5].

Proposition 2.3. Suppose that D(.) satisfies the conditions of Lemma 2.1 and either the
Hi’s are coercive in p or u (or v) is Lipschitz. Let u, v be a subsolution and a supersolution
of (1.1), respectively . We have

(i) for any t ≥ 0,

max
1≤i≤m

sup
TN

(ui(·, t) − vi(·, t)) ≤ max
1≤i≤m

sup
TN

(ui(·, 0) − vi(·, 0))
+ .(2.1)

(ii) for any u0 ∈ C(TN)m, there exists a unique continuous solution of (1.1) which admits
u0 as a initial condition.

Using the existence of solutions of the ergodic problem proved in Theorem 2.2, we obtain

Proposition 2.4. ([5]) Under the assumptions of Theorem 2.2, let u0 ∈ W 1,∞(TN )m and u
be the solution of (1.1) with initial data u0. Then, there exists constant C such that

|u(x, t) + ct| ≤ C, x ∈ TN , t ∈ [0,∞),

|u(x, t) − u(y, s)| ≤ C(|x− y|+ |t− s|), x, y ∈ TN , t, s ∈ [0,∞),

where the vector c = (c1, . . . , c1) is given in Theorem 2.2.

3. Proof of the main result, Theorem 1.1.

3.1. Formal proof. In order to explain the new hypothesis (1.15), we redo the formal proof
for the single equation made in [4] and then try to mimic it for systems.

In [4], the authors first show that

min
x∈TN

∂u

∂t
(x, t) → 0 as t tends to infinity.(3.1)

The main consequence is that the ω-limit set of {u(., t), t ≥ 0} defined by

ω(u) = {ψ ∈ C(TN ) : ∃tn → ∞ such that lim
n→∞

u(., tn) = ψ}

contains only subsolutions of (1.4).
This fact with the compactness of TN are enough to prove (1.5). To prove (3.1), we perform

a change of function of the form exp(w) = u. It turns out that w solves

∂w

∂t
+ F (x,w,Dw) = 0, with F (x,w, p) = exp(−w)H(x, exp(w)p),(3.2)

and F inherits the properties of H
{

There exists a, possibly empty, compact set K of TN such that

if F (x,w, p) ≥ η > 0 and dist(x,K) ≥ η, then Fw(x,w, p) ≥ ψ(η) > 0 a.e.
(3.3)
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An application of the maximum principle yields that t 7→ minx∈TN
∂w
∂t
(x, t) is nonincreasing

so it converges. If the limit is nonnegative, we obtain easily the convergence of w(x, t) as
t→ ∞. Otherwise, there exists some η > 0, t0 > 0 such that for all t ≥ t0

min
x∈TN

∂w

∂t
(x, t) ≤ −η.(3.4)

Set z = ∂w
∂t

and m(t) = minx∈TN z(x, t) := z(xt, t). Differentiating (3.2) with respect to t,
we obtain

∂z

∂t
+ Fw(x,w,Dw)z + Fp.Dz = 0, hence m′ + Fw(xt, w,Dw)m = 0.

Using (3.3) and (3.4), we get

m′ + ψ(η)m ≥ 0, thus m(t) ≥ m(t0)e
−ψ(η)(t−t0 )

Letting t tends to infinity yields a contradiction with (3.4).

Now, let us try to mimic the above formal proof for systems through the typical example
{ ∂u1

∂t
+H1(x,Du1) + u1 − u2 = 0,

∂u2
∂t

+H2(x,Du2) + u2 − u1 = 0,
(x, t) ∈ TN × (0,+∞),

where the Hi’s satisfy (1.9). After the change of function exp(wi) = ui, wi satisfies
{ ∂w1

∂t
+ F1(x,w1,Dw1) + 1− exp(w2 − w1) = 0,

∂w2

∂t
+ F2(x,w2,Dw2) + 1− exp(w1 − w2) = 0,

(x, t) ∈ TN × (0,+∞),(3.5)

where Fi(x,w, p) = exp(−w)Hi(x, exp(w)p). The goal is to prove that

min
x∈TN , i=1,2

∂wi
∂t

(x, t) → 0 as t tends to infinity.(3.6)

An application of the maximum principle yields that t 7→ minx∈TN , i=1,2
∂wi

∂t
(x, t) is non-

increasing so it converges. If the limit is nonnegative, we obtain easily the convergence of
wi(x, t) as t→ ∞. Otherwise, there exists some η > 0, t0 > 0 such that for all t ≥ t0

min
x∈TN , i=1,2

∂wi
∂t

(x, t) ≤ −η.(3.7)

Set zi =
∂wi

∂t
and assume that

m(t) = min
x∈TN , i=1,2

zi(x, t) := z1(xt, t).(3.8)

This fact, (3.5) and (3.7) only give

F1(xt, w1,Dw1) + 1− exp(w2 − w1)(xt, t) ≥ η.(3.9)

We see that (3.3) cannot apply here, since we cannot control the additional term 1−exp(w2−
w1)(xt, t) using only the information given by (3.8).

Surprisingly, under (1.15) (ii), we will show that we are able to choose a xt ∈ T
N in (3.8)

such that

m(t) = min
x∈TN , i=1,2

zi(x, t) := z1(xt, t) = z2(xt, t).(3.10)
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This fact, (3.5) and (3.7) give us two inequalities
{

F1(xt, w1,Dw1) + 1− exp(w2 − w1)(xt, t) ≥ η,

F2(xt, w2,Dw2) + 1− exp(w1 − w2)(xt, t) ≥ η.

So if w1(xt, t) ≤ w2(xt, t) for instance, we have F1(xt, w1,Dw1) ≥ η. Now, we can continue
the proof accordingly. The fact that z1 and z2 attain their minima at the same point in (3.10)
is a key idea to break the difficulty when passing from equations to systems.

3.2. Proof of the main result. We first state a partial convergence result for (1.1).

Lemma 3.1. For any x ∈ K defined in (1.15), the solution u(x, t) of (1.1) converges as
t→ ∞.

The proof of this lemma can be deduced from Step 2 in the proof of Lemma 3.4 (ii). So
we skip it for shortness.

Define exp(wi) := ui. It is clear that w solves

∂wi
∂t

+ Fi(x,wi,Dwi) +

m
∑

j=1

dijexp(wj − wi) = 0, i = 1, . . . ,m,(3.11)

with Fi(x,w, p) = exp(−w)Hi(x, exp(w)p). We get the properties of the Fi’s which are
inherited from the Hi’s











(i) (Fi)w(x,w, p) ≥ 0 for a.e. (x,w, p),

(ii) There exists a, possibly empty, compact set K of TN such that
if Fi(x,w, p) ≥ η > 0 and dist(x,K) ≥ η, then (Fi)w(x,w, p) ≥ ψ(η) > 0 a.e.

(3.12)

For any η > 0 and ϕ ∈ BUC(TN × [0,∞)), we define

Pη[ϕ](t) = sup
x∈TN , s≥t

[ϕ(x, t) − ϕ(x, s)− 2η(s − t)].(3.13)

From Proposition 2.4 and Ascoli theorem, we obtain easily the relative compactness of {u(., .+
t), t ≥ 0} in C(TN) and hence of {w(., .+ t), t ≥ 0}. So we can choose a sequence tn → +∞
such that (w(·, tn + ·))n converges uniformly to some function v ∈ W 1,∞(TN × [0,∞))m. By
the stability result ([1, 2, 7]), v is still a viscosity solution of (3.11). We state the key estimates
on the functions Pη[vi]’s.

Theorem 3.2. Consider the system (3.11), where D satisfies (1.13) and (1.14). Assume
that Fi ∈ C(TN × R× RN) satisfies (3.12), and wi(., t) ∈W 1,∞(TN × (0,+∞)) converges as
t→ ∞ in K. We have

(i) Pη[vi](t) = c(η), where c(η) depends only on η. Moreover, the Pη [vi](t)’s attain their
maximum at the same point (xt, st) for all i, i.e.,

Pη[vi](t) = vi(xt, t)− vi(xt, st)− 2η(st − t)(3.14)

= Pη[vj ](t) = vj(xt, t)− vj(xt, st)− 2η(st − t) for all i, j = 1, . . . ,m and t > 0.

