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This paper investigates an automated truck transportation problem via lane reservation

strategy. The focus of the problem is to design lane reservation based paths for time-effi-

cient transportation. The lane reservation strategy requires to select some existing general-

purpose lanes from a transportation network and convert them to automated truck lanes in

order to ensure the time-guaranteed transportation. However, such conversion may cause

traffic impact such as increase of travel time on adjacent lanes due to the disallowing use of

the automated truck lanes by the general-purpose vehicles. Thus, the problem aims at opti-

mally designing the time-efficient truck paths while minimizing the impact on the overall

network performance. The considered problem is formulated as an integer linear program

and is demonstrated NP-hard. To solve it, an optimal algorithm based on the cut-and-solve

method is proposed. Numerical computational results of randomly generated instances

show the efficiency of the proposed algorithm compared with a referenced software pack-

age CPLEX 12.1.

1. Introduction

Transportation plays a significant role in our daily life, especially for a sustainable development of economy. Conse-

quently, the efficiency of goods movement has received much attention and some logistic problems, such as vehicle routing

problem and routing-scheduling problem, have been intensively studied by researchers during the last few decades (Laporte,

1992; Laporte, 2009; Koskosidis et al., 1992; Lee et al., 2006). However, increasing traffic congestion causes a lot of problems

in freight transportation, such as higher and unpredictable travel time, fuel waste, low transport efficiency, and safety/envi-

ronment issues. These problems prevent traditional freight transportation from a reliable, economic, efficient, and safe trans-

port. As a result, stakeholders are looking for appropriate solutions for these problems. With recently technical innovation in

Advanced Driver Assistance System (ADAS), including longitudinal (spacing and speed) and lateral (steering) control, road

and obstacles perception, vehicle-vehicle and vehicle-infrastructure communication, and other related technologies, auto-

mated driving is being brought within reach (Shladover, 2010). Because of these features, the future automated trucks

can offer a range of advantages, such as decreased drivers’ stress, improved safety, reduced fuel consumption, and increased

drivers’ productivity, etc. Thus, the introduction of automated driving for trucks will be a promising solution to improve the

efficient and economic viability of freight transportation (Kunze et al., 2011; Tsugawa et al., 2011).
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One of the major concerns of successfully utilizing automated trucks in freight transportation is the safety issue. Unlike

manually driven vehicles, automated trucks themselves must be able to detect all possible dangers and respond to them

promptly and correctly. It is thus preferable to limit the driving environment of automated trucks for the safety. Therefore,

dedicated truck lane is one of the smarter options for automated truck freight transportation for reasons as follows. Firstly, it

is known that different types of vehicles have different operating characteristic, e.g., acceleration and braking capabilities. If

automated trucks are allowed only on the dedicated truck lane, the deviation of the individual truck speed from the average

speed is small. Thus the overall truck flow on the truck lane is smooth, which may lead to a potential decrease of accident

(Tsao and Botha, 2002). Secondly, it is also said that the dedicated truck lanes limit the driving environment for automated

trucks, which can make the technical challenge for automated driving tractable while achieving acceptable safety (Shladover,

2010). Thirdly, the dedicated truck lanes can meet the high time-efficient service required by future freight transportation.

Since the truck lanes are used for freight transportation, excluding a large number of general-purpose vehicles, they can keep

trucks from getting stuck in traffic and the travel time of the journey can be predictable. Hence, the dedicated truck lanes

play a key role in the success of automated truck freight transportation.

Constructing new dedicated truck lanes require large cost and new land resource, and it is not always feasible nowadays.

Hence appropriate and efficient utilization of the existing infrastructure becomes important. One opportunity is the concept

of lane reservation strategy, which is to select and to convert some existing general-purpose lanes to special lanes, e.g., ded-

icated truck lanes. However, this strategy of lane conversion will reduce the number of general-purpose lanes, and make the

remaining general-purpose lanes more congested. Traffic impact such as increase of travel time will be caused on the

remaining general-purpose lanes. Princeton and Cohens (2011) reported that after one general-purpose lane of A1 motorway

in Paris Region is reserved only for buses and taxis during the morning peak hours, the travel time on the remaining general-

purpose lanes increases almost 53% for a period of three months observation in 2009. On the other hand, the impact of

reserving a lane with busy traffic is different from that of reserving a lane with less traffic. It should be carefully considered

selecting which existing lanes from the network so as to minimize the impact.

To the best of our knowledge, there are few studies about problems of minimizing the impact of reserved lanes by opti-

mally selecting existing lanes from the network. Wu et al. (2009) studied an optimal routing design problem called lane res-

ervation problem with time-constrained transportation (LRPTCT), which is motivated by performing time-guaranteed

transportation tasks for large sport events. In the LRPTCT, some existing general-purpose lanes are optimally selected from

the network and reserved for the task paths so that the reserved lanes can provide less travel time and tasks can be com-

pleted within the prescribed travel duration. The objective of the problem is to minimize the impact of reserved lanes on

the overall network performance. In this paper, we study a routing design problem for automated truck freight transporta-

tion, which is called automated truck problem (ATP). The problem is to optimally design paths for automated trucks via lane

reservation strategy. Both of the LRPTCT and ATP are intended to optimally design time-guaranteed paths via lane reserva-

tion strategy whereas the total impact of reserved lanes is minimized. However, there are significant differences between

them. Firstly, the motivations of the two problems are different. The LRPTCT is intended for large sport events in urban net-

work, lanes are necessarily reserved only when the tasks cannot be completed within the prescribed travel duration. Hence,

the selected path is not totally reserved, i.e., some lanes in the path are reserved and the other lanes are general-purposed

lanes. In the ATP, the path is designed for automated truck freight transportation. As stated above, it will be safer to separate

automated trucks from general-purpose vehicles because of different operating characteristics of them. Therefore, the auto-

mated trucks are supposed to travel in an exclusive automated truck path, i.e., all the lanes in the truck path are reserved.

