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Abstract

The theoretical description of granular materials, or assemblies of macroscopic

particles, is a formidable task. Not only are granular materials out of thermal equi-

librium, but they are also characterized by dissipative interactions and by static

friction. Following a suggestion by S. F. Edwards, researchers have investigated

the possible existence of a statistical mechanics of static granular systems, which

would permit the description of macroscopic properties of mechanically stable

granular assemblies from just a few parameters. The formulation and the valid-

ity of such an approach is still a matter of debate. This “emerging area” focuses on

three important questions concerning such a statistical mechanics approach. First,

we consider how the phase space of interest is affected by the requirement of me-

chanical stability. Second, we explore how the intensive parameters analogous to

temperature can be determined from experimental or numerical data. Finally, we

contrast different ways to express the granular counterpart to the classical Hamil-

tonian, known as the volume function.
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1 Introduction

Describing the properties and the behaviour of granular materials is a problem of great

interest, as granular materials are widely used in industrial processes and found in a

number of natural phenomena. How can we characterize the disordered structure of a

granular pack? Can we deduce from such a characterization the response (evolution

of the packing fraction, of the force network. . . ) of a granular material submitted to

mechanical perturbations or stresses? There is not yet a theoretical framework that

permits such a description. From the theoretical point of view, the challenge is that of

describing a disordered out–of–equilibrium many–particle system, as granular particles

are so heavy that their thermal motion is negligible. The problem is further complicated

by dissipation and static friction in the interparticle interaction, both of which arise due

to the macroscopic size of the particles.

More than 20 years ago, S.F. Edwards and co-workers proposed that the methods

of statistical mechanics could be extended to dense disordered granular assemblies.1,2

Such a statistical mechanics of granular matter, if valid, would permit granular systems

to be described with just a few parameters, and would represent a breakthrough in the

field of granular media. Edwards’ original suggestion has been the subject of intense

research, both theoretically and experimentally. The statistical mechanics proposed

by Edwards is specifically geared towards static granular materials, where ‘static’ indi-

cates that the phase–space of interest is restricted to mechanically stable configurations.

Granular media are often static. Grains under gravity naturally settle down in a

mechanically stable state, which is a local energy minimum in the absence of driving.

Stable states in mechanical equilibrium can also be prepared without gravity by impos-

ing a confining stress. In either case, grain scale deformations under typical conditions

are extremely small; hence one might expect that elastic energy plays a marginal role

in static granular systems, and no role at all in the limit of hard spheres in the ab-

sence of gravity. Motivated by this, Edwards3 suggested that in a granular statistical

mechanics, the conventional Hamiltonian should be replaced with a volume function

W that expresses the volume of the system as a function of the degrees of freedom of
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the system q. In strict analogy with equilibrium statistical mechanics, one assumes

that all microstates (mechanically stable states) of given volume occur with the same

probability. One then derives the partition function of the system,

Z(χ) =

∫
exp(−W (q)/χ) Θ(q) dq,

where χ is termed compactivity, a Lagrange parameter analogous to the temperature,

and Θ(q) imposes the condition of mechanical stability, including a finite bulk and

shear modulus.4 At a given compactivity χ , the equiprobability condition leads to the

minimization of the granular free energy F(φ) = W − χS, where we have introduced

the granular entropy S(W ) = log(Ω(W )), Ω(W ) being the number of mechanically

stable states of volume W . The inverse compactivity χ−1 = ∂S/∂V is therefore related

to the volume dependence of the entropy. If one considers not only the number of ways

the grains can occupy the volume V but also the number of ways the grains support the

boundary stresses σ , the partition function becomes

Z(χ ,αi j) =

∫
exp(−W (q)/χ −Γi j(q)/αi j) Θ(q) dq, (1)

where Γi j and αi j are the virial and the tensorial angoricity, which reduce to scalars Γ

and α for systems loaded isotropically. Similarly to the compactivity, the angoricity is

related to the pressure dependence of the entropy S(σ), which is now a measure of the

number of mechanically stable states supporting a given stress σ . From this partition

function, as for conventional statistical mechanics, many quantities can be obtained –

in principle. As we shall show, doing so remains challenging.

In the following three sections we will discuss recent developments and open ques-

tions regarding three key ingredients of eqn (1): first, how does the requirement of

mechanical stability, represented by Θ(q), shape the explored phase space? Second,

how can the intensive parameters χ and α be determined from experimental or numer-

ical data? And finally, what is the right way to compute the equivalent to the classical

Hamiltonian, W?

3



2 The phase space of mechanically stable configurations

and its exploration

The function Θ(q) limits the integration in eqn 1 to the mechanically stable configu-

rations of grains ∗. This raises two questions: what is the range in volume fraction φ

(the fraction of the total volume occupied by grains) and confining pressure for which

mechanically stable configurations exist? And how does the system explore this phase

space?

2.1 The condition of mechanical stability

For a better understanding of the role of Θ it is helpful to contrast the Edwards’ ap-

proach with the hard sphere gas. In the latter we only request that the particles do

not overlap. Consequently, the phase space volume of configurations where any two

particles touch is of measure zero. In contrast, imposing mechanical stability requires

sufficient permanent contacts to constrain all rotational and translational degrees of

freedom – there can be no zero energy (“floppy”) modes.5 Absent geometric degenera-

cies such as crystallinity, mechanically stable frictional sphere packings must have an

average coordination number Z ≥ 4, the so-called frictional isostatic contact number.6,7

A second important reference point is the jamming paradigm for frictionless soft

particulate systems such as foams, colloids and emulsions.5 Mechanically stable pack-

ings of frictionless spherical particles exist only above the so-called point J with φJ ≈

0.64. In frictionless packings both the packing fraction and the contact number dis-

play scaling with distance to point J, and both in turn are controlled by the pressure –

unjamming corresponds to zero pressure. The presence of nonzero surface friction µ

renders granular materials qualitatively distinct from foams, emulsions, etc.. Friction

allows for tangential contact forces, which permit frictional packings to support loads

in ways unavailable to frictionless materials.8 For various confining pressures, there

are mechanically stable packings over a range of volume fractions.9 Moreover, even

for a given combination of φ and p, the average contact number can depend on the

∗In the following we will exclusively discuss spherical grains
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preparation history.10

The empirical fact that mechanically stable packings of spheres can only be pre-

pared in a finite range of φ was first established by Scott11 and Bernal.12 The apparent

absence of crystallinity earned the upper and lower bounds the names Random Loose

Packing (RLP) and Random Close Packing (RCP), respectively. From a statistical

mechanics perspective, one expects that these two bounds should be related to a con-

figurational entropy S corresponding to the logarithm of the phase space volume of

all mechanically stable configurations at a given volume fraction compatible with the

mechanical boundary conditions. It is then natural to ask what features characterize

S(φRLP) and S(φRCP). We shall consider RLP first.

One possible interpretation of RLP is that below φRLP the entropy is zero. † This is

suggested by the observation from numerics that loose packings approach the isostatic

value Z = 4 in the large friction limit. Provided lowering φ lowers Z – an assump-

tion supported by numerics – then S must be zero below loose packing. By consider-

ing the fraction of “fully mobilized” contacts, which saturate the Coulomb inequality,

Shundyak et al.13 showed that packings with finite friction approach an “isostatic line”

connecting frictionless and frictional isostatic states (Fig. 1a). In this sense even pack-

ings at finite µ are isostatic, at least in numerics. By the same reasoning as above, one

would then expect S to vanish at RLP for any value of µ .

An alternative viewpoint holds that RLP corresponds to a maximum in S,14,15 as

outlined in Fig. 1 b. This explanation is supported by the observation that the ex-

perimental and numerical protocols used to build RLP packings are all gentle depo-

sition protocols, which aim to avoid disturbing the already existing structure .14,16,17

If S(φRLP) is a maximum, either S drops discontinuously to zero below φRLP, or there

is another, lower packing fraction where S goes to zero. Pica Ciamarra et al. termed

this Random Very Loose Packing (RVLP),14 and showed that states below RLP can

be prepared numerically with carefully chosen initial conditions (Fig. 1b). If RVLP

exists, one must explain why it is not observed in experiments. One such explanation

is dynamical. During preparation the system explores the much larger phase space of

†States below RLP might still exist, but their number would have to grow subextensively with volume.
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Figure 1: Numerical results on frictional disc packings. (a) Taking into account the

number of fully mobilized contacts (where the tangential force is just at the coulomb

threshold) slowly prepared packing approach the isostatic limit for vanishing pressure.

From Shundyak et al.13 (b) The lower bound of the configurational entropy of two-

dimensional disc packings is below the RLP value (≈ 0.77) for the same system. From

Pica Ciamarra et al.14

non-overlapping hard sphere states before it settles down in a static configuration. The

probability ending up in a particular configuration will depend on the phase space vol-

ume of the basin of attraction leading to this state. The apparent absence of very loose

packings in the experiment could be simply due to their very small basins of attraction.

This in turn leads to the question of ergodicity, which we revisit below.

We now return to Random Close Packing. Similar to loose packing, RCP is primar-

ily a phenomenological fact: multiple protocols, including tapping18 and flow pulses,19

slow down asymtotically when φ approaches 0.64. Under other protocols, like cyclic

shear, no peculiar changes in dynamical properties occur at φ ≃ 0.64.20 However, all

protocols that cross RCP observe the onset of some crystalline order. While these facts

seem uncontroversial, their interpretation is not. It has been proposed that RCP is a first

order phase transition21,22 between the amorphous and the crystalline state; this would

imply that S is still finite at RCP. An alternative viewpoint holds that it is the endpoint

of the amorphous branch of the hard sphere fluid,23 corresponding to a vanishing S at

RCP. Yet another possibility is that RCP corresponds to a local minima of the curve S

versus φ ; the physical mechanism behind RCP is then explained by geometrical prop-

erties like the maximum frequency of polytetrahedral structures.24 Clearly more work

is needed.

6



2.2 Exploring the phase space

Besides establishing the range of φ where disordered mechanically stable states exist,

we also need to consider how the system explores these states. A basic assumption of

classical statistical mechanics is that all configurations are realized with equal proba-

bility. As pointed out above, due to their dissipative and macroscopic nature, granu-

lar materials cannot explore their phase space via thermal fluctuations. An external,

macroscopic perturbation like shearing or tapping will always be needed to move the

system from one mechanical stable configuration to another. Consequently, we must

allow for the possibility, indeed likelihood, that the probability of visiting a microstate

depends on the chosen protocol and preparation history. There is ample experimental

evidence for such protocol dependence. For example, the force chains in a granular

pile differ if it is poured from a single point source or through a wide sieve.25

For at least two experimental driving protocols – shaking18,26 and flow pulses19 –

the existence of history-independent steady states has been established. While this does

not guarantee equiprobability of the microstates, it at least assures the existence of an

effective heat bath with time-independent probabilites. Moreover, numerical simula-

tions of frictional particles driven via flow pulses27 are compatible with an equivalence

between time and ensemble averages, suggesting that this protocol allows to uniformly

sample the phase space.

The only direct experimental test (with matching numerics) of the equiprobability

hypothesis involved a complete enumeration of all mechanically stable configurations

of 7 frictionless discs in a two dimensional box,28 generated by tapping or slow com-

pression. Here it was found that the probabilities of creating individual configurations

differed by orders of magnitude. This can again be understood by looking at the dy-

namic part of the evolution towards these static state: the large probability differences

of these states reflects a large size disparity in the volumes of their respective basins of

attraction (assuming the preparation protocol adds no bias). However, the phase space

volume of mechanically stable configurations of frictional particles is much larger than

its frictionless counterpart. This means that the frictionless system will have passed

through many states that would have been mechanically stable in the presence of fric-
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tion. Unfortunately, no results on the probability distribution of frictional particles are

available.

On a more general note, it is not clear how much a statistical mechanics of granular

media will require the equiprobability assumption. One could imagine, e.g., a partition

function including a protocol-dependent degeneracy function,29 which accounts for the

different probabilities. Also it has been shown that equiprobability is not a necessary

condition for the existence of intensive thermodynamic parameters like compactivity.30

Again, more work is needed.

3 Measuring intensive thermodynamic parameters

Any canonical ensemble is characterized by one or more intensive thermodynamic pa-

rameters, e.g. the inverse temperature β = 1/kBT in equilibrium statistical mechanics.

In the usual thermodynamics the temperature is measured introducing a thermometer,

a calibrated probe that acquires the temperature of the system of interest when the two

equilibrate at constant energy, i.e. in the microcanonical ensemble. In the simplest form

of a granular statistical mechanics, the counterpart to β is a scalar χ conjugate to the

packing’s volume V , termed “compactivity,” or a scalar α , the “angoricity,” conjugate

to the product of pressure and volume Γ = pV . Γ is an extensive stress-related quantity

known variously as the virial, force moment, or extensive pressure. How to measure

these intensive parameters in the granular case is not so obvious, because there is no

natural dynamical process by which two systems in contact can exchange volume (or

force moment) and thus come to equilibrium, i.e. there is not a microcanonical en-

semble. The analogy between compactivity (or angoricity) and the temperature must

therefore be regarded as an assumption of Edwards’ theory.

It is natural to ask how to measure these intensive parameters, and which aspects of

Edwards’s theory – if any – are tested by these measurements. This is the goal of the

present section which focuses mainly on the “overlapping histograms” method and dis-

cusses some aspects of the Edwards’ theory that remain to be tested. In the discussion

below, there is no intrinsic difference between measurements of χ and α; the reader
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can freely exchange the conjugate pairs (χ ,V ) and (α,Γ).

Several methods exist to measure intensive parameters like compactivity. Among

them are the “specific heat” method,26 which consists in measuring the compactivity

from the fluctuations around the mean volume of a granular packing, just as the specific

heat of a thermal system can be determined from its energy fluctuations. This method

has been used widely for granular packings undergoing compaction.18,19,26,31 However,

the interpretation of the measured quantity as a granular analog of temperature relies on

the assumptions built into the Edwards’ approach; hence the method cannot test their

validity. The compactivity can also be determined from the probability distribution of

a the volume of cells tessellating the granular packing.32

Here, we will focus on a third way: the “overlapping histograms method,” proposed by

Dean and Lefèvre33 and applied to granular systems by Henkes et al.34 and McNamara

et al.35 It has the advantage of allowing one to probe system size dependence from one

ensemble of packings. Moreover it does not require detailed knowledge of the entropy

and is a relevant test of the theory. We describe the method as a Gedankenexperiment,

though of course ref.34 and35 have implemented it in numerics. Imagine sampling m-

grain clusters from a packing of N ≫ m grains, labeled packing 1. The force moment Γ

on each cluster can be measured and in this way the histogram or frequency distribution

P
(1)
m (Γ) can be built up. If the system is statistically homogeneous and if it is entropy

maximizing, then packing 1 can be seen, in the framework of Edwards’ theory, as

the analog of a thermal bath characterized by an intensive parameter α1. All other

parameters Pm can potentially depend on, e.g. packing fraction, friction coefficient,

particle shape, etc. and will be summarized in x. In this case the distribution we have

sampled is the stationary probability distribution P
(1)
m (Γ) = ρm(Γ;x,α1):

ρm(Γ;x,α) =
Ωm(Γ;x)e−αΓ

Z(α)
, with Z =

∫
Ωm(Γ;x)e−αΓ dΓ. (2)

where Z is the partition function, which normalizes ρm. Eqn (2) lacks predictive power

because we do not know Ωm(Γ;x), the density of states of m-grain clusters. Continuing
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the thought experiment, we prepare a second packing and label it 2. Care is taken to

hold the parameters x fixed, but we admit the possibility that in constructing packing

2 it equilibrates in a state characterized by an intensive parameter α2 different from

packing 1 ‡. Of course naïvely one expects that α−1 will bear some relation to the

mean pressure in the bath Γbath/N. As before we collect m-grain clusters and sample

the frequency distribution P
(2)
m (Γ).

With malice aforethought we construct the ratio rm(Γ,Γ
′) from the sampled distri-

butions:

rm(Γ,Γ
′) := ln

P
(1)
m (Γ)P

(2)
m (Γ′)

P
(1)
m (Γ′)P

(2)
m (Γ)

. (3)

If the system is entropy maximizing, eqn (2) holds and

rm(Γ,Γ
′) =−(α1 −α2)(Γ−Γ′) . (4)

The unknown density of states Ωm has dropped out, so that the ratio is linear in Γ−Γ′,

with decay constant given by α1 −α2.

A method for determining α (or χ) thus emerges: one constructs a family of pack-

ings at fixed x, sample distributions of Γ (or V ) on clusters of grains, and compares

them pairwise via eqn (3). Obviously the method requires adequate statistics to make a

comparison. It is also necessary to prepare enough packings so that for each packing i

there is another j such that the histograms P
(i)
m and P

( j)
m have sufficient overlap to con-

struct the ratio rm — hence the name of the method. Note that the intensive parameter

can only be determined up to an offset, which can be fixed assuming that RLP has infi-

nite compactivity. The aforementioned Gendankenexperiments had been applied to 2D

numerical simulations by Henkes et al.34 and to 3D experiments and numerical simu-

lations by McNamara et al.35 An example, extracted from the former work, is given in

Fig. 2.

By verifying the linearity of the ratio of two overlapping histograms, the present

method has been used to successfully test Edwards’ theory.34,35 However, new exper-

‡In fact equilibrating a new packing may produce fluctuations in some parameters, e.g. packing fraction

(in an stress ensemble) or pressure (in a volume ensemble). One hopes that Ωm depends on these parameters

sufficiently weakly that eqn (4) can still be used.
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Figure 2: The method of overlapping histograms. (a) Pm(Γ) of m = 8-grain clusters

sampled from packings with N = 4096 grains. The symbols correspond to runs with

different packing fractions. (b) The ratio rm of eqn 3. (c) Distributions of (a) rescaled

according to the values of α extracted from (b). From Phys. Rev. Lett. 99, 038002;

Copyright (2007) by the American Physical Society.

imental protocols must be proposed to test the microscopic details of the theory, such

as equipartition (see the discussion in section 2.2). Moreover, a rigorous justification

of the validity of the canonical assumption in the context of granular media (eqn 2)

remains an open question.

4 Expressing the partition function

The interest in the statistical mechanics of granular media originates from the possibil-

ity of predicting the properties of granular assemblies by solving the partition function,

eqn 1. Such a task can only be accomplished if one is able to express in terms of the

degrees of freedom q the partition function, namely the projector operator Θ(q) = 0,1

and the volume function W (q). While this is easily done in lattice models, where one

can solve the partition function using standard statistical mechanics tools,36 how to

express Θ and W on the continuum in a manageable form is not obvious.

We restrict the discussion in this section to hard sphere states. Hard spheres have

no intrinsic stress scale and hence the magnitude of the confining pressure is arbitrary,

analogous to temperature in thermal hard spheres. A treatment of deformable particles

must keep track of the imposed stress as well as the imposed volume, as in the partition

function of eqn (1). There is a growing literature focusing on stress-based ensemble

approaches to granular statistical mechanics, see ref.8 and 37 for details.
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The function Θ weights mechanically stable states. As discussed above, there are

similarities to the hard-sphere Hamiltonian Hhs, which gives zero statistical weight to

all states with particle overlaps. By writing Wms = − logΘ and assuming equiproba-

bility, one may relate Θ to a volume function Wms = 0, and ∞ for mechanically stable

and unstable states, respectively. However, while Hhs can be expressed as a sum of

two body contributions, Wms results from an N body interaction, N being the num-

ber of grains of the system. Formally, linear stability can be imposed in conservative

systems by demanding that the system’s Hessian have a positive definite spectrum (ex-

cluding rigid body modes);4 extensions to dissipative systems are also possible.38,39

Practically, however, such constraints are too complicated to include in the partition

function. Some authors approximate them with global constraints on the connectiv-

ity40 or moments of the stress.41–43

Since the volume is an extensive quantity, the general approach to estimate W con-

sists in tessellating the whole medium into N non-overlapping elements and associate

to them a volume function Wi (which can be seen, for example, as the free volume

available per grain) such that W = ∑i Wi. Blumenfeld and collaborators proposed a

way to determine the volume function Wi. First introduced for 2D systems,44,45 this

method consists in partitioning the system into voids defined from the grain contacts,

and the voids into quadrilaterals defined from the centers of the grains and the con-

tact points (Fig. 3). This method can be generalized to 3D granular systems and also

to cellular media. The description has several advantages: (i) it allows a quantitative

description of the structure at any arbitrary point within the material; (ii) the shape ten-

sor is a constitutive property; and (iii) all the basic elements are octahedra, allowing

a unique tensorial description. One of the drawbacks is that this approach may ill-

tessellate non-convex voids46 and so overestimate their volumes. The importance of

these non-convex voids, and the amount by which they overestimate volume remain a

matter of debate.47 Another drawback is that, while formally elegant, the volume func-

tion is a complicated object which is difficult to handle. Indeed, this volume function

has never been used in conjunction with an estimation of the projector Θ to solve the

partition function, and to predict properties of granular assemblies.
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Figure 3: The geometric construction around grain v in 2D. The vectors rq connect

contact points anticlockwise around each grain (and clockwise around each cell c).

The vectors Rq connect from grain centroids to centroids of neighboring cells. (a) The

quadrilateral, or quadron, associated with grain v and cell c is shown shaded. (b) The

sum of the areas of all the quadrons around grain v constitute the area associated with

this grain. The sum of all these areas is the area of the entire system (reprinted with

permission from J. Chem. Phys. B 113, 3982. Copyright 2009 American Chemical

Society).

As an alternative approach, a natural way to partition space is the well known

Voronoï tessellation,48 which is purely geometric and not tied to the connectivity of

the contact network.49 From this tessellation the theoretical derivation of the volume

function is not straightforward, and no analytical formula exists. An approximation

of this volume function has been introduced by Song et al. ,40 which expressed Wi as

a function of just one parameter, the local coordination number zi: Wi/Vi = 2
√

3/zi,

where Vi is the volume of a grain. Here zi refers to geometric contacts, i.e. it includes

contacts that bear no force. Song et al. predict φRCP ≈ 6/(6+ 2
√

3) = 0.634. We stress

that the calculation is not exact, but an analytical expression of an approximate value.

Song et al.40 used their approximate Wi to solve the partition function, in con-

junction with an approximation for Θ. By hypothesizing that Θ restricts the ensemble

to isostatic packings, they numerically determined the function φ(χ ,Z), where Z ≤ z

denotes the mean number of load-bearing contacts. Isocompactivity lines can then be

plotted as part of a phase diagram in (Z,φ ); see Fig. 4. This diagram is made of (i) a ran-

dom loose packing (RLP line), corresponding to χ → ∞ and φRLP ≈ 4/(4+ 2
√

3); (ii) a

random close packing line (RCP line) corresponding to χ = 0 and φRCP ≈ 6/(6+ 2
√

3),
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deduced from the theory; (iii) a granular-line (horizontal G-line) corresponding to an

infinite grain-grain friction coefficient (µ); and (iv) a jamming point (J point) corre-

sponding to Z = Z0
iso,µ = 0,φ = φRCP.

0.52 0.54 0.56 0.58 0.6 0.62 0.64
φ

4

4.5

5

5.5

6

Z

RCP
line

X = 0
RLP line  X® ∞

G-line

frictionless point 
(J-point)

Figure 4: Phase diagram of jamming obtained from the theory exposed in ref.40 All

disordered packings lie within the yellow triangle demarcated by the RCP line, RLP

line and granular line. Iso-compativity lines are in color.

The validity of this theory is controversial. While there is reasonable agreement

with some experiments50 and simulations,40 recent X-ray tomography experiments

display significant differences with the prediction Wi/VI = 2
√

3/zi. For a given packing

fraction, the difference between the number of contacts measured and the theoretical

prediction can be as much as 15%.51 Further, simulations show that φRCP decreases

monotonically on increasing the dimensionality;;52 the approach by Song et al. does

not reproduce this dependence. Finally, all packings in the tomographic experiments

were hyperstatic (i.e. grains possess a number of contacts in excess of that which

would uniquely determine the contact forces from mechanical equilibrium), contrary

to the assumption that Θ(q) restricts packings to isostatic states.40 This suggests that

the discrepancy between the prediction and the observed behaviors originates from the

identification of the isostatic condition with the ensemble of jammed configurations,

i.e. the approximation used to deal with the projector operator Θ. In addition, since

this approach resorts on an approximation of the volume function that neglects the

contact network, it cannot be used to investigate the geometrical and the mechanical
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properties of granular systems.

More work is clearly need in this direction. The objective is to find approximations

for Θ and W that are simple enough to allow analytical and/or numerical calculations,

and which also give access to the calculations of properties of granular systems one

could be interested in, such as the fabric tensor, fixed by the contact network.

5 Conclusion

The statistical mechanics of static granular systems is a theoretical effort towards the

description of many particle systems out of thermal equilibrium. Here we have shown

that there are a number of experimental and conceptual challenges that stand in the way

of a predictive theoretical formalism. From the experimental viewpoint, the main prob-

lem is that of devising protocols that can uniformly sample the phase space of interest.

From the theoretical viewpoint, apart from the difficulties related to measuring the in-

tensive parameters and to identifying the bounds on volume fraction, the main open

problem is to express the volume fraction and the projector on the mechanically stable

states in terms of the particles coordinates. In particular, the condition of mechanical

stability, which imposes that the forces and the torques acting on each grain sum to

zero, is expected to introduce correlations which have been neglected so far. A refined

theory would find applications not only in granular media but also in other quenched,

amorphous materials. Indeed, methods similar to those described here have also been

applied to structural53 and spin glasses,54,55 to polymer and other elastic networks,56

and to crumpling of sheets of paper.57–60
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