(ii) c(η) = 0 for any η > 0.

Remark 3.3. Let us emphasize that (3.14) is the key fact to prove Theorem 1.1. It is
the rigorous statement of (3.10). To prove this, we need (3.12)(i) but not (3.12)(ii). The
important condition (3.12)(ii) only plays a role in the proof of part (ii) of Theorem 3.2.
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We first give the proof of Theorem 1.1 using Theorem 3.2. And then we prove Theorem 3.2.

Proof of Theorem 1.1. Step 1. Since the solution u of (1.1) is bounded, we can assume, by
adding a big enough positive constant on the initial conditions if needed, that

M ≥ ui(x, t) ≥ 1, x ∈ TN , t > 0, i = 1, . . . ,m.

Set

exp(wi(x, t)) = ui(x, t) for all i = 1, . . . ,m and (x, t) ∈ TN × (0,∞).(3.15)

Then wi ∈W 1,∞(TN × (0,+∞)) solves (3.11) with Fi(x,w, p) = exp(−w)Hi(x, exp(w)p). We
can check that Fi satisfies (3.12) with K := K given in (1.15). Moreover, Lemma 3.1 gives
the convergence of ui(x, t) and hence of wi(x, t), for all x ∈ K. Now, all the conditions of
Theorem 3.2 are fulfilled.

Step 2. From Theorem 3.2 (ii), we have

vi(x, t)− vi(x, s)− 2η(s − t) ≤ 0, for all i, s ≥ t and x ∈ TN .

Letting η tend to 0, we obtain

vi(x, t)− vi(x, s) ≤ 0, for all i, x ∈ TN , s ≥ t ≥ 0.

Therefore, vi is nondecreasing in t, so vi(x, t) → vi∞(x) as t tends to infinity. And since vi is
Lipschitz continuous, vi∞ is also Lipschitz continuous. Therefore, we can use Dini’s Theorem
to deduce that vi(x, t) → vi∞(x) uniformly in x as t tends to infinity.

Step 3. The uniform convergence of (w(·, tn + ·))n to v ∈W 1,∞(TN × [0,+∞)) yields

on(1) + vi(x, t) ≤ wi(x, t+ tn) ≤ on(1) + vi(x, t) in T
N × (0,∞), for all i.

Taking lim sup∗ and lim inf∗ with respect to t both sides of the above estimate, we obtain

on(1) + vi∞(x) ≤ lim inf
t→+∞

∗ wi(x, t) ≤ lim sup
t→+∞

∗wi(x, t) ≤ on(1) + vi∞(x) x ∈ TN , for all i.

Letting n tend to infinity, we derive

lim inf
t→+∞

∗ wi(x, t) = lim sup
t→+∞

∗wi(x, t) = vi∞(x), x ∈ TN , for all i,

which yields the uniform convergence of wi(., t) to vi∞ in TN as t tends to infinity.
Step 4. By stability, vi∞ is a solution of (3.11). Therefore, ui(., t) = exp(wi(., t)) converges

uniformly, as t tends to infinity, to exp(vi∞) which is a solution of (1.10) with (c1, . . . , cm) = 0
under our assumption. It ends the proof of Theorem 1.1. �

3.3. Proof of Theorem 3.2. We need the following result, the proof of which is given in
subsection 3.4.

Lemma 3.4. Under the assumptions of Theorem 3.2, we have
(i) Nη,i := exp(Pη [wi]) are subsolution of

N ′
η,i +

m
∑

j 6=i

dijρij(t)[Nη,j(t)−Nη,i(t)] ≤ 0, i = 1, . . . ,m,(3.16)

where ρij are functions defined by

ρij(t) =

{

m1 if Nη,i(t) ≥ Nη,j(t),
m2 if Nη,i(t) < Nη,j(t),

for all i 6= j, t > 0, and m1 ≤ m2 are positive constants.
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(ii) The Nη,i(t)’s converge to the same limit as t tends to infinity.

Proof of part (i) of Theorem 3.2. Step 1. We notice that Pη [ϕ] introduced in (3.13) is nonneg-

ative, bounded uniformly continuous thanks to the fact that ϕ ∈W 1,∞(TN × (0,+∞)). Since
(w(·, tn + ·))n converges uniformly to v as tn → ∞, we easily obtain that Pη [vi](t) = c(η)
for all i and t, where c(η) depends only on η thanks to Lemma 3.4. Fix τ > 0 and
choose i ∈ {1, . . . ,m} such that the ith row is nonzero, this is possible thanks to (1.14).
If Pη[vi](τ) = 0, then we finish the proof since we can choose sτ = τ and any xτ in (3.14)
to fulfill the requirement. We then assume that Pη [vi](τ) > 0 and that Pη [vi](τ) attains its
maximum at xτ , sτ . It is worth mentioning at this stage of the proof that xτ , sτ depend on
i.

Step 2. Consider for x, y ∈ TN , t ∈ (0,∞) and s ≥ t the test function

Ψ(x, y, t, s) = vi(x, t)− vi(y, s)− 2η(s − t)− |x− xτ |
2 − |t− τ |2 − |s− sτ |

2 −
|x− y|2

2ǫ2
.

Assume that Ψ achieves its maximum over TN × TN × {(t, s)/0 ≤ t ≤ s} at (x̄, ȳ, t̄, s̄). We
obtain some classical estimates when ǫ → 0,







Ψ(x̄, ȳ, t̄, s̄) → Pη[vi](τ),
|x̄−ȳ|2

2ǫ2 → 0, (x̄, s̄, t̄) → (xτ , sτ , τ),
vi(x̄, t̄)− vi(ȳ, s̄) ≥ c(η),
s̄ > t̄ since c(η) > 0.

(3.17)

Step 3. Since v is the solution of (3.11), we can write the viscosity inequalities
{

2(t̄− τ)− 2η + Fi(x̄, vi(x̄, t̄),
x̄−ȳ
ǫ2

+ 2(x̄− xτ )) +
∑m

j=1 dijexp(vj − vi)(x̄, t̄) ≤ 0,

−2(s̄− τ)− 2η + Fi(ȳ, vi(ȳ, s̄),
x̄−ȳ
ǫ2

) +
∑m

j=1 dijexp(vj − vi)(ȳ, s̄) ≥ 0,

Since vi is bounded Lipschitz continuous, |Fi(x̄, vi(x̄, t̄),
x̄−ȳ
ǫ2

)−Fi(xτ , vi(x̄, t̄),
x̄−ȳ
ǫ2

)| ≤ m(|x̄−

xτ |) ≤ oǫ(1), |Fi(x̄, vi(ȳ, s̄),
x̄−ȳ
ǫ2

)− Fi(xτ , vi(ȳ, s̄),
x̄−ȳ
ǫ2

)| ≤ oǫ(1) thanks to the uniform conti-
nuity of Fi over compact subsets. It follows from (3.17),

{

−2η + Fi(xτ , vi(x̄, t̄),
x̄−ȳ
ǫ2

) +
∑m

j=1 dijexp(vj − vi)(x̄, t̄) ≤ oǫ(1),

−2η + Fi(xτ , vi(ȳ, s̄),
x̄−ȳ
ǫ2

) +
∑m

j=1 dijexp(vj − vi)(x̄, s̄) ≥ oǫ(1).
(3.18)

Step 4. Set Qη,j(τ) := vj(xτ , τ)− vj(xτ , sτ )− 2η(sτ − τ) for j 6= i, we have

m
∑

j=1

dijexp(vj − vi)(x̄, t̄)−
m
∑

j=1

dijexp(vj − vi)(x̄, s̄)(3.19)

=

m
∑

j=1,j 6=i

−dijexp(vj − vi)(xτ , sτ )
{

1− exp[Qη,j(τ)− Pη [vi](τ)]
}

+ oǫ(1).