Secondly, the mathematical model of the LRPTCT is a little different from the ATP one. But, the complexity of the LRPTCT is

not demonstrated in the Wu et al. (2009) whereas the ATP is demonstrated to be NP-hard. Then, a heuristic algorithm was

developed for the LRPTCT to obtain near-optimal solutions whereas an optimal algorithm based on the cut-and-solve meth-

od is developed for the ATP. At last, the problem assumptions in the ATP is more general as the source and prescribed travel

duration are different for each task, whereas in the LRPTCT there is only one source and one prescribed travel duration for all

the tasks. In the remainder of the paper, we use ‘‘reserved lane’’ instead of ‘‘automated truck lane’’ and ‘‘non-reserved lane’’

instead of ‘‘general-purpose lane’’ for the reason of easy description.

The contributions of this paper are, first of all, to propose a mathematical (quantitative) method to study an automated

truck freight transportation problem via lane reservation strategy. The problem is demonstrated NP-hard based the proposed

model. Another main contribution is that a cut-and-solve based optimal algorithm, for which some new techniques of pierc-

ing cuts are generated, is developed for the considered problem. Computational results show the efficiency of our proposed

algorithm compared with the commercial Optimizer Solver of CPLEX 12.1.

The remainder of the paper is organized as follows. Section 2 describes the problem and formulates it as an integer linear

programming model. Then the problem is demonstrated NP-hard. Section 3 presents the solution approach which is based

on the cut-and-solve method. Section 4 reports computational results of numerical tests. Section 5 draws some conclusions

and discusses future work.

2. Problem description

A transportation network can be represented by a directed graph G = (V,A), where V is the set of nodes and A is the set of

directed arcs. The nodes and arcs can be viewed as road intersections and road links in transportation network, respectively.
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Give a set of tasks and source–destination (SD) pairs, each task corresponds to one SD pair. The considered problem aims at

selecting lanes to be reserved and designing an exclusively reserved path for each task and its SD, so that each task can be

completed within the prescribed travel duration. However, converting existing general-purpose lanes to reserved lanes re-

duces the number of general-purpose lanes. Thus, traffic impact such as increase of travel time on adjacent lane may be

caused because the reserved lanes cannot be used by general-purpose vehicles. The objective of the problem is to minimize

the traffic impact of all reserved lanes on the overall network performance.

In order to well describe the considered problem, some assumptions are made as follows. (1), there are at least two lanes

in each road link allowing one lane to be reserved. Note that the impact of reserving the one and only one lane in certain road

is too severe for the network to bear. (2), there is at most one reserved lane in each directed road link. Because the flow of a

single task (number of vehicles/hour) is relatively low compared to the capacity of the reserved lanes, hence the reserved

lanes can be shared by all tasks. (3), there is one and only one path for each task from its source to destination. Because

one purpose of our study is to design paths for fully automated trucks or fleets of automated trucks with the first one driven

by human with the others automatically follow it. It is natural that all the automated trucks of each task travel together in

only one path for the sake of safety and cost. In closing, the lanes in the same road link are supposed to be identical, as well as

the corresponding parameters.

Fig. 1 is an simple example of the considered problem. Nodes 1 and 6, 4 and 3 are two SD pairs, with the prescribed travel

duration 5 and 6, respectively. The optimal paths with minimal impact 7 are (1, 2, 5, 6) and (4, 1, 2, 3), respectively. The re-

served lane in arc (1, 2) is shared by both tasks. To formulate the problem, some notations are given in Table 1. With these

assumptions and notations, ATP can be formulated as the following integer linear program IP0.

ðIP0Þ : min
X

ði;jÞ2A

cijzij ð1Þ

s:t:
X

j:ðsk ;jÞ2A

xksk j ¼ 1; 8k 2 K; sk 2 S ð2Þ

X

i:ði;dkÞ2A

xkidk ¼ 1; 8k 2 K;dk 2 D ð3Þ

X

j:ðj;iÞ2A

xkji ¼
X

j:ði;jÞ2A

xkij; 8k 2 K;8i– sk;dk ð4Þ

X

ði;jÞ2A

sijxkij 6 pk; 8k 2 K ð5Þ

xkij 6 zij; 8ði; jÞ 2 A;8k 2 K ð6Þ

xkij 2 f0;1g; 8ði; jÞ 2 A;8k 2 K ð7Þ

zij 2 f0;1g; 8ði; jÞ 2 A ð8Þ

The objective function (1) is to minimize the impact of all reserved lanes. Constraint (2) (resp. (3)) represents that there is

one and only one arc for task k leaving its source sk (resp. arriving at its destination dk). Constraint (4) is the flow conservation

constraint of task k for the nodes which are neither sk nor dk. Thus constraints (2)–(4) together ensure that there is one and

only one path for each task from its source to destination. Constraint (5) is the travel duration constraint. The left hand item

is total travel duration of the task from its source to destination, i.e., the sum of travel time along each lane of its path. The

right hand item is the prescribed travel duration within which task must be completed. Thus, (5) means that the total travel

duration for task k from its source to destination should not exceed the prescribed travel duration. The prescribed travel

duration specifies the requirement of time-efficient transportation. It is dependent on the total travel distance and/or the

transported goods. For example, if perishable goods (e.g., sea food) are transported from a port to some inland customers,

the total duration of the transportation should be within several hours. Otherwise, the goods would be not fresh or becoming

worse. Constraint (6) guarantees that there is a reserved lane in (i, j) in the path of task k if and only if this lane is reserved.

Constraints (7) and (8) are binary constraints on the decision variables.

Two SD pairs are -  and - , whit the given travel time 5 and 6, respectively.

The numbers in the parenthesis are (travel time in a reserved lane, impact). 

Fig. 1. Example of ATP.
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2.1. Complexity of ATP

If all the tasks start from the same source node and the prescribed travel duration to complete each task is large enough,

then the reduced ATP corresponds to the Steiner tree problem in a directed graph, which is known to be NP-hard (Karp,

1972), hence ATP is NP-hard.

3. Solution method

In this section, an optimal algorithm based on the cut-and-solve method is proposed for ATP. The cut-and-solve method is

an iterative search strategy, which is introduced for asymmetry traveling salesman problem (ATSP) (Climer and Zhang, 2006).

It can be simply explained as follows. At the n-th iteration (nP 1), a piercing cut (Pn) is generated and it separates the solution

space of the current problem (CPn) into two subspaces (for the first iteration, CP1 is defined as the original problem). The smaller

subspace, called sparse space, corresponds to a sparse problem (SPn) and the larger one, called remaining space, corresponds to

a remaining problem (RPn). As sparse space is relatively small, SPn can be solved to optimality easily. In addition, the sparse

space is a subspace of the solution space of the original problem, hence the optimal value of SPn, denoted as UBn, is an upper

bound of the original problem. The current best upper bound, denoted as UBmin, is updated as the minimum of UBn and UBmin.

After solving SPn, the sparse space is removed away and the solution space of CPn is reduced. Because remaining space is large,

it is difficult to solve RPn optimally. So, we relax the integer constraints on decision variables (i.e., the variables are changed to

real) and solve the linear relaxation problem of RPn. An associated lower bound of RPn, denoted as LBn, is found. If UBmin is smal-

ler than or equal to LBn, thenUBmin is also smaller than or equal to the optimal value of RPn because LBn is a lower bound on the

optimal value of RPn. Hence UBmin is the global optimal value and the iteration is terminated. Otherwise, if UBmin is greater

than LBn, the new current problem CPn+1 is defined as RPn and a new iteration repeats. The principle of the cut-and-solvemeth-

od is presented in Fig. 2. More details of the cut-and-solve method can be found in (Climer and Zhang, 2006).

ATP is a combinatorial optimization problem. For solving such problem, branch-and-bound and branch-and-cut are two

conventional methods used to obtain optimal solutions. The implementation of the two conventional methods in depth-first

or best-first manner results in the risk of either a large fruitless search of ‘‘wrong’’ subtrees with no optimal solutions or vast

memory requirement of storing all active nodes for identifying the best current node. The cut-and-solve method overcomes

the problem of making wrong choices in searching ‘‘wrong’’ subtrees, while keeping memory requirement negligible. The

reasons are explained as follows. Different from the two conventional methods, the cut-and-solve method generates a search

path instead of a search tree. Because the sparse problem is solved to optimality and no branching from it is needed. Hence,

there is only one child for each node of the path and no ‘‘wrong’’ subtrees in which the search may get lost. On the other

hand, only the current best upper bound and the remaining problem need to be saved in the cut-and-solve method, the

memory requirement is negligible. Moreover, the search space is becoming smaller and smaller after each iteration in the

cut-and-solve method, while it is reduced only when some conditions are satisfied in the two conventional methods. More

details of the cut-and-solve method can be found in (Climer and Zhang, 2006).

It was declared that the implementation of the cut-and-solve method outperforms state-of-the-art solvers for some dif-

ficult real-world problem classes of the ATSP (Climer and Zhang, 2006). Later Yang et al. (2012) applied the cut-and-solve

method combined with Fenchel cutting plane method to the single source capacitated facility location problem and im-

proved the results of some benchmark instances in the literature. Due to the favorable properties of the cut-and-solve meth-

od, it is chosen as our solution approach. In the following, a pre-processing is implemented to reduced the search space of the

original problem firstly. Then some new techniques of generating piercing cuts are developed for the studied problem. Fi-

nally an optimal algorithm based on the cut-and-solve method is presented.

3.1. Pre-processing

In this subsection, a pre-processing for IP0 is implemented and then a new integer program IP1 is obtained. As a conse-

quence of this pre-processing, the search space of IP0 is reduced. And this pre-processing is demonstrated to be helpful to the

acceleration of the proposed algorithm in the next section.

Table 1

Notations of the problem.

Sets and parameters

K: set of tasks, k 2 K

S: set of source nodes of tasks, sk 2 S # V, "k 2 K

D: set of destination nodes of tasks, dk 2 D # V, "k 2 K

pk: prescribed travel duration to complete task k, "k 2 K

sij: travel time in a reserved lane in (i, j), "(i, j) 2 A

cij: traffic impact of a reserved lane in (i, j), "(i, j) 2 A

Decision variables

xkij: xkij = 1, if task k uses a reserved lane in (i, j); and otherwise xkij = 0, "(i, j) 2 A, "k 2 K

zij: zij = 1, if there is a reserved lane in (i, j); and otherwise zij = 0, "(i, j) 2 A
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Let dis(i, j) denote the shortest travel time from i to j in an entirely reserved path. This can be achieved by the Dijkstra’s

shortest path algorithm. Suppose that (sk, j) is an arc outgoing from the source node sk of task k. Set E1 is defined as follows.

E1 ¼ fxksk jj ssk j þ disðj;dkÞ > pk;8k 2 K; ðsk; jÞ 2 Ag ð9Þ

By the definition of E1, the sum of the travel time in a reserved lane in (sk, j) and the shortest travel time from j to dk in an

entirely reserved path is greater than pk, which means that if (sk, j) is in the path of task k, whatever other parts of its path are,

the total travel time for task k from sk to dk is greater than pk, i.e., the travel time constraint is violated. Hence in this case,

(sk, j) is not in the path of task k in an optimal solution. Similarly, E2 is defined as follows.

E2 ¼ fxkidk j disðsk; iÞ þ sidk > pk;8k 2 K; ði;dkÞ 2 Ag ð10Þ

where (i,dk) is an arc incoming into the destination node dk of task k. E2 indicates that if (i,dk) is in the path of task k, the total

travel time for task k from sk to dk is greater than the prescribed travel duration pk. Then such (i, dk) is not in the path of task k

in an optimal solution.

In the pre-processing step, sets E1 and E2 are defined by (9) and (10), respectively. Then all the variable in E1 and E2 are set to

zero. Apparently, the search space of IP0 is reduced after this pre-processing, but no feasible solutions of IP0 are removed. Hence

in the following steps of the proposed algorithm, a new integer program IP1 is solved instead of IP0. It is defined as follows.

ðIP1Þ : min
X

ði;jÞ2A

cijzij

s:t: constraints ð2Þ—ð8Þ

xksk j ¼ 0; 8xksk j 2 E1 ð11Þ

xkidk ¼ 0; 8xkidk 2 E2 ð12Þ

3.2. New techniques of generating piercing cut for ATP

The efficiency of the cut-and-solve method is critically dependent on the piercing cut. As explained previously, the sparse

space removed by the piercing cut should be sparse enough such that the sparse problem can be solved relatively easily.

Meanwhile, the sparse space should be large enough to contain at least one feasible solution of the original problem, other-

wise the current best upper bound cannot be improved. In this part, new techniques of generating piercing cut are developed

for the considered problem.

Fig. 2. Principle of the cut-and-solve method.
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3.2.1. Definition of piercing cut, sparse problem and remaining problem

In the pre-processing step, some variables are fixed to zero. As a result, the search space is reduced. This inspires us an

idea. If some variables have fixed values in sparse space, then its corresponding optimal solution can be found relatively eas-

ily. Let Un (nP 1) denote a set of some variables. Since all the variables are binary, the sum of the variables in Un is equal to

zero, or greater than or equal to one. If SPn is satisfied with the first condition, then each variable in Un has value of zero. SPn
can be solved easily. Now we define the piercing cut as the sum of the variables in set Un is greater than or equal to one.

Using this piercing cut, the current solution space is separated into a sparse space (with the constraint that the sum of

the variables in Un is equal to zero) and a remaining space (with the constraint that the sum of the variables in Un is greater

than or equal to one).

Now the question is how to obtain the variable set Un. A tool called reduced cost is used to define it (Climer and Zhang,

2006). A variable’s reduced cost, a lower bound on the increase of the value of the objective function if the value of the var-

iable is increased by one unit (Climer and Zhang, 2006). For example, if a variable has a reduced cost of 10, the value of the

objective function will increase at least by 10 if this variable increases one unit for the minimization problem. Un is defined

as a set of all decision variables whose reduced cost is greater than a given positive number (Climer and Zhang, 2006).

However, unlike ATSP in which all the decision variables belong to the same level, in ATP there are two levels of decision

variables: lane reservation variables zij and task path variables xkij. The way used to define set Un should be carefully

determined according to the considered problem. In ATP, the change of value of one lane reservation variable may totally

affect task paths because tasks travel in the reserved lanes only. For example, by formula (6) if zij = 0, then xkij = 0 for all

k, no tasks use (i, j). In addition, the objective of ATP is related to the lane reservation variables only. For these reasons,

instead of defining Un by considering both zij and xkij in ATP, only zij is used to define it. Let w(zij) denote the reduced cost

of zij. Then Un (nP 1) is defined as follows.

Un ¼ fzijjwðzijÞ > hn;8ði; jÞ 2 Ag ð13Þ

where hn is a given positive number. The reduced cost of zij can be obtained by solving the linear relaxation problem of CPn.

The choice of the value of hn is dependent on the distribution of reduced cost of zij, e.g., 0.1 �max {w(zij)j"(i, j) 2 A}. If the

corresponding sparse space does not contain any feasible solutions of the original problem, we can try a larger hn. Once

Un is obtained, the piercing cut Pn (nP 1) is defined as follows.

ðPnÞ :
X

zij2Un

zij P 1 ð14Þ

With this piercing cut, the current solution space is separated into two subspaces. And the optimal solution in the small one,

which corresponds to SPn, can be found relatively easily. By the cut-and-solve method, SPn can be obtained by adding CPn
with the constraint of the sum of variables inUn is equal to zero, while RPn can be obtained by adding CPn with the constraint

of the sum of variables in Un is greater than or equal to one. For nP 2, CPn is defined as RPn�1, then SPn and RPn can be de-

fined as follows.

ðSPnÞ : min
X

ði;jÞ2A

cijzij

s:t: constraints ð2Þ—ð8Þ; ð11Þ and ð12Þ
X

zij2Ut

zij P 1; t ¼ 1;2; . . . ; n� 1 ð15Þ

X

zij2Un

zij ¼ 0 ð16Þ

ðRPnÞ : min
X

ði;jÞ2A

cijzij

s:t: constraints ð2Þ—ð8Þ; ð11Þ; ð12Þ; ð14Þ and ð15Þ

It is not difficult to see that CPn (nP 2) is represented as the objective function with the constraints (2)–(8), (11), (12) and

(15). Notice that CP1 is defined as IP1, in which there is no (15). Hence by the principle of the cut-and-solve method, for

"nP 1 we add (16) or (14) to CPn, then obtain SPn or RPn.

3.2.2. Enlargement of set Un

Via a preliminary computation, we find that for some problem instances the sparse problem is not easy to solve, which

means that the corresponding sparse space may be not sparse enough. To obtain a smaller sparse space, we can simply

choose a smaller hn. However, sometimes a large proportion of zij have reduced cost of zero, the previous way of defining

Un is no longer suitable. According to the cut-and-solve method, the global optimal solution is provided by the sparse prob-

lem. The variables inUn have values of zero in SPn, hence we hope that the variables inUn are not basic variables in the global

optimal solution. By analyzing the preliminary computational results, we find that the variables zsk j or zidk with small values

in the optimal solution of the linear relaxation problem of CPn are unlikely basic variables in the global optimal solution. For
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example, zsk j1 , zsk j2 and zsk j3 are all the arcs outgoing from the source sk and have values of 0.5, 0.3 and 0.2, respectively. zsk j2
and zsk j3 have small values 0.2 and 0.3, and they are unlikely basic variables in the global optimal solution. However this is

not always true. In the following, set Un is enlarged in a way which is based on the above observation. The computational

results of this implementation is presented in the next section.

Let u(zij) denote the value of zij in the optimal solution of the linear relaxation problem of CPn. And define

bkn ¼ maxfuðzsk jÞjðsk; jÞ 2 Ag;8k 2 K and b
0
kn ¼ maxfuðzidk Þjði; dkÞ 2 Ag;8k 2 K. For nP 1, two sets Xn and X

0
n are defined as

follows.

Xn ¼ fzsk jjuðzsk jÞ < bkn;8k 2 K; ðsk; jÞ 2 Ag ð17Þ

X
0
n ¼ zidk juðzidk Þ < b

0
kn;8k 2 K; ði;dkÞ 2 A

� �

ð18Þ

Then set U0
n ðnP 1Þ is defined as follows.

U0
n ¼ Un [Xn [X

0
n ð19Þ

By this definition, set U0
n is obtained by adding some zsk j and zidk to Un. The larger U0

n is, the smaller sparse space is. On the

other hand, (sk, j) and (i,dk) are arcs outgoing from the source sk and incoming into the destination dk of task k, respectively.

As a result, there are less arcs which can be used by task k to depart from sk or arrive at dk. In this sense, SPn may be solved

easily. In addition, U0
n will be used in our proposed algorithm in the following.

3.2.3. Reduction of sparse problem and remaining problem

In this part, reduction of the sparse problem and remaining problem are made. Firstly, we define the new sparse problem

SP0
n ðnP 2Þ and new remaining problem RP0

n ðnP 2Þ.

SP0
n

� �

: min
X

ði;jÞ2A

cijzij

s:t: constraints ð2Þ—ð8Þ; ð11Þ; ð12Þ and ð16Þ
X

zij2Un�1nUn

zij P 1 ð20Þ

RP0
n

� �

: min
X

ði;jÞ2A

cijzij

s:t: constraints ð2Þ—ð8Þ; ð11Þ; ð12Þ and ð14Þ

Then we have the following theorem.

Theorem 1. For nP 2, if

U1 � � � � � Un�1 � Un ð21Þ

is true, then

(a) SP0
nis equal to SPn,

(b) RP0
nis equal to RPn.

Proof. The constraints are the same in SP0
n and SPn except that (20) and (15) are different. In the following we prove the

equivalence of (20) and (15). For "t < n, we have Ut �Un�1 �Un�1nUn by (21). Then Ut = (Utn(Un�1 nUn)) [ (Un�1nUn)

and (Ut n(Un�1nUn)) \ (Un�1nUn) = Ø. Thus "t < n, we have
X

zij2Ut

zij ¼
X

zij2ðUtnðUn�1nUnÞÞ

zij þ
X

zij2ðUn�1nUnÞ

zij P
X

zij2ðUn�1nUnÞ

zij P 1

The last inequality holds by (20). This indicates (15) is true. Hence (15) can be deduced from (20). On the other hand, we have

(15) in SPn, or
P

zij2Un�1
zij P 1. By (21), we obtain Un�1 = (Un�1nUn) [Un and (Un�1nUn) \Un = Ø. Hence

X

zij2Un�1

zij ¼
X

zij2ðUn�1nUnÞ

zij þ
X

zij2Un

zij ¼
X

zij2ðUn�1nUnÞ

zij

The last equation is obtained because
P

zij2Un
zij ¼ 0 holds by (16). Then we obtain

P

zij2ðUn�1nUnÞ
zij P 1 by (15). Hence (20) can

be deduced from (15). Therefore SP0
n is equal to SPn.

The proof of (b) is similar. The difference is that there is no (15) in RP0
n. We need to prove that (15) is redundant in RP0

n.

"t < n, by (21), we have Ut = (UtnUn) [Un and (UtnUn) \Un = Ø. Hence
X

zij2Ut

zij ¼
X

zij2ðUtnUnÞ

zij þ
X

zij2Un

zij P
X

zij2Un

zij P 1
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The last inequality is obtained by (14). Hence we have
P

zij2Ut
zij P 1;8t < n, which indicates that (15) is redundant in RP0

n.

