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SOME RESULTS ON THE LARGE TIME BEHAVIOR OF WEAKLY

COUPLED SYSTEMS OF FIRST-ORDER HAMILTON-JACOBI

EQUATIONS

VINH DUC NGUYEN

Abstract. Systems of Hamilton-Jacobi equations arise naturally when we study the optimal
control problems with pathwise deterministic trajectories with random switching. In this
work, we are interested in the large time behavior of weakly coupled systems of first-order
Hamilton-Jacobi equations in the periodic setting. The large time behavior for systems of
Hamilton-Jacobi equations have been obtained by Camilli-Loreti-Ley and the author (2012)
and Mitake-Tran (2012) under quite strict conditions. In this work, we use a PDE approach
to extend the convergence result proved by Barles-Souganidis (2000) in the scalar case. This
general result permits us to treat lot of general cases, for instance, systems with nonconvex
Hamiltonians and systems with strictly convex Hamiltonians. We also obtain some other
convergence results under different assumptions, these results give a clearer view on the
large time behavior for systems of Hamilton-Jacobi equations.
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1. Introduction

1.1. Statement of the problem and recalls of the results for single equations. In
this paper, we study the large time behavior of systems of Hamilton-Jacobi equations





∂ui
∂t

+Hi(x,Dui) +
m∑

j=1

dij(x)uj = 0 (x, t) ∈ TN × (0,+∞),

ui(x, 0) = u0i(x) x ∈ TN ,

i = 1, . . . ,m,(1.1)

where TN is the N -dimensional torus, the coupling is linear and monotone, i.e.,

dij : T
N → R are continuous and, for all x ∈ TN ,

dii(x) ≥ 0, dij(x) ≤ 0 for i 6= j and

m∑

j=1

dij(x) = 0 for all i
(1.2)

and

Hi ∈ C(TN × RN ), u0i ∈ C(TN), i = 1, . . . ,m.

The aim of this work is to improve the first results obtained by Camilli-Ley-Loreti and the
author [6] and Mitake-Tran [22] and, more generally, to generalize to systems of the form (1.1),
the existing results for the case of a single Hamilton-Jacobi equation

(1.3)

{
∂u
∂t

+H(x,Du) = 0, (x, t) ∈ TN × (0,+∞),

u(x, 0) = u0(x) x ∈ TN .

Let us start by recalling the existing results for (1.3). The large time behavior has been
extensively investigated using both PDE methods and dynamical approaches. The desired
result is that to find a unique constant c ∈ R, the so-called critical value or ergodic constant,
and a solution v of the stationary equation

H(x,Dv) = c in RN(1.4)

such that

u(x, t) + ct → v(x) uniformly as t tends to infinity.(1.5)

The first results are of Fathi [10] and Namah-Roquejoffre [25] where the convexity of Hamil-
tonians plays a key role. The result of [10] was proved, in a periodic setting, under the as-
sumption that H is uniformly convex with respect to p, i.e., there exists a constant α > 0
such that

D2
ppH(x, p) ≥ αI, for all (x, p) ∈ TN × RN .(1.6)

This result was extended to general strictly convex Hamiltonians in Davini-Siconolfi [8]. We
say that a Hamiltonian H(x, p) is strictly convex when, for any x ∈ TN ,

H(x, λp+ (1− λ)q) < λH(x, p) + (1− λ)H(x, q) for any 0 < λ < 1, p 6= q.

In [25], the result was proved for Hamiltonians of the form

H(x, p) = F (x, p)− f(x), with F (x, p) ≥ F (x, 0) = 0, f ≥ 0,
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F ∈ C(TN × RN ), f ∈ C(TN ) and F is coercive and convex with respect to p. In this
framework, the set

Fscalar = {x0 ∈ T
N : f(x0) = 0},

which is assumed to be nonempty, plays a crucial role. It appears to be a uniqueness set for
the stationary equation (1.4), i.e., the solution of (1.4) is uniquely characterized by its value
on this set. The idea of [25] is to prove first the convergence of u(·, t) as t→ +∞ on this set
Fscalar and then, to obtain the convergence everywhere by using the limit values of u(·, t) on
Fscalar as Dirichlet boundary conditions for (1.4).

Barles and Souganidis [4] succeeded in relaxing a bit the convexity condition on H. Under
suitable sets of assumptions, which include the cases of [10, 25], they obtain the conver-
gence (1.5). We state a result of [4] we will be interested in. We assume that (1.4) is solved
for c = 0 and we introduce the assumptions on H (in general, the assumptions are made on
H − c)





(i) The function p 7→ H(x, p) is differentiable a.e. in x ∈ TN ,
(ii) There exists a, possibly empty, compact set K of RN such that:

(a) H(x, p) ≥ 0 on K × RN ,
(b) If H(x, p) ≥ η > 0 and d(x,K) ≥ η, then Hp(x, p)p −H(x, p) ≥ Ψ(η) > 0.

(1.7)

If K = ∅, we define d(x,K) = +∞ for any x ∈ TN .

Theorem 1.1. ([4]) Assume that H ∈ C(TN × RN ) and (1.7) holds. Then, any solution
u ∈W 1,∞(TN × (0,∞)) of (1.3) converges uniformly to a solution v ∈W 1,∞(TN ) of (1.4).

In this work, we are mainly concerned in extending the previous results to systems. Let us
mention Fathi [11], Roquejoffre [26] for other related results in the periodic setting. Some of
these results have been also extended beyond the periodic setting, see Barles and Roquejoffre
[3], Ishii [16], Ichihara and Ishii [14], and for problems with periodic boundary conditions, see
for instance Mitake [20, 19, 21]. We refer also the reader to Ishii [15, 17] for an overview.

In the case of systems, we are interested in finding an ergodic constant vector (c1, . . . , cm) ∈
Rm and a function (v1, . . . , vm) such that

Hi(x,Dvi) +
m∑

j=1

dij(x)vj = ci, x ∈ TN , i = 1, . . . ,m(1.8)

and, for all i = 1, . . . ,m,

ui(x, t) + cit→ vi(x) uniformly as t tends to infinity,(1.9)

where u is the solution of (1.1).

First results for the system (1.1) were obtained in [6] and [22]. More precisely, suppose
that Hi(x, p) = Fi(x, p)− fi(x) satisfies the same properties as in [25] (see above and (1.39)).
Assume that

F = {x0 ∈ T
N : fi(x0) = minx∈TN fj(x) for all i, j = 1, . . . ,m} 6= ∅,(1.10)

i.e., the fi’s attain their minimum at the same point with the same value. They prove that F
is a uniqueness set (which replaces Fscalar). Then, the proof of the convergence is obtained.
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It is based on the same ideas as in [25]. Let us outline the proof of convergence of [6]. To
simplify, assume that

m∑

j=1

dij(x) = 0,
m∑

i=1

dij(x) = 0, i, j = 1, . . . ,m, x ∈ TN .(1.11)

Without loss of generality, we suppose that fi(x0) = 0 where x0 ∈ F defined in (1.10). The
coercivity of the Hamiltonians and the existence of a solution to the ergodic problem give the
compactness of the sets {ui(., t), t ≥ 0}’s in W 1,∞(TN ) (under the assumption (1.10) and
fi(x0) = 0 for x0 ∈ F , we obtain (c1, . . . , cm) = (0, . . . , 0)). By summing the equations (1.1)
for i = 1, . . . ,m, one obtains

m∑

i=1

∂ui
∂t

+

m∑

i=1

Hi(x,Dui) +

m∑

i,j=1

dijuj = 0.

Using (1.11) and Hi(x,Dui) ≥ 0 on F , one gets easily that

∂

∂t

m∑

i=1

ui(x, t) ≤ 0 on F(1.12)

and therefore t 7→ (u1 + · · · + um)(·, t) is nonincreasing and converges uniformly as t → +∞
on F . From this fact, one can prove the convergence of each ui on F . Using that F is a
uniqueness set, (1.8) has a unique solution if one prescribes the values of vi’s on (1.8) . This
is enough to conclude the convergence (1.9) in all TN .

The interest of studying this kind of systems relies on the nice control interpretation they
have. They are related to optimal control of pathwise deterministic trajectories with random
switching (see [6, Section 6] and the Appendix for details). When the fi’s achieve their
minimum at the same points with the same value , i.e., when F 6= ∅, the interpretation of
the convergence result in terms of control is clear: one should rather driving the trajectories
to a common minimum of the fi’s since these latters play the role of the running costs of the
control problem.

The extension of such a result to the case F = ∅, i.e, when the fi’s do not have common
minimum with the same value, was the most challenging issue which was addressed in [6]
and one of the motivation of this paper. The following example shows the main difficulty we
encounter.

Example 1.2.

(1.13)

{
∂u1

∂t
+ |Du1|

2 + u1 − u2 = f1(x),

∂u2

∂t
+ |Du2|

2 + u2 − u1 = f2(x),
x ∈ R.

In this example, we choose f1(x) = cos2 x + sinx − cosx, f2(x) = sin2 x+ cos x − sinx. We
have

min f1 = min f2 := m < 0 and f1(x) + f2(x) = 1.

The last equality shows that f1, f2 do not attain their minima at the same point so F = ∅.
Assume that (w1, w2) ∈ C(R)× C(R) is a solution of

(1.14)

{
|Dw1|

2 +w1 − w2 = cos2 x+ sinx− cos x,

|Dw2|2 +w2 − w1 = sin2 x+ cos x− sinx,
x ∈ R.
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Such a solution clearly exists since we can take (w1, w2) = (sin(.), cos(.)). Then the ergodic
constant in this example is 0.

Summing the equations of System (1.13), we have

∂(u1 + u2)

∂t
+ |Du1|

2 + |Du2|
2 = 1.

It follows that we cannot find any set where (1.12) holds and the proof of [6] and [22] does
not work anymore.

However, and it is one of the main achievement of this paper, we will see below how our
main result Theorem 1.4 can be applied to give a full answer to this problem, see Theorem
1.5. Moreover, we can improve directly the result of [22, 6], in a particular case, see Theorem
1.6. For a comparison of these two new results, see Section 1.5.

1.2. Main result. In this section, the existence of solutions to the stationary system (1.8) is
made as an assumption and we will normalize the Hamiltonians so that the ergodic constant
(c1, . . . , cm) = (0, . . . , 0). So we introduce the assumptions on Hi (in general, the assumptions
are made on Hi − ci)

The main result of this work is the extension of Theorem 1.1 to the system (1.1). In order
to explain the difficulty of this extension, we start by giving a rough idea of the proof of
Theorem 1.1.

In [4], the authors first show that

min
x∈TN

∂u

∂t
(x, t) → 0 as t tends to infinity.(1.15)

The main consequence of this fact is that the ω-limit set of {u(., t), t ≥ 0} constains only
subsolutions of (1.4). This fact with the compactness of TN are enough to prove (1.5).

Now to prove (1.15), the authors perform a change of function of the form

exp(w(x, t)) = u(x, t), (x, t) ∈ TN × (0,∞).(1.16)

Then w solves

∂w

∂t
+ F (x,w,Dw) = 0, with F (x,w, p) = exp(−w)H(x, exp(w)p)(1.17)

and F inherits the properties of H:
{

There exists a, possibly empty, compact set K of TN such that

if F (x,w, p) ≥ η > 0 and d(x,K) ≥ η, then Fw(x,w, p) ≥ Ψ(η) > 0 a.e.
(1.18)

An application of the maximum principle yields that t 7→ minx∈TN
∂w
∂t
(x, t) is nonincreasing

so it converges. If the limit is nonnegative, we obtain easily the convergence of w(x, t) as
t→ ∞. Otherwise, there exists some η > 0, t0 > 0 such that for all t ≥ t0

min
x∈TN

∂w

∂t
(x, t) ≤ −η.(1.19)

Set z = ∂w
∂t

and m(t) = minx∈TN z(x, t) := z(xt, t). Differentiating (1.17) with respect to t,
we obtain

∂z

∂t
+ Fw(x,w, t,Dw)z + Fp.Dz = 0.
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Formally at xt, we get

m′ + Fw(xt, w, t,Dw)m = 0.

Using (1.18) and (1.19), we get

m′ +Ψ(η)m ≥ 0, thus m(t) ≥ m(t0)e
−Ψ(η)(t−t0)

Letting t tends to infinity yields a contradiction with (1.19).

Now, let us turn to the case of systems through the typical example
{ ∂u1

∂t
+H1(x,Du1) + u1 − u2 = 0,

∂u2

∂t
+H2(x,Du2) + u2 − u1 = 0,

(x, t) ∈ TN × (0,+∞),

where the Hi’s satisfy (1.7). Similarly to the case of a single equation, if we perform the
change of function exp(wi) = ui, then we obtain the new system

{ ∂w1

∂t
+ F1(x,w1,Dw1) + 1− exp(w2 − w1) = 0,

∂w2

∂t
+ F2(x,w2,Dw2) + 1− exp(w1 − w2) = 0,

(x, t) ∈ TN × (0,+∞),(1.20)

where Fi(x,w, p) = exp(−w)Hi(x, exp(w)p). Let us try to mimic the above sketch of proof
in the case of the system (1.20). We want to prove that

min
x∈TN , i=1,2

∂wi

∂t
(x, t) → 0 as t tends to infinity.(1.21)

An application of the maximum principle yields that t 7→ minx∈TN , i=1,2
∂wi

∂t
(x, t) is non-

increasing so it converges. If the limit is nonnegative, we obtain easily the convergence of
wi(x, t) as t→ ∞. Otherwise, there exists some η > 0, t0 > 0 such that for all t ≥ t0

min
x∈TN , i=1,2

∂wi

∂t
(x, t) ≤ −η.(1.22)

Set zi =
∂wi

∂t
and assume that

m(t) = min
x∈TN , i=1,2

zi(x, t) := z1(xt, t).(1.23)

This fact, (1.20) and (1.22) only give

F1(xt, w1,Dw1) + 1− exp(w2 − w1)(xt, t) ≥ η.(1.24)

We see that (1.18) cannot apply here, since we cannot control the additional term 1−exp(w2−
w1)(xt, t) using only the information given by (1.23).

It forces us to modify the assumptions of Theorem 1.1 to be able to treat this difficulty.
The new assumption should encompass typical Hamiltonians which satisfy the assumptions
of Theorem 1.1. We propose two sets of assumptions.