Using (3.12)(i) and the fact that vi(x̄, t̄)− vi(ȳ, s̄) ≥ Pη [vi](t̄) ≥ 0, we have

Fi(xτ , vi(x̄, t̄),
x̄− ȳ

ǫ2
)− Fi(xτ , vi(ȳ, s̄),

x̄− ȳ

ǫ2
) ≥ 0.

Therefore, by letting ǫ→ 0 after subtracting both sides in (3.18), we get
∑

j 6=i

−dijexp(vj − vi)(xτ , sτ )
{

1− exp[Qη,j(τ)− Pη [vi](τ)]
}

≤ 0.



12 VINH DUC NGUYEN

Thanks to the choice of i in Step 1 and (1.14), we have −dij > 0 for j 6= i. And since
Qη,j(τ) ≤ Pη[vi](τ), it follows from the above inequality that Qη,j(τ) = Pη[vi](τ), i.e., Pη,i’s
attain their maximum at the same point (xτ , sτ ).

Proof of part (ii). We only need to repeat Step 2, 3 with a refinement of Step 4. We assume
by contradiction that Pη[vi](τ) = c(η) > 0.

Step 5. From the convergence of wi(x, t) on K and the definition of vi’s, we have

vi(x, t) is independent of t for all x ∈ K,(3.20)

where K is defined in (3.12). From part (i), for any fixed τ > 0, there exists xτ , sτ satisfying
(3.14). Unlike Step 1, xτ , sτ at this stage does not depend on i anymore. We next choose
k ∈ {1, . . . ,m} such that

vk(xτ , sτ ) = min
j=1,...,m

vj(xτ , sτ ).

This gives

m
∑

j=1

dkjexp(vj − vk)(x̄, s̄) ≤ oǫ(1).

Thanks to this estimate, we get from the second inequality of (3.18)

Fk(xτ , vk(ȳ, s̄),
x̄− ȳ

ǫ2
) ≥ η > 0 for ǫ small enough.

It follows from (3.20)

d(xτ ,K) ≥ βη > 0.

Thanks to (3.12) (ii) and the Lipschitz continuity of Fk with respect to w, we infer

Fk(xτ , u,
x̄− ȳ

ǫ2
) ≥ η > 0, for all u ≥ vk(ȳ, s̄),

(Fk)w(xτ , u,
x̄− ȳ

ǫ2
) ≥ ψ(η) > 0, for almost all u ≥ vk(ȳ, s̄).

Since vk(x̄, t̄) ≥ vk(ȳ, s̄), we obtain

Fk(xτ , vk(x̄, t̄),
x̄− ȳ

ǫ2
)− Fk(xτ , vk(ȳ, s̄),

x̄− ȳ

ǫ2
) ≥ ψ(η)(vk(x̄, t̄)− vk(ȳ, s̄)) ≥ ψ(η)c(η).

As Pη [vk](.) = Pη[vj ](.) = c(η), it follows from (3.19) that,

m
∑

j=1

dkjexp(vj − vk)(x̄, t̄)−
m
∑

j=1

dkjexp(vj − vk)(x̄, s̄) ≥ oǫ(1).

Therefore, by letting ǫ tend to 0 after subtracting both sides in (3.18), we get

ψ(η)c(η) ≤ 0, it is a contradiction.

�



LARGE TIME BEHAVIOR OF WEAKLY COUPLED SYSTEMS 13

3.4. Proof of Lemma 3.4.

Proof. Proof of part (i).
Step 1. First of all, we show that Pη[wi] are subsolution of

P ′
η[wi] +

m
∑

j=1, j 6=i

−dijρij(τ)
[

1− exp(Pη [wj ]− Pη[wi])
]

≤ 0, i = 1, . . . ,m,(3.21)

where ρij are functions defined by

ρij(t) =

{

m1 if Pη[wi](t) ≥ Pη [wj ](t),
m2 if Pη[wi](t) < Pη [wj ](t),

(3.22)

for all i 6= j, t > 0, and m1 ≤ m2 are positive constants. To do so, let Φ ∈ C1((0,∞)) and τ
be a strict maximum point of Pη[wi]− Φ over [τ − δ, τ + δ] for some δ > 0. If Pη[wi](τ) = 0
and since Pη[wi] ≥ 0, we see that τ is a minimum point of Φ and hence Φ′(τ) = 0. To prove
(3.21), it is enough to show that

m
∑

j=1, j 6=i

−dijρij(τ)
{

1− exp[Pη [wj ](τ)]
}

≤ 0,

this is clearly true since Pη [w
δ
j ] ≥ 0. We then assume that Pη[wi](τ) > 0 to continue.

Step 2. Consider, x, y ∈ TN , t ∈ [τ − δ, τ + δ] and s ≥ t the test function

Ψ(x, y, t, s) = wi(x, t)− wi(y, s)− 2η(s − t)−
|x− y|2

2ǫ2
− Φ(t).

Assume that Ψ achieves its maximum over TN × TN × {(t, s)/t ≤ s, t ∈ [τ − δ, τ + δ]} at
(x̄, ȳ, t̄, s̄). We obtain some classical estimates when ǫ→ 0,











Ψ(x̄, ȳ, t̄, s̄) → Pη[wi](τ)− Φ(τ), |x̄−ȳ|2

2ǫ2
→ 0,

t̄→ τ since τ is a strict maximum point of Pη[wi]− Φ in [τ − δ, τ + δ],
wi(x̄, t̄)− wi(ȳ, s̄) ≥ Pη[wi](t̄), s̄ > t̄ since Pη[wi](τ) > 0.

Step 3. Since w is the solution of (3.11), we have
{

Φ′(t̄)− 2η + Fi(x̄, wi(x̄, t̄),
x̄−ȳ
ǫ2

) +
∑m

j=1 dijexp(wj − wi)(x̄, t̄) ≤ 0,

−2η + Fi(x̄, wi(ȳ, s̄),
x̄−ȳ
ǫ2

) +
∑m

j=1 dijexp(wj − wi)(x̄, s̄) + oǫ(1) ≥ 0.
(3.23)

Using (3.12) and the fact that wi(x̄, t̄) ≥ wi(ȳ, s̄) ≥ Pη[wi](t̄) ≥ 0, we get

Fi(x̄, wi(x̄, t̄),
x̄− ȳ

ǫ2
)− Fi(x̄, wi(ȳ, s̄),

x̄− ȳ

ǫ2
) ≥ 0.

Moreover,

m
∑

j=1

dijexp(wj −wi)(x̄, t̄)−
m
∑

j=1

dijexp(wj − wi)(x̄, s̄)

≥
∑

j 6=i

−dijexp(wj − wi)(x̄, s̄)
{

1− exp[Pη [wj](τ) − Pη [wi](τ)]
}

+ oǫ(1)

≥
∑

j 6=i

−dijρij(τ)
{

1− exp[Pη [wj](τ) − Pη [wi](τ)]
}

+ oǫ(1),
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where ρij is defined as in (3.22) with

m1 = inf
x∈TN , s>0, 1≤i,j≤m

exp(wj − wi)(x, s) > 0,

m2 = sup
x∈TN , s>0, 1≤i,j≤m

exp(wj − wi)(x, s) <∞

which are well-defined thanks to the boundedness of wi.
Therefore, by letting ǫ tend to 0 after subtracting both sides in (3.23), we get:

Φ′(τ) +
m
∑

j=1, j 6=i

−dijρij(τ)
{

1− exp[Pη[wj ](τ)− Pη [wi](τ)]
}

≤ 0.

Proof of part (ii). The proof is quite technical since we cannot deal directly with the
discontinuity of the ρij ’s. The main idea is to reorder the Ni’s into the biggest, the second
biggest ... and the smallest function. Surprisingly, the new functions satisfy a nicer system
where the discontinuous functions ρij are replaced by constants. We then prove they converge
to the same limit and, as a result, the Ni’s, which are bounded by the biggest function and the
smallest function, must converge to the same limit. For simplicity of notations, we suppose
that m1 = 1, m2 = 2.