Therefore RP0
n is equal to RPn. h

The n � 1 equalities in (15) are reduced to only one equality in (20) in SP0
n and totally removed from RP0

n. Both SP0
n and RP0

n

have less constraints than SPn and RPn, respectively. Finally the set U00
n ðnP 1Þ used in the proposed algorithm is defined as

follows.

U00
n ¼ zijjzij 2 U0

n \U00
n�1;8ði; jÞ 2 A

� �

ð22Þ

where U0
n is defined by (19) and U00

0 is defined as U0
1. It is not difficult to see that U00

1 � � � � � U00
n�1 � U00

n is satisfied. The piercing

cut P00
n ðnP 1Þ is defined as follows

P00
n

� �

:

X

zij2U
00
n

zij P 1 ð23Þ

SP00
n ðnP 2Þ and RP00

n ðnP 1Þ are defined as follows.

SP00
n

� �

: min
X

ði;jÞ2A

cijzij

s:t: constraints ð2Þ—ð8Þ; ð11Þ and ð12Þ
X

zij2U
00
n�1

nU00
n

zij P 1 ð24Þ

X

zij2U
00
n

zij ¼ 0 ð25Þ

RP00
n

� �

: min
X

ði;jÞ2A

cijzij

s:t: constraints ð2Þ—ð8Þ; ð11Þ; ð12Þ and ð23Þ

Notice that CP00
1 is still defined as IP1 and CP00

n ðn > 1Þ is defined as RP00
n�1. The difference between SP00

1 and SP00
n ðnP 2Þ is that

there is no (24) in SP00
1.

3.3. A cut-and-solve based optimal algorithm

The overall algorithm, called Algorithm 1, is presented as follows. The optimality of the algorithm is guaranteed by

Theorem 2.

Theorem 2. WhenAlgorithm 1is terminated, it can find an optimal solution of the original problem.

Proof. If Algorithm 1 is terminated, i.e., UBmin is smaller than or equal to LBn. Then UBmin is also smaller than or equal to the

optimal value of RPn because LBn is a lower bound on the optimal value of RPn. This implies that there is no better solution

value than UBmin in the solution space of RPn. Therefore UBmin is the global optimal value and the corresponding solution is

the global optimal solution. h

Algorithm 1. An optimal algorithm for solving ATP

1: Implement pre-processing for IP0: define sets E1 and E2 and set all the variables in them to zero, obtain a new

integer program IP1.

2: Initialize n :¼ 0 and current best upper bound UBmin :¼ +1. Set current problem CP00
1 :¼ IP1.

3: Solve the linear relaxation problem of CP00
1 and obtain variables’ reduced cost.

4: repeat

5: Set n :¼ n + 1. If n > 1, set CP00
n :¼ RP00

n�1. Define set U00
n by (22) and piercing cut P00

n by (23).

6: Use P00
n to separate the solution space of CP00

n and obtain sparse problem SP00
n and remaining problem RP00

n.

7: Solve SP00
n and obtain its optimal value UBn. Set UBmin :¼min{UBmin,UBn}.

8: Solve the linear relaxation problem of RP00
n and obtain its associated lower bound LBn and variables’ reduced cost.

9: untilUBmin 6 LBn
10: Return UBmin and the corresponding solution as the global optimal value and optimal solution, respectively.

Algorithm is terminated.

8



4. Computational results

The algorithm was implemented in Visual C++ combined with a software package CPLEX 12.1. The linear relaxation prob-

lem of the remaining problem and the sparse problem were solved by the CPLEX LP and MIP solvers in default mode, respec-

tively. Computational experiments were performed on a PC with 3.00 GHz CPU and 4.00 GB RAM. Sixty-two problem sets

and five instances for each set were randomly generated in order to evaluate the performance of the proposed algorithm.

They were generated in the following way.

The graph G(V,A) was generated based on the network model proposed by Waxman (1988). The nodes of the graph were

randomly distributed in a rectangular area [0,100] � [0,100]. The existence of an arc (i, j) was dependent on a probability

function a exp (�d(i, j)/bL), where 0 < a, b 6 1, d(i, j) was the Euclidean distance from nodes i to j, and L was the maximum

distance between any two nodes. Parameter awas proportional to the number of arcs and a high value of b gave a high ratio

of long arcs to short arcs. The following parameters were generated in the method which was based on Wu et al. (2009). The

SD pairs were randomly selected from set V. The travel time in lanes s0ij and sij were defined as dij and fijdij, respectively,

where fij was randomly generated from [0.5,0.8]. The prescribed travel duration to complete task pk was generated from

[dis(sk,dk),dis
0(sk,dk)], where dis(sk,dk) and dis0(sk,dk) were the shortest travel time from sk to dk in an exclusively reserved path

and in an exclusively non-reserved path, respectively.

It is very difficult to evaluate quantitatively the impact of reserved lanes on adjacent lanes. It can be found that the impact

has a very close relation with the increase of travel time on adjacent lanes due to the disallowing use of the automated truck

lanes by the general-purpose vehicles. Consequently, we evaluate the impact using the increase of the travel time, as is the

case in Wu et al. (2009). In Wu et al. (2009), the impact is evaluated as cij ¼ s0ij=ðmij � 1Þ, where s0ij is the travel time in a

general-purpose lane before implementing lane reservation and mij is number of lanes in arc (i, j), respectively. Although

the context of the problem in Wu et al. (2009) is not identical to that of our problem, both problems have the same lane

reservation idea, i.e., convert some existing general-purpose lanes to reserved lanes for special users only. The cause of

the impact comes from the lane reservation strategy. Moreover, the actually statistical result in Princeton and Cohens

(2011) showed that the travel time in the general-purpose lanes increases about 53% after one of three lanes is reserved

in A1 highway in Paris, which is very close to the result (50%) obtained by the formula proposed by Wu et al. (2009). As sta-

ted above, the formula proposed by Wu et al. (2009) is applicable to our problem to some extent. Hence we adopt this for-

mula to estimate the impact. Moreover, we have also conducted numerical experiment for sensitivity analysis of different

setting of the impact to evaluate the performance of the algorithm.

The performance of the proposed algorithm was compared with the direct use of CPLEX in terms of the computational

time (in CPU seconds) of finding an optimal solution. In addition, the efficiency of the pre-processing in Section 3.1 and

the enlargement of set Un in Section 3.2.2 was tested with random instances. For brevity, denote Algorithm 1’ as the algo-

rithm implementing all the steps of Algorithm 1 without the pre-processing step and Algorithm 1’’ as the algorithm imple-

menting all the steps of Algorithm 1 without the enlargement of set Un step, respectively. Let T, T0, T00 and Tc denote the

average computational time required by Algorithm 1, Algorithm 1’, Algorithm 1’’ and CPLEX, respectively. The computational

results are presented in Tables 2–5 and Figs. 3–6.

Table 2 gives the computational time of the three algorithms. We find that T is less than T0 and T00 for all eight sets in Ta-

ble 2. The average values of T0, T00 and T are 173.23, 92.90 and 60.99 s, respectively. The minimal, maximal and average values

of T0/T are 1.92, 7.82 and 2.84, respectively. The minimal, maximal and average values of T00/T are 1.02, 1.89 and 1.52, respec-

tively. These results show that the pre-processing and the enlargement of Un steps are useful for accelerating the proposed

algorithm. Fig. 3a presents the computational time for sets 1–8. It can be seen from Fig. 3a that T increases gradually and T0

increases rapidly when the size of problem increases. Fig. 3b presents the results of T0/T and T00/T for sets 1–8. T0/T ranges

between 1.92 and 7.82, while T00/T ranges between 1.02 and 1.89. The curve of T0/T is above that of T00/T. This implies that

the pre-processing step is more efficient than the enlargement of Un step in accelerating the proposed algorithm.

Table 3 provides the computational results of our algorithm and CPLEX for five types of impact of reserved lanes. The first

four types of impact are calculated as lrcij ¼ lrs0ij=ðmij � 1Þ; r ¼ 1;2;3;4, where l1 = 1.0 and l2, l3 and l4 are randomly generated

Table 2

Computational results of Algorithm 1, Algorithm 1’ and Algorithm 1’’.

Set jVj jKj 2jAj/jVj T0 T00 T T0/T T00/T

1 60 25 7 19.83 7.18 5.62 3.53 1.28

2 60 30 7 66.63 10.15 8.52 7.82 1.19

3 70 25 7 75.91 13.85 11.62 6.53 1.19

4 70 30 7 125.52 43.46 41.04 3.06 1.06

5 80 25 7 125.71 31.57 30.98 4.06 1.02

6 80 30 7 307.98 133.25 96.70 3.18 1.38

7 90 25 7 247.09 92.59 75.71 3.26 1.22

8 90 30 7 417.18 411.17 217.71 1.92 1.89

Average 173.23 92.90 60.99 2.84 1.52
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from [0.5,1.0], [1.0,1.5] and [0.5,1.5], respectively. Notice that the intervals from which l2, l3 and l4 are generated, the are

used to generate small impact, large impact, small and large impact simultaneously, respectively. The fifth type of impact

is randomly generated from [0.5,10]. We observe that our algorithm is faster than CPLEX over all sets in Table 3. The average

values of T and TC are 27.73 and 89.37 s over sets 9–38. The average value of T/Tc is 0.31. The minimal values of T/Tc for each

type of impact are 0.25, 0.26, 0.28, 0.26 and 0.26, respectively. The maximal difference among the five minimal T/Tc is 0.03. It

can be seen from Fig. 4a that the changing trend of T for each type of impact is almost the same and the differences among

Table 3

Computational results for various types of impact.

Set Impact jVj jKj 2jAj/jVj T Tc T/Tc

9 Type 1 60 15 8 6.90 10.17 0.68

10 Type 1 60 20 8 6.01 17.91 0.34

11 Type 1 70 20 8 5.38 15.22 0.35

12 Type 1 70 25 8 20.10 42.87 0.47

13 Type 1 80 20 8 36.97 97.86 0.38

14 Type 1 80 25 8 83.77 336.43 0.25

15 Type 2 60 15 8 6.59 13.72 0.48

16 Type 2 60 20 8 2.83 6.44 0.44

17 Type 2 70 20 8 4.09 14.20 0.29

18 Type 2 70 25 8 15.50 38.55 0.40

19 Type 2 80 20 8 56.84 134.85 0.42

20 Type 2 80 25 8 71.34 279.18 0.26

21 Type 3 60 15 8 5.17 8.18 0.63

22 Type 3 60 20 8 8.30 26.82 0.31

23 Type 3 70 20 8 5.24 15.23 0.34

24 Type 3 70 25 8 21.95 52.13 0.42

25 Type 3 80 20 8 40.47 96.42 0.42

26 Type 3 80 25 8 87.97 319.18 0.28

27 Type 4 60 15 8 9.20 14.12 0.65

28 Type 4 60 20 8 5.18 10.71 0.48

29 Type 4 70 20 8 5.49 19.48 0.28

30 Type 4 70 25 8 12.30 28.23 0.44

31 Type 4 80 20 8 33.13 82.00 0.40

32 Type 4 80 25 8 76.21 293.04 0.26

33 Type 5 60 15 8 5.33 9.93 0.65

34 Type 5 60 20 8 5.23 13.34 0.48

35 Type 5 70 20 8 5.58 16.24 0.28

36 Type 5 70 25 8 21.87 54.05 0.44

37 Type 5 80 20 8 50.88 119.36 0.40

38 Type 5 80 25 8 115.91 495.18 0.26

Average 27.73 89.37 0.31

Table 4

Computational results for various types of average node degree.

Set jVj jKj 2jAj/jVj T Tc T/Tc

39 100 10 5 1.46 1.03 1.42

40 100 15 5 1.07 3.45 0.31

41 100 20 5 31.83 34.81 0.91

42 100 25 5 33.02 54.98 0.60

43 100 30 5 53.58 68.50 0.78

44 100 10 7 3.23 4.85 0.67

45 100 15 7 84.35 158.30 0.53

46 100 20 7 172.53 402.94 0.43

47 100 25 7 279.91 656.40 0.43

48 100 30 7 267.78 1227.46 0.22

49 100 10 12 21.03 38.71 0.54

50 100 15 12 76.00 567.30 0.13

51 100 20 12 701.71 3218.10 0.22

52 100 25 12 1751.32 5345.93 0.33

53 100 30 12 7189.59 >18000.00 <0.40

Average 711.23 >1985.52 <0.36
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five curves vary slightly for the same number of nodes and tasks. Moreover, we find from Fig. 4b that the five curves of T/Tc
also vary slightly for the same number of nodes and tasks. These results show that the performance of the proposed algo-

rithm is stable in terms of impact. Hence, in the following tests the parameter impact is still calculated as s0ij=ðmij � 1Þ.

Table 4 presents the computational results for 2jAj/jVj = 5, 7 and 12, respectively. We call 2jAj/jVj as average node degree,

which denotes the average number of arcs connected with a node. The higher it is, the denser the network is. It can be seen

from Table 4 that T is less than Tc over sets 40–53 and greater than Tc for set 39. CPLEX cannot find an optimal solution within

18000.00 s for set 53, while our algorithm only takes 7189.59 s. Moreover, Tc increase sharply when the average node degree

increases. For example, the values of Tc are 54.98, 656.40 and 5345.93 s for sets 42, 47 and 52, respectively. The average value

of T/Tc over all sets 39–53 is less than 0.36. It can be seen from Fig. 5a that Tc increases much sharply for sets 50, 51 and 52,

while T increases gradually. Fig. 5b presents the results of three values of average node degree. Generally speaking, the values

of T/Tc are small for the case of average node degree 12. These results show that: (1), the complexity of the problem increases

with average node degree; (2) our proposed algorithm is more effective than CPLEX for a large value of average node degree.

In Table 5, we report the results of various sizes of problem. In Table 5, T is less than Tc over sets 54–62. The average values

of T and Tc are 536.31 and 1381.54 seconds, respectively. The minimal, maximal and average values of T/Tc are 0.38, 0.52 and

0.42, respectively. We find from Fig. 6a that T increases gradually with the size of the problem, while Tc increases much more

quickly. Fig. 6b presents the ratios of computational time T and Tc. As showed in Fig. 6b, T/Tc varies slightly when the size of

problem increases.

Table 5

Computational results for various sizes of problem.

Set jVj jKj 2jAj/jVj T Tc T/Tc

54 110 10 7 2.37 4.57 0.52

55 110 15 7 11.45 45.05 0.45

56 120 15 7 45.80 90.49 0.51

57 120 20 7 166.41 417.17 0.40

58 130 20 7 438.96 1075.65 0.41

59 130 25 7 671.37 1689.28 0.40

60 140 25 7 765.84 2014.52 0.38

61 140 30 7 1172.22 3038.63 0.39

62 150 30 7 1543.43 4058.54 0.38

Average 536.31 1381.54 0.42

Fig. 3. Computational results of Algorithm 1, Algorithm 1’ and Algorithm 1’’.
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Fig. 4. Computational results for various types of impact.

Fig. 5. Computational results for various types of average node degree.
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5. Conclusions and future research

In this paper, we studied an automated truck freight transportation concept. The problem is to optimally select some

existing general-purpose lanes from network and convert them to automated truck lanes via lane reservation strategy so

that the automated trucks can travel fast in the truck lanes and time-efficient transportation paths can be guaranteed.

The objective of the problem is to minimize the impact of the truck lanes on the overall network performance. The consid-

ered problem was formulated as an integer linear program and was demonstrated as an NP-hard problem. To solve the prob-

lem, an optimal algorithm based on the cut-and-solve method was proposed. In our algorithm, some new techniques of

generating piercing cut were developed for the cut-and-solve method. Numerical computational results of random problem

instances have shown that the proposed algorithm outperformed a referenced software package CPLEX 12.1 in finding an

optimal solution.

The automated truck freight transportation via lane reservation strategy considered in this work can serve as a basic prob-

lem to provide a framework for further study of other more complex automated network design problems when manual and

automated vehicles have to share the space through lane reservation. The results of our study can also be extended to other

applications of lane reservation strategy, such as evacuation during emergency and hazardous materials routing. The final

goal of our work is to develop a new methodology for the network design for automated truck freight transportation. As

a first step of the study, the travel time along a link is assumed to have fixed values in the problem, which is far from the

realistic case. To better model practical situation, dynamic factors such as non-constant link travel time function and traffic

flow might be introduced into the problem formulation. Moreover, the evaluation of the impact caused by reserved lanes

should be further investigated. Some theoretical studies of the problem might be performed in order to enhance problem

solution finding.
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