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Abstract

The framework of light logics has been extensively studied to con-
trol the complexity of higher-order functional programs. We pro-
pose an extension of this framework to multithreaded programs
with side effects, focusing on the case of polynomial time. After
introducing a modal λ-calculus with parallel composition and re-
gions, we prove that a realistic call-by-value evaluation strategy
can be computed in polynomial time for a class of well-formed
programs. The result relies on the simulation of call-by-value by
a polynomial shallow-first strategy which preserves the evaluation
order of side effects. Then, we provide a polynomial type system
that guarantees that well-typed programs do not go wrong. Finally,
we illustrate the expressivity of the type system by giving a pro-
gramming example of concurrent iteration producing side effects
over an inductive data structure.

Categories and Subject Descriptors D.3 [Programming Lan-
guages]: Formal Definitions and Theory; F.2 [Analysis of Algo-
rithms and Problem Complexity]: General

Keywords λ-calculus, side effect, region, thread, resource analy-
sis.

1. Introduction

Quantitative resource analysis of programs is a challenging task
in computer science. Besides being essential for the development
of safety-critical systems, it provides interesting viewpoints on the
structure of programs.

The framework of light logics (see e.g. LLL [12], ELL [10],
SLL [13]) which originates from Linear Logic [11], have been
deeply studied to control the complexity of higher-order functional
programs. In particular, polynomial time λ-calculi [5, 18] have
been proposed as well as various type systems [8, 9] guaranteeing
complexity bounds of functional programs. Recently, Amadio and
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the author proposed an extension of the framework to a higher-
order functional language with multithreading and side effects [16],
focusing on the case of elementary time (ELL).

In this paper, we consider a more reasonable complexity class:
polynomial time. The functional core of the language is the light
λ-calculus [18] that features the modalities bang (written ‘!’) and
paragraph (written ‘§’) of LLL. The notion of depth (the number
of nested modalities) which is standard in light logics is used to
control the duplication of data during the execution of programs.
The language is extended with side effects by means of read and
write operations on regions which were introduced to represent
areas of the store [15]. Threads can be put in parallel and interact
through a shared state.

There appears to be no direct combinatorial argument to bound
a call-by-value evaluation strategy by a polynomial. However,
the shallow-first strategy (i.e. redexes are eliminated in a depth-
increasing order) is known to be polynomial in the functional
case [4, 12]. Using this result, Terui shows [18] that a class of
well-formed light λ-terms strongly terminates in polynomial time
(i.e. every reduction strategy is polynomial) by proving that any
reduction sequence can be simulated by a longer one which is
shallow-first. Following this method, our contribution is to show
that a class of well-formed call-by-value programs with side ef-
fects and multithreading can be simulated in polynomial time by
shallow-first reductions. The bound covers any scheduling policy
and takes thread generation into account.

Reordering a reduction sequence into a shallow-first one is non-
trivial: the evaluation order of side effects must be kept unchanged
in order to preserve the semantics of the program. An additional
difficulty is that reordering produces non call-by-value sequences
but fails for an arbitrary larger relation (which may even require
exponential time). We identify an intermediate outer-bang relation
−→ob which can be simulated by shallow-first ordering and this
allows us to simulate the call-by-value relation −→v which is
contained in the outer-bang relation. We illustrate this development
in Figure 1.

The paper is organized as follows. We start by presenting the
language with multithreading and regions in Section 2 and define
the largest reduction relation. Then, we introduce a polynomial
depth system in Section 3 to control the depth of program occur-
rences. Well-formed programs in the depth system follow Terui’s
discipline [18] on the functional side and the stratification of re-
gions by depth level that we introduced previously [16]. We prove
in Section 4 that the class of outer-bang strategies (containing call-
by-value) can be simulated by shallow-first reductions of exactly
the same length. We review the proof of polynomial soundness of
the shallow-first strategy in Section 5. We provide a polynomial
type system in Section 6 which results from a simple decoration of
the polynomial depth system with linear types. We derive the stan-
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Figure 1. Simulation by shallow-first ordering

dard subject reduction proposition and progress proposition which
states that well-types programs reduce to values. Finally, we illus-
trate the expressivity of the type system in Section 7 by showing
that it is polynomially complete in the extensional sense and we
give a programming example of a concurrent iteration producing
side effects over an inductive data structure.

2. A modal λ-calculus

with multithreading and regions

As mentioned previously, the functional core of the language is a
modal λ-calculus with constructors and destructors for the modali-
ties ‘!’ and ‘§’ that are used to control the duplication of data. The
global store is partitioned into a finite number of regions where
each region abstracts a set of memory locations. Following [1],
side effects are produced by read and write operators on regions.
A parallel operator allows to evaluate concurrently several terms
which can communicate through regions. As we shall see in Sec-
tion 7, this abstract non-deterministic language entails complexity
bounds for languages with concrete memory locations representing
e.g. references, channels or signals.

The syntax of the language is presented in Figure 2. We have

-variables x, y, . . .
-regions r, r′, . . .
-terms M ::= x | r | ⋆ | λx.M | MM | !M | §M

let !x = M in M | let §x = M in M
get(r) | set(r,M) | (M ‖ M)

-stores S ::= r ⇐ M | (S ‖ S)
-programs P ::= M | S | (P ‖ P )

Figure 2. Syntax of the language

the usual set of variables x, y, . . . and a set of regions r, r′, . . .
The set of terms M contains variables, regions, the terminal value
(unit) ⋆, λ-abstractions, applications, modal terms !M and §M
(resp. called !-terms and §-terms) and the associated let !-binders
and let §-binders. We have an operator get(r) to read a region r, an
operator set(r,M) to assign a term M to a region r and a parallel
operator (M ‖ N) to evaluate M and N in parallel. A store S is
the composition of several assignments r ⇐ M in parallel and
a program P is the combination of several terms and stores in
parallel. Note that stores are global, i.e. they always occur in empty
contexts.

In the following we write † for † ∈ {!, §} and we define †0M =
M and †n+1M = †(†nM). Terms λx.M and let †x = N in M
bind occurrences of x in M . The set of free variables of M is

denoted by FV(M). The number of free occurrences of x in M
is denoted by FO(x,M). The number of free occurrences in M is
denoted by FO(M). M [N/x] denotes the term M in which each
free occurrence of x has been substituted by N .

Each program has an abstract syntax tree where variables, re-
gions and unit constants are leaves, λ-abstractions and †-terms have
one child, and applications and let †-binders have two children. An
example is given in Figure 3. A path starting from the root to a

P = let !x = get(r) in set(r, (!x)(§x)) ‖ r ⇐ !(λx.x⋆)

‖ǫ

let !x0

get(r)00 set(r)01

@010

!0100

x
01000

§0101

x
01010

r ⇐1

!10

λx
100

@1000

x
10000

⋆
10001

Figure 3. Syntax tree and addresses of P

node of the tree denotes an occurrence of the program whose ad-
dress is a word w ∈ {0, 1}∗ hereby denoted in exponent form. We
write w ⊑ w′ when w is a prefix of w′. We denote the number of
occurrences in P by |P |.