The following set of assumptions seems to be the natural extension of (1.7) to systems. We
assume for i = 1, . . . ,m that





(i) The function p 7→ Hi(x, p) is differentiable a.e. in x ∈ TN .

(ii) (Hi)p p−Hi ≥ 0 for a.e. (x, p) ∈ TN × RN ,

(iii) There exists a, possibly empty, compact set K of TN such that
(a) Hi(x, p) ≥ 0 on K ×RN ,
(b) If Hi(x, p) ≥ η > 0 and d(x,K) ≥ η, then (Hi)p p−Hi ≥ Ψ(η) > 0.

(1.25)
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Comparing (1.25) in the case of a single equation (m = 1) and (1.7), we see that (1.25)
(ii) is the only additional assumption, which is crucial in the proof of (1.29) (see the key
Lemma 6.2).

Here is another set of assumptions which is not covered by (1.25).





(i) The function p 7→ Hi(x, p) is differentiable a.e. in x ∈ TN for all i.

(ii) (Hi)p p−Hi ≥ 0 for a.e. (x, p) ∈ TN ×RN for all i.

(iii) H1(x, p) = max
1≤i≤m

Hi(x, p) for (x, p) ∈ T
N × RN .

(iv) There exists a, possibly empty, compact set K of TN such that
(a) Hi(x, p) ≥ 0 on K × RN for all i,
(b) If H1(x, p) ≥ η > 0 and d(x,K) ≥ η, then (H1)p p−H1 ≥ Ψ(η) > 0.

(1.26)

Condition (1.26)(iii) means that we require the existence of a biggest Hamiltonian and Con-
dition (1.7)(ii) has to be satisfied only for this biggest Hamiltonian H1. Roughly speaking,
everything is under the control of H1.

Let us roughly explain how we can overcome the difficulty mentioned after (1.24), by using
(1.25) or (1.26). As for single equations, we make the change of function exp(wi) = ui. The
function w is solution to the new system

∂wi

∂t
+ Fi(x,wi,Dwi) +

m∑

j=1

dijexp(wj − wi) = 0, i = 1, . . . ,m,(1.27)

with Fi(x,w, p) = exp(−w)Hi(x, exp(w)p). Without loss of generality, we can replace w with
v ∈ W 1,∞(TN × (0,∞))m belonging to the ω-limit set of {w(., . + t) + ct, t ≥ 0}, where c is
the ergodic vector. For shortness, we still denote v by w.

Under (1.25), the properties of the Fi’s which are inherited from the Hi’s are




(i) (Fi)w(x,w, p) ≥ 0 for a.e. (x,w, p),

(ii) There exists a, possibly empty, compact set K of TN such that
if Fi(x,w, p) ≥ η > 0 and d(x,K) ≥ η, then (Fi)w(x,w, p) ≥ Ψ(η) > 0 a.e.

(1.28)

Surprisingly, in this case, we are able to reinforce (1.23) by choosing a xt ∈ T
N such that

m(t) = min
x∈TN , i=1,2

zi(x, t) := z1(xt, t) = z2(xt, t).(1.29)

This fact, (1.20) and (1.22) give us two inequalities
{
F1(xt, w1,Dw1) + 1− exp(w2 − w1)(xt, t) ≥ η,

F2(xt, w2,Dw2) + 1− exp(w1 − w2)(xt, t) ≥ η.

Then, if w1(xt, t) ≤ w2(xt, t) for instance, we have

F1(xt, w1,Dw1) ≥ η.(1.30)

Now, we can apply assumption (1.28)(ii) and continue the proof accordingly. The fact that
the minimum in (1.29) is achieved at the same point both for z1 and z2 is a crucial point.
This is a consequence of our new assumption (1.25)(ii).
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Now, in the case of (1.26), the properties of the Fi’s which are inherited from the Hi’s are



(i) (Fi)w(x,w, p) ≥ 0 for a.e. (x,w, p),

(ii) w1(x, t) ≤ wi(x, t) for all (x, t) ∈ T
N × (0,∞) and i = 1, . . . ,m.

(iii) There exists a, possibly empty, compact set K of TN such that
if F1(x,w, p) ≥ η > 0 and d(x,K) ≥ η, then (F1)w(x,w, p) ≥ Ψ(η) > 0 a.e..

(1.31)

Let us mention that (1.31)(ii) is a consequence of the new assumption (1.26)(iii). In this
case, we replace (1.29) by

m1(t) = min
x∈TN

z1(x, t) := z1(xt, t).

Here, (1.31)(ii) implies easily (1.30), so we can apply (1.31) (ii) to prove that m1(t) tends to
0 as t→ ∞ and this is enough to the convergence (1.21).

To state our result, we need to introduce some assumptions on the coupling. The ir-
reducibility of the coupling is a classical assumption when dealing with systems of PDEs.
Roughly speaking, when the coupling is irreducible, it means that the system is not separated
into many smaller systems.

We say that D(.) is irreducible if for any x ∈ TN and subset I  {1, · · · ,m},
there exist i ∈ I and j 6∈ I such that dij(x) 6= 0.

(1.32)

Under (1.25), we need the existence of a line with nonzero coefficients in the coupling, that
is,

For all x ∈ TN , there exists i such that dij(x) 6= 0, for all j = 1, . . . ,m.(1.33)

Under (1.26), we need the following

We say that D(.) is nonzero if for any x ∈ TN , i, j = 1, . . . ,m, there exists(1.34)

k ∈ {1, · · · ,m} such that dik(x) 6= 0 and djk(x) 6= 0.

Let us comment on this last condition. The main consequence of systems which have a biggest
Hamiltonians, i.e., for which (1.26)(iii) holds, is

Lemma 1.3. Consider (1.1) where the coupling D(x) satisfies (1.34). Assume moreover that
(1.26)(iii) holds. Then we have

lim sup
t→∞

max
x∈TN , j=1,...,m

(u1(x, t)− uj(x, t)) ≤ 0.

To prove this result, we subtract the 1st equation from the jth in (1.1) and use (1.34).
Actually, (1.34) is not the most general assumption we can state but maybe the simplest one.

We are now able to state our main result, the proof of which is given in Section 6

Theorem 1.4. (Main convergence result) Suppose that the coupling D is independent of x
and one of the two following conditions holds

(i) Hi satisfies(1.25) and (1.33) holds,
(ii) Hi satisfies (1.26) and (1.32), (1.34) hold.

Then, the solution u = (u1, . . . , um) ∈ W 1,∞(TN × (0,∞))m of (1.1) converges uniformly to
a solution (v∞1, . . . , v∞m) of (1.8).

The proof of this theorem is difficult, very technical and relies on several auxiliary results.
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1.3. Some applications of the main result. First important examples for which the main
result can be applied are nonconvex systems. The following example is drawn from [4],

Hi(x, p) = ψi(x, p)Fi(x,
p

|p|
)− fi(x),(1.35)

where fi ∈ C(TN ) is nonnegative, Fi ∈ C(TN × RN \{0}) is strictly positive and ψi(x, p) =
|p+ qi(x)|

2 − |qi(x)|
2. Moreover, we assume that

K = {x ∈ TN : fi(x) = |qj(x)| = 0 for all i, j = 1, . . . ,m} 6= ∅.(1.36)

Under the above conditions, we have c = (0, . . . , 0). We compute

(Hi)p(x, p) p−Hi(x, p) = |p|2Fi(x,
p

|p|
) + fi(x).(1.37)

It is straightforward to see that Hi satisfies (1.25) with K defined as in (1.36).
Another application is the system

{ ∂u1

∂t
+ |Du1 + f1(x)|

2 − |f1(x)|
2 + u1 − u2 = 0,

∂u2

∂t
+ |Du2 + f2(x)|

2 − |f2(x)|
2 + u2 − u1 = 0.

(x, t) ∈ TN × (0,+∞),(1.38)

where fi ∈ C(TN ). This example was neither covered by previous convergence results nor by
the other convergence results described below in Section 1.4. It solves a question which was
asked in [6] where the authors obtained the convergence for (1.38) with f1, f2 are constant.
It is straightforward to check that (1.25) holds but it is also a particular case of the more
general application we give now.

The following theorem is an important consequence of the main result in the case of systems
with strictly convex Hamiltonians. To enlight the main ideas, we provide the proof hereunder
in the particular case where there exists a C1 subsolution to the ergodic problem. The proof
for the general case is provided in Section 7.

Theorem 1.5. Suppose that D is independent of x and satisfies (1.32) and (1.33). We
assume that, for i = 1, · · · ,m,

Hi(x, ·) is strictly convex and coercive uniformly in x ∈ TN .

Then there exists c = (c1, ..., c1) and a solution v ∈W 1,∞(TN )m of (1.8) such that u+ ct → v
in C(TN)m, where u is the solution of (1.1).

This theorem extends the result of [8] to systems. It also gives a full answer to the Eikonal
type Hamiltonians case of [6, 22]: when the Hamiltonians are strictly convex, one has the
convergence regardless F is empty or not. In particular we obtain the convergence in the case
of Example 1.2. In the non-strictly convex case, it is known that we cannot hope to obtain a
convergence result, see Example 1.8 for a counter-example. In the next section, we present a
particular result in this context with not necessarily strictly convex Hamiltonians.

We learnt very recently that Mitake and Tran [24] obtained the same result, Theorem 1.5,
by a different approach. They use a dynamical approach which corresponds, in the case of
systems, to the method of [8]. Here, the result is a particular case of a general PDE approach.

Proof of Theorem 1.5 (when there exists a C1 subsolution to (1.8)). To make the presenta-
tion easier in this introduction, we consider a particular case containing the main ideas of the
proof. See Section 7 for the general case. We then assume that v is a C1 subsolution of (1.8).
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Set wi = ui − vi for i = 1, . . . ,m where u is the solution of (1.1). Then w is the bounded
solution of

∂wi

∂t
+Hi(x,Dvi +Dwi)−Hi(x,Dvi)− gi(x) +

m∑

j=1

dij(x)wj = 0, i = 1, . . . ,m.

Where gi(x) := −Hi(x,Dvi) −
∑m

j=1 dij(x)vj ≥ 0 and gi ∈ C(TN) for all i = 1, . . . ,m since

v is a C1 subsolution of (1.8). We introduce the new Hamiltonians Gi(x, p) = Hi(x, p +
Dvi)−Hi(x,Dvi)− gi(x). Since Hi is coercive then the solutions u of (1.1) and v of (1.8) are
Lipschitz continuous. In order to apply Theorem 1.4, it is then sufficient to check that (1.25)
holds with K = ∅ and p bounded. It is left to the reader. Finally, we obtain the large time
behavior of the solution by applying Theorem 1.4. �

1.4. Miscellaneous results. We obtain some particular results under different assumptions
on the Hamiltonians. These results are not completely covered by the main result and bring
to light some interesting phenomena.

1.4.1. Hamiltonians of Eikonal type. We focus on the setting of Namah and Roquejoffre [25],
i.e., when the Hamiltonians take the form

Hi(x, p) = Fi(x, p)− fi(x), x ∈ TN , p ∈ RN .

For i = 1, · · · ,m, we assume

Fi(x, ·) is convex, coercive uniformly for x ∈ TN and Fi(x, p) ≥ Fi(x, 0) = 0 .(1.39)

We can extend the results of [22, 6] when F defined by (1.10) is replaced by

S := {x0 ∈ T
N , fi(x0) = min

x∈TN
fi(x), for all i} 6= ∅.(1.40)

This latter condition means that the fi’s attain their minimum at the same point but
their value at this point may be different.

Under this new weaker condition, we can prove the result when the coupling matrix is
independent of x. The idea is that we can find an explicit formula for the ci’s together with
a constant solution of the ergodic problem. It is then possible to bring the problem back to
the one proved in [6] and [22].

Theorem 1.6. Assume that D is independent of x and satisfies (1.32). Moreover, we assume
that Fi ∈ C(TN × RN), fi ∈ C(TN) satisfy (1.39) and (1.40), respectively. Then there exist
c = (c1, ..., c1) ∈ Rm and u∞ ∈ W 1,∞(TN ) solution of (1.8) such that u + ct → u∞ in
C(TN )m, where u is the solution of (1.1).

1.4.2. Strictly convex Hamiltonians. Theorem 1.5 is a natural extension of Davini-Siconolfi [8]
to systems. Here is another result in this direction with the following assumptions.

Hi(x, p) ≥ ρ(x)Ki(p), Hi(x, 0) = Ki(0) = 0, Ki is convex for i = 1, . . . ,m,(1.41)

where ρ is a positive TN -periodic function.

There exists at least one i ∈ {1, . . . ,m} such that Ki is strictly convex.(1.42)

Our result is the following

Theorem 1.7. Assume that Hi satisfies (1.41)-(1.42) and the coupling D is independent of
x and satisfies (1.32). Assume u ∈W 1,∞(TN × (0,∞))m is the solution of (1.1). Then, there
exists U ∈ R such that ui → U uniformly for all i.
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Typical Hamiltonians satisfying Theorem 1.7 are given in Example 4.1. If we compare our
result for systems with the corresponding one in [8] for a single equation, we see that we need
the additional assumption (1.41). However, we can prove the convergence result for systems
with convex Hamiltonians, when merely one of the Hi’s in (1.1) is strictly convex. It means
that one strictly convex Hamiltonian is enough to control the large time behavior of the whole
system. This condition is also necessary, see the counter-example 1.8 when all the Hi’s are
convex but no one is strictly convex. Theorem 1.7 improves a similar result of [22] which was
obtained for (1.43) in the case α = β = 2.

Example 1.8. Consider




∂u1
∂t

+ |Du1 + 1|α − 1 + u1 − u2 = 0,

∂u2
∂t

+ |Du2 + 1|β − 1− u1 + u2 = 0,

u1(x, 0) = u2(x, 0) = sin(x).

(x, t) ∈ R× (0,+∞),(1.43)

If α = β = 1, then (1.41) holds and the unique solution of (1.43) is u(x, t) = (sin(x−t), sin(x−
t)) which clearly does not converge as t→ ∞. This is a counterexample for which we do not
have the convergence when (1.41) holds alone. If α ≥ 1, β > 1, then (1.41)-(1.42) hold and
we can prove the convergence of the solution for this system.

1.4.3. The case when all Hamiltonians are identical. We focus on the case where all the
Hamiltonians in the system (1.1) are identical. In this setting, we can give an easy proof of
the large time behavior of solutions of (1.1) for a very wide class of Hamiltonians. We show
that the large time behavior for systems is actually inherited directly from the case of a single
equation, i.e., we prove that the convergence result holds for systems as soon as it holds for
the corresponding single equation. This result generalizes a result of [22] obtained for systems
under assumptions related to the framework of [4]. Here, we prove the result under a very
natural assumption when studying the large time behavior for system.

The solution of equation (1.3) has large time behavior .(1.44)

The result is

Theorem 1.9. Call u ∈ BUC(TN×(0,∞))m the solution of (1.1). Assume that the coupling
D(x) satisfies (1.34), Hi = Hj for all i, j = 1, . . . ,m and (1.44) holds. Then u(., t) converges
uniformly to a solution v of (1.4).

1.5. The relation among all convergence results. Let us compare all results which have
been stated above to give the reader a clearer overview. For Hamiltonians of Eikonal type,
we obtain, according to us, a satisfactory answer to the general case for systems which was
left open in [6] and [22], see Theorem 1.5. When the Hamiltonians are not strictly convex,
we cannot hope a convergence result in the whole generality but, in this case too, we obtain
a new result, Theorem 1.6. The important point in Theorem 1.6 is that we can compute the
exact value of the ergodic constant. Actually, when we have in hand this ergodic constant,
we can prove that the assumptions of Theorem 1.4 hold. So Theorem 1.6 is contained in the
main result Theorem 1.4 but let us underline again that the important part in the proof of
Theorem 1.6 is the computation of the ergodic constant, see Lemma 3.1.
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A consequence of Theorem 1.4 is Theorem 1.5 which proves the convergence result for
systems of strictly convex Hamiltonians. This is a natural extension of the result in [8] to
systems. We also obtain another result for strictly convex Hamiltonians, see Theorem 1.7.
This latter result is not completely covered by Theorem 1.4 since we need only one strictly
convex Hamiltonian in Theorem 1.7. We refer the reader to Example 1.8 with α ≥ 1, β > 1
and Example 5.2 for more discussions.

Finally, Theorem 1.9 requires all the Hamiltonians to be identical. This result is not
contained in Theorem 1.4 since it works for a very wide class of Hamiltonians provided the
convergence result holds for the corresponding single equation.

1.6. Organization of the paper. This paper is organized as follows. In Section 2, pre-
liminary results for the coupling of the systems are given, the ergodic problem for coercive
Hamiltonians is solved and basic properties of the solutions like existence, uniqueness, Lip-
schitz regularity and relative compactness are presented. Next sections are devoted to the
proofs of the theorems stated in the introduction. The proof of Theorem 1.6 is given in Sec-
tion 3, the proof of Theorem 1.7 is given in Section 4 and the proof of Theorem 1.9 is given
in Section 5. Section 6 contains the proof of the main result (Theorem 1.4). This is the most
technical and involved part. Finally, we give the proof of Theorem 1.5 in Section 7. Since
the ideas of this proof are based on the ideas used in the proof Theorem 1.4, we strongly
recommend the reader to read it after reading Section 6.

Notations: Since we only work with viscosity solutions in this paper, we will drop the term
“viscosity” hereafter. We denote by C(TN )m the set of functions u = (u1, . . . , um), where
ui : T

N → R is continuous for all i = 1, . . . ,m.

Acknowledgments. We would like to thank O. Ley without whom we would have never
finished this paper. We thank G. Barles who gave us a lot of useful advice to improve the
first version of this work and M. Camar-Eddine for useful discussions. We thank H. Mitake
and H. V. Tran for letting the author know about their recent work.

2. Some preliminary results

2.1. Preliminaires on coupling matrices. Here is one key property of irreducible matrices.

Lemma 2.1. ([6]) Suppose that D(x) = (dij(x))1≤i,j≤m satisfies (1.2) and (1.32). Then for
all x ∈ TN , D(x) is degenerate of rank m − 1, ker(D(x)) = span{(1, · · · , 1)} and the real
part of each nonzero complex eigenvalue of D(x) is positive. Moreover there exists a positive
continuous function Λ = (Λ1, . . . ,Λm) : TN → Rm such that Λ(x) > 0 and D(x)TΛ(x) = 0
for all x ∈ TN .

2.2. Ergodic problem for coercive Hamilton-Jacobi systems. We solve the ergodic
problem for systems of Hamilton-Jacobi equations with coercive Hamiltonians.

Theorem 2.2. Consider system (1.1) where Hi is coercive in p uniformly in x, D(.) satisfies
(1.32). Then, there is a solution ((c1, ..., c1), v) ∈ R

m×W 1,∞(TN )m to (1.8) with (c1, ..., c1) ∈
kerD(x) for all x ∈ TN . Moreover, (c1, ..., c1) is unique in kerD.

Remark 2.3. The classical result for scalar first-order Hamilton-Jacobi equations is due
to Lions-Papanicolaou-Varadhan [18]. In general, the ergodic problem (1.4) is solved in the
following way: we first prove a gradient bound for the regularized equation λvλ+H(x,Dvλ) =
0. Due to the coercivity of H, this gradient bound is independent of λ. Since vλ may not
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be bounded, we make a change of function wλ = vλ − vλ(x0) in the equation. It follows
|Dwλ| ≤ L and wλ is uniformly bounded thanks to the compactness of TN . And then, the
requirements of Ascoli’s theorem are fulfilled. Here, for systems with a x-dependent coupling
matrix, such an approach does not work since the change of variable wλ

i = vλi − vλi (x0) leads
to additional terms in the system which are difficult to control. That is why we required the
coupling matrix to be independent of x to prove [6, Theorem 4.3]. Here we can overcome this
difficulty with Lemma 2.5 below. Let us point out that we cannot use the gradient bound to
obtain (2.3).

Proof of Theorem 2.2. Step 1. Ergodic approximation. We consider the ergodic approxima-
tion to (1.8): for λ ∈ (0, 1), let vλ = (vλ1 , . . . , v

λ
m) be the solution of

(2.1) λvi +Hi(x,Dvi) +
m∑

j=1

dij(x)vj = 0 x ∈ TN , 1 ≤ i ≤ m.

Lemma 2.4. ([6]) There exist a unique solution vλ of (2.1) and a constant M > 0 indepen-
dent of λ such that

0 ≤ vλi ≤
M

λ
and

∣∣∣|Dvλi
(
.)||∞ ≤M, i = 1, . . . ,m.(2.2)

Step 2. Some uniform bounds. Here is the key lemma which helps us improve the result
proved in [6].

Lemma 2.5. Under the assumptions of Theorem 2.2, there exists a constant M such that
for all x ∈ TN , i = 1, . . . ,m, we have

|vλi (x)− vλ1 (x
∗)| ≤M for any fixed x∗ ∈ TN .(2.3)

The proof is postponed.
From Ascoli’s theorem, there exist c = (c1, . . . , cm) ∈ Rm and v ∈ C(TN )m such that, up

to subsequences, for i = 1, . . . ,m

λvλi (x
∗) → −ci and vλi − vλ1 (x

∗) → vi in C(TN ) as λ→ 0.

Notice that ci does not depend on the choice of x∗ since, for any x∗, y∗ ∈ TN

| − λvλi (x
∗) + λvλi (y

∗)| ≤ λM |x∗ − y∗| → 0 as λ→ 0.(2.4)

Moreover, multiplying (2.1) by λ for all i and sending λ → 0, we obtain −
∑

j dij(x)ci = 0

which gives D(x)c = 0 and therefore c ∈ kerD(x) for all x ∈ TN .
Step 3. Stability result for viscosity solutions and conclusion. We rewrite (2.1) as

λvλi +Hi(x,D(vλi − vλ1 (x
∗))) +

m∑

j=1

dij(v
λ
j − vλ1 (x

∗)) = 0 in TN ,(2.5)

by noting that
∑m

j=1 dij(x)v
λ
1 (x

∗) = 0 for all x ∈ TN thanks to (1.2).

We then use the stability result and pass to the limit in (2.5) to get

Hi(x,Dvi) +
m∑

j=1

dijvj(x) = ci in TN , 1 ≤ i ≤ m.(2.6)

Then (c, v(·)) is solution to (1.8). The function v depends on x∗ but c does not.
From Lemma 2.1, the kernel of D is spanned by (1, . . . , 1). Thus, any c ∈ kerD has the

form (c1, . . . , c1). The proof of uniqueness of c is classical and can be found in [6]. �
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Proof of Lemma 2.5. We set

wi(x) = wλ
i (x) = vλi (x)− vλ1 (x

∗).

Thanks to (2.2), obviously |w1| ≤M. Using (2.2) again for (2.5), we have

|
m∑

j=2

dij(x)wj(x)| ≤ C for all i = 1, . . . ,m and x ∈ TN ,

where C is independent of x and λ. For any i ≥ 2, we have

dii|wi| = |
m∑

j=2

dijwj −
m∑

j=2, j 6=i

dijwj | ≤ C + |
m∑

j=2, j 6=i

dijwj | ≤ C −
m∑

j=2, j 6=i

dij |wj|,

i.e.,

m∑

j=2

dij |wj | ≤ C for any i ≥ 2.(2.7)

Call (Λ1, . . . ,Λm) the function given by Lemma 2.1. We have

−
m∑

j=2

|wj |d1jΛ1 =
m∑

j=2

|wj |(
m∑

i=2

dijΛi) =
m∑

i=2

Λi

m∑

j=2

dij |wj| ≤ C(
m∑

i=2

Λi).

Assume |w2| = minj≥2 |wj |, we have

d11|w2| = −
m∑

j=2

d1j |w2| ≤ −
m∑

j=2

|wj |d1j ≤ C

∑m
i=2Λi

Λ1
.

Thanks to (1.32), we have d11 > 0. Using the compactness of TN and continuity of the
coupling, there exists δ0 > 0 such that d11(x) ≥ δ0 for all x ∈ TN . Therefore, we have

|w2| ≤ C

∑m
i=2 Λi

Λ1δ0
.

We finish the proof by a reduction argument, i.e., we assume that

m∑

j=k

dij |wj | ≤ C for any 3 ≤ k ≤ m and |wl| ≤ C for 1 ≤ l ≤ k − 1,

and we will show that |wk| ≤ C ′. By similar arguments like those to obtain the bound for
|w2|, we then assume that |wk| = minj≥k |wj |. We have

(

k−1∑

i=1

Λi

k−1∑

j=1

dij)|wk| = (−
m∑

j=k

k−1∑

i=1

dijΛi)|wk| ≤ −
m∑

j=k

|wj |
k−1∑

i=1

dijΛi ≤ C(

m∑

i=k

Λi).

If
∑k−1

i=1 Λi

∑k−1
j=1 dij(x) > 0 for all x ∈ TN , the conclusion follows easily by the compact-

ness of TN and the continuity of the coupling. We then assume by contradiction that∑k−1
i=1 Λi

∑k−1
j=1 dij(x0) = 0 for some x0 ∈ TN , (1.2) yields dij(x0) = 0 for all 1 ≤ i ≤

k − 1, k ≤ j ≤ m. We get a contradiction with the choice I = {1, . . . , k − 1} in (1.32). �
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2.3. Maximum principle and compactness properties of the solution.

Proposition 2.6. Suppose that u, v are a subsolution and a supersolution of (1.1), respec-
tively . Assume that either the Hi’s are coercive in p or u (or v) is Lipschitz.

(i) Let u0, v0 ∈ C(TN )m. If u, v are respectively a subsolution and a supersolution
of (1.1), then for any t ≥ 0,

max
1≤i≤m

sup
TN

(ui(·, t) − vi(·, t)) ≤ max
1≤i≤m

sup
TN

(ui(·, 0) − vi(·, 0))
+ .(2.8)

(ii) For any u0 ∈ C(TN )m, there exists a unique continuous solution of (1.1).

Using the existence of solutions of the ergodic problem proved in Theorem 2.2, we can
prove

Proposition 2.7. ([6]) Under the assumptions of Theorem 2.2, let u0 ∈ W 1,∞(TN )m and u
be the solution of (1.1) with initial data u0. Then

|u(x, t) + ct| ≤ C, x ∈ TN , t ∈ [0,∞),

|u(x, t)− u(y, s)| ≤ L(|x− y|+ |t− s|), x, y ∈ TN , t, s ∈ [0,∞),

with C, L are constant.

From Proposition 2.7 and Ascoli theorem, we obtain easily the relative compactness of
{u(., . + t) + ct, t ≥ 0} in C(TN ).

2.4. First partial convergence result. The following result will be often used in the sequel.
Roughly speaking, it gives the convergence of the solution on the set where the Hamiltonians
are nonnegative.

Lemma 2.8. ([6]) Let u = (u1, . . . , um) be a solution of (1.1) with c = (0, . . . , 0). Assume
that (1.1) admits a maximum principle and there exists a nonempty compact set K of TN

such that

Hi(x, p) ≥ 0 on K × RN for all i = 1, . . . ,m.

Assume one of the two following conditions holds

(i) (1.33) holds and u ∈ BUC(TN × (0,∞))m,
(ii) (1.32) holds and either H is coercive in p uniformly in x or u ∈W 1,∞(TN × (0,∞))m.

Then u(., t) converge as t tends to infinity for all x ∈ K.

Proof of Lemma 2.8. The proof for the case (i) holds is given in the step 3 of the proof of
Lemma 6.5. We only outline the proof when (iii) holds, see [6, Lemma 5.6] for details.
Formally, since Hi ≥ 0 and D(x)TΛ(x) = 0 for x ∈ K where Λ is given by Lemma 2.1, we
have

∂(
∑m

i=1Λiui)

∂t
≤ 0, (x, t) ∈ K × (0,∞).(2.9)

So for x ∈ K, t 7→
∑m

i=1 Λi(x)ui(x, t) is nondecreasing and therefore, it converges to some
function g(x) as t tends to infinity.

In (ii), if u ∈W 1,∞(TN × (0,∞))m, then we can see easily that the conclusion of Proposi-
tion 2.7 holds. Otherwise if the Hi’s are coercive, by applying Proposition 2.7, then we still
have (u(·, t))t≥0 is relatively compact in C(TN ) and there exists a sequence tn → +∞ such
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that u(·, tn) converges uniformly on TN as n→ +∞. From the maximum principle for system
(1.1), we obtain that for all n, q ∈ N,

max
1≤i≤m

sup
TN×[0,+∞)

|ui(·, tn + ·)− ui(·, tq + ·)| ≤ max
1≤i≤m

sup
TN

|ui(·, tn)− ui(·, tq)|

and therefore (u(·, tn + ·))n is a Cauchy sequence in W 1,∞(TN × [0,+∞)). Thus it converges
uniformly to some function w ∈ W 1,∞(TN × [0,+∞)). By the stability result for viscosity
solutions, w is still a solution of (1.1) (see [1, 2, 9] for details). Since

∑m
i=1 Λivi(x0, t) converges,∑m

i=1Λiwi(x0, t) does not depend on t anymore for x0 ∈ K. It follows

∂(
∑m

i=1Λiwi)(x0, t)

∂t
= 0, x0 ∈ K.

This implies
m∑

i=1

Λi(x0)Hi(x0,Dwi) = 0, i.e. Hi(x0,Dwi) = 0 for i = 1, . . . ,m.

Then, we obtain a linear system for w:

∂wi

∂t
+

m∑

j=1

dij(x0)wj(x0, t) = 0, i.e. w(x0, t) = exp(−tD(x0))w(x0, 0).(2.10)

SinceD is irreducible, from Lemma 2.1, 0 is a simple eigenvalue and all the nonzero eigenvalues
have a positive real part. It follows that there exists a matrix A such that

exp(−tD(x0)) = A+O(e−rt),

where r > 0 is the smallest real part of the nonzero eigenvalues. Therefore,

w(x0, t) →
t→+∞

Aw(x0, 0) + w0 =: u∞(x0).

It is now straightforward to see that u∞(x0) is the limit of u(x0, t). �

3. Proof of Theorem 1.6

For this section, it is convenient to rewrite the stationary system under the form

(3.1) Fi(x,Dui) +

m∑

j=1

dijuj = fi + c1 x ∈ TN , i = 1, . . . ,m.

where c = (c1, . . . , c1) is the ergodic constant. The existence of a solution to this system is
given in Theorem 2.2.

Let x0 ∈ S, we recall that S is defined by (1.40). We show that c1 = −
∑m

i=1 Λifi(x0)∑m
i=1

Λi
by

constructing a constant solution for system (3.1) with respect to this constant.

Lemma 3.1. The system

Fi(x,Dui) +

m∑

j=1

dijuj = bi −

∑m
i=1Λibi∑m
i=1 Λi

, i = 1, . . . ,m.(3.2)

has a constant solution.

The proof is postponed.
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Proof of Theorem 1.6. Step 1. Reduction to Lipschitz initial datas. Given u0 ∈ C(TN)m, set
S(t)u0 = u(x, t) for t ≥ 0 where u is the solution of (1.3) with initial datum u0. Then it is
easy to see that S(·) generates a nonlinear, monotone, nonexpansive semigroup in C(TN )m.
Since S(t) is nonexpansive, it is sufficient to show the result for u0 ∈W 1,∞(TN ).
Step 2. Explicit value of the ergodic constant. Using the uniqueness of the ergodic constant
and Lemma 3.1, we obtain the formula for the ergodic constant

c1 = −min
x∈T

∑m
i=1Λifi(x)∑m

i=1 Λi
= −

∑m
i=1Λifi(x0)∑m

i=1Λi
for any x0 ∈ S,(3.3)

where the constant vector Λ = (Λ1, . . . ,Λm) > 0 given by Lemma 2.1.
Step 3. Boundedness of u + ct and use of stability results. Set v := u + ct. We apply
Proposition 2.7 to deduce that v is bounded. Then, we can introduce the relaxed half-limits

v(x) = lim sup
t→+∞

∗ v(x, t) = lim
t→+∞

sup{v(y, s) : y ∈ B(x, 1/t), s ≥ t},(3.4)

v(x) = lim inf
t→+∞

∗ v(x, t) = lim
t→+∞

inf{v(y, s) : y ∈ B(x, 1/t), s ≥ t},

where the half-limits are taken componentwise.
By the stability result for viscosity solutions, v and v are respectively a sub and a super-

solution of (3.1).
Step 4. Uniform convergence of the sequence v(·, t) on S. We have that v = u + ct is the
solution of the system:

(3.5)

{
∂vi
∂t

+ Fi(x,Dvi) +
∑m

j=1 dijvj = fi + c (x, t) ∈ TN × (0,+∞),

vi(x, 0) = ui0(x) x ∈ TN ,
i = 1, . . . ,m.

From Lemma 3.1, there exists a constant solution w0 = (w10, ..., wm0) for (2.10) with bi =
fi(x0), x0 ∈ S for i = 1, . . . ,m. Set wi(x, t) = vi(x, t)− wi0, then (w1, . . . , wm) solves

∂wi

∂t
+ Fi(x,Dwi) +

m∑

j=1

dijvj = fi(x)− fi(x0) (x, t) ∈ TN × (0,+∞), x0 ∈ S, i = 1, . . . ,m.

For this new system, the requirements of Lemma 2.8 are satisfied with K is chosen to be S,
hence we can apply it to have the convergence of vi(., t) as t→ ∞ for all x ∈ S.
Step 5. Use of the comparison principle for (3.1) to conclude. The functions v and v are
respectively a sub and a supersolution of (3.1) satisfying v ≤ v on S. We have a comparison
principle for the stationary system (3.1).

Theorem 3.2. Assume that D is independent of x and satisfies (1.32). We assume moreover
that (1.39) and (1.40) hold. Let u ∈ USC(TN) and v ∈ LSC(TN) be respectively a bounded
subsolution and supersolution of (3.1) such that

ui(x) ≤ vi(x), i ∈ {1, ...,m}, x ∈ S.

Then
u ≤ v in TN .

The proof is postponed. Using this theorem, we infer that v ≤ v and hence, v = v = v∞.
It proves the uniform convergence of u+ ct to u∞ in TN and u∞ solves (3.1). �

Remark 3.3. When (1.10) holds, the right hand side of system (3.1) is nonnegative( that is,
all its components are nonnegative). When (1.40) holds, the right hand side of the system
(3.1) is (f1+ c1, . . . , fm+ c1) whose signs may not be nonnegative anymore, see Example 1.2.
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The following example shows the difficulty when the coupling depends on x, even the fi’s
attain their minimum at the same point but with different values.

Example 3.4. Let d ∈ C(TN ) satisfying maxTN d > minTN d > 0. We can show that there
exists c > −1 and a bounded solution (v1, v2) to the system

(3.6)

{
∂v1
∂t

+ |Dv1|+ d(x)(v1 − v2) = c,

∂v2
∂t

+ |Dv2|+ d(x)(v2 − v1) = 2 + c
x ∈ TN

(see Theorem 2.2). Note that, for (3.6), F = ∅ but f1 ≡ 0 and f2 ≡ 2 achieve their minimum
0 and 2 respectively, at each point of TN so S = TN . To follow the lines of the proof of

convergence of [25, 6, 22], we need to identify a nonempty set S̃ such that vi(x, t) converges

as t→ ∞ for any x ∈ S̃ and such that we have a comparison principle for (1.8) with prescribed

values on S̃. But, summing the equations in (3.6), we obtain

∂(v1 + v2)

∂t
+ |Dv1|+ |Dv2| = 2 + 2c > 0,(3.7)

which shows that it is hard to have such a set. We do not have the answer for this case.

We turn to the proof of the results used in the proof of Theorem 1.6.

Proof of Lemma 3.1. Since we construct constant solutions, we do not need to care about

Fi(x,Dui) = Fi(x, 0) = 0. Set a :=
∑m

i=1 Λibi∑m
i=1

Λi
. We want to find a solution of

m∑

j=1

dijuj = bi − a, i = 1, . . . ,m.

We need to use

Lemma 3.5. Assume that D is independent of x and satisfies (1.32). Then, the matrix
obtaining after deleting the ith row and ith column is invertible.

The proof is given at the end of this section.
From this lemma, we can find a unique solution (u1, ..., um−1) satisfying

m−1∑

j=1

dijuj = bi − a, i = 1, . . . ,m− 1.

Set um = 0, we have

m∑

j=1

dijuj = bi − a, i = 1, . . . ,m− 1.(3.8)

We claim that (3.8) holds for i = m. Multiplying the ith equation in (3.8) by Λi and summing
all equations for i = 1, . . . ,m− 1, we obtain

m−1∑

i=1

(

m∑

j=1

Λidij)uj =

m−1∑

i=1

Λibi −
m−1∑

i=1

Λia, i.e,

m∑

j=1

−Λmdmjuj = Λm(a− bm),

which is exactly what we need. �
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Proof of Theorem 3.2. Proving directly this theorem seems hard because of the lackness of
positivity in the right hand side of (3.1), see Remark 3.3. We instead try to bring it back to
Theorem 3.2 with (1.10) holds instead of (1.40). To do so, the fact that the coupling matrix
D(x) independent of x plays a key role.

Using Lemma 3.1, there is a constant solution u0 = (u01, ..., u0m) of system (3.2) with
bi = fi(x0). Writing system (3.1) as:

Fi(x,Dui) +

m∑

j=1

dijuj = (fi − fi(x0)) + fi(x0) + c

and, setting vj = uj − u0j , we obtain that v = (v1, ..., vm) solves:

Fi(x,Dvi) +
m∑

j=1

dijvj = fi − fi(x0), x ∈ TN , i = 1, . . . ,m.

Note that the gi’s defined by gi(x) = fi(x) − fi(x0) attain their minimum at the same point
x0 and their value at x0 are equal to 0, i.e. F satisfies (1.10) with F := S and the fi’s are
replaced by the gi’s. It follows that (1.10) holds, we then apply Theorem 3.2 with (1.10) holds
to obtain the conclusion. �

Proof of Lemma 3.5. Call (Λi)i=1,...,m the vector in Lemma 2.1. Call E the matrix after
deleting the mth row and mth column from the matrix D, our goal is to prove that E is
invertible. By contradiction, assume there exists x = (x1, ..., xm−1) 6= 0 such that Ex = 0. It
is straightforward to check that y = (x, 0) satisfies Dy = 0, and from Lemma 2.1 again, we
conclude that x = 0 which is a contradiction. Therefore, E is invertible. �

4. Proof of Theorem 1.7

Before giving the proof of Theorem 1.7, let us give typical examples

Example 4.1. A typical example of system (1.1) satisfying (1.41)-(1.42) is when

Hi(x, p) = fi(x, p)|p|
αi +

∑
1≤j≤kmij(|p + qij|

aij − |qij|
aij ), 1 ≤ i ≤ m,

where, for all i, j, fi ≥ 0, αi, aij ≥ 1, mij ≥ 0, qij ∈ R
N and there exists 1 ≤ i0 ≤ m such that

fi0(x, p) ≥ η > 0 and αi0 > 1. In this case, Hi0 enters the framework of [8].

Let us point out that there are Hamiltonians satisfying (1.41)-(1.42) which are not covered
by the results of [4], see Example 5.2 for details.

Theorem (1.7) improves a result of [22] where convergence for (1.43) with α = β = 2 is
proved. The proof of Theorem (1.7) is based on similar ideas as in [22]. The main change
is that we can prove the proposition 4.3, which is the main estimate, for any strictly convex
Hamiltonians after refining classical Jensen inequality.

Proof of Theorem 1.7.
Step 1. Boundedness of u. With assumption (1.41), we deduce that the ergodic constant is 0.
In particular, the solution of (1.1) is bounded.
Step 2. The functions Umax(t) := maxx,i ui(x, t) and Umin(t) := minx,i ui(x, t) are monotone.
This result is proved in [22]. We make here a formal proof for Umax. We fix t and assume,
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without loss of generality, that Umax(t) = maxx,i ui(x, t) = u1(x0, t). Then

Du1(x0, t) = 0,

m∑

j=1

d1juj(x0, t) ≥ 0.

It follows from the first equation of (1.1) and (1.41) that

0 =
∂u1
∂t

(x0, t) +H1(x0,Du1(x0, t)) +

m∑

j=1

d1juj(x0, t) ≥ U ′
max(t).

From Steps 1 and 2, we can set L = limt→∞ Umax(t) and l = limt→∞ Umin(t). If L = l, the
proof is finished. We assume that L > l and we will show a contradiction.
Step 3. Uniform convergence of a subsequence. From Lemma 2.8, there exists a sequence
tn → +∞ such that (u(·, tn + ·))n converges uniformly to some function w ∈ W 1,∞(TN ×
[0,+∞)). By the stability of viscosity solutions, w is a solution of (1.1). By passing from ui’s
to wi’s, we get new information. That is, we have

max
x,i

wi(x, t) = L, min
x,i

wi(x, t) = l for all t > 0.

Fix any t > 0. We have maxx,iwi(x, t) = wi0(x0, t) = L = maxx,swi0(x, s). Using 0 as a test
function, from (1.1), we see that

m∑

j=1

di0jwj(x0, t) ≤ 0 ⇒ wj(x0, t) = wi0(x0, t) for all j,

where the last equality comes from the irreducibility of the couplingD. Indeed, we can use the
following characterization of irreducibility ([6] and the references therein): D is irreducible if
and only if for all i, j ∈ {1, · · · ,m}, there exists n ∈ N and a sequence i0 = i, i1, i2, · · · , in = j
such that dil−1il 6= 0 for all 1 ≤ l ≤ n (in this case we say that there exists a chain between
i and j). Then, for any j ∈ {1, . . . ,m}, there exists n ∈ N and a sequence i1, i2, · · · , in = j
such that dil−1il 6= 0 for all 1 ≤ l ≤ n. From the above inequality and (1.2), we deduce that
wi1(x0, t) = wi0(x0, t) and repeat the same arguments, we obtain easily that wj(x0, t) = · · · =
wi1(x0, t) = wi0(x0, t).

This fact and a similar argument for the minimum leads to

max
x

wi(x, t) = L, min
x
wi(x, t) = l for all t > 0 and i ∈ {1, . . . ,m}.(4.1)

Step 4. Strict convexity of one Hamiltonian implies the unboundedness of wi’s. Using Lemma
2.1, we have

∂

∂t
Φ(x, t) +

m∑

i=1

ΛiHi(x,Dwi) = 0, where Φ(x, t) =

m∑

i=1

Λiwi(x, t).

Therefore

∂

∂t
Φ(x, t) + ρ(x)

m∑

i=1

ΛiKi(Dwi) ≤ 0.