Step 1. Define

R1(t) = max
i∈{1,...,m}

Ni(t) := Ni1(t),(3.24)

R2(t) = max
i∈{1,...,m}−{i1}

Ni(t) := Ni2(t),

Rk(t) = max
i∈{1,...,m}−{i1,...,ik−1}

Ni(t) := Nik(t), k = 2, . . . ,m.

We will prove at Step 3 that Ri satisfies

R′
i(t) +

m
∑

j=1

d′ijRj(t) ≤ 0, i = 1, . . . ,m,(3.25)

where (d′ij)1≤i,j≤m satisfies (1.2) and (1.14).

Step 2. Call Λi be the vector from Lemma 2.1 for the coupling now is (d′ij)1≤i,j≤m. We have

Lemma 3.5. ([5, Lemma 5.5])
∑m

j=1ΛjRj(t) is nonincreasing and converges as t→ +∞.

From (1.14), there exists i ∈ {1, . . . ,m} and α > 0 such that

d′ij + αΛj < 0 j = 1, . . . ,m, j 6= i.(3.26)

From (3.25), we obtain that Ri is a subsolution of

R′
i(t) + (d′ii + αΛi)Ri ≤ αΛiRi +

∑

j 6=i

(−d′ij)Rj , t ∈ (0,+∞).

From the stability result, Ri = lim supt→+∞
∗Ri(t) is a subsolution of

(3.27) (d′ii + αΛi)Ri ≤ lim sup
t→+∞

∗ {αΛiRi +
∑

j 6=i

(−d′ij)Rj}.
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But,

lim sup
t→+∞

∗ {αΛiRi +
∑

j 6=i

(−d′ij)Rj}

≤ α lim sup
t→+∞

∗ {
m
∑

j=1

ΛjRj}+
∑

j 6=i

lim sup
t→+∞

∗ {(−d′ij − αΛj)Rj}

≤ α lim sup
t→+∞

∗ {
m
∑

j=1

ΛjRj}+
∑

j 6=i

(−d′ij − αΛj)Rj ,

since (3.26) holds. The previous inequality and (3.27) imply

α

m
∑

j=1

ΛjRj = (d′ii + αΛi)Ri +
∑

j 6=i

(d′ij + αΛj)Rj ≤ α lim sup
t→+∞

∗ {
m
∑

j=1

ΛjRj}.

Using Lemma 3.5, it follows

m
∑

j=1

ΛjRj = lim sup
t→+∞

∗ {
m
∑

j=1

ΛjRj} ≤
m
∑

j=1

ΛjRj(t), t ∈ (0,+∞).(3.28)

Therefore, for all k = 1, . . . ,m, we have

Λk(Rk(t)−Rk) ≥
∑

j 6=k

ΛjRj −
∑

j 6=k

ΛjRj(t).

Moreover

Λk(Rk −Rk) = lim inf
t→+∞

∗ {Λk(Rk(t)−Rk)}

≥ lim inf
t→+∞

∗ {
∑

j 6=k

ΛjRj −
∑

j 6=k

ΛjRj(t)} ≥
∑

j 6=k

ΛjRj − lim sup
t→+∞

∗ {
∑

j 6=k

ΛjRj(t)} ≥ 0

by (3.28). Since Λk > 0, we conclude that Rk ≤ Rk and hence Rk(t) → rk when t tends to
infinity. Taking into account these limits, we get from the stability result for (3.25)

m
∑

j=1

d′ijrj ≤ 0, and hence

m
∑

j=1

d′ijrj = 0, i = 1, . . . ,m.

An application of Lemma 2.1 shows that ri = rj for all i, j = 1, . . . ,m, which is the desired
result. Let us notice that the proof of this step gives the proof of Lemma 3.1.
Step 3. We finish with the proof of the claim (3.25). For simplicity, we assume first (1.14)
holds for all rows, i.e. dij 6= 0 for all i, j = 1, . . . ,m, see the general case at the end of this
proof. We assume without loss of generality that

min
i 6=j

−dij = 1, max
i=1,...,m

dii =
M

2
, where M is a constant bigger than 2m− 2.(3.29)

3.1. We first prove the claim for R1. Let t0 > 0 and φ ∈ C1(0,∞) such that R1 − φ attains
a maximum at t0 and suppose that R1(t0) = N1(t0). Since N1(t0) ≥ Nj(t0), j ≥ 2, then
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ρ1j(t0) = 1, j ≥ 2. Thus

φ′(t0) +

m
∑

j=2

−d1jR1(t0) +

m
∑

j=2

d1jNj(t0) ≤ 0, i.e.,

φ′(t0) + (m− 1)R1(t0)−
m
∑

j=2

Nj(t0) +

m
∑

j=2

(1 + d1j)[Nj(t0)−R1(t0)] ≤ 0.

Using (3.29) and (3.24), we have 1+d1j ≤ 0, Nj(t0)−R1(t0) ≤ 0, j ≥ 2. The above inequality
with the fact that

∑m
j=2Nj(t0) =

∑m
j=2Rj(t0) lead to

φ′(t0) + (m− 1)R1(t0)−
m
∑

j=2

Rj(t0) ≤ 0.(3.30)

3.2. We now prove the claim for Rk, k ≥ 2. Let t0 > 0 and φ ∈ C1(0,∞) such that Rk − φ
attains a maximum at t0. Suppose first that N1(t0) = Rk(t0) < Rk−1(t0), so N1(t0)−φ(t0) =
Rk(t0)− φ(t0) ≥ N1(t)− φ(t) for t near t0. It follows from the definition of ρij(.) that

φ′(t0) +

m
∑

j=2

d1jρij(t0)[Nj(t0)−Rk(t0)] ≤ 0, i.e.,

φ′(t0) +
∑

j∈I

d1j [Nj(t0)−Rk(t0)] + 2
∑

j∈Ic

d1j [Nj(t0)−Rk(t0)] ≤ 0,(3.31)

where I := {2 ≤ j ≤ m, Rk(t0) ≥ Nj(t0)} and Ic = {2, . . . ,m}−I. Since N1(t0) = Rk(t0) <
Rk−1(t0), we obtain that card(Ic) = k − 1. We have
∑

j∈I

d1j [Nj(t0)−Rk(t0)] = card(I)Rk(t0)−
∑

j∈I

Nj(t0) +
∑

j∈I

(1 + d1j)[Nj(t0)−Rk(t0)]

≥ (m− k)Rk(t0)−
∑

j∈I

Nj(t0) = (m− k)Rk(t0)−
m
∑

j=k+1

Rj(t0),

where the last inequality follows from the fact 1 + d1j ≤ 0 and Nj(t0) − R1(t0) ≤ 0, j ∈ I.
Noticing that card(Ic) = k − 1, we have

2
∑

j∈Ic

d1j [Nj(t0)−Rk(t0)]

= M(k − 1)Rk(t0)−M
∑

j∈Ic

Nj(t0) +
∑

j∈Ic

(M + 2d1j)[Nj(t0)−Rk(t0)]

≥ M(k − 1)Rk(t0)−M
∑

j∈Ic

Nj(t0) =M(k − 1)Rk(t0)−M

k−1
∑

j=1

Rj(t0),

where the inequality follows from the fact M + 2d1j ≥ 0 and Nj(t0) − R1(t0) ≥ 0, j ∈ Ic.
Using these two above inequalities, it follows from (3.31) that

φ′(t0) + [M(k − 1) +m− k]Rk(t0)−M

k−1
∑

j=1

Rj(t0)−
m
∑

j=k+1

Rj(t0) ≤ 0.(3.32)

It remains to deal with the case N1(t0) = Rk(t0) = Rk−1(t0). We divide it into two subcases
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3.3. If N1(t0) = Rk(t0) = Rk−1(t0) = ... = Rl(t0) < Rl−1(t0) with k − 1 ≥ l ≥ 2, then
N1(t0)− φ(t0) = Rl(t0)− φ(t0) ≥ N1(t)− φ(t). Applying the result in (3.32), we have

φ′(t0) + [M(l − 1) +m− l]Rl(t0)−M
l−1
∑

j=1

Rj(t0)−
m
∑

j=l+1

Rj(t0) ≤ 0.

It is clear that

[M(k − 1) +m− k]Rk(t0)−M

k−1
∑

j=1

Rj(t0)−
m
∑

j=k+1

Rj(t0)

≤ [M(l − 1) +m− l]Rl(t0)−M
l−1
∑

j=1

Rj(t0)−
m
∑

j=l+1

Rj(t0).

It follows that (3.32) holds in this case too.
3.4. If N1(t0) = Rk(t0) = R1(t0), then we have the estimate (3.30). It is clear that

[M(k − 1) +m− k]Rk(t0)−M

k−1
∑

j=1

Rj(t0)−
m
∑

j=k+1

Rj(t0)

≤ [m− 1]R1(t0)−
m
∑

j=2

Rj(t0).

Then (3.32) holds.
Step 4. If (1.14) only holds for a row, we will take the minimum in (3.29) among the dij ’s
which are nonzero and we keep zero elements of the coupling. Proceeding in a similar way as
above, we obtain a new coupling satisfying (1.2) and (1.14).

�

4. Proof of Theorem 1.2

We reuse mainly the ideas used in the proof of Theorem 1.1. We then fix a Lipschitz
solution V of (1.10) such that ui + c1t − Vi ≥ 2, where u is the solution of (1.1) and the
associated ergodic constant c = (c1, . . . , c1). Withous loss of generality, we can assume that
c1 = 0. We can find, for all δ > 0, a function V δ ∈ C1(TN )m such that

Hi(x,DV
δ
i ) +

m
∑

j=1

dijV
δ
j ≤ δ, and ||V δ

i − Vi||∞ ≤ δ, for i = 1, . . . ,m.(4.1)

The existence of V δ is obtained by the convolution of V with a standard mollifier. It is worth
noticing that the convexity of H is important and that V δ is still a TN periodic function.

Similarly as in the proof of Theorem 1.1, we perform the change of function exp(wδi ) =
ui − V δ

i . The function wδ is the solution of the new system

∂wδi
∂t

+ F δi (x,w
δ
i ,Dw

δ
i ) +

m
∑

j=1

dijexp(w
δ
j − wδi )(4.2)

+ exp(−wδi )[Hi(x,DV
δ
i ) +

m
∑

j=1

dijV
δ
j ] = 0.
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with F δi (x,w, p) = exp(−w)[Hi(x, exp(w)p+DV δ
i )−Hi(x,DV

δ
i )]. We can check F δi satisfies

(3.12) with K = ∅. Moreover, the term ψ(η) appearing in (3.12) can be chosen independently
with δ. The proof relies on the upper semicontinuity of the subdifferentials of convex functions
and the strict convexity of the Hamiltonians. The concrete calculation is left to the reader.

We choose a sequence tn → +∞ such that (u(·, tn + ·))n converges uniformly to some
function in W 1,∞(TN × [0,∞))m. Thus (wδ(·, tn + ·))n → vδ ∈ W 1,∞(TN × [0,∞))m for all
δ > 0. Set exp(wi) = ui − Vi, we also have (w(·, tn + ·))n → v ∈ W 1,∞(TN × [0,∞))m. It is
clear that vδ → v uniformly as δ → 0. We state the key result on these functions.

Lemma 4.1. Under the conditions of Theorem 1.2 and with Pη’s defined in (3.13), we have
(i) Pη[wi](t) converges to the same limit, as a result Pη[vi](.) = c(η) for all i = 1, . . . ,m.
(ii) The Pη [wi](t)’s attain their maximum at the same point, see (3.14) for the definition.
(iii) c(η) = 0 for any η > 0.

Proof of Theorem 1.2. Set S(t)u0 = u(x, t), it is clear that the semigroup S(t) is nonexpansive
in C(TN ;Rm). It is then sufficient to show the result for u0 ∈W 1,∞(TN )m. Using Proposition
2.4 for u0 ∈W 1,∞(TN ), we get that u ∈W 1,∞(TN × [0,∞))m. Now, having Lemma 4.1 (iii)
in hands, we repeat readily the proof of Theorem 1.1 to obtain the convergence as desired. �

We end this section with the proof of Lemma 4.1.

Proof of Lemma 4.1. Proof of part (i).
Step 1. We show that the Pη [w

δ
i ]’s are a subsolution of

P ′
η [w

δ
i ] +

m
∑

j=1, j 6=i

−dijρ
δ
ij(τ)

{

1− exp[Pη [w
δ
j ]− Pη[w

δ
i ]]

}

− δ ≤ 0, i = 1, . . . ,m,(4.3)

where ρδij are functions defined by

ρδij(t) =

{

m1 if Pη[w
δ
i ](t) ≥ Pη[w

δ
j ](t),

m2 if Pη[w
δ
i ](t) < Pη[w

δ
j ](t),

(4.4)

for all i 6= j, t > 0, and m1 ≤ m2 are positive constants. To do so, let Φ ∈ C1((0,∞)) and τ
be a strict maximum point of Pη[w

δ
i ]−Φ over [τ − δ, τ + δ] for some δ > 0. Argue exactly as

Step 1 in the proof of Lemma 3.4, we may assume that Pη[w
δ
i ](τ) > 0 to continue.

Step 2. Consider, x, y ∈ TN , t ∈ [τ − δ, τ + δ] and s ≥ t the test function

Ψ(x, y, t, s) = wδi (x, t)− wδi (y, s)− 2η(s − t)−
|x− y|2

2ǫ2
− Φ(t).

Assume that Ψ achieves its maximum over TN × TN × {(t, s)/t ≤ s, t ∈ [τ − δ, τ + δ]} at
(x̄, ȳ, t̄, s̄). We obtain some classical estimates when ǫ→ 0,











Ψ(x̄, ȳ, t̄, s̄) → Pη[w
δ
i ](τ)− Φ(τ), |x̄−ȳ|2

2ǫ2
→ 0,

t̄→ τ since τ is a strict maximum point of Pη[w
δ
i ]− Φ in [τ − δ, τ + δ],

wδi (x̄, t̄)− wδi (ȳ, s̄) ≥ Pη[w
δ
i ](t̄), s̄ > t̄ since Pη [w

δ
i ](τ) > 0.

(4.5)

Step 3. Since wδ is the solution of (4.2), we have
{

Φ′(t̄)− 2η + F δi (x̄, w
δ
i (x̄, t̄),

x̄−ȳ
ǫ2

) +
∑m

j=1 dijexp(w
δ
j − wδi )(x̄, t̄) + a(x̄, t̄) ≤ 0,

−2η + F δi (ȳ, w
δ
i (ȳ, s̄),

x̄−ȳ
ǫ2

) +
∑m

j=1 dijexp(w
δ
j − wδi )(ȳ, s̄) + a(ȳ, s̄) ≥ 0,

(4.6)



LARGE TIME BEHAVIOR OF WEAKLY COUPLED SYSTEMS 19

where

a(x, t) := exp(−wδi (x, t))[Hi(x,DV
δ
i (x)) +

m
∑

j=1

dijV
δ
j (x)].(4.7)

We estimate,

a(x̄, t̄)− a(ȳ, s̄) = I1 + I2

= [exp(−wδi (x̄, t̄))− exp(−wδi (ȳ, s̄))][Hi(x̄,DV
δ
i (x̄)) +

m
∑

j=1

dijV
δ
j (x̄)]

+ exp(−wδi (ȳ, s̄))[Hi(x̄,DV
δ
i (x̄))−Hi(ȳ,DV

δ
i (ȳ)) +

m
∑

j=1

dij(V
δ
j (x̄)− V δ

j (ȳ))].

Since 0 ≥ exp(−wδi (x̄, t̄)) − exp(−wδi (ȳ, s̄)) ≥ −1, and V δ is a subsolution of (4.1), we get
that I1 = [exp(−wδi (x̄, t̄))−exp(−wδi (ȳ, s̄))][Hi(x̄,DV

δ
i (x̄))+

∑m
j=1 dijV

δ
j (x̄)] ≥ −δ. It is clear

that I2 tends to 0 when ǫ→ 0 since V δ ∈ C1(TN )m. Hence,

a(x̄, t̄)− a(ȳ, s̄) ≥ −δ + oǫ(1).(4.8)

Using (3.12) and the fact that wi(x̄, t̄) ≥ wi(ȳ, s̄) ≥Mη,i(t̄) ≥ 0, we have

F δi (x̄, w
δ
i (x̄, t̄),

x̄− ȳ

ǫ2
)− F δi (x̄, w

δ
i (ȳ, s̄),

x̄− ȳ

ǫ2
) ≥ 0.

Moreover,
m
∑

j=1

dijexp(w
δ
j − wδi )(x̄, t̄)−

m
∑

j=1

dijexp(w
δ
j − wδi )(x̄, s̄)

≥
∑

j 6=i

−dijexp(w
δ
j − wδi )(x̄, s̄)

{

1− exp[Pη [w
δ
j ](τ)− Pη [w

δ
i ](τ)]

}

+ oǫ(1)

≥
∑

j 6=i

−dijρ
δ
ij(τ)

{

1− exp[Pη [w
δ
j ](τ)− Pη [w

δ
i ](τ)]

}

+ oǫ(1),

where ρδij is defined as in (4.4) with

m1 = inf
x∈TN , s>0, δ>0, 1≤i,j≤m

exp(wδj − wδi )(x, s) > 0,

m2 = sup
x∈TN , s>0, δ>0, 1≤i,j≤m

exp(wδj − wδi )(x, s) <∞,

which are well-defined thanks to the boundedness of wi.
Therefore, by letting ǫ tend to 0 after subtracting both sides in (4.6), we get

Φ′(τ) +
m
∑

j=1, j 6=i

−dijρ
δ
ij(τ)

{

1− exp[Pη [w
δ
j ](τ) − Pη[w

δ
i ](τ)]

}

− δ ≤ 0.

Step 4. We deduce easily that N δ
η,j := exp(Pη[w

δ
j ]) is a subsolution of

N ′δ
η,i +

m
∑

j=1,j 6=i

dijρ
δ
ij[N

δ
η,j −N δ

η,i]− Cδ ≤ 0, i = 1, . . . ,m.
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Since N δ
η,i → Nη,i := exp(Pη [wi]) as δ → 0, by the stability result, Nη,i is a subsolution of

N ′
η,i +

m
∑

j=1,j 6=i

dijρij [Nη,j −Nη,i] ≤ 0, i = 1, . . . ,m,

where ρij are functions defined by

ρij(t) =

{

m1 if Pη[wi](t) ≥ Pη [wj ](t),
m2 if Pη[wi](t) < Pη [wj ](t).

Thanks to Lemma 3.4, Nη,i(t) converges to the same limit as t tends to infinity. Hence
Pη[vi](t) = c(η), where c(η) is independent of i and t.

Proof of part (ii).
Step 5. Fix τ > 0. If Pη[vi](τ) = 0, then we finish the proof since we can choose sτ = τ
and any xτ to fulfill the requirement. We then assume that Pη[vi](τ) > 0 and that Pη [vi](τ)
attains its maximum at xτ , sτ . Consider, x, y ∈ TN , t ∈ (0,∞) and s ≥ t the test function

Ψ(x, y, t, s) = vδi (x, t)− vδi (y, s)− 2η(s − t)− |x− xτ |
2 − |t− τ |2 − |s− sτ |

2 −
|x− y|2

2ǫ2
.

The function Ψi,ǫ achieves its maximum over TN × TN × {(t, s)/0 ≤ t ≤ s} at (x̄, ȳ, t̄, s̄). We
obtain some classical estimates,







|x̄−ȳ|2

2ǫ2
→ 0 when ǫ→ 0,

limδ→0limǫ→0(x̄, s̄, t̄) = (xτ , sτ , τ),
vδi (x̄, t̄) ≥ vδi (ȳ, s̄), s̄ > t̄ for ǫ, δ are small enough since Pη[vi](τ) > 0.

Step 6. Since vδ is the solution of (4.2), we have
{

−2η + F δi (xτ , v
δ
i (x̄, t̄),

x̄−ȳ
ǫ2

) +
∑m

j=1 dijexp(v
δ
j − vδi )(x̄, t̄) + a(x̄, t̄) ≤ oǫ(1),

−2η + F δi (xτ , v
δ
i (ȳ, s̄),

x̄−ȳ
ǫ2

) +
∑m

j=1 dijexp(v
δ
j − vδi )(x̄, s̄) + a(ȳ, s̄) ≥ oǫ(1),

(4.9)

where a(x, t) is defined in (4.7). Arguing as Step 4 in the proof of Theorem 3.2 with taking
(4.8) into account (let ǫ tend to 0 and then δ to 0), we obtain that Qη,j(τ) = Pη [vi](τ), for
all j, with Qη,j(τ) := vj(xτ , τ)− vj(xτ , sτ )− 2η(sτ − τ).
Proof of part (iii). We repeat Step 5, 6 with a small refinement. For any fixed τ > 0, we call
(xτ , sτ ) the common minimum point of the Pη[vi](τ)’s. We choose i ∈ {1, . . . ,m} such that

vi(xτ , sτ ) = min
j=1,...,m

vj(xτ , sτ ).

Since limδ→0limǫ→0(x̄, s̄) = (xτ , sτ ), we get

m
∑

j=1

dijexp(vj − vi)(x̄, s̄) ≤ oǫ(1) + oδ(1).

This gives

F δi (x̄, v
δ
i (ȳ, s̄),

x̄− ȳ

ǫ2
) ≥ η/2 > 0 for ǫ, δ are small enough.

From (3.12)(ii), we obtain

F δi (x̄, v
δ
i (x̄, t̄),

x̄− ȳ

ǫ2
)− F δi (x̄, v

δ
i (ȳ, s̄),

x̄− ȳ

ǫ2
) ≥ ψ(η)(vδi (x̄, t̄)− vδi (ȳ, s̄)).
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Recall that ψ(η) does not depend on δ. With the same computation as (3.19), we have

m
∑

j=1

dijexp(v
δ
j − vδi )(x̄, t̄)−

m
∑

j=1

dijexp(v
δ
j − vδi )(x̄, s̄) ≥ oǫ(1) + oδ(1).

Therefore, subtracting both sides in (4.9) and taking (4.8) into account, we get

ψ(η)(vδi (x̄, t̄)− vδi (ȳ, s̄)) ≤ oǫ(1) + oδ(1).

Letting ǫ tend to 0 and then δ to 0, we obtain that ψ(η)c(η) ≤ 0. It is a contradiction. �

5. Proof of Theorem 1.3

With S defined in (1.18), we will show that

c1 = −min
x∈T

∑m
i=1Λifi(x)
∑m

i=1 Λi
= −

∑m
i=1Λifi(x0)
∑m

i=1Λi
for any x0 ∈ S,(5.1)

where the vector Λ = (Λ1, . . . ,Λm) > 0 is given by Lemma 2.1. To do so, we need

Lemma 5.1. For any matrix D satisfying (1.13), the matrix E obtaining from D after
canceling the mth row and mth column is invertible.

Proof of Lemma 5.1. Assume by contradiction that there exists x = (x1, ..., xm−1) 6= 0 such
that Ex = 0. It is clear that y = (x, 0) satisfies Dy = 0, then Lemma 2.1 yields that x = 0.
This is a contradiction. �

Lemma 5.2. There exists a constant solution of the system

m
∑

j=1

dijuj = bi −

∑m
i=1 Λibi

∑m
i=1 Λi

, i = 1, . . . ,m.(5.2)

Proof of Lemma 5.2. Set a :=
∑

m

i=1
Λibi∑

m

i=1 Λi

. From Lemma 5.1, we can find (u1, ..., um−1) satisfying

m−1
∑

j=1

dijuj = bi − a, i = 1, . . . ,m− 1.

Set um = 0, we have

m
∑

j=1

dijuj = bi − a, i = 1, . . . ,m− 1.(5.3)

We claim that (5.3) holds for i = m. Multiplying the ith equation in (5.3) by Λi and summing
all equations for i = 1, . . . ,m− 1, we obtain

m−1
∑

i=1

(

m
∑

j=1

Λidijuj) =

m−1
∑

i=1

Λibi −
m−1
∑

i=1

Λia, i.e,

m
∑

j=1

−Λmdmjuj = Λm(a− bm),

which is exactly what we need. �

From the uniqueness of the ergodic constant and thanks to Lemma 5.2, we obtain the
formula (5.1) for the ergodic constant. We now prove Theorem 1.3.
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Proof of Theorem 1.3. Arguing as in the proof of Theorem 1.2, we can assume that u ∈
W 1,∞(TN × [0,∞))m. From Lemma 5.2, there exists a constant solution (a1, ..., am) for (5.2)
with bi = fi(x0), x0 ∈ S for i = 1, . . . ,m. So, wi(x, t) = ui(x, t) + c1t− ai solves

∂wi
∂t

+ Fi(x,Dwi) +

m
∑

j=1

dijwj = fi(x)− fi(x0) (x, t) ∈ TN × (0,+∞), x0 ∈ S, i = 1, . . . ,m.

Since this new system satisfies the conditions of Theorem 1.1, we get the convergence of
wi(., t) and hence of ui(., t). �

6. Proof of Theorem 1.4

We require D to be nonzero, i.e.,

For any i, j = 1, . . . ,m, there exists k ∈ {1, · · · ,m} such that dikdjk 6= 0.(6.1)

The main consequence of systems whose hamiltonians are identical is the following result, the
proof of which is given in Appendix.

Lemma 6.1. Under the assumptions of Theorem 1.4, we have

lim sup
t→∞

max
x∈TN , i,j=1,...,m

|ui(x, t)− uj(x, t)| = 0.

Proof of Theorem 1.4. For each n ≥ 0, call Φn be the solution to the equation:

(6.2)







∂Φn

∂t
+H(x,DΦn) = 0 (x, t) ∈ TN × (0,+∞),

Φn(x, 0) = u1(x, n) x ∈ TN ,

Note that (Φn, . . . ,Φn) is a solution of (1.1) with initial conditions (u1(., n), . . . , u1(., n)).
Applying the comparison principle for the system (1.1), we obtain

sup
i=1,...,m, x∈TN , t≥0

|ui(x, t+ n)− Φn(x, t)| ≤ sup
1≤i≤m, x∈TN

|ui(x, n)− u1(x, n)|.(6.3)

sup
x∈TN , t≥0

|Φn(x, t)− Φn+1(x, t)| ≤ sup
x∈TN

|u1(x, n)− u1(x, n+ 1)|.(6.4)

From the convergence of the solutions of (6.2), we have

Φn(., t) → V n(.) in C(TN ) as t→ ∞, for some V n ∈ BUC(TN )(6.5)

and V n is a solution of (1.4). From (6.4) and (6.5) we infer that (V n)n is a Cauchy sequence
in BUC(TN ) and therefore

V n(.) → V (.) in C(TN ), for some V ∈ BUC(TN ).(6.6)

By the stability result, V is still a solution of (1.4). Using (6.5), we take lim sup∗ with respect
to t on both sides of (6.3)

ui(x) ≤ V n(x) + sup
i=1,...,m, x∈TN

|ui(x, n)− u1(x, n)|, for all i and x ∈ TN .

From (6.6) and Lemma 6.1, we let n tend to infinity in the above inequality to obtain

ui(x) ≤ V (x) for all i and x ∈ TN .

Similarly, we get ui(x) ≥ V (x). Hence, ui(., t) → V (.) as t tends to infinity. �
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7. Appendix

7.1. The control interpretation. For the reader’s convenience, we give a formal link be-
tween optimal control of hybrid systems with pathwise deterministic trajectories with random
switching and Hamilton-Jacobi systems (1.1) with convex Hamiltonians.

Consider the controlled random evolution process (Xt, νt) with dynamics

(7.1)

{

Ẋt = bνt(Xt, at), t > 0,
(X0, ν0) = (x, i) ∈ TN × {1, . . . ,m},

where the control law a : [0,∞) → A is a measurable function (A is a subset of some metric
space), bi ∈ L∞(TN ×A;RN ), satisfies

|bi(x, a)− bi(y, a)| ≤ C|x− y|, x, y ∈ TN , a ∈ A, 1 ≤ i ≤ m.(7.2)

For every at and matrix of probability transition G = (γij)i,j satisfying
∑

j 6=i γij = 1 for

i 6= j and γii = −1, there exists a solution (Xt, νt), where Xt : [0,∞) → TN is piecewise
C1 and ν(t) is a continuous-time Markov chain with state space {1, . . . ,m} and probability
transitions given by

P{νt+∆t = j | νt = i} = γij∆t+ o(∆t)

for j 6= i.
We introduce the value functions of the optimal control problems

(7.3) ui(x, t) = inf
at∈L∞([0,t],A)

Ex,i
{

∫ t

0
ℓνs(Xs, as)ds+ u0,νt(Xt)

}

, i = 1, . . . m,

where Ex,i denote the expectation of a trajectory starting at x in the mode i, and the functions

u0,i : T
N → R, ℓi : T

N ×A→ R are continuous.
It is possible to show that the following dynamic programming principle holds:

ui(x, t) = inf
at∈L∞([0,t],A)

Ex,i
{

∫ h

0
ℓνs(Xs, as)ds+ uνh(Xh, t− h)

}

0 < h ≤ t.

Then the functions ui satisfy the system










∂ui
∂t

+ sup
a∈A

[−〈bi(x, a),Dui〉 − ℓi(x, a)] +
∑

j 6=i

γij(ui − uj) = 0 (x, t) ∈ TN × (0,+∞),

ui(x, 0) = u0,i(x) x ∈ TN ,

i = 1, · · ·m,

which has the form (1.1) by setting Hi(x, p) = supa∈A[−〈bi(x, a), p〉 − ℓi(x, a)] and dii =
∑

j 6=i γij = 1 and dij = −γij for j 6= i.

Remark 7.1.

(i) Assume ℓi(x, a) = fi(x) where the fi’s satisfy (1.18). If the following controllability
assumption is satisfied: for every i, there exists r > 0 such that for any x ∈ TN , the ball
B(0, r) is contained in co{bi(x,A)}. Then, Theorem 1.3 holds. Roughly speaking, it means
that the optimal strategy is to drive the trajectories towards a point x∗ of S and then not to
move anymore (except maybe a small time before t). This is suggested by the fact that all
the fi’s attain their minimum at x∗ and, at such point, the running cost is smallest.
(ii) It is also possible to consider differential games with random switchings to encompass
system (1.1) with nonconvex Hamiltonians.
(iii) More rigorous dynamical interpretations of system (1.1) are given in [19].
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7.2. Proof of the ergodic problem.

Proof of Theorem 2.2. Step 1. Ergodic approximation. We consider the ergodic approxima-
tion to (1.10): for λ ∈ (0, 1), let vλ = (vλ1 , . . . , v

λ
m) be the solution of

(7.4) λvi +Hi(x,Dvi) +

m
∑

j=1

dij(x)vj = 0 x ∈ TN , 1 ≤ i ≤ m.

Lemma 7.2. ([5, Lemma 4.1]) There exist a unique solution vλ of (7.4) and a constant
M > 0 independent of λ such that

0 ≤ vλi ≤
M

λ
and ||Dvλi (.)||∞ ≤M, i = 1, . . . ,m.(7.5)

Step 2. Some uniform bounds. We will prove at Step 4 that there exists a constant M such
that for all x ∈ TN , i = 1, . . . ,m, we have

|vλi (x)− vλ1 (x
∗)| ≤M for any fixed x∗ ∈ TN .(7.6)

From Ascoli’s theorem, there exist c = (c1, . . . , cm) ∈ R
m and v ∈ C(TN )m such that, up to

subsequences, for i = 1, . . . ,m

λvλi (x
∗) → −ci and vλi − vλ1 (x

∗) → vi in C(TN ) as λ→ 0.

Notice that ci does not depend on the choice of x∗ since, for any x∗, y∗ ∈ TN

| − λvλi (x
∗) + λvλi (y

∗)| ≤ λM |x∗ − y∗| → 0 as λ→ 0.(7.7)

Moreover, multiplying (7.4) by λ for all i and sending λ → 0, we obtain −
∑

j dij(x)ci = 0

which gives D(x)c = 0 and therefore c ∈ kerD(x) for all x ∈ TN .
Step 3. Stability result for viscosity solutions and conclusion. We rewrite (7.4) as

λvλi +Hi(x,D(vλi − vλ1 (x
∗))) +

m
∑

j=1

dij(v
λ
j − vλ1 (x

∗)) = 0 in TN ,(7.8)

by noting that
∑m

j=1 dij(x)v
λ
1 (x

∗) = 0 for all x ∈ TN thanks to (1.2).

We then use the stability result and pass to the limit in (7.8) to get

Hi(x,Dvi) +

m
∑

j=1

dijvj(x) = ci in TN , 1 ≤ i ≤ m.(7.9)

Then (c, v(·)) is solution to (1.10). The function v depends on x∗ but c does not.
From Lemma 2.1, the kernel of D is spanned by (1, . . . , 1). Thus, any c ∈ kerD has the

form (c1, . . . , c1). The proof of uniqueness of c is classical and can be found in [5].
Step 4. Proof of (7.6). We set

wi(x) = wλi (x) = vλi (x)− vλ1 (x
∗).

Thanks to (7.5), obviously |w1| ≤M. Using (7.5) again for (7.8), we have

|
m
∑

j=2

dij(x)wj(x)| ≤ C for all i = 1, . . . ,m and x ∈ TN ,
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where C is independent of x and λ. For any i ≥ 2, we have

dii|wi| = |
m
∑

j=2

dijwj −
m
∑

j=2, j 6=i

dijwj | ≤ C + |
m
∑

j=2, j 6=i

dijwj | ≤ C −
m
∑

j=2, j 6=i

dij |wj|,

i.e.,
m
∑

j=2

dij |wj | ≤ C for any i ≥ 2.(7.10)

Call (Λ1, . . . ,Λm) the function given by Lemma 2.1. We have

−
m
∑

j=2

|wj |d1jΛ1 =

m
∑

j=2

|wj |(
m
∑

i=2

dijΛi) =

m
∑

i=2

Λi

m
∑

j=2

dij |wj| ≤ C(

m
∑

i=2

Λi).

Assume |w2| = minj≥2 |wj |, we have

d11|w2| = −
m
∑

j=2

d1j |w2| ≤ −
m
∑

j=2

|wj |d1j ≤ C

∑m
i=2Λi
Λ1

.

Thanks to (1.13), we have d11 > 0. Using the compactness of TN and continuity of the
coupling, there exists δ0 > 0 such that d11(x) ≥ δ0 for all x ∈ TN . Therefore, we have

|w2| ≤ C

∑m
i=2 Λi
Λ1δ0

.

We finish the proof by a reduction argument, i.e., we assume that
m
∑

j=k

dij |wj | ≤ C for any 3 ≤ k ≤ m and |wl| ≤ C for 1 ≤ l ≤ k − 1,

and we will show that |wk| ≤ C ′. By similar arguments like those to obtain the bound for
|w2|, we then assume that |wk| = minj≥k |wj |. We have

(

k−1
∑

i=1

Λi

k−1
∑

j=1

dij)|wk| = (−
m
∑

j=k

k−1
∑

i=1

dijΛi)|wk| ≤ −
m
∑

j=k

|wj |
k−1
∑

i=1

dijΛi ≤ C(

m
∑

i=k

Λi).

If
∑k−1

i=1 Λi
∑k−1

j=1 dij(x) > 0 for all x ∈ TN , the conclusion follows easily by the compact-

ness of TN and the continuity of the coupling. We then assume by contradiction that
∑k−1

i=1 Λi
∑k−1

j=1 dij(x0) = 0 for some x0 ∈ TN , (1.2) yields dij(x0) = 0 for all 1 ≤ i ≤

k − 1, k ≤ j ≤ m. We get a contradiction with the choice I = {1, . . . , k − 1} in (1.13). �

7.3. Proof of Lemma 6.1. This proof is a modified version of the one in [18] so that it can
be adapted to general systems which is a little more tricky.
Step 1. Some first estimates. Thanks to (6.1), we have

δ = min
x∈TN , i,j=1,...,m, I⊂{1,...,m}

−[
∑

k∈I

dik(x) +
∑

k∈Ic

djk(x)] > 0.

where I contains j but not i.
Set Φ(t) = maxi 6=j, x∈TN [ui(x, t) − uj(x, t)] ≥ 0 for each t > 0. Our purpose is to prove

that Φ is a subsolution to the equation

Φ′(t) + δΦ(t) = 0.(7.11)
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Assume without loss of generality that Φ(t) = u1(x0, t)−u2(x0, t) and all functions are smooth
to do a formal proof. It can be done rigorously by approximation techniques.

We have Φ′(t) = ∂u1
∂t

(x0, t) −
∂u2
∂t

(x0, t), Du1(x0, t) = Du2(x0, t). Subtracting two first
equations in (1.1), we have

Φ′(t) +
m
∑

j=1

d1j(x0)uj(x0, t)−
m
∑

j=1

d2j(x0)uj(x0, t) = 0.

To obtain the conclusion, we only need to prove that

m
∑

j=1

[d1j(x0)− d2j(x0)]uj(x0, t) ≥ δ(u1(x0, t)− u2(x0, t))

or

(d11 − d21 − δ)u1 ≥ (d22 − d12 − δ)u2 +
m
∑

j=3

(d2j − d1j)uj .(7.12)

At the point (x0, t), we have

u1 ≥ u3, ..., um ≥ u2, d11 − d21 − δ = d22 − d12 − δ +
m
∑

j=3

(d2j − d1j)(7.13)

but the signs of d2j − d1j , j ≥ 3 are unknown.
Step 2. Separate the signs of d2j−d1j , j ≥ 3 . Let J+ be the set consisting of all j ∈ {3, ...,m}
such that d2j − d1j ≥ 0 and J− := {3, ...,m} − J+. We rewrite (7.12) as

(d11 − d21 − δ)u1 −
∑

j∈J+

(d2j − d1j)uj ≥ (d22 − d12 − δ)u2 +
∑

j∈J−

(d2j − d1j)uj

Actually, we can prove a stronger inequality

(d11 − d21 − δ)u1 −
∑

j∈J+

(d2j − d1j)u1 ≥ (d22 − d12 − δ)u2 +
∑

j∈J−

(d2j − d1j)u2

It is clear by (7.13) that

d11 − d21 − δ −
∑

j∈J+

(d2j − d1j) = d22 − d12 − δ +
∑

j∈J−

(d2j − d1j)

From this equality and u1 ≥ u2, we only need to prove that

d11 − d21 − δ −
∑

j∈J+

(d2j − d1j) ≥ 0.

This is true by the definition of δ.

d11 − d21 −
∑

j∈J+

(d2j − d1j) = −[d12 + d21 +
∑

j∈J+

d2j +
∑

j∈J−

d1j ] ≥ δ.

Since Φ(0)e−δt is a supersolution of (7.11) with the initial value Φ(0), the comparison
principle yields 0 ≤ Φ(t) ≤ Φ(0)e−δt for all t. Therefore, Φ(t) converges to 0 as t→ ∞.
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