The operational semantics of the language is given in Figure 4.
In order to prove the later simulation result, the largest reduction
relation −→ (which shall contain call-by-value) is presented.

-structural rules-
P ‖ P ′ ≡ P ′ ‖ P

(P ‖ P ′) ‖ P ′′ ≡ P ‖ (P ′ ‖ P ′′)

-evaluation contexts-
E ::= [·] | λx.E | EM | ME | !E | §E

let !x = E in M | let §x = E in M
let !x = M in E | let §x = M in E
set(r,E) | r ⇐ E | (E ‖ P ) | (P ‖ E)

-reduction rules-
(β) E[(λx.M)N ] −→ E[M [N/x]]
(!) E[let !x = !N inM ] −→ E[M [N/x]]
(§) E[let §x = §N in M ] −→ E[M [N/x]]
(get) E[get(r)] ‖ r ⇐ M −→ E[M ]
(set) E[set(r,M)] −→ E[⋆] ‖ r ⇐ M–if FV(M) = ∅

(gc) E[⋆ ‖ M ] −→ E[M ]

Figure 4. Operational semantics

Programs are considered up to a structural equivalence ≡ which
contains the equations for α-renaming, commutativity and associa-
tivity of parallel composition. Reduction rules apply modulo struc-
tural equivalence, in an evaluation context E which can be any pro-
gram with exactly one occurrence of a special variable ‘[·]’, called
the hole. We write E[M ] for E[M/[·]]. Each rule is identified by its
name. (β) is the usual β-reduction. (†) are rules for filtering modal
terms. (get) is for consuming a term from a region. (set) is for as-
signing a closed term to a region. (gc) is for erasing a terminated
thread.

First, note that the reduction rule (set) generates a global assign-
ment, that is out of the evaluation context E. In turn, we require M



to be closed such that it does not contain variables bound in E. Sec-
ond, several terms can be assigned to a single region. This cumu-
lative semantics allows the simulation of several memory locations
by a single region. In turn, reading a region consists in consuming
non-deterministically one of the assigned terms.

The reduction is very ‘liberal’ with side effects. The contexts
(P ‖ E) and (E ‖ P ) embed any scheduling of threads. Moreover,
contexts of the shape r ⇐ E allow evaluation in the store as
exemplified in the following possible reduction:

set(r, λx.get(r)) ‖ r ⇐ M −→ ⋆ ‖ r ⇐ λx.get(r) ‖ r ⇐ M
−→ ⋆ ‖ r ⇐ λx.M

In the rules (β), (†), (gc), the redex denotes the term inside the
context of the left hand-side and the contractum denotes the term
inside the context of the right hand-side. In the rule (get), the redex
is get(r) and the contractum is M . In the rule (set), the redex
is set(r,M) and the contractum is M . Finally, −→+ denotes the
transitive closure of −→ and −→∗ denotes the reflexive closure of
−→+.

3. A polynomial depth system

In this section, we first review the principles of well-formed light
λ-terms (Subsection 3.1) and then the stratification of regions by
depth level (Subsection 3.2). Eventually we combine the two as
a set of inference rules that characterizes a class of well-formed
programs (Subsection 3.3).

3.1 On light λ-terms

First, we define the notion of depth.

Definition 1. The depth d(w) of an occurrence w in a program
P is the number of † labels that the path leading to the end node
crosses. The depth d(P ) of program P is the maximum depth of its
occurrences.

With reference to Figure 3, d(01000) = d(01010) = d(100) =
d(1000) = d(10000) = d(10001) = 1, whereas other occur-
rences have depth 0. In particular, d(0100) = d(0101) = d(10) =
0; what matters in computing the depth of an occurrence is the num-
ber of †’s that precede strictly the end node. Thus d(P ) = 1. In the
sequel, we say that a program occurs at depth i when it corresponds
to an occurrence of depth i. For example, get(r) occur at depth 0

in P . We write
i

−→ when the redex occurs at depth i; we write |P |i
for the number of occurrences at depth i of P .

Then we can define shallow-first reductions.

Definition 2. A shallow-first reduction sequence P1
i1−→ P2

i2−→

. . .
in−→ Pn is such that m < n implies im ≤ in. A shallow-first

strategy is a strategy that produces shallow-first sequences.

The polynomial soundness of shallow-first strategies relies on

the following properties: when P
i

−→∗ P ′,

d(P ′) ≤ d(P ) (3.1)

|P ′|j ≤ |P |j for j < i (3.2)

|P ′|i < |P |i (3.3)

|P ′| ≤ |P |2 (3.4)

To see this in a simple way, assume P is a program such that
d(P ) = 2. By properties (3.1),(3.2),(3.3) we can eliminate all the

redexes of P with the shallow-first sequence P
0

−→∗ P ′
1

−→∗

P ′′
2

−→∗ P ′′′. By property (3.4), |P ′′′| ≤ |P |8. By properties (3.3)
the length l of the sequence is such that l ≤ |P |+ |P ′|+ |P ′′| = p.

Since we can show that p ≤ |P |8 we conclude that the shallow-first
evaluation of P can be computed in polynomial time.

The well-formedness criterions of light λ-terms are intended to
ensure the above four properties. These criterions can be summa-
rized as follows:

• λ-abstraction is affine: in λx.M , x may occur at most once and
at depth 0 in M .

• let !-binders are for duplication: in let !x = M in N , x may
occur arbitrarily many times and at depth 1 in N .

• let §-binders are affine: in let §x = M in N , x may occur at
most once and at depth 1 in N . The depth of x must be due to a
§ modality.

• a !-term may contain at most one occurrence of free variable,
whereas a §-term can contain many occurrences of free vari-
ables.

By the first three criterions, we observe the following. The depth
of a term never increases (property (3.1)) since the reduction rules
(β),(!) and (§) substitute a term for a variable occurring at the same
depth. Reduction rules (β) and (§) are strictly size-decreasing since
the corresponding binders are affine. A reduction (!) is strictly size-
decreasing at the depth where the redex occurs but potentially size-
increasing at deeper levels. Therefore properties (3.2) and (3.3)
are also guaranteed. The fourth criterion is intended to ensure a
quadratic size increase (property (3.4)). Indeed, take the term Z
borrowed from [18] that respects the first three criterions but not
the fourth:

Z = λx.let !x = x in !(xx)

Z . . . (Z(Z
︸ ︷︷ ︸

n times

!y)) −→∗ !(yy . . . y
︸ ︷︷ ︸

2n times

) (3.5)

It may trigger an exponential size explosion by repeated application
of the duplicating rule (!). The following term

Y = λx.let !x = x in §(xx)

Y . . . (Y (Y
︸ ︷︷ ︸

n times

!y))

−→∗ Y . . . (Y (Y
︸ ︷︷ ︸

n−2 times

(let !x = §(yy) in §(xx)))) 9

(3.6)

respects the four criterions but cannot be used to apply (!) expo-
nentially.

3.2 On the stratification of regions by depth

In our previous work on elementary time [16], we analyzed the
impact of side effects on the depth of occurrences and remarked that
arbitrary reads and writes could increase the depth of programs. In
the reduction sequence

(λx.set(r, x) ‖ §get(r))!M −→∗ §get(r) ‖ r ⇐ !M

−→ §!M
(3.7)

the occurrence M moves from depth 1 to depth 2 during the last
reduction step, because the read occurs at depth 0 while the write
occurs at depth 1.

Following this analysis, we introduced region contexts in order
to constrain the depth at which side effects occur. A region context

R = r1 : δ1, . . . , rn : δn

associates a natural number δi to each region ri in a finite set of
regions {r1, . . . , rn} that we write dom(R). We write R(ri) for
δi. Then, the rules of the elementary depth system were designed
in such a way that get(ri) and set(ri,M) may only occur at depth
δi, thus rejecting (3.7).



Moreover, we remarked that since stores are global, that is
they always occur at depth 0, assigning a term to a region breaks
stratification whenever δi > 0. Indeed, in the reduction

§set(r,M) −→ §⋆ ‖ r ⇐ M (3.8)

where R(r) should be 1, the occurrence M moves from depth 1 to
depth 0. Therefore, we revised the definition of depth as follows.

Definition 3. Let P be a program and R a region context where
dom(R) contains all the regions of P . The revised depth d(w) of
an occurrence w of P is the number of † labels that the path leading
to the end node crosses, plus R(r) if the path crosses a store label
r ⇐. The revised depth d(P ) of a program P is the maximum
revised depth of its occurrences.

By considering this revised definition of depth, in (3.8) the oc-
currence M stays at depth 1. In Figure 3 we now get d(01000) =
d(01010) = 1, d(10) = R(r) and d(100) = d(1000) =
d(10000) = d(10001) = R(r) + 1. Other occurrences have depth
0. From now on we shall say depth for the revised definition of
depth.

3.3 Inference rules

Now we introduce the inference rules of the polynomial depth
system. First, we define region contexts R and variable contexts
Γ as follows:

R = r1 : δ1, . . . , rn : δn
Γ = x1 : u1, . . . , xn : un

Regions contexts are described in the previous subsection. A vari-
able context associates each variable with a usage u ∈ {λ, §, !}
which constrains the variable to be bound by a λ-abstraction, a
let §-binder or a let !-binder respectively. We write Γu if dom(Γ)
only contains variables with usage u. A depth judgement has the
shape

R; Γ ⊢δ P

where δ is a natural number. It should entail the following:

• if x : λ ∈ Γ then x occurs at depth δ in †δP ,

• if x : † ∈ Γ then x occurs at depth δ + 1 in †δP ,

• if r : δ′ ∈ R then get(r)/set(r) occur at depth δ′ in †δP .

The inference rules of the depth system are presented in Fig-
ure 5. We comment on the handling of usages. Variables are intro-
duced with usage λ. The construction of !-terms updates the usage
of variables to ! if they all previously had usage λ. The construc-
tion of §-terms updates the usage of variables to § for one part and
! for the other part if they all previously had usage λ. In both con-
structions, contexts with other usages can be weakened. As a re-
sult, λ-abstractions bind variables occurring at depth 0, let !-binders
bind variables occurring at depth 1 in !-terms or §-terms, and let §-
binders bind variables occurring at depth 1 in §-terms.

To control the duplication of data, the rules for binders have
predicates which specify how many occurrences can be bound. λ-
abstractions and let §-binders are linear by predicate FO(x,M) =
1 and let !-binders are at least linear by predicate FO(x,M) ≥ 1.

The depth δ of the judgement is decremented when constructing
†-terms. This allows to stratify regions by depth level by requiring
that δ = R(r) in the rules for get(r) and set(r,M). A store
assignment r ⇐ M is global hence its judgement has depth 0
whereas the premise has depth R(r) (this reflects the revised notion
of depth).

Definition 4. (Well-formedness) A program P is well-formed if a

judgement R; Γ ⊢δ P can be derived for some R, Γ and δ.

x : λ ∈ Γ

R; Γ ⊢δ x R; Γ ⊢δ ⋆ R; Γ ⊢δ r

FO(x,M) = 1
R; Γ, x : λ ⊢δ M

R; Γ ⊢δ λx.M

R; Γ ⊢δ M R; Γ ⊢δ N

R; Γ ⊢δ MN

FO(M) ≤ 1
R; Γλ ⊢δ+1 M

R; Γ!,∆§,Ψλ ⊢δ !M

FO(x,N) ≥ 1 R; Γ ⊢δ M
R; Γ, x : ! ⊢δ N

R; Γ ⊢δ let !x = M in N

R; Γλ,∆λ ⊢δ+1 M

R; Γ!,∆§,Ψλ ⊢δ §M

FO(x,N) = 1 R; Γ ⊢δ M
R; Γ, x : § ⊢δ N

R; Γ ⊢δ let §x = M in N

r : δ ∈ R

R; Γ ⊢δ get(r)

r : δ ∈ R R; Γ ⊢δ M

R; Γ ⊢δ set(r,M)

r : δ ∈ R R; Γ ⊢δ M

R; Γ ⊢0 r ⇐ M

i = 1, 2 R; Γ ⊢δ Pi

R; Γ ⊢δ (P1 ‖ P2)

Figure 5. A polynomial depth system

Example 1. The program P of Figure 3 is well-formed by compo-
sition of the two derivation trees of Figure 6. The program Z given
in (3.5) is not well-formed.

The depth system is strictly linear in the sense that it is not
possible to bind 0 occurrences. We shall see in Section 4 that it
allows for a major simplification of the proof of simulation. How-
ever, this impossibility to discard data is a notable restriction over
light λ-terms. In a call-by-value setting, the sequential composition
M ;N is usually encoded as the non well-formed term (λz.N)M
where z /∈ FV(N) is used to discard the terminal value of M .
We show that side effects can be used to simulate the discarding of
data even though the depth system is strictly linear. Assume that we
dispose of a specific region gr collecting ‘garbage’ values at each
depth level of a program. Then M ;N could be encoded as the well-
formed program (λz.set(gr, z) ‖ N)M . Using a call-by-value se-
mantics, we would observe the following reduction sequence

M ;N −→∗ V ;N −→ set(gr, V ) ‖ N −→ ⋆ ‖ N ‖ gr ⇐ V

−→ N ‖ gr ⇐ V

where ⋆ has been erased by (gc) and V has been garbage collected
into gr.

Finally we derive the following lemmas on the depth system in
order to get the subject reduction proposition.

Lemma 1 (Weakening and Substitution).

1. If R; Γ ⊢δ P then R; Γ,Γ′ ⊢δ P .

2. If R; Γ, x : λ ⊢δ M and R; Γ ⊢δ N
then R; Γ ⊢δ M [N/x].

3. If R; Γ, x : § ⊢δ M and R; Γ ⊢δ §N
then R; Γ ⊢δ M [N/x].

4. If R; Γ, x : ! ⊢δ M and R; Γ ⊢δ !N
then R; Γ ⊢δ M [N/x].

Proposition 1 (Subject reduction). If R; Γ ⊢δ P and P −→ P ′

then R; Γ ⊢δ P ′ and d(P ) ≥ d(P ′).



r : 0;− ⊢0 r

r : 0;− ⊢0 get(r)

r : 0; x : ! ⊢0 r

r : 0;x : λ ⊢1 x

r : 0; x : ! ⊢0 !x

r : 0; x : λ ⊢1 x

r : 0;x : ! ⊢0 §x

r : 0;x : ! ⊢0 !x§x

r : 0; x : ! ⊢0 set(r, !x§x)

r : 0;− ⊢0 let !x = get(r) in set(r, !x§x)

r : 0;x : λ ⊢1 x r : 0; x : λ ⊢1 ⋆

r : 0;x : λ ⊢1 x⋆

r : 0;− ⊢1 λx.x⋆

r : 0;− ⊢0 !(λx.x⋆)

r : 0;− ⊢0 r ⇐ !(λx.x⋆)

Figure 6. Derivation trees

4. Simulation by shallow-first

In this section, we first explain why we need a class of outer-bang
reduction strategies (Subsection 4.1). Then, we prove that shallow-
first simulates any outer-bang strategy and that the result applies to
call-by-value (Subsection 4.2).

4.1 Towards outer-bang strategies

Reordering a reduction sequence into a shallow-first one is an
iterating process where each iteration consists in commuting two
consecutive reduction steps which are applied in ‘deep-first’ order.

First, we show that this process requires a reduction which
is strictly larger than an usual call-by-value relation. Informally,
assume †V denotes a value. The following two reduction steps in
call-by-value style

set(r, †M)
1

−→ set(r, †V )
0

−→ ⋆ ‖ r ⇐ †V

commute into the shallow-first sequence

set(r, †M)
0

−→ ⋆ ‖ r ⇐ †M
1

−→ ⋆ ‖ r ⇐ †V

which is obviously not call-by-value: first, we write a non-value
†M to the store and second we reduce in the store! As another
example, the following two reduction steps in call-by-value style

(λx.λy.xy)†M
1

−→ (λx.λy.xy)†V
0

−→ λy.(†V )y

commute into the shallow-first sequence

(λx.λy.xy)†M
0

−→ λy.(†M)y
i

−→ λy.(†V )y

which is not call-by-value: we need to reduce inside a λ-abstraction
and this is not compatible with the usual notion of value.

Second, we show that an arbitrary relation like −→ is too large
to be simulated by shallow-first sequences. For instance, consider
the following reduction of a well-formed program:

let !x = !get(r) in §(xx) ‖ r ⇐ M

1
−→ let !x = !M in §(xx)

0
−→ §(MM)

(4.1)

This sequence is deep-first; it can be reordered into a shallow-first
one as follows:

let !x = !get(r) in §(xx) ‖ r ⇐ M

0
−→ §(get(r)get(r)) ‖ r ⇐ M

1
−→ §(Mget(r)) 9

(4.2)

However, the sequence cannot be confluent with the previous one
for we try to read the region two times by duplicating the redex
get(r). It turns out that a non shallow-first strategy may require
exponential time in the presence of side effects. Consider the well-
formed λ-abstraction

F = λx.let §x = x in §set(r, x); !get(r)

which transforms a §-term into a !-term (think of the type §A ⊸ !A
that would be rejected in LLL). Then, building on program Z given

in (3.5), take

Z′ = λx.let !x = x in F §(xx)

We observe an exponential explosion of the size of the following
well-formed program:

Z′Z′ . . . Z′

︸ ︷︷ ︸

n times

!⋆

−→∗ Z′Z′ . . . Z′

︸ ︷︷ ︸

n−1 times

(F §(⋆⋆))

−→∗ Z′Z′ . . . Z′

︸ ︷︷ ︸

n−1 times

(!(⋆⋆)) ‖ gr ⇐ §⋆

−→∗ !(⋆ ⋆ . . . ⋆
︸ ︷︷ ︸

)

2n times

‖ gr ⇐ §⋆ ‖ . . . ‖ gr ⇐ §⋆
︸ ︷︷ ︸

n times

where gr is a region collecting the garbage produced by the se-
quential composition operator of F . This previous sequence is not
shallow-first since the redexes set(r,M) and get(r) occurring at
depth 1 are alternatively applied with other redexes occurring at
depth 0. A shallow-first strategy would produce the reduction se-
quence

Z′Z′ . . . Z′

︸ ︷︷ ︸

n times

!⋆ −→∗ !(⋆ ⋆ get(r)get(r) . . . get(r)
︸ ︷︷ ︸

n−1 times

) ‖ S

where S is the same garbage store as previously but we observe no
size explosion.

Following these observations, our contribution is to identify an
intermediate outer-bang reduction relation that can be simulated
by shallow-first sequences. The keypoint is to prevent reductions
inside !-terms like in sequence (4.1). For this, we define the outer-
bang evaluation contexts F in Figure 7. They are not decomposable

F ::= [·] | λx.F | FM | MF | §F
let †x = F in M | let †x = M in F
set(r, F ) | (F ‖ M) | (M ‖ F ) | r ⇐ F

Figure 7. Outer-bang evaluation contexts

in a context of the shape E[!E′] and thus cannot be used to reduce
in !-terms. In the sequel, −→ob denotes reduction modulo evalua-
tion contexts F .

4.2 Simulation of outer-bang strategies

After identifying a proper outer-bang relation −→ob, the main
difficulty is to preserve the evaluation order of side effects by
shallow-first reordering. For example, the following two reduction
steps do not commute:

F1[set(r,Q)] ‖ F2[get(r)]

i
−→ F1[⋆] ‖ F2[get(r)] ‖ r ⇐ Q

j
−→ F1[⋆] ‖ F2[Q]

(4.3)



We claim that this is not an issue since the depth system enforces
that side effects on a given region can only occur at fixed depth,
hence that i = j. Therefore, we should never need to ‘swap’ a read
with a write on the same region.

We can prove the following crucial lemma.

Lemma 2 (Swapping). Let P be a well-formed program such that

P
i

−→ob P1

j
−→ob P2 and i > j. Then, there exists P ′ such that

P
j

−→ob P ′ i
−→ob P2.

Proof. We write M the contractum of the reduction P
i

−→ob P1

and N the redex of the reduction P1

j
−→ob P2. Assume they occur

at addresses wm and wn in P1. We distinguish three cases: (1) M
and N are separated (neither wm ⊑ wn nor wm ⊒ wn); (2) M
contains N (wm ⊑ wn); (3) N strictly contains M (wm ⊒ wn and
wm 6= wn). For each of them we discuss a crucial subcase:

1. Assume M is the contractum of a (set) rule and that N is
the redex of a (get) rule related to the same region. This case
has been introduced in example (4.3) where M and N are
separated by a parallel node. By well-formedness of P , the
redexes get(r) and set(r,Q) must occur at the same depth, that
is i = j, and we conclude that we do not need to swap the
reductions.

2. If the contractum M contains the redex N , N may not exist yet
in P which makes the swapping impossible. We remark that,

for any well-formed program Q such that Q
d

−→ob Q′, both the
redex and the contractum occur at depth d. In particular, this is
true when a contractum occurs in the store as follows:

Q = F [set(r, T )]
d

−→ob Q′ = F [⋆] ‖ r ⇐ T

By well-formedness of Q, there exists a region context R such
that R(r) = d and the redex set(r, T ) occurs at depth d. By the
revised definition of depth, the contractum T occurs at depth d
in the store. As a result of this remark, M occurs at depth i and
N occurs at depth j. Since i > j, it is clear that the contractum
M cannot contain the redex N and this case is void.

3. Let N be the redex let §x = §R in Q and let the contractum
M appears in R as in the following reduction sequence

P = F [let §x = §R′
in Q]

i
−→ob P1 = F [let §x = §R in Q]

j
−→ob P2 = F [Q[R/x]]

By well-formedness, x occurs exactly once in Q. This implies

that applying first P
j

−→ P ′ cannot discard the redex in R′.
Hence, we can produce the following shallow-first sequence of
the same length:

P = F [let §x = §R′
in Q]

j
−→ob P ′ = F [Q[R′/x]]

i
−→ob P2 = F [Q[R/x]]

Moreover, the reduction P ′ i
−→ob P2 must be outer-bang for x

cannot occur in a !-term in Q.

There are two notable differences with Terui’s swapping pro-
cedure. First, our procedure returns sequences of exactly the same
length as the original ones while his may return longer sequences.
The reason is that outer-bang contexts force redexes to be dupli-
cated before being reduced, as in reduction (4.2), hence our swap-
ping procedure cannot lengthen sequences more. The other differ-
ence is that his calculus is affine whereas ours is strictly linear.

Therefore his procedure might shorten sequences by discarding re-
dexes and this breaks the argument for strong polynomial termina-
tion. His solution is to introduce an auxiliary calculus with explicit
discarding for which swapping lengthens sequences. This is at the
price of introducing commutation rules which require quite a lot of
extra work to obtain the simulation result. We conclude that strict
linearity brings major proof simplifications while we have seen it
does not cause a loss of expressivity if we use garbage collecting
regions.

Using the swapping lemma, we show that any reduction se-
quence that uses outer-bang evaluation contexts can be simulated
by a shallow-first sequence.

Proposition 2 (Simulation by shallow-first). To any reduction se-
quence P1 −→∗

ob Pn corresponds a shallow-first reduction se-
quence P1 −→∗

ob Pn of the same length.

Proof. By simple application of the bubble sort algorithm: traverse
the original sequence from P1 to Pn, compare the depth of each
consecutive reduction steps, swap them by Lemma 2 if they are
in deep-first order. Repeat the traversal until no swap is needed.
Note that we never need to swap two reduction steps of the same
depth, which implies that we never need to reverse the order of
dependent side effects. For example, in Figure 8, the sequence

P
2

−→ob P ′ 1
−→ob P ′′ 0

−→ob P ′′′ is reordered into P
0

−→ob

C
1

−→ob B
2

−→ob P ′′′ by 3 traversals.

P
2

−→ob P ′ 1
−→ob P ′′ 0

−→ob P ′′′

P
1

−→ob A
2

−→ob P ′′ 0
−→ob P ′′′

P
1

−→ob A
0

−→ob B
2

−→ob P ′′′

P
0

−→ob C
1

−→ob B
2

−→ob P ′′′

Figure 8. Reordering of P −→∗
ob P ′′′ in shallow-first

As an application, we show that the simulation result applies to
a call-by-value operational semantics that we define in Figure 9. We

-values V ::= x | ⋆ | r | λx.M | †V
-terms M ::= V | MM | §M | let †x = M in M

get(r) | set(r,M) | (M ‖ M)
-stores S ::= r ⇐ V | (S ‖ S)
-programs P ::= M | S | (P ‖ P )
-contexts Fv ::= [·] | FvM | V Fv | §Fv

let †x = Fv in M | set(r, Fv)
(Fv ‖ P ) | (P ‖ Fv)

-reduction rules-
(βv) Fv[(λx.M)V ] −→v Fv[M [V/x]]
(!v) Fv[let !x = !V in M ] −→v Fv[M [V/x]]
(§v) Fv[let §x = §V in M ] −→v Fv[M [V/x]]
(getv) Fv[get(r)] ‖ r ⇐ V −→v Fv[V ]
(setv) Fv[set(r, V )] −→v Fv[⋆] ‖ r ⇐ V
(gcv) Fv[⋆ ‖ M ] −→v Fv[M ]

Figure 9. CBV syntax and operational semantics

revisit the syntax of programs with a notion of value V that may be
a variable, unit, a region, a λ-abstraction or a †-value. Terms and
programs are defined as previously (see Figure 2) except that !M
cannot be constructed unless M is a value. Store assignments are
restricted to values. Evaluation contexts Fv are left-to-right call-by-
value (obviously we do not evaluate in stores). The call-by-value



reduction relation is denoted by −→v and is defined modulo Fv

and ≡.
From a programming viewpoint, we shall only duplicate values.

This explains why we do not want to construct !M if M is not a
value.

Call-by-value contexts Fv are outer-bang contexts since Fv can-
not be decomposed as E[!E′]. This allows the relation −→ob to
contain the relation −→v. As a result, we obtain the following
corollary.

Corollary 1 (Simulation of CBV). To any reduction sequence
P1 −→∗

v Pn corresponds a shallow-first reduction sequence
P1 −→∗

ob Pn of the same length.

Remark that we may obtain a non call-by-value sequence but
that the semantics of the program is preserved (we compute Pn).

5. Polynomial soundness of shallow-first

In this section we prove that well-formed programs admit polyno-
mial bounds with a shallow-first strategy. We stress that this subsec-
tion is similar to Terui’s [18]; the main difficulty has been to design
the polynomial depth system such that we could adopt a similar
proof method.

As a first step, we define an unfolding transformation on pro-
grams.

Definition 5. (Unfolding) The unfolding at depth i of a program

P , written ♯i(P ), is defined as follows:

♯i(x) = x
♯i(r) = r
♯i(⋆) = ⋆

♯i(λx.M) = λx.♯i(M)
♯i(MN) = ♯i(M)♯i(N)

♯i(†M) =

{

†♯i−1(M) if i > 0
†M if i = 0

♯i(let †x = M in N) =







if i = 0,M = !M ′ and † = ! :
let !x = MM . . .M

︸ ︷︷ ︸

k times

in ♯0(N)

where k = FO(x, ♯0(N))

otherwise:

let †x = ♯i(M) in ♯i(N)

♯i(get(r)) = get(r)
♯i(set(r,M)) = set(r, ♯i(M))
♯i(r ⇐ M) = r ⇐ ♯i(M)
♯i(P1 ‖ P2) = ♯i(P1) ‖ ♯i(P2)

This unfolding procedure is intended to duplicate statically the
occurrences that will be duplicated by redexes occurring at depth i.
For example, in the following reductions occurring at depth 0:

P = let !x = !M in (let !y = !x in §(yy) ‖ let !y = !x in §(yy))

0

−→∗ §(MM) ‖ §(MM)

the well-formed program P duplicates the occurrence M four
times. We observe that the unfolding at depth 0 of P reflects this
duplication:

♯0(P ) = let !x = !M !M !M !M in

(let !y = !x!x in §(yy) ‖ let !y = !x!x in §(yy))

Unfolded programs are not intended to be reduced. However, the
size of an unfolded program can be used as a non increasing
measure in the following way.

Lemma 3. Let P be a well-formed program such that

P
i

−→ P ′. Then |♯i(P ′)| ≤ |♯i(P )|.

Proof. First, we assume the occurrences labelled with ‘‖’ and
‘r ⇐’ do not count in the size of a program and that ‘set(r)’
counts for two occurrences, such that the size strictly decreases by
the rule (set). Then, it is clear that (!) is the only reduction rule that
can make the size of a program increase, so let

P = F [let !x = !N in M ]
i

−→ P ′ = F [M [N/x]]

We have

♯i(P ) = F ′[let !x = !N !N . . . !N
︸ ︷︷ ︸

n times

in ♯0(M)]

♯i(P ′) = F ′[♯0(M [N/x])]

for some context F ′ and n = FO(x, ♯0(M)). Therefore we are left
to show

|♯0(M [N/x])| ≤ |let !x = !N !N . . . !N
︸ ︷︷ ︸

n times

in ♯0(M)|

which is clear since N must occur n times in ♯0(M [N/x]).

We observe in the following lemma that the size of an unfolded
program bounds quadratically the size of the original program.

Lemma 4. If P is well-formed, then for any depth i ≤ d(P ):

1. FO(♯i(P )) ≤ |P |,

2. |♯i(P )| ≤ |P | · (|P | − 1),

Proof. By induction on P and i.

We can then bound the size of a program after reduction.

Lemma 5 (Squaring). Let P be a well-formed program such that

P
i

−→∗ P ′. Then:

1. |P ′| ≤ |P | · (|P | − 1)
2. the length of the sequence is bounded by |P |

Proof.

1. By Lemma 3 it is clear that |♯i(P ′)| ≤ |♯i(P )|. Then by
Lemma 4-2 we obtain |♯i(P ′)| ≤ |P | · (|P | − 1). Finally it
is clear that |P ′| ≤ |♯i(P ′)| thus |P ′| ≤ |P | · (|P | − 1).

2. It suffices to remark |P ′|i < |P |i ≤ |P |.

Finally we obtain the following theorem for a shallow-first
strategy using any evaluation context.

Theorem 1 (Polynomial bounds). Let P be a well-formed program
such that d(P ) = d and P −→∗ P ′ is shallow-first. Then:

1. |P ′| ≤ |P |2
d

2. the length of the reduction sequence is bounded by |P |2
d

Proof. The reduction P −→∗ P ′ can be decomposed as P =

P0

0

−→∗ P1

1

−→∗ . . .
d−1

−→∗ Pd

d

−→∗ Pd+1 = P ′. To prove (1),

we observe that by iterating Lemma 5-1 we obtain |Pd| ≤ |P0|
2d .

Moreover it is clear that |Pd+1| ≤ |Pd|. Hence |P ′| ≤ |P |2
d

. To
prove (2), we first prove by induction on d that |P0|+ |P1|+ . . .+

|Pd| ≤ |P0|
2d . By Lemma 5-2, it is clear that the length of the



reduction P −→∗ P ′ is bounded by |P0| + |P1| + . . . + |Pd|,

which is in turn bounded by |P0|
2d .

It is worth noticing that the first bound takes the size of all the
threads into account and that the second bound is valid for any
thread interleaving.

Corollary 2 (Call-by-value is polynomial). The call-by-value eval-
uation of a well-formed program P of size n and depth d can be

computed in time O(n2d ).

Proof. Let P −→∗
v P ′ be the call-by-value reduction sequence of

the well-formed program P . By Corollary 1 we can reorder the
sequence into a shallow-first sequence P −→∗

ob P ′ of the same

length. By Theorem 1 we know that its length is bounded by |P |2
d

and that |P ′| ≤ |P |2
d

.

6. A polynomial type system

The depth system entails termination in polynomial time but does
not guarantee that programs ‘do not go wrong’. In particular, the
well-formed program in (3.6) get stuck on a non-value. In this sec-
tion, we propose a solution to this problem by introducing a poly-
nomial type system as a simple decoration of the polynomial depth
system with linear types. Then, we derive a progress proposition
which guarantees that well-typed programs cannot deadlock (ex-
cept when trying to read an empty region).

We define the syntax of types and contexts in Figure 10. Types

-type variables t, t′, . . .
-types α ::= B | A
-res. types A ::= t | 1 | A ⊸ α | †A | ∀t.A | Reg

r
A

-var. contexts Γ ::= x1 : (u1, A1), . . . , xn : (un, An)
-reg. contexts R ::= r1 : (δ1, A1), . . . , rn : (δn, An)

Figure 10. Syntax of types, effects and contexts

are denoted with α, α′, . . .. Note that we distinguish a special
behaviour type B which is given to the entities of the language
which are not supposed to return a result (such as a store or several
terms in parallel) while types of entities that may return a result are
denoted with A. Among the types A, we distinguish type variables
t, t′, . . ., a terminal type 1, a linear functional type A ⊸ α, the
type !A of terms of type A that may be duplicated, the type §A
of terms of type A that may have been duplicated, the type ∀t.A
of polymorphic terms and the type Reg

r
A of regions r containing

terms of type A. Hereby types may depend on regions.
In contexts, usages play the same role as in the depth system.

Writing x : (u,A) means that the variable x ranges on terms
of type A and can be bound according to u. Writing r : (δ,A)
means that the region r contain terms of type A and that get(r)
and set(r,M) may only occur at depth δ. The typing system will
additionally guarantee that whenever we use a type Reg

r
A the

region context contains a hypothesis r : (δ,A).
Because types depend on regions, we have to be careful in stat-

ing in Figure 11 when a region-context and a type are compati-
ble (R ↓ α), when a region context is well-formed (R ⊢), when
a type is well-formed in a region context (R ⊢ α) and when a
context is well-formed in a region context (R ⊢ Γ). A more in-
formal way to express the condition is to say that a judgement
r1 : (δ1, A1), . . . , rn : (δn, An) ⊢ α is well formed provided that:
(1) all the region constants occurring in the types A1, . . . , An, α
belong to the set {r1, . . . , rn}, (2) all types of the shape Reg

ri
B

with i ∈ {1, . . . , n} and occurring in the types A1, . . . , An, α are
such that B = Ai.

R ↓ t R ↓ 1 R ↓ B

R ↓ A R ↓ α

R ↓ (A ⊸ α)

R ↓ A

R ↓ †A

r : (δ,A) ∈ R

R ↓ Reg
r
A

R ↓ A t /∈ R

R ↓ ∀t.A

∀r : (δ,A) ∈ R
R ↓ A

R ⊢

R ⊢ R ↓ α

R ⊢ α

∀x : (δ,A) ∈ Γ
R ⊢ A
R ⊢ Γ

Figure 11. Types and contexts

Example 2. One may verify that the judgment r : (δ,1 ⊸

1) ⊢ Reg
r
(1 ⊸ 1) can be derived while judgements r : (δ,1) ⊢

Reg
r
(1 ⊸ 1) and r : (δ,Reg

r
1) ⊢ 1 cannot.

We notice the following substitution property on types.

Proposition 3. If R ⊢ ∀t.A and R ⊢ B then R ⊢ A[B/t].

A typing judgement takes the form: R; Γ ⊢δ P : α. It attributes
a type α to the program P occurring at depth δ, according to
region context R and variable context Γ. Figure 12 introduces the
polynomial type system. We comment on some of the rules. A
λ-abstraction may only take a term of result-type as argument,
i.e. two threads in parallel are not considered an argument. The
typing of †-terms is limited to result-types for we may not duplicate
several threads in parallel. There exists two rules for typing parallel
programs. The one on the left indicates that a program P2 in parallel
with a store or a thread producing a terminal value should have the
type of P2 since we might be interested in its result (note that we
omit the symmetric rule for the program (P2 ‖ P1)). The one on
the right indicates that two programs in parallel cannot reduce to a
single result.

Example 3. The program of Figure 3 is well-typed according to
the following derivable judgement:

R;− ⊢δ
let !x = get(r) in set(r, (!x)(§x)) ‖ r ⇐ !(λx.x⋆) : 1

where R = r : (δ,∀t.!((1 ⊸ t) ⊸ t)). Whereas the program
in (3.6) is not.

Remark 1. We can easily see that a well-typed program is also
well-formed.

The polynomial type system enjoys the subject reduction prop-
erty for the largest relation −→⊇−→ob⊇−→v.

Lemma 6 (Substitution).

1. If R; Γ, x : (λ,A) ⊢δ M : B and R; Γ ⊢δ N : A then

R; Γ ⊢δ M [N/x] : B.

2. If R; Γ, x : (§, A) ⊢δ M : B and R; Γ ⊢δ §N : §A then

R; Γ ⊢δ M [N/x] : B.

3. If R; Γ, x : (!, A) ⊢δ M : B and R; Γ ⊢δ !N : !A then

R; Γ ⊢δ M [N/x] : B.

Proposition 4 (Subject Reduction). If R; Γ ⊢δ P : α and P −→
P ′ then R; Γ ⊢δ P ′ : α.



R ⊢ Γ x : (λ,A) ∈ Γ

R; Γ ⊢δ x : A

R ⊢ Γ

R; Γ ⊢δ ⋆ : 1

R ⊢ Γ

R; Γ ⊢δ r : Reg
r
A

FO(x,M) = 1
R; Γ, x : (λ,A) ⊢δ M : α

R : Γ ⊢δ λx.M : A ⊸ α

R; Γ ⊢δ M : A ⊸ α
R; Γ ⊢δ N : A

R; Γ ⊢δ MN : α

FO(M) ≤ 1
R; Γλ ⊢δ+1 M : A

R; Γ!,∆§,Ψλ ⊢δ !M : !A

R; Γ ⊢δ M : !A FO(x,N) ≥ 1
R; Γ, x : (!, A) ⊢δ N : α

R; Γ ⊢δ let !x = M in N : α

R; Γλ,∆λ ⊢δ+1 M : A

R; Γ§,∆!,Ψλ ⊢δ §M : §A

R; Γ ⊢δ M : §A FO(x,N) = 1
R; Γ, x : (§, A) ⊢δ N : α

R; Γ ⊢δ let §x = M in N : α

t /∈ (R; Γ)
R; Γ ⊢δ M : A

R; Γ ⊢δ M : ∀t.A

R; Γ ⊢δ M : ∀t.A R ⊢ B

R; Γ ⊢δ M : A[B/t]

R ⊢ Γ r : (δ,A) ∈ R

R; Γ ⊢δ get(r) : A

r : (δ,A)
R; Γ ⊢δ M : A

R; Γ ⊢δ set(r,M) : 1

r : (δ,A)
R; Γ ⊢δ M : A

R; Γ ⊢0 r ⇐ M : B

R; Γ ⊢δ P1 : 1 or P1 = S
R; Γ ⊢δ P2 : α

R; Γ ⊢δ (P1 ‖ P2) : α

R; Γ ⊢δ Pi : αi

R; Γ ⊢δ (P1 ‖ P2) : B

Figure 12. A polynomial type system

Finally, we establish a progress proposition which shows that
any well-typed call-by-value program (i.e. defined from Figure 9)
reduces to several threads in parallel which are values or deadlock-
ing reads.

Proposition 5 (Progress). Suppose P is a closed typable call-
by-value program which cannot reduce. Then P is structurally
equivalent to a program

M1 ‖ · · · ‖ Mm ‖ S1 ‖ · · · ‖ Sn m,n ≥ 0

where Mi is either a value or can only be decomposed as a term
Fv[get(r)] such that no value is associated with the region r in the
stores S1, . . . , Sn.

7. Expressivity

We now illustrate the expressivity of the polynomial type sys-
tem. First we show that our system is complete in the extensional
sense: every polynomial time function can be represented (Subsec-
tion 7.1). Then we introduce a language with memory locations
representing higher-order references for which the type system can
be easily adapted (Subsection 7.2). Building on this language, we
give an example of polynomial programming (Subsection 7.3).

As a first step, we define some Church-like encodings in Fig-
ure 13 where we abbreviate λx.let †x = x in M by λ†x.M . We
have natural numbers of type Nat, binary natural number of type
BNat and lists of type List A that contain values of type A.

7.1 Polynomial completeness

The representation of polynomial functions relies on the repre-
sentation of binary words. The precise notion of representation is
spelled out in the following definitions.

Definition 6. (Binary word representation) Let − ⊢δ M : §pBNat
for some δ, p ∈ N. We say M represents w ∈ {0, 1}∗, written
M  w, if M −→∗ §pw.

Definition 7. (Function representation) Let − ⊢δ F : BNat ⊸

§dBNat where δ, d ∈ N and f : {0, 1}∗ → {0, 1}∗. We say F
represents f , written F  f , if for any M and w ∈ {0, 1}∗ such

that − ⊢δ M : BNat and M  w, FM  f(w).

The following theorem is a restatement of Girard [12] and
Asperti [4].

Nat = ∀t.!(t ⊸ t) ⊸ §(t ⊸ t)
n : Nat

n = λ!f.§(λx.f(. . . (f
︸ ︷︷ ︸

n times

x)))

add : Nat ⊸ Nat ⊸ Nat

add = λm.λn.λ!f.let §y = m!f in
let §z = n!f in §(λx.y(zx))

BNat = ∀t.!(t ⊸ t) ⊸ !(t ⊸ t) ⊸ §(t ⊸ t)
for w = i0 . . . in ∈ {0, 1}∗

w : BNat

w = λ!x0.λx
!
1.§(λz.xi0(. . . (xinz)))

List A = ∀t.!(A ⊸ t ⊸ t) ⊸ §(t ⊸ t)
[u1, . . . , un] : List A
[u1, . . . , un] = λf !.§(λx.fu1(fu2 . . . (funx)))

list it : ∀u.∀t.!(u ⊸ t ⊸ t) ⊸ List u ⊸ §t ⊸ §t
list it = λf.λl.λ§x.let §y = lf in §(yx)

Figure 13. Church encodings

Theorem 2 (Polynomial completeness).
Every function f : {0, 1}∗ → {0, 1}∗ which can be computed by
a Turing machine in time bounded by a polynomial of degree d can

be represented by a term of type BNat ⊸ §dBNat.

7.2 A language with higher-order references

Next, we give an application of the language with abstract regions
by presenting a connection with a language with dynamic memory
locations representing higher-order references.

The differences with the region-based system are presented in
Figure 14. We introduce terms of the form νx.M to generate a
fresh memory location x whose scope is M . Contexts are call-by-
value and allow evaluation under ν binders. The structural rule (ν)
is for scope extrusion. Region constants have been removed from
the syntax of terms hence reduction rules (getν) and (setν) relate
to memory locations. The operational semantics of references is
adopted: when assigning a value to a memory location, the previous
value is overwritten, and when reading a memory location, the



M ::= . . . | νx.M
Fν ::= Fv | νx.Fν

(ν) Fν [νx.M ] ≡ νx.Fν [M ]
if x /∈ FV(Fν)

(getν) Fν [get(x)] ‖ x ⇐ V −→ν Fν [V ] ‖ x ⇐ V
(setν) Fν [set(x, V )] ‖ x ⇐ V ′ −→ν Fν [⋆] ‖ x ⇐ V

R; Γ, x : (u,Regr!A) ⊢δ M : B

R; Γ ⊢δ νx.M : B

R(r) = (δ, !A)
R; Γ ⊢δ x : Regr!A

R; Γ ⊢δ get(x) : !A

R(r) = (δ, !A)
R; Γ ⊢δ x : Regr!A
R; Γ ⊢δ M : !A

R; Γ ⊢δ set(x,M) : 1

R(r) = (δ, !A)
R; Γ ⊢δ x : Regr!A
R; Γ ⊢δ V : !A

R; Γ ⊢0 x ⇐ V : B

Figure 14. A call-by-value system with references

value is copied from the store. We see in the typing rules that region
constants still appear in region types and that a memory location
must be a free variable that relates to an abstract region r by having
the type RegrA.

There is a simple translation from the language with memory
locations to the language with regions. It consists in replacing the
(free or bound) variables with a region type of the shape RegrA by
the constant r. We then observe that read access and assignments to
references are mapped to several reduction steps in the system with
regions. It requires the following observation: in the typing rules,
memory locations only relate to regions with duplicable content
of type !A. This allows us to simulate the copy from memory
mechanism of references by decomposing it into a consume and
duplicate mechanism in the language with regions. More precisely:
an occurrence of get(x) where x relates to region r is translated
into

let !y = get(r) in set(r, !y) ‖ !y

such that

Fv[let !y = get(r) in set(r, !y) ‖ !y] ‖ r ⇐ !V

−→+
v F [!V ] ‖ r ⇐ !V

simulates the reduction (getν). Also, it is easy to see that a re-
duction step (setν) can be simulated by exactly one reduction step
(setv). Since typing is preserved by translation, we conclude that
any time complexity bound can be lifted to the language with ref-
erences.

Note that this also works if we adopt the operational seman-
tics of communication channels; in that case, memory locations can
also relate to regions containing non-duplicable content since read-
ing a channel means consuming the value.

7.3 Polynomial programming

Using higher-order references, we show that it is possible to pro-
gram the iteration of operations producing a side effect on an in-
ductive data structure, possibly in parallel.

Here is the function update taking as argument a memory
location x related to region r and incrementing the numeral stored
at that location:

r : (3, !Nat);− ⊢2 update : !Regr!Nat ⊸ §1 ⊸ §1
update = λ!x.λ§z.§(set(x, let !y = get(x) in !(add 2 y)) ‖ z)

The second argument z is to be garbage collected. Then we de-
fine the program run that iterates the function update over a list
[!x, !y, !z] of 3 memory locations:

r : (3, !Nat) ⊢1 run : §§1
run = list it !update [!x, !y, !z] §§⋆

All addresses have type !Regr!Nat and thus relate to the same
region r. Finally, the program run in parallel with some store
assignments reduces as expected:

run ‖ x ⇐ !m ‖ y ⇐ !n ‖ z ⇐ !p
−→∗

ν §§⋆ ‖ x ⇐ !2 +m ‖ y ⇐ !2 + n ‖ z ⇐ !2 + p

Note that due to the Church-style encoding of numbers and lists,
we assume that the relation −→ν may reduce under binders when
required.

Building on this example, suppose we want to write a program
of three threads where each thread concurrently increments the
numerals pointed by the memory locations of the list. Here is
the function gen threads taking a functional f and a value x as
arguments and generating three threads where x is applied to f :

r : (3, !Nat) ⊢0 gen threads : ∀t.∀t′.!(t ⊸ t′) ⊸ !t ⊸ B

gen threads = λ!f.λ!x.§(fx) ‖ §(fx) ‖ §(fx)

We define the functional F like run but parametric in the list:

r : (3, !Nat) ⊢1 F : List !Regr!Nat ⊸ §§1
F = λl.list it !update l §§⋆

Finally the concurrent iteration is defined in run threads:

r : (3, !Nat) ⊢0 run threads : B
run threads = gen threads !F ![!x, !y, !z]

The program is well-typed for side effects occurring at depth 3 and
it reduces as follows:

run threads ‖ x ⇐ !m ‖ y ⇐ !n ‖ z ⇐ !p
−→∗

ν §§§⋆ ‖ x ⇐ !6 +m ‖ y ⇐ !6 + n ‖ z ⇐ !6 + p

Note that different thread interleavings are possible but in this
particular case they are confluent.

8. Conclusion and Related work

We have proposed a type system for a higher-order functional lan-
guage with multithreading and side effects that guarantees termi-
nation in polynomial time, covering any scheduling of threads and
taking account of thread generation. To the best of our knowledge,
there appears to be no other characterization of polynomial time
in such a language. The polynomial soundness of the call-by-value
strategy relies on the simulation of call-by-value by a shallow-first
strategy which is proved to be polynomial. The proof is a signifi-
cