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TOWARDS A UNIVERSAL LAW OF TREE MORPHOMETRY BY

COMBINING FRACTAL GEOMETRY AND STATISTICAL

PHYSICS

J. DUCHESNE, P. RAIMBAULT AND C. FLEURANT

Landscape Laboratory, National Institute of Horticulture, Angers, France

This article aims at establishing a very general law of plant organization. By
introducing the notion of hydraulic lengths which are considered as the coordinates
of a symbolic space with n-dimensions, a reasoning of statistical physics, derived
from Maxwell’s method, and combining with the fractal geometry leads to a law of
hydraulics lengths distribution which could appear very general because it is the
remarkable gamma law form

1 Introduction

1.1 The applications of morphometry in geomorphology

Before the conception of the fractal geometry by Mandelbrot (1975)1, morphometric
analysis was at first used by geologists to understand the river systems organization.
Horton (1945)12 links talweg sections by their source point and by their confluence
point with an other talweg of similar importance. Horton defines two empirical
laws expressed by two ratios:

• the bifurcation ratio, RC = Ni−1

Ni
, which has a constant value between 3 and 5

for river systems. Ni is the number of i order sections,

• the length ratio, RL = Li

Li−1

, which has a constant value between 1.5 and 3.5

for the rivers. Li is the average length of i order sections.

Finally La Barbera and Rosso (1982)14 define fractal dimension for a drainage
basin, D = ln RC

ln RL
. Weibel and Gomez (1962)15 used morphometry to model lungs,

then numerous studies were carried out on trees.
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1.2 Applications of the morphometry and fractal geometry on plants

Fitter (1982)16 presents a morphometric tree classification inspired by river net-
works. In his methodological study on root systems of herbaceous species, he
shows that one can use Horton’s laws by ordering ramifications according to the
morphometric order to quantify the root ramification.
Holland (1969)17 shows that the ramification of several species of Eucalyptus can
be described and be explained by Horton’s laws and by the effect of the apical con-
trol in the young twigs’ growth. Leopold (1971)18 working on different architecture
plant (Abies concolor, Pinus taeda) comes to the same conclusion. He adds that the
most likely classification seems to minimize the total length of the branches in the
ramification system. Oohata and Shidei (1971)19 study with the aid of Horton’s
method the ramification of four types of ligneous plants among which shrubs with
big evergreen leaves (Cinnamomum camphora) and conifers with evergreen leaves.
He shows that the ramification ratio varies in a range much wider than river systems
: from 3.0 to 8.0. This ratio varies according to the plant biologic type. Whitney
(1976)20 shows on 16 ligneous species that the ramification ratio depends mainly
on the leaves disposal, on the deciduousity of the leaf and branches and on the
needles size, and that it is more characteristic of species and relatively independent
of external conditions.
Using the morphometric tree of Strahler (1958)13 shows that for the birch and the
apple tree, the logarithms of the average numbers of terminal branches of every
order of ramification, of the average diameter and of the number of buds carried
by these branches are aligned compared to the ramification order. The logarithms
of the twigs’ average length are much more scattered. They deduct that these two
species have a fractal ramification and that lengths are more significant of the spe-
cific shape of trees. Crawford and Young (1990)21 show, for oaks (Quercus robur)
that the branches’ distribution lengths follow a simple fractal algorithm. Berger
(1991)22 uses fractals to model the growth of trees (ficus elastica), Chen et al.
(1993)23 to model the canopy of a poplar population (Populus sp.), Macmahon and
Kronauer (1976)24 to model the mechanics of the tree (Quercus rubra).

1.3 The invariant structure of plants

Generally, a branching system is constituted bythe subset of branching systems.
A branch is the part of a tree included between two successive ramifications. To
study the branching organization, we shall use the typology of Strahler (1952)4 (see
Figure 1):

• a bud or a growing shoot is called the first-order branch

• when two branches of order i join, a branch of order i + 1 is created,

• when two branches of different orders join, the branch immediately at the
junction retains the higher of the two joining branches.

The branching system order is thus the main order found in the plant.

World Scientific : Emergent Nature p. 93-102 2



Figure 1. Tree typology and principle of the orders numerotation.

1.4 A universal law of morphology of landscapes

Two attempts have been made to apply a reasoning of statistical physics to hydrog-
raphy. Lienhardt (1964)6 is the first to have perceived the interest of the statistical
physics and Shreve (1966)7 has opened an innovative way by making the hypothesis
that the law of the stream numbers as a function of the order results from a statistic
of a large number of channels branching out at random, as the ideal gas law results
from a statistics of a huge amount of molecules colliding at random. Like Man-
delbrot (1975)1 we are convinced that in both geomorphology and biomorphology,
a statistical approach can be fruitful. However, one must be sure to respect two
conditions that are basic ideas of statistical physics: i) the system size must be
very large compared to the one of the constituent element that will be taken into
account, ii) the local properties of the system must be homogeneous enough. The
validity limits of the law that we are going to establish now is probably very closely
linked to the respecting of these two conditions.

2 Demonstration of the law

2.1 Choice of the symbolic space

The difficulty of the extension of such a reasoning in the morphology of trees lies
in the choice of the symbolic space as defined by Maxwell (Sears, 197111). The
idea of our approach is based on the use of the symbolic space where the velocity
components vx, vy, vz, are replaced by ad hoc components. Maxwell uses a symbolic
space, called velocities space, where each velocity vector ends in a point which is
characterized by its coordinates vx, vy , vz . He defines a function of these three
coordinates:

F (vx, vy, vz) =
d3N

Ndvxdvydvz

(1)

Where d3N is the number of molecules whose velocity vector leads to the elemen-
tary volume dvxdvydvz , among a total number of N molecules. From the very
beginning of the reasoning we decided to take into account the fractal property
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of our particular system, the branching system, by introducing two differences in
comparison with Maxwell’s symbolic space:

• we do not use a velocity space which would have no meaning here but a sym-
bolic space, hydraulic length of the plant. We decide to call component of
order i, the length of the set of links or part of links having the same order i

(we shall note it li). So, for any point of the branching system, the hydraulic
length is the sum L =

∑

li of its n-constituents. Where n is the order of the
branching system. One can introduce the ratio:

rl =
li

li−1

(2)

Where numerator and denominator represent respectively the average of all
the constituents with order i and the constituents with order i + 1.

• since we consider that each possible hydraulic length has n-constituents li, our
symbolic space will no longer have three dimensions, as those of Maxwell, but
n-dimensions, n being the order of the branching system. However, to use
without any trouble the properties of n-dimensions vectorial space, instead
of considering the components li, we will consider using their square roots
xi =

√
li, L = X2 =

∑n

i=1 x2
i . Thus, if we denote by N the total number of

hydraulic length, we can define a function F (l1, l2, . . . , ln) with n-variables l1,
l2, . . ., ln:

F (l1, l2, . . . , ln) =
dnN

Ndl1dl2 . . . dln
(3)

2.2 Choice of fundamental hypotheses

We adopt the same hypotheses as Maxwell, but by adapting them to our symbolic
space and by taking into account consequences of the scalling invariance:

• according to the hypothesis of the independence of the hydraulic length dis-
tribution law, the components li are independent. One is so led to express
function F as a product of n one-variable functions:

F (l1, l2, . . . , ln) = f1(l1)f2(l2) . . . fn(ln) (4)

• as Maxwell did for the velocities distribution we should admit that the distri-
bution law of xi is isotropic. According to scalling invariance and the relation
2, the ith order component is on average rl times larger than the (i − 1)th

component. The hypothesis of isotropy must therefore not be applied to the
symbolic space of coordinates xi =

√
li, but zi defined as reduced hydraulic

lengths components zi = li
r

i−1

l

:

zi =

√

li

ri−1
l

=
xi

r
i−1

2

l

(5)
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So, the corresponding vector magnitude is Z such as:

Z2 =
n

∑

i=1

z2
i (6)

The isotropy hypothesis entails that the density of points representing the vectors
ends in the symbolic space has a spherical symmetry. Thus, we can consider that
all the functions fi(li) in the relation 4 are identical provided that F is written as
following:

F (l1, l2, . . . , ln) = f(l1)f(
l2

rl

) . . . f(
ln

rn−1
l

) (7)

That is:

φ(z1, z2, . . . , zn) = ϕ(z1)ϕ(z2) . . . ϕ(zn) (8)

The function φ can also be written:

φ(z1, z2, . . . , zn) =
dnN

Ndz1dz2 . . . dzn

(9)

If one moves in the surface of the hypersphere whose equation is:

z2
1 + z2

2 + . . . + z2
n = C (10)

One has:

φ(z1, z2, . . . , zn) = C (11)

C being a constant. These two above hypotheses are sufficent to determine the
probability density function (pdf) of the hydraulic lengths.

2.3 Determination of the hydraulic lengths pdf

By taking the derivative of relations 10 and 11 gives:

2z1dz1 + 2z2dz2 + . . . + 2zndzn = 0 (12)

and

∂φ

∂z1
dz1 +

∂φ

∂z2
dz2 + . . . +

∂φ

∂zn

dzn = 0 (13)

According to the relation 8:

1

φ

∂φ(zi)

∂zi

=
1

ϕ(zi)

dϕ(zi)

dzi

∀i, 1 ≤ i ≤ n (14)

Which allows us to replace 13 by:

1

ϕ(z1)

dϕ(z1)

dz1
+

1

ϕ(z2)

dϕ(z2)

dz2
+ . . . +

1

ϕ(zn)

dϕ(zn)

dzn

= 0 (15)

In this stage of the reasoning, we can use the Lagrange’s optimization method
(Bruhat, 196810, Sears, 197111). It allows us to combine relations 12 and 15 by
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multiplying 12 by a constant λ and by adding it in the relation 15. This leads to
the following equation in which n differentials can be considered as independent:

[

2λz1
1

ϕ(z1)

dϕ(z1)

dz1

]

dz1 + . . . +

[

2λzn

1

ϕ(zn)

dϕ(zn)

dzn

]

dzn = 0 (16)

All the expressions between brackets are simultaneously equal to zero, so that each
one can be integrated:

1

ϕ(zi)

dϕ(zi)

dzi

= −2λzi ∀i, 1 ≤ i ≤ n (17)

Whose integral is:

ϕ(zi) = Ae−λz2

i (18)

Where zi is distributed according to a normal law. The constant A can be calculated
because the complete integral of ϕ between zero and the infinity must be equal to
unity:

∫ ∞

0

ϕ(zi)dzi =

∫ ∞

0

Ae−λz2

i dzi = 1 (19)

The variables change, by taking into account the relation 5, one sees then appearing
the pdf of li:

f(li) = Ae
−λ

li

r
i−1

l

l
− 1

2

i

2
√

ri−1
l

(20)

The graph of this law is a convex shape and quickly decreasing, more exactly, it is

about a gamma law of general equation
(

1
β

)α
1

Γ(α)x
α−1e−

x
β with parameters α = 1

2

and β =
r

i−1

l

λ
. Relations 8 and 18 allow us therefore to write:

φ(z1, z2, . . . , zn) = Ane−λ(z2

1
+z2

2
+...+z2

n) = Ane−λZ2

(21)

According to the relation 11, one obtains:

dnN

N
= Ane−λZ2

dz1dz2 . . . dzn (22)

If one focuses on the number dNZ of vectors which have their arrowhead between
the two hyperspheres of Z and Z + dZ radius, one obtains thus:

dNZ

N
= Ane−λZ2

∫

. . .

∫

dz1dz2 . . . dzn (23)

The equation above expresses the relative number of hydraulic length included
between the hyperspheres of Z and Z + dZ radius. Multiple integral expresses the
volume included between these two infinitely close hyperspheres in a n-dimensions
space. The element of volume dV is proportional to Zn−1dZ:

dNZ

N
= Ane−λZ2

BZn−1dZ (24)
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B being a constant. To clarify the variable L, which is the most interesting, one
can make a change of variables. Since the relation 2 means that component li is on
average rl times larger than li−1, if we decide to argue about the mean values of
z2

i , relations 5 and 6 give:

Z2 = nz2
i (25)

The hypothesis of isotropiy permits in particular cases to write this relation for
i = 1:

Z2 = nz2
1 = nx2

1 = nL

(

r1 − 1

rn
1 − 1

)

(26)

Where L is the average hydraulic length corresponding to the vectors which end on
the hypersphere of radius Z. Thus, the relation 21 enables to express the relative
number of hydraulic lengths dNL

N
whose value is between L and L + dL:

dNL

N
= Ce−

µ
L L

n
2
−1dL (27)

Where

µ = λn

(

r1 − 1

rn
1 − 1

)

(28)

µ and C being constants. The pdf of hydraulic lengths ρ(L) can now be written:

ρ(L) =
dNL

NdL
= Ce−µLL

n
2
−1 (29)

By integrating relation 27, L varying from 0 to ∞, one finds C:

C =
µ

n
2

Γ
(

n
2

) (30)

Where Γ is gamm function. The constant µ can be deducted from the average
hydraulic length by complete following:

L =

∫ ∞

0

Lρ(L)dL =
n

2µ
(31)

Which gives:

µ =
n

2L
(32)

The pdf of hydraulic lengths ρ(L) can be so written:

ρ(L) =
dNL

NdL
=

(

n

2L

)
n
2 1

Γ
(

n
2

)L
n
2
−1e

−nL

2L (33)

Let us remember that L is the hydraulic length, L is the average of all the possible
hydraulic lengths on the studied plant, n is the order of the tree, and that Γ is
the gamma function. One can easily recognize in this last relation f(L, α, β) the

gamma law with parameters α = n
2 and β = 2L

n
.
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Order i RC = Ni−1

Ni
RL = Li

Li−1

2 12.06 2.16
3 11.5 4.25
Theorical 11.78 3.03

Table 1. average values of RC and RL calculated from the experimental data. The last values
of the Table are calculated from a logarithmic regression between the order i − 1 and the large

number of experimental values of RC and RL. The fractal dimension is thus D =
ln(RC)
ln(RL)

= 2.22.

3 Results and discusion

There is a big difference between systems involved in statistical physics and the
system we use in our reasoning : Maxwell, for example, does not indicate the shape
of the container that contains the N molecules because it does not matter. In our
case, the studied plant can have very different shapes, its size is very variable and
its order can vary from 1 for a young maiden tree to 8 or 9 for very big trees. More-
over, even though law 33 is very general, it will be all the more respected since the
two conditions to apply a reasoning of statistical physics will be respected: a large
number of elementary constituents (that is of hydraulic distances) and homogeneity
of the population.
So one will either choose a big tree or a population of several trees with the same
species having grown in the same environment. The pdf of hydraulic lengths is cal-
culated through the law 33 by i) taking as the order n of the specified population
value ν of the maximum order observed in the population, ii) taking as the average
of hydraulic lengths L calculated from N measures. We chose 12 apple trees (Malus
pumila (L) Mill.) four years old and from the same ”parents” and with order 3.
The hydraulic lengths were measured manually from all the growing shoots.
The average values of the ratios RC and RL which are presented in the table 1 are
calculated for all the sections. One can notice that the stability of RC is excellent,
but that RL is a little more variable, as noted by many authors (Horton, 194512,
Schumm, 19565 and Shreve, 19678). The stability of this last parameter, a priori
considered to define the symbolic space is therefore verified. For each parameter,
the accepted value is calculated by logarithmic regression because of the shape of
RC and RL laws (values on the last Table line). By the way, one can note that the
values of RC and RL lead to a fractal dimension D = 2.22. Figure 2 shows the
components of hydraulic lengths as function of li

r
i−1

l

. As one can see, considering

the limited number of objects in some classes, the distribution law of components
20, as well as the isotropy hypothesis, from which it is deduced, can be considered
as well verified. Figure 3 shows the theoretical graph supplied by the equation 33
and the experimental one obtained by measurement. Considering the very general
hypotheses from which the theoretical graph is deduced, one can be struck by the
fact that it coincides correctly with the experimental one.
Of course the theory and the experimental data do not fit as well as in statistical
thermodynamics. For example, Maxwell’s distribution in a molecular stream can
be directly verified by counting the number of molecules that have a given velocity.
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Figure 2. The pdf of the reduced hydraulic components li according to equation 20.

Figure 3. The pdf of the hydraulic lengths (Theor.) of the studied plant compared with the
experimental results (Exp.). The pdf parameters are n = 3 and L = 47.6 cm.

Miller and Kusch (1956)25 showed that theoretical prediction was strikingly verified
by the experiment. In thermodynamics, considering the huge number of microscopic
objects, the relative fluctuations of the molecule numbers are proportional to 1√

N
,

where N is the number of molecules in the considered class, so they become im-
perceptible at the macroscopic scale. In the case of botany, conformity cannot be
rigorous because of two reasons which proceed directly from two conditions we had
put a priori in order to apply a reasoning of statistical physics: i) the number of
hydraulic lengths, corresponding to apexes, can not exceed a few thousand, or ten
thousand, for a given class; thus the statistical fluctuations will always be much
more important, compared to the fluctuations one can observe in thermodynamics,
even if one can reduce them by widening the classes, ii) moreover, the distribution
of hydraulic lengths, as well as the distribution of their n components can be more
or less influenced by the environment constraints. We based our demonstration on
the frame that Maxwell used to study the law of distribution of molecular velocities
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in a gas. One knows that his theory was reused on other bases by Boltzmann and
Gibbs. It would be interesting to apply general formalism of statistical mechanics
to the botanical morphology.

4 Conclusion

We have just presented an original reasoning of statistical physics as far as it applies
to a macroscopic object made up of elements themselves macroscopic: the plant.
The study of the spatial organization of a plant leads to a mathematical description
that completes, through the pdf of the hydraulic lengths, a classical morphogenetic
description of its architecture. Such a description is essential in botany, whether it
is for the understanding of the functioning of the plant or for the landscape analysis.
Moreover, we think that the innovative approach adopted here the introduction of
a fractal description into a reasoning of statistical physics could be applied success-
fully to other physical domains. The application of our results to other branched
objects such as river systems or vascular systems can be easily attempted. One can
also try to apply them to other objects provided they are fractal as for example a
fractured surface in a solid material test.
Besides the interest of a morphological description of the tree, the above theory
opens many perspectives of application in the dynamic domain. The mathematical
description of the branches’ organization indeed allows us to describe the dynamics
of the transfers which take place in the plant on one hand and in the modeling of
the dynamics of the plant genesis on the other hand. Thus the applications could
be immediate in the fields of the complete plant physiology and in the ecophysiol-
ogy, for example in the mechanism of axes selection. In particular, we shall show
in another article Raimbault et al. (2001)3 how function 33 established above can
be connected with morphogenesis concepts as the apical control.
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