It follows that

∂

∂t

∫

TN

Φ(x, t)

ρ(x)
dx+

∫

TN

m∑

i=1

ΛiKi(Dwi)dx ≤ 0.(4.2)
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Next, we recall the Jensen inequality in the multidimensional case.

Proposition 4.2.

(i) Let φ be a convex function over an open bounded convex subset U ⊂ RN . For any integrable
function f : TN → U , we have

∫

TN
φ ◦ f(x)dx ≥ φ(

∫

TN
f(x)dx).

(ii) If we assume moreover that φ is a strictly convex function, then, for any integrable function
f : TN → U which is not constant a.e., we have

∫

TN
φ ◦ f(x)dx > φ(

∫

TN
f(x)dx).

The proof is given at the end of this section.
Part (i) of Proposition 4.2 yields

∫
TN

Ki(Dwi)dx ≥ Ki[
∫
TN

Dwidx] ≥ 0 for all i = 1, . . . ,m.
And from (1.42), we can assume without loss of generality that K1 is strictly convex. We
have an important estimate for this strictly convex Hamiltonian

Proposition 4.3. Fix L > l and a strictly convex function K satisfying K(0) = 0. Set

A = {f ∈W 1,∞(TN ) such that ||f ||W 1,∞(TN ) ≤ C, max
TN

f = L, min
TN

f = l}.

Then we have, for all f ∈ A,
∫

TN
K(Df)dx ≥ β > 0, where β is independent of f .

From Proposition 4.3, we derive
∫

TN

m∑

i=1

ΛiKi(Dwi)dx ≥

∫

TN
Λ1K1(Dw1)dx ≥ δ > 0.

in which δ is independent of t thanks to (4.1). Using this for (4.2), we have

∂

∂t

∫

TN

Φ(x, t)

ρ(x)
dx ≤ −δ, for all t.

This leads to Φ(x,t)
ρ(x) → −∞ as t tends to infinity. This is a contradiction with the boundedness

of wi’s. It ends the proof of Theorem 1.7. �

Now, we turn to the proof of the key estimate.

Proof of Proposition 4.3. Note that, by periodicity of f,
∫
TN

Df = 0. Therefore, by using
Proposition 4.2 (i) and periodicity of f , we always have

∫
TN

K(Df)dx ≥ 0.
We now assume by contradiction that such a β does not exist, therefore we can find a

sequence (fn) ∈ A such that
∫

TN
K(Dfn)dx <

1

n
.

Ascoli’s theorem claims, by passing to a subsequence if necessary, the existence of f0 ∈
W1,∞(TN) so that

fn → f0 in C(TN ).(4.3)

In particular f0 is not a constant because maxTN f0 = L > minTN f0 = l.
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Moreover, since W 1,2(TN ) is a reflexive Banach space, by passing to a subsequence if
necessary

fn ⇀ g0 in W 1,2(TN ).

Then, it follows that

fn ⇀ g0 in L2(TN ).(4.4)

From (4.3) and (4.4), we obtain

g0 = f0 a.e.

From a classical result in calculus of variations, see [7], we have

0 ≤

∫

TN
K(Df0) ≤ lim inf

n

∫

TN
K(Dfn) ≤ 0.

Finally, we have
∫

TN
K(Df0) = 0.

We apply Proposition 4.2 (ii) to deduce that Df0(x) = 0 a.e, and therefore f0(x) = C,∀x ∈
TN by continuity. It leads to a contradiction. �

Remark 4.4. Actually, the strict convexity of K was only used to deduce Df0(x) = 0 a.e
in last lines of the proof of Proposition 4.3. It follows that Proposition 4.3 can be easily
established if K satisfies

K(p) ≥ 0 for all p ∈ RN , K is convex and K(p) = 0 ⇔ p = 0.

Thus, Theorem 1.7 is still true if we replace the strict convexity with the above condition.

Proof of Proposition 4.2. (i) Set t =
∫
TN

f(x)dx, since φ is convex then its subdifferential
∂φ(t) is nonempty,

φ(f(x)) ≥ φ(t) + 〈f(x)− t, p〉 .

where p ∈ ∂φ(t). Summing after integrating both sides of the above inequality with respect
to x and using the special value of t, we obtain the result.

For part (ii), since f is not constant a.e., the set A = {x ∈ U, f(x) 6= t} has positive
measure. Take p ∈ ∂φ(t), it is obvious that

φ(f(x)) = φ(t) + 〈f(x)− t, p〉 if x /∈ A.

We prove later that

φ(f(x)) > φ(t) + 〈f(x)− t, p〉 if x ∈ A.(4.5)

Integrating both sides of two above inequalities with respect to x and using the special value
of t, we obtain the result.

To prove (4.5), we assume by contradiction there exists x ∈ A such that

φ(f(x)) = φ(t) + 〈f(x)− t, p〉 if x ∈ A.

Therefore, using the strict convexity of φ and f(x) 6= t, we have

φ(
f(x)

2
+
t

2
) <

φ(f(x))

2
+
φ(t)

2
= φ(t) +

〈
f(x)− t

2
, p

〉
.
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On the other hand, p ∈ ∂φ(t) and the convexity of φ imply

φ(
f(x)

2
+
t

2
) ≥ φ(t) +

〈
f(x)− t

2
, p

〉
.

Two above inequalities give a contradiction. �

5. Proof of Theorem 1.9

Before proving Theorem 1.9, we introduce some assumptions to recall a result of [4] for
single equations and its extension to the system (1.1) with H1 = H2 in [22].





Either u is in W 1,∞(RN × (0,∞)) or there is a continuous function
m : [0,∞) → [0,∞) such that m(0+) = 0 and, for all x, y, p ∈ RN ,
|H(x, p) −H(y, p)| ≤ m(|x− y|(1 + |p|)).

(5.1)





There exist η > 0 and ψ(η) > 0 such that: if H(x, p + q) ≥ η and
H(x, q) ≤ 0 for some x ∈ A ⊂ RN , p, q ∈ RN then, for all µ ∈ (0, 1]:
µH(x, µ−1p+ q) ≥ H(x, p + q) + ψ(η)(1 − µ),

(5.2)





There exists a, possibly empty, compact subset K of TN such that:
(a) H(x, p) ≥ 0 on K × RN ,
(b) for all η > 0, (5.2) holds with A = Kη for all η > 0,
where Kη := {x ∈ RN : d(x,K) ≥ η}.

(5.3)

Theorem 5.1. ([4]) Assume that H ∈ C(TN × RN ) satisfies (5.1) and (5.3). Then, any
solution u ∈ BUC(TN × (0,∞)) of (1.3) converges uniformly to a solution u of (1.4).

In [22], the authors proved the large time behavior of the solution of (1.1) with m = 2,
H1 = H2 and Hi satisfies the conditions as in Theorem 5.1. The proof in [22] is based on
the ideas used in the proof of Theorem 5.1. And therefore, it only works under the set of
conditions on Hamiltonians of Theorem 5.1. But we observe that for this type of system, the
convergence is actually inherited from the case of single equations.

Proof of Theorem 1.9. Step 1. Some estimates for single equations. We choose any sequence
(tn)n which tends to +∞. For each n ≥ 0, call Φn be the solution to the equation:

(5.4)





∂Φn

∂t
+H(x,DΦn) = 0 (x, t) ∈ TN × (0,+∞),

Φn(x, 0) = u1(x, tn) x ∈ TN ,

Note that (Φn, . . . ,Φn) is a solution of (1.1) with initial conditions (u1(., tn), . . . , u1(., tn)).
Applying the comparison principle for the system (1.1), we obtain

sup
i=1,...,m, x∈TN , t≥0

|ui(x, t+ tn)− Φn(x, t)| ≤ sup
1≤i≤m, x∈TN

|ui(x, tn)− u1(x, tn)|.(5.5)

sup
x∈TN , t≥0

|Φn(x, t)− Φn+1(x, t)| ≤ sup
x∈TN

|u1(x, tn)− u1(x, tn+1)|.(5.6)

Step 2. Use of the large time behavior result for single equations. The key idea is that for all
n ∈ N, the solutions of the scalar Hamilton-Jacobi equation (5.4) have the large time behavior
by (1.44). It follows that

Φn(., t) → V n(.) in C(TN ) as t→ ∞ for some V n ∈ BUC(TN )(5.7)
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and V n is a solution of the equation (1.4).
Step 3. Derivation of the result for systems. From (5.6) and (5.7) we infer that (V n)n is a
Cauchy sequence in BUC(TN ) and therefore

V n(.) → V (.) in C(TN ) for some V ∈ BUC(TN ).(5.8)

By the stability result, V is also a solution of (1.4). Using (5.7), we take lim sup∗ with respect
to t both sides of (5.5)

ui(x) ≤ V n(x) + sup
i=1,...,m, x∈TN

|ui(x, tn)− u1(x, tn)|, for all i and x ∈ TN .

From (5.8), Lemma 1.3, let n tend to infinity in the above inequality. We obtain

ui(x) ≤ V (x) for all i and x ∈ TN .

Similarly, we get

ui(x) ≥ V (x) for all i and x ∈ TN .

Hence, we conclude ui(., t) → V (.) in C(TN) as t tends to infinity for all i. �

Example 5.2. We show an example where the Hamiltonians satisfy the assumptions of
Theorem 1.7 but not those of Theorems 1.1 and 5.1. It means that all the results of Section 4,
even in the case of a single equation, are not covered by [4]. Take

H(x, p) = (2 + sin(p))|p|2 + |p+ 1| − 1, p ∈ R.

We check that H does not satisfies (5.2) which is a key condition to prove Theorem 5.1. Since
H is differentiable, (5.2) reduces to

If H(p + q) ≥ η and H(q) ≤ 0 then Hp(p+ q)p −H(p + q) ≥ ψ(η) > 0.(5.9)

Choose q = 0, we then rewrite the above requirement as

Hp(p)p −H(p) = p[2p(2 + sin(p)) + cos(p)|p|2]− (2 + sin(p))|p|2 + 1− |p+ 1|+ p(1−
p+ 1

|p+ 1|
).

Choose pn = 2nπ + π, n ≥ 0, then we have

Hp(pn)pn −H(pn) = 2p2n − p3n − pn,

which tends to −∞ as n → +∞. This violates (5.9). In the same way, we can check that H
also does not satisfy the key hypothesis (1.7) of Theorem 1.1.

Proof of Lemma 1.3. This proof is a modified version of the one in [22] so that it can be
adapted to general systems which is little more tricky.
Step 1. Some first estimates. Thanks to (1.34), we have

δ = min
x∈TN , i,j=1,...,m, I⊂{1,...,m}

−[
∑

k∈I

dik(x) +
∑

k∈Ic

djk(x)] > 0.

where I contains j but not i.
Set Φ(t) = maxi 6=j, x∈TN [ui(x, t) − uj(x, t)] ≥ 0 for each t > 0. Our purpose is to prove

that Φ is a subsolution to the equation

Φ′(t) + δΦ(t) = 0.(5.10)

Assume without loss of generality that Φ(t) = u1(x0, t)−u2(x0, t) and all functions are smooth
to do a formal proof. It can be done rigorously by approximation techniques.
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We have Φ′(t) = ∂u1

∂t
(x0, t) −

∂u2

∂t
(x0, t), Du1(x0, t) = Du2(x0, t). Subtracting two first

equations in (1.1), we have

Φ′(t) +
m∑

j=1

d1j(x0)uj(x0, t)−
m∑

j=1

d2j(x0)uj(x0, t) = 0.

To obtain the conclusion, we only need to prove that

m∑

j=1

[d1j(x0)− d2j(x0)]uj(x0, t) ≥ δ(u1(x0, t)− u2(x0, t))

or

(d11 − d21 − δ)u1 ≥ (d22 − d12 − δ)u2 +
m∑

j=3

(d2j − d1j)uj .(5.11)

At the point (x0, t), we have

u1 ≥ u3, ..., um ≥ u2, d11 − d21 − δ = d22 − d12 − δ +

m∑

j=3

(d2j − d1j)(5.12)

but the signs of d2j − d1j , j ≥ 3 are unknown.
Step 2. Separate the signs of d2j−d1j , j ≥ 3 . We call J+ is the set consists of all j ∈ {3, ...,m}
such that d2j − d1j ≥ 0 and J− := {3, ...,m} − J+. We rewrite (5.11) as

(d11 − d21 − δ)u1 −
∑

j∈J+

(d2j − d1j)uj ≥ (d22 − d12 − δ)u2 +
∑

j∈J−

(d2j − d1j)uj

Actually, we can prove a stronger inequality

(d11 − d21 − δ)u1 −
∑

j∈J+

(d2j − d1j)u1 ≥ (d22 − d12 − δ)u2 +
∑

j∈J−

(d2j − d1j)u2

It is clear by (5.12) that

d11 − d21 − δ −
∑

j∈J+

(d2j − d1j) = d22 − d12 − δ +
∑

j∈J−

(d2j − d1j)

From this equality and u1 ≥ u2, we only need to prove that

d11 − d21 − δ −
∑

j∈J+

(d2j − d1j) ≥ 0.

This is true by the definition of δ.

d11 − d21 −
∑

j∈J+

(d2j − d1j) = −[d12 + d21 +
∑

j∈J+

d2j +
∑

j∈J−

d1j ] ≥ δ.

Since Φ(0)e−δt is a supersolution of (5.10) with the initial value Φ(0), the comparison
principle yields 0 ≤ Φ(t) ≤ Φ(0)e−δt for all t. Therefore, Φ(t) converges to 0 as t→ ∞. �
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6. Proof of the main result, Theorem 1.4.

As we said in the introduction, to prove Theorem 1.4, we perform a change of function
which leads to a new system (1.27). We start by giving a result for this auxiliary system,
Theorem 6.1, which is used to prove Theorem 1.4. We introduce the assumption

wi(x, t) converges as t→ ∞ for all i = 1, . . . ,m and x ∈ K,(6.1)

where K is given in (1.28). It is convenient to state this assumption here. But, under the
conditions of Theorem 1.4, this assumption is automatically fulfilled (see Step 1 of the proof).

For η > 0, we define

Mη,i(t) = sup
x∈TN , s≥t

[wi(x, t)− wi(x, s)− 2η(s − t)].(6.2)

We state the key estimate on this function

Theorem 6.1. Consider system (1.27) where the coupling D is independent of x and satisfies
(1.2) and (1.33). Assume that Fi ∈ C(TN × R × RN ), wi ∈ W 1,∞(TN × (0,+∞)) and that
(1.28), (6.1) hold. Taking a sequence tn → +∞ such that (w(·, tn + ·))n converges uniformly
to some function v ∈W 1,∞(TN × [0,∞))m. Define

Pη,i(t) = sup
x∈TN , s≥t

[vi(x, t) − vi(x, s)− 2η(s − t)].(6.3)

Then

Pη,i(t) = 0 for any i = 1, . . . ,m, t ≥ 0 and η > 0.(6.4)

We first give the proof of Theorem 1.4 under the set of assumptions (1.25) using Theo-
rem 6.1. Then we prove Theorem 6.1. Notice that we skip the proof of Theorem 1.4 under
(1.26) for shortness since it can be deduced from the arguments under (1.25).

Proof of Theorem 1.4. Step 1. Since the solution u of (1.1) is bounded, we can assume, by
adding a big enough positive constant on the initial conditions if needed, that

M ≥ ui(x, t) ≥ 1, x ∈ TN , t > 0, i = 1, . . . ,m.

Set

exp(wi(x, t)) = ui(x, t) for all i = 1, . . . ,m and (x, t) ∈ TN × (0,∞).(6.5)

Then wi ∈W 1,∞(TN × (0,+∞)) for i = 1, . . . ,m, solves (1.27) with

Fi(x,w, p) = exp(−w)Hi(x, exp(w)p).

We can check that Fi satisfies (1.28) with K := K where K is given in (1.25). Moreover,
Lemma 2.8 gives the convergence of ui(x, t), as t → ∞ for all x ∈ K. Thus (6.1) is automat-
ically satisfied from the way we define wi.

Step 2. We apply Theorem 6.1 to (1.27). By the stability result, the function v defined as
in the statement of Theorem 6.1 is a viscosity solution of (1.27). By (6.4),

vi(x, t)− vi(x, s)− 2η(s − t) ≤ 0, for all i, s ≥ t and x ∈ TN .

Letting η tend to 0, we obtain

vi(x, t)− vi(x, s) ≤ 0, for all i, x ∈ TN , s ≥ t ≥ 0.

Step 3. The uniform convergence of (w(·, tn + ·))n to v ∈W 1,∞(TN × [0,+∞)) yields

−on(1) + vi(x, t) ≤ wi(x, t+ tn) ≤ on(1) + vi(x, t) in T
N × (0,∞), for all i.
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Since vi is nondecreasing in t, vi(x, t) → vi∞(x) uniformly in x as t tends to infinity. Taking
lim sup∗ and lim inf∗ with respect to t both sides of the above estimate, we obtain

−on(1) + vi∞(x) ≤ lim inf
t→+∞

∗wi(x, t) ≤ lim sup
t→+∞

∗ wi(x, t) ≤ on(1) + vi∞(x) x ∈ TN , for all i.

Letting n tend to infinity, we derive

lim inf
t→+∞

∗ wi(x, t) = lim sup
t→+∞

∗wi(x, t) = vi∞(x), x ∈ TN , for all i,

which yields the uniform convergence of wi(., t) to vi∞ in TN as t tends to infinity.
Step 4. By stability, vi∞ is a solution of (1.27). Therefore, ui(., t) = exp(wi(., t)) converges

uniformly, as t tends to infinity, to exp(vi∞) which is a solution of (1.8) with (c1, . . . , cm) = 0
under our assumption. It ends the proof of Theorem 1.4. �

Now, we turn to the proof of Theorem 6.1.

Proof of Theorem 6.1. Step 1. We notice thatMη,i introduced in (6.2) is nonnegative, bounded
uniformly continuous thanks to the fact that wi ∈W 1,∞(TN × (0,+∞)) for i = 1, . . . ,m. We
need the following result, the proof of which is postponed

Lemma 6.2. Under the assumptions of Theorem 6.1.
(i) Mη,i(t) defined by (6.2) converges to the same limit for all i as t tends to infinity. An

easy consequence of this fact is that Pη,i(t) = c(η) where c(η) depends only on η.
(ii) The Pη,i’s attain their maximum at the same point (xt, st) for all i and

Pη,i(t) = vi(xt, t)− vi(xt, st)− 2η(st − t)(6.6)

= Pη,j(t) = vj(xt, t)− vj(xt, st)− 2η(st − t) for all i, j = 1, . . . ,m and t > 0.

Remark 6.3. Let us emphasize that Lemma 6.2 (ii) is the key idea to prove Theorem 1.4.
It is the rigorous expression of the idea which was explained in the Introduction (see (1.29))
to overcome the difficulty when passing from scalar equations to systems.

To prove Lemma 6.2, we only need (1.28)(i) and (1.28)(ii) is not used in that proof. The
important condition (1.28)(ii) only plays a role in the proof of Theorem 6.1.

Step 2. From (6.1) and the definition of vi, we have

vi(x, t) is independent of t for all i = 1, . . . ,m and x ∈ K.(6.7)

From Lemma 6.2, for any fixed τ > 0, there exists xτ , sτ satisfying (6.6). We choose
i ∈ {1, . . . ,m} such that

vi(xτ , sτ ) = min
j=1,...,m

vj(xτ , sτ ).(6.8)

Let Φ ∈ C1((0,∞)) such that τ is a strict maximum point of Pη,i − Φ in [τ − δ, τ + δ] for
some δ > 0. Since Pη,i(.) is constant, we have Φ′(τ) = 0. To prove the theorem, we assume
by contradiction that Pη,i(τ) = c(η) > 0. This fact and (6.7) imply that

d(xτ ,K) ≥ βη > 0, where xτ satisfies (6.6) with t = τ .(6.9)

and K is defined in (1.28).
Step 3. Consider, x, y ∈ TN , t ∈ [τ − δ, τ + δ], s ≥ t and the test function:

Ψi,ǫ(x, y, t, s) = vi(x, t)− vi(y, s)− 2η(s − t)− |x− xτ |
2 − |s− sτ |

2 −
|x− y|2

2ǫ2
− Φ(t).
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The function Ψi,ǫ achieves its maximum over TN × TN × {(t, s)/t ≤ s, t ∈ [τ − δ, τ + δ]} at
(x̄, ȳ, t̄, s̄) because vi is bounded continuous. We obtain some classical estimates when ǫ→ 0:





Ψi,ǫ(x̄, ȳ, t̄, s̄) → Pη,i(τ)− Φ(τ), |x̄−ȳ|2

2ǫ2 → 0,

(x̄, s̄, t̄) → (xτ , sτ , τ) since τ is a strict maximum point of Pη,i − Φ ,
vi(x̄, t̄)− vi(ȳ, s̄) ≥ Pη,i(t̄),
s̄ > t̄ since Pη,i(τ) = c(η) > 0.

(6.10)

Step 4. Since v is the solution of (1.27), we can write the viscosity inequalities
{

Φ′(t̄)− 2η + Fi(x̄, vi(x̄, t̄), p) +
∑m

j=1 dijexp(vj − vi)(x̄, t̄) ≤ 0,

−2η + Fi(ȳ, vi(ȳ, s̄), p) +
∑m

j=1 dijexp(vj − vi)(ȳ, s̄) ≥ 0,

where p = x̄−ȳ
ǫ2

+2(x̄−xτ ). Note that vi is bounded Lipschitz continuous, then |Fi(x̄, vi(ȳ, s̄), p)−
Fi(ȳ, vi(ȳ, s̄), p)| ≤ m(|x − y|) ≤ O(ǫ), thanks to the uniform continuity of Fi over compact
subsets. It follows from (6.10),

{
Φ′(t̄)− 2η + Fi(x̄, vi(x̄, t̄), p) +

∑m
j=1 dijexp(vj − vi)(x̄, t̄) ≤ 0,

−2η + Fi(x̄, vi(ȳ, s̄), p) +
∑m

j=1 dijexp(vj − vi)(x̄, s̄) +O(ǫ) ≥ 0.
(6.11)

Step 5. From (6.9), we have

d(x̄,K) ≥
βη
2

for ǫ small enough.(6.12)

By (1.2), (6.8) and the fact that s̄→ sτ , x̄→ xτ as ǫ→ 0, we have

m∑

j=1

dijexp(vj − vi)(x̄, s̄) ≤ O(ǫ).

This gives

Fi(x̄, vi(ȳ, s̄), p) ≥ η > 0 for ǫ small enough.

Thanks to (1.28) (ii) and the Lipschitz continuity of Fi with respect to w, we infer

Fi(x̄, u, p) ≥ η > 0, for all u ≥ vi(ȳ, s̄),

(Fi)w(x̄, u, p) ≥ Ψ(η) > 0, for almost all u ≥ vi(ȳ, s̄).

Since vi(x̄, t̄) ≥ vi(ȳ, s̄), we obtain

Fi(x̄, vi(x̄, t̄), p)− Fi(x̄, vi(ȳ, s̄), p) ≥ Ψ(η)(vi(x̄, t̄)− vi(ȳ, s̄)) ≥ Ψ(η)Pη,i(t̄).

Step 6. We compute

m∑

j=1

dijexp(vj − vi)(x̄, t̄)−
m∑

j=1

dijexp(vj − vi)(x̄, s̄)

≥
∑

j 6=i

−dijexp(vj − vi)(xτ , sτ ){1− exp[Pη,j(τ)− Pη,i(τ)]} +O(ǫ)

≥ O(ǫ), since Pη,i(.) = Pη,j(.) = c(η).

Therefore, by subtracting both sides in (6.11), we get

Φ′(t̄) + Ψ(η)Pη,i(t̄) +O(ǫ) ≤ 0.
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Using (6.10) and the fact that Φ′(τ) = 0. Letting ǫ tend to 0, we obtain

Ψ(η)c(η) ≤ 0, i.e. c(η) ≤ 0 which is a contradiction.

�

Proof of Lemma 6.2. Proof of part (i). We need

Lemma 6.4. Under the assumptions of Theorem 6.1, Nη,i := exp(Mη,i) are subsolution of

min{N ′
η,i +

m∑

j 6=i

dijρij(t)[Nη,j(t)−Nη,i(t)], Nη,i − 1} ≤ 0, i = 1, . . . ,m,(6.13)

where ρij are functions defined by

ρij(t) =

{
m1 if Ni(t) ≥ Nj(t),
m2 if Ni(t) < Nj(t),

for all i 6= j = 1, . . . ,m and t > 0, and m1 ≤ m2 are positive constants.

Set Nη,i = exp(Mη,i) ≥ 1. We show that (6.13) will lead to

N ′
η,i(t) +

m∑

j 6=i

dijρij(t)[Nη,j(t)−Nη,i(t)] ≤ 0, i = 1, . . . ,m,

Otherwise, we can assume that for i = 1, there is a function Φ ∈ C1(R) such that Nη,1 −Φ(t)
attains its maximum at some t0 > 0 and,

Φ′(t0) +
m∑

j=2

d1jρ1j(t0)[Nη,j(t0)−Nη,1(t0)] > 0.

From (6.13), we have Nη,1(t0) = 1 and hence t0 is a minimum point of Φ since Nη,1 ≥ 1.
Finally, we get

m∑

j=2

d1jρ1j(t0)[Nη,j(t0)− 1] > 0,

this is a contradiction since d1j ≤ 0 for j ≥ 2. We then use the following lemma to conclude

Lemma 6.5. Let Nj be bounded, positive continuous functions satisfying

N ′
i +

m∑

j 6=i, j=1

dijρij(t)[Nj(t)−Ni(t)] ≤ 0, i = 1, . . . ,m,(6.14)

where D = (dij)1≤i,j≤m satisfies (1.2) and (1.33), ρij are functions defined by

ρij(t) =

{
1 if Ni(t) ≥ Nj(t),
2 if Ni(t) < Nj(t),

for all i 6= j = 1, . . . ,m. Then Ni(t)’s converge to the same limit as t tends to infinity.

The proof of Lemma 6.5 is quite technical since we cannot deal directly with the discon-
tinuity of the ρij ’s. The main idea of the proof is that we reorder the functions Ni’s into
the biggest function, the second biggest function, etc. and the smallest function( see Proof
of Lemma 6.5 for details). Surprisingly, the new functions satisfy a nicer system where the
discontinuous functions ρij are replaced by constants. For this new system, we can prove
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they converge to the same limit and, as a result, the old functions which are bounded by the
biggest function and the smallest function must converge to the same limit. The proof of this
Lemma will be given later.

Finally, since wi → vi uniformly as t → ∞, we easily obtain that Pη,i(t) = c(η) for all i
and t, where c(η) depends only on η. It completes the proof of part (i) of Lemma 6.2.

Proof of part (ii) of Lemma 6.2.
Step 1. Fix τ > 0. If Pη,j(τ) = 0, then we finish the proof since we can choose sτ = τ

and any xτ in (6.6) to fulfill the requirement. We therefore assume that Pη,1(τ) > 0 and let
Φ ∈ C1((0,∞)) such that τ is a strict maximum point of Pη,1 − Φ in [τ − δ, τ + δ] for some
δ > 0. Since Pη,1(.) is a constant, Φ′(τ) = 0. Assume Pη,1(τ) attains its maximum at xτ , sτ .

Step 2. Consider, x, y ∈ TN , t ∈ [τ − δ, τ + δ] and s ≥ t the test function:

Ψ1,ǫ(x, y, t, s) = v1(x, t)− v1(y, s)− 2η(s − t)− |x− xτ |
2 − |s− sτ |

2 −
|x− y|2

2ǫ2
− Φ(t).

Assume that Ψ1,ǫ achieves its maximum over TN × TN × {(t, s)/t ≤ s, t ∈ [τ − δ, τ + δ]} at
(x̄, ȳ, t̄, s̄). We obtain some classical estimates when ǫ→ 0,





Ψ1,ǫ(x̄, ȳ, t̄, s̄) → Pη,1(τ)− Φ(τ), |x̄−ȳ|2

2ǫ2
→ 0,

(x̄, s̄, t̄) → (xτ , sτ , τ) since τ is a strict maximum point of Pη,1 − Φ,
v1(x̄, t̄)− v1(ȳ, s̄) ≥ Pη,1(t̄), and s̄ > t̄ since Pη,1(τ) > 0.

(6.15)

Step 3. Since v is the solution of (1.27), we have
{

Φ′(t̄)− 2η + F1(x̄, v1(x̄, t̄), p) +
∑m

j=1 d1jexp(vj − v1)(x̄, t̄) ≤ 0,

−2η + F1(x̄, v1(ȳ, s̄), p) +
∑m

j=1 d1jexp(vj − v1)(x̄, s̄) +O(ǫ) ≥ 0.
(6.16)

where p = x̄−ȳ
ǫ2

.
Step 4. Set Qη,j(τ) := vj(xτ , τ)− vj(xτ , sτ )− 2η(sτ − τ) for j 6= 1, we have

m∑

j=1

d1jexp(vj − v1)(x̄, t̄)−
m∑

j=1

d1jexp(vj − v1)(x̄, s̄)

=

m∑

j=2

−d1jexp(vj − v1)(xτ , sτ ){1− exp[Qη,j(τ)− Pη,1(τ)]} +O(ǫ).

Using (1.28)(i) and the fact that v1(x̄, t̄)− v1(ȳ, s̄) ≥ Pη,1(t̄) ≥ 0, we have

F1(x̄, v1(x̄, t̄), p)− F1(x̄, v1(ȳ, s̄), p) ≥ 0.

Therefore, by subtracting both sides in (6.16), we get

Φ′(t̄) +
m∑

j=2

−d1jexp(vj − v1)(xτ , sτ ){1− exp[Qη,j(τ)− Pη,1(τ)]} +O(ǫ) ≤ 0.

From (6.15), by letting ǫ→ 0, we obtain

m∑

j=2

−d1jexp(vj − v1)(xτ , sτ ){1 − exp[Qη,j(τ)− Pη,1(τ)]} ≤ 0.

Since −d1j ≥ 0 for j = 2, . . . ,m and Qη,j(τ) ≤ Pη,1(τ), it follows from the above inequality
that Qη,j(τ) = Pη,1(τ), i.e., Pη,i’s attain their maximum at the same point (xτ , sτ ). �
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Proof of Lemma 6.4. We fix i ∈ {1, . . . ,m}.
Step 1. Let Φ ∈ C1((0,∞)) and assume that τ is a strict maximum point of Mη,i − Φ over
[τ − δ, τ + δ] for some δ > 0. Everything will be done if Mη,i(τ) = 0. We therefore assume
that Mη,i(τ) > 0.

Step 2. Consider, x, y ∈ TN , t ∈ [τ − δ, τ + δ] and s ≥ t the test function:

Ψi,ǫ(x, y, t, s) = wi(x, t)− wi(y, s)− 2η(s − t)−
|x− y|2

2ǫ2
− Φ(t).

Assume that Ψi,ǫ achieves its maximum over TN × TN × {(t, s)/t ≤ s, t ∈ [τ − δ, τ + δ]} at
(x̄, ȳ, t̄, s̄). We obtain some classical estimates when ǫ→ 0,





Ψi,ǫ(x̄, ȳ, t̄, s̄) →Mη,i(τ)− Φ(τ), |x̄−ȳ|2

2ǫ2
→ 0,

t̄→ τ since τ is a strict maximum point of Mη,i − Φ in [τ − δ, τ + δ],
wi(x̄, t̄)− wi(ȳ, s̄) ≥Mη,i(t̄), s̄ > t̄ since Mη,i(τ) > 0.

(6.17)

Step 3. Since w is the solution of (1.27), we have
{

Φ′(t̄)− 2η + Fi(x̄, wi(x̄, t̄), p) +
∑m

j=1 dijexp(wj −wi)(x̄, t̄) ≤ 0,

−2η + Fi(x̄, wi(ȳ, s̄), p) +
∑m

j=1 dijexp(wj − wi)(x̄, s̄) +O(ǫ) ≥ 0.

where p = x̄−ȳ
ǫ2

.
Step 4. Using (1.28) and the fact that wi(x̄, t̄) ≥ wi(ȳ, s̄) ≥Mη,i(t̄) ≥ 0, we get

Fi(x̄, wi(x̄, t̄), p)− Fi(x̄, wi(ȳ, s̄), p) ≥ 0.

We compute

m∑

j=1

dijexp(wj − wi)(x̄, t̄)−
m∑

j=1

dijexp(wj − wi)(x̄, s̄)

≥
∑

j 6=i

−dijexp(wj − wi)(x̄, s̄){1− exp[Mη,j(τ)−Mη,i(τ)]} +O(ǫ)

≥
∑

j 6=i

−dijρij(τ){1 − exp[Mη,j(τ)−Mη,i(τ)]} +O(ǫ).

where we define for i 6= j

ρij(t) :=

{
m1 if 1− exp[Mη,j(t)−Mη,i(t)] ≥ 0,
m2 if 1− exp[Mη,j(t)−Mη,i(t)] ≤ 0.

with

m1 = inf
x∈TN , s>0, 1≤i,j≤m

exp(wj − wi)(x, s) > 0,

m2 = sup
x∈TN , s>0, 1≤i,j≤m

exp(wj − wi)(x, s) <∞

which are well-defined thanks to the boundedness of wi.
Therefore, by subtracting both sides in step 4 we get:

Φ′(t̄) +
∑

j 6=i

−dijρij(τ){1 − exp[Mη,j(τ)−Mη,i(τ)]} +O(ǫ) ≤ 0.
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Using (6.17) and letting ǫ tend to 0, we obtain

Φ′(t̄) +
m∑

j=1, j 6=i

−dijρij(τ){1 − exp[Mη,j(τ)−Mη,i(τ)]} ≤ 0,

which is exactly the viscosity inequality for (6.13) knowing Mη,i(τ) = exp[Mη,j(τ)] > 1. �

Proof of Lemma 6.5. Step 1. In general, the discontinuity of ρij causes a lot of problems but
since we are in a nicer situation, we can replace ρij by constants with the following technique.
For each t, we define

R1(t) = max
i∈{1,...,m}

Ni(t) := Ni1(t),(6.18)

R2(t) = max
i∈{1,...,m}−{i1}

Ni(t) := Ni2(t),

Rk(t) = max
i∈{1,...,m}−{i1,...,ik−1}

Ni(t) := Nik(t), k = 2, . . . ,m.

Strictly speaking, we reorder the functions Ni’s such that the new functions satisfy a nicer
system where the discontinuous functions ρij are replaced by constants.
Step 2. Let us assume for a while that Ri satisfies

R′
i(t) +

m∑

j=1

d′ijRj(t) ≤ 0, i = 1, . . . ,m,(6.19)

where (d′ij)1≤i,j≤m satisfies (1.2) and (1.33). This fact will be proven at the end of this proof.

Step 3. Call Λi be the vector from Lemma 2.1, where the coupling now is (d′ij)1≤i,j≤m. We
have

Lemma 6.6. ([6, Lemma 5.5])

m∑

j=1

ΛjRj(t) is nonincreasing and converges as t→ +∞.

The idea of the proof of Lemma 6.6 was given in the proof of Lemma 2.8. From (1.33) for
(d′ij), there exists i ∈ {1, . . . ,m} and α > 0 such that

d′ij + αΛj < 0 j = 1, . . . ,m, j 6= i.(6.20)

From (6.19), we obtain that Ri is a subsolution of

R′
i(t) + (d′ii + αΛi)Ri ≤ αΛiRi +

∑

j 6=i

(−d′ij)Rj , t ∈ (0,+∞).

From the stability result ([1, 2, 9]), Ri = lim supt→+∞
∗Ri(t) is a subsolution of

(6.21) (d′ii + αΛi)Ri ≤ lim sup
t→+∞

∗ {αΛiRi +
∑

j 6=i

(−d′ij)Rj}.
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But,

lim sup
t→+∞

∗ {αΛiRi +
∑

j 6=i

(−d′ij)Rj}

≤ α lim sup
t→+∞

∗ {
m∑

j=1

ΛjRj}+
∑

j 6=i

lim sup
t→+∞

∗ {(−d′ij − αΛj)Rj}

≤ α lim sup
t→+∞

∗ {
m∑

j=1

ΛjRj}+
∑

j 6=i

(−d′ij − αΛj)Rj ,

since (6.20) holds. The previous inequality and (6.21) imply

α
m∑

j=1

ΛjRj = (d′ii + αΛi)Ri +
∑

j 6=i

(d′ij + αΛj)Rj ≤ α lim sup
t→+∞

∗ {
m∑

j=1

ΛjRj}.

Using Lemma 6.6, it follows

m∑

j=1

ΛjRj = lim sup
t→+∞

∗ {
m∑

j=1

ΛjRj} ≤
m∑

j=1

ΛjRj(t), t ∈ (0,+∞).(6.22)

Therefore, for all k = 1, . . . ,m, we have

Λk(Rk(t)−Rk) ≥
∑

j 6=k

ΛjRj −
∑

j 6=k

ΛjRj(t).

Moreover

Λk(Rk −Rk) = lim inf
t→+∞

∗ {Λk(Rk(t)−Rk)}

≥ lim inf
t→+∞

∗ {
∑

j 6=k

ΛjRj −
∑

j 6=k

ΛjRj(t)} ≥
∑

j 6=k

ΛjRj − lim sup
t→+∞

∗ {
∑

j 6=k

ΛjRj(t)} ≥ 0

by (6.22). Since Λk > 0, we conclude that Rk ≤ Rk.
Step 4. We finish with the proof of the claim (6.19). For simplicity, we assume first (1.33)
holds for all rows, i.e. dij 6= 0 for all i, j = 1, . . . ,m, see the general case at the end of this
proof. We assume without loss of generality that

min
i 6=j

−dij = 1, max
i=1,...,m

dii =
M

2
.(6.23)

4.1. We first prove the claim for R1. Let t0 > 0 and φ ∈ C1(0,∞) such that R1 − φ attains
a maximum at t0 and suppose that R1(t0) = N1(t0). Since N1(t0) ≥ Nj(t0), j ≥ 2, then
ρ1j(t0) = 1, j ≥ 2. Thus

φ′(t0) +

m∑

j=2

−d1jR1(t0) +

m∑

j=2

d1jNj(t0) ≤ 0, i.e.,

φ′(t0) + (m− 1)R1(t0)−
m∑

j=2

Nj(t0) +

m∑

j=2

(1 + d1j)[Nj(t0)−R1(t0)] ≤ 0.
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Using (6.23) and (6.18), we have 1+d1j ≤ 0, Nj(t0)−R1(t0) ≤ 0, j ≥ 2. The above inequality
with the fact that

∑m
j=2Nj(t0) =

∑m
j=2Rj(t0) lead to

φ′(t0) + (m− 1)R1(t0)−
m∑

j=2

Rj(t0) ≤ 0.(6.24)

4.2. We now prove the claim for Rk, k ≥ 2. Let t0 > 0 and φ ∈ C1(0,∞) such that Rk − φ
attains a maximum at t0. Suppose first that N1(t0) = Rk(t0) < Rk−1(t0), so N1(t0)−φ(t0) =
Rk(t0)− φ(t0) ≥ N1(t)− φ(t) for t near t0. It follows from the definition of ρij(.) that

φ′(t0) +

m∑

j=2

d1jρij(t0)[Nj(t0)−Rk(t0)] ≤ 0, i.e.,

φ′(t0) +
∑

j∈I

d1j [Nj(t0)−Rk(t0)] + 2
∑

j∈Ic

d1j [Nj(t0)−Rk(t0)] ≤ 0,(6.25)

where I := {2 ≤ j ≤ m, Rk(t0) ≥ Nj(t0)} and Ic = {2, . . . ,m}−I. Since N1(t0) = Rk(t0) <
Rk−1(t0), we obtain that card(Ic) = k − 1. We have
∑

j∈I

d1j [Nj(t0)−Rk(t0)] = card(I)Rk(t0)−
∑

j∈I

Nj(t0) +
∑

j∈I

(1 + d1j)[Nj(t0)−Rk(t0)]

≥ (m− k)Rk(t0)−
∑

j∈I

Nj(t0) = (m− k)Rk(t0)−
m∑

j=k+1

Rj(t0),

where the last inequality follows from the fact 1 + d1j ≤ 0 and Nj(t0) − R1(t0) ≤ 0, j ∈ I.
Noticing that card(Ic) = k − 1, we have

2
∑

j∈Ic

d1j [Nj(t0)−Rk(t0)]

= M(k − 1)Rk(t0)−M
∑

j∈Ic

Nj(t0) +
∑

j∈Ic

(M + 2d1j)[Nj(t0)−Rk(t0)]

≥ M(k − 1)Rk(t0)−M
∑

j∈Ic

Nj(t0) =M(k − 1)Rk(t0)−M
k−1∑

j=1

Rj(t0),

where the inequality follows from the fact M + 2d1j ≥ 0 and Nj(t0) − R1(t0) ≥ 0, j ∈ Ic.
Using these two above inequalities, it follows from (6.25) that

φ′(t0) + [M(k − 1) +m− k]Rk(t0)−M
k−1∑

j=1

Rj(t0)−
m∑

j=k+1

Rj(t0) ≤ 0.(6.26)

It remains to deal with the case N1(t0) = Rk(t0) = Rk−1(t0). We divide it into two subcases
4.3. If N1(t0) = Rk(t0) = Rk−1(t0) = ... = Rl(t0) < Rl−1(t0) with k − 1 ≥ l ≥ 2, then
N1(t0)− φ(t0) = Rl(t0)− φ(t0) ≥ N1(t)− φ(t). Applying the result in (6.26), we have

φ′(t0) + [M(l − 1) +m− l]Rl(t0)−M
l−1∑

j=1

Rj(t0)−
m∑

j=l+1

Rj(t0) ≤ 0.
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It is easy to see that

[M(k − 1) +m− k]Rk(t0)−M

k−1∑

j=1

Rj(t0)−
m∑

j=k+1

Rj(t0)

≤ [M(l − 1) +m− l]Rl(t0)−M
l−1∑

j=1

Rj(t0)−
m∑

j=l+1

Rj(t0).

It follows that (6.26) holds in this case too.
4.4. If N1(t0) = Rk(t0) = R1(t0), then we have the estimate (6.24). It is easy to see that

[M(k − 1) +m− k]Rk(t0)−M

k−1∑

j=1

Rj(t0)−
m∑

j=k+1

Rj(t0)

≤ [m− 1]R1(t0)−
m∑

j=2

Rj(t0).

Then (6.26) holds.
Step 5. If (1.33) only holds for a row, we will take the minimum in (6.23) among the dij ’s
which are nonzero and we keep zero elements of the coupling. Proceeding in a similar way as
above, we obtain a new coupling satisfying (1.2) and (1.33). �

7. Proof of Theorem 1.5

We give briefly the proof of Theorem 1.5 which is based on the ideas used in the proof of
Theorem 1.4. If we can find a C1 subsolution of system (1.8), we can prove easily Theorem 1.5
as it was done in the Introduction. The existence of C1 subsolutions of stationary equations is
established in Fathi-Siconolfi [13] under quite general conditions. We think that the existence
of C1 subsolutions of system (1.8) is still true under similar conditions as in [13] but it is
beyond the scope of this work. Now, we prove Theorem 1.5 using another approach.

Proof of Theorem 1.5- general case. Step 1. Approximation C1 subsolution. Fix a Lipschitz
solution V of (1.8) such that ui − Vi ≥ 2 where u is the solution of (1.1). The existence of
V is given by Theorem 2.2. Using [13, Theorem 8.1] we can find, for all δ > 0, a function
V δ ∈ C1(TN )m such that

Hi(x,DV
δ
i ) +

m∑

j=1

dij(x)V
δ
j ≤ δ, x ∈ TN , i = 1, . . . ,m(7.1)

||V δ
i − Vi||∞ ≤ δ.

where we assumed the ergodic constant is (0, . . . , 0) for simplicity. The existence V δ is ob-
tained by the convolution of V with a standard regularized function. It is worth noticing that
the convolution of V with a regularized function is still a TN periodic function.
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Step 2. Change of function. Similarly as in the proof of Theorem 1.4, we make the change of
function exp(wδ

i ) = ui − V δ
i . The function wδ is solution to the new system

∂wδ
i

∂t
+ F δ

i (x,w
δ
i ,Dw

δ
i ) +

m∑

j=1

dijexp(w
δ
j − wδ

i )(7.2)

+ exp(−wδ
i )[Hi(x,DV

δ
i ) +

m∑

j=1

dijV
δ
j ] = 0.

with F δ
i (x,w, p) = exp(−w)Hi(x, exp(w)p +DV δ

i ) − exp(−w)Hi(x,DV
δ
i ). We can check F δ

i

satisfies (1.28) with K = ∅. Moreover, the term Ψ(η) appearing in (1.28) can be chosen to
be independent of δ. The proof relies on the upper semicontinuity of the subdifferentials of
convex functions and the strict convexity of the Hamiltonians. The concrete computation is
left to the reader.
Step 3. For η > 0, we define

M δ
η,i(t) = sup

x∈TN , s≥t

[wδ
i (x, t)− wδ

i (x, s)− 2η(s − t)],(7.3)

Mη,i(t) = sup
x∈TN , s≥t

[wi(x, t)− wi(x, s)− 2η(s − t)], where exp(wi) = ui − Vi.

Repeat the proof Lemma 6.4, we easily have N δ
η,i := exp(M δ

η,i) are subsolution of

min{N ′δ
η,i +

m∑

j 6=i

dijρ
δ
ij(t)[N

δ
η,j(t)−N δ

η,i(t)]− δ,N δ
η,i − 1} ≤ 0, i = 1, . . . ,m,(7.4)

where ρδij is defined by

ρδij(t) =

{
m1 if N δ

i (t) ≥ N δ
j (t),

m2 if N δ
i (t) < N δ

j (t), for all i 6= j = 1, . . . ,m and t > 0,

and m1 ≤ m2 are positive constants which are independent of δ.

Remark 7.1. In fact, following the proof of Lemma 6.4, we see that the only difference is the
appearance of the term A := [exp(−wδ

i (x̄, t̄))− exp(−wδ
i (ȳ, s̄))][Hi(x̄,DV

δ
i ) +

∑m
j=1 dijV

δ
j (x̄)]

when subtracting both sides in Step 4 as in the proof of Lemma 6.4. Thanks to the fact that
wδ
i (x̄, t̄) ≥ wδ

i (ȳ, s̄) and (7.1), we have

−1 < exp(−wδ
i (x̄, t̄))− exp(−wδ

i (ȳ, s̄)) ≤ 0 and Hi(x̄,DV
δ
i ) +

m∑

j=1

dijV
δ
j (x̄) ≤ δ.

This implies easily that A ≥ −δ. It explains the occurrence of the term δ in (7.4).

Since N δ
η,i → Nη,i := exp(Mη,i) as δ → 0, by the stability result for viscosity solutions, we

can show that Nη,i solves

min{N ′
η,i +

m∑

j 6=i

dijρij(t)[Nη,j(t)−Nη,i(t)], Nη,i − 1} ≤ 0, i = 1, . . . ,m,(7.5)

where ρij is defined by

ρij(t) =

{
m1 if Ni(t) ≥ Nj(t),
m2 if Ni(t) < Nj(t), for all i 6= j = 1, . . . ,m and t > 0.
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Hence thanks to Lemma 6.5, we obtain that Nη,i(t) converges to the same limit for all i as t
tends to infinity.
Step 4. Taking a sequence tn → +∞ such that (u(·, tn + ·))n converges uniformly to some
function in W 1,∞(TN × [0,∞))m. Thus (wδ(·, tn + ·))n → vδ ∈ W 1,∞(TN × [0,∞))m for all
δ > 0, and (w(·, tn + ·))n → v ∈ W 1,∞(TN × [0,∞))m. It is clear that vδ → v uniformly as
δ → 0. Define

P δ
η,i(t) = sup

x∈TN , s≥t

[vδi (x, t)− vδi (x, s)− 2η(s − t)],(7.6)

Pη,i(t) = sup
x∈TN , s≥t

[vi(x, t)− vi(x, s)− 2η(s − t)].

Since Nη,i(t) converges to the same limit, we easily obtain that Pη,i(t) = c(η) for all t ≥ 0
and i = 1, . . . ,m. Moreover

Lemma 7.2. Under the assumptions of Theorem 1.5.
(i) The Pη,i’s attain their maximum at the same point for all i, see part (ii) of Lemma 6.2

for the exact definition.
(ii) Pη,i(t) = 0 for any i = 1, . . . ,m, t ≥ 0 and η > 0.

We then repeat readily the proof of Theorem 1.4 to obtain the convergence as desired. �

We end this section with the proof of Lemma 7.2.

Proof of Lemma 7.2. Proof of part (i) of Lemma 7.2.
Step 1. Fix τ > 0. If Pη,j(τ) = 0, then we finish the proof since we can choose sτ = τ and any
xτ to fulfill the requirement. We therefore assume that Pη,1(τ) > 0 and let Φ ∈ C1((0,∞))
such that τ is a strict maximum point of Pη,1 − Φ in [τ − r0, τ + r0] for some r0 > 0. Since
Pη,1(.) is a constant, Φ′(τ) = 0.
Step 2. Assume Pη,1(τ) attains its maximum at xτ , sτ . Consider, x, y ∈ TN , t ∈ [τ−r0, τ+r0]
and s ≥ t the test function:

Ψ1,ǫ(x, y, t, s) = vδ1(x, t)− vδ1(y, s)− 2η(s − t)− |x− xτ |
2 − |s− sτ |

2 −
|x− y|2

2ǫ2
− Φ(t).

The function Ψ1,ǫ achieves its maximum over TN × TN × {(t, s)/t ≤ s, t ∈ [τ − r0, τ + r0]} at
(x̄, ȳ, t̄, s̄). We obtain some classical estimates,





|x̄−ȳ|2

2ǫ2
→ 0 when ǫ→ 0,

limδ→0limǫ→0(x̄, s̄, t̄) = (xτ , sτ , τ) since τ is a strict maximum point of Pη,1 − Φ,
vδ1(x̄, t̄) ≥ vδ1(ȳ, s̄), s̄ > t̄ for ǫ, δ are small enough since Pη,1(τ) > 0.

(7.7)

Step 3. Since vδ is the solution of (7.2), we have
{

Φ′(t̄)− 2η + F δ
1 (x̄, v

δ
1(x̄, t̄), p) +

∑m
j=1 d1jexp(v

δ
j − vδ1)(x̄, t̄) + a(x̄) ≤ 0,

−2η + F δ
1 (x̄, v

δ
1(ȳ, s̄), p) +

∑m
j=1 d1jexp(v

δ
j − vδ1)(x̄, s̄) +O(ǫ) + a(ȳ) ≥ 0.

(7.8)

with p = x̄−ȳ
ǫ2

+ 2(x̄− xτ ) and

a(x̄) := exp(−vδi (x̄, t̄))[Hi(x̄,DV
δ
i ) +

m∑

j=1

dijV
δ
j (x̄)],

a(ȳ) := exp(−vδi (ȳ, s̄))[Hi(x̄,DV
δ
i ) +

m∑

j=1

dijV
δ
j (x̄)].
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Step 4. Repeating Step 4 of the proof of Lemma 6.2 with taking Remark 7.1 into account.
Letting ǫ tend to 0 and then δ to 0, we get

m∑

j=2

−d1jexp(vj − v1)(xτ , τ){1 − exp[Qη,j(τ)− Pη,1(τ)]} ≤ 0.

where Qη,j(τ) := vj(xτ , τ) − vj(xτ , sτ ) − 2η(sτ − τ). Since −d1j ≥ 0 for j = 2, . . . ,m and
Qη,j(τ) ≤ Pη,1(τ), it follows from the above inequality that Qη,j(τ) = Pη,1(τ), i.e., the Pη,i’s
attain their maximum at the same point (xτ , sτ ).
Proof of part (ii) of Lemma 7.2.
Step 5. For any fixed τ > 0, there exists (xτ , sτ ) satisfying part (i), i.e., (xτ , sτ ) is the common
minimum point of the Pη,j(τ)’s. Hence we can choose i ∈ {1, . . . ,m} such that

vi(xτ , sτ ) = min
j=1,...,m

vj(xτ , sτ ).(7.9)

Assume that i = 1 and then repeat readily Steps 1,2,3. From (1.2), (7.9) and the fact that
limδ→0limǫ→0(x̄, s̄) = (xτ , sτ ), we get

m∑

j=1

d1jexp(vj − v1)(x̄, s̄) ≤ O(ǫ) +O(δ).

This gives

F δ
1 (x̄, v

δ
1(ȳ, s̄), p) ≥ η/2 > 0 for ǫ, δ are small enough.

From (7.7) and (1.28)(ii), we obtain

F δ
1 (x̄, v

δ
1(x̄, t̄), p)− F δ

1 (x̄, v
δ
1(ȳ, s̄), p) ≥ Ψ(η)(vδ1(x̄, t̄)− vδ1(ȳ, s̄)).

Let us recall that Ψ(η) can be chosen to be independent of δ as mentioned in Step 2 of the
proof of Theorem 1.5.

Step 6. As Step 6 in the proof of Theorem 6.1, we have
m∑

j=1

dijexp(v
δ
j − vδi )(x̄, t̄)−

m∑

j=1

dijexp(v
δ
j − vδi )(x̄, s̄) ≥ O(ǫ) +O(δ).

Therefore, by subtracting both sides in (7.8) and taking Remark 7.1 into account, we get

Φ′(t̄) + Ψ(η)(vδ1(x̄, t̄)− vδ1(ȳ, s̄)) +O(ǫ) +O(δ) ≤ 0.

Letting ǫ tend to 0 and then δ to 0, noting that Φ′(τ) = 0, we obtain

Ψ(η)c(η) ≤ 0, i.e. c(η) ≤ 0 which is a contradiction.

�

8. Appendix

For the reader’s convenience, we give a formal link between optimal control of hybrid
systems with pathwise deterministic trajectories with random switching and Hamilton-Jacobi
systems (1.1) with convex Hamiltonians.

Consider the controlled random evolution process (Xt, νt) with dynamics

(8.1)

{
Ẋt = bνt(Xt, at), t > 0,
(X0, ν0) = (x, i) ∈ TN × {1, . . . ,m},
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where the control law a : [0,∞) → A is a measurable function (A is a subset of some metric
space), bi ∈ L∞(TN ×A;RN ), satisfies

|bi(x, a)− bi(y, a)| ≤ C|x− y|, x, y ∈ TN , a ∈ A, 1 ≤ i ≤ m.(8.2)

For every at and matrix of probability transition G = (γij)i,j satisfying
∑

j 6=i γij = 1 for

i 6= j and γii = −1, there exists a solution (Xt, νt), where Xt : [0,∞) → TN is piecewise
C1 and ν(t) is a continuous-time Markov chain with state space {1, . . . ,m} and probability
transitions given by

P{νt+∆t = j | νt = i} = γij∆t+ o(∆t)

for j 6= i.
We introduce the value functions of the optimal control problems

(8.3) ui(x, t) = inf
at∈L∞([0,t],A)

Ex,i{

∫ t

0
ℓνs(Xs, as)ds + u0,νt(Xt)}, i = 1, . . . m,

where Ex,i denote the expectation of a trajectory starting at x in the mode i, and the functions

u0,i : T
N → R, ℓi : T

N ×A→ R are continuous.
It is possible to show that the following dynamic programming principle holds:

ui(x, t) = inf
at∈L∞([0,t],A)

Ex,i{

∫ t

0
ℓνs(Xs, as)ds+ uνh(Xh, t− h)} 0 < h ≤ t.

Then the functions ui satisfy the system




∂ui
∂t

+ sup
a∈A

[−〈bi(x, a),Dui〉 − ℓi(x, a)] +
∑

j 6=i

γij(ui − uj) = (x, t) ∈ TN × (0,+∞),

ui(x, 0) = u0,i(x) x ∈ TN ,

i = 1, · · ·m,

which has the form (1.1) by setting Hi(x, p) = supa∈A[−〈bi(x, a), p〉 − ℓi(x, a)] and dii =∑
j 6=i γij = 1 and dij = −γij for j 6= i.

Remark 8.1.

(i) Assume ℓi(x, a) = fi(x) where the fi’s satisfy (1.40). If the following controllability
assumption is satisfied: for every i, there exists r > 0 such that for any x ∈ TN , the ball
B(0, r) is contained in co{bi(x,A)}. Then, Theorem 1.6 holds. Roughly speaking, it means
that the optimal strategy is to drive the trajectories towards a point x∗ of S and then not to
move anymore (except maybe a small time before t). This is suggested by the fact that all
the fi’s attain their minimum at x∗ and, at such point, the running cost is smallest.
(ii) It is also possible to consider differential games with random switchings to encompass
system (1.1) with nonconvex Hamiltonians.
(iii) More rigorous dynamical interpretations of system (1.1) are given in [23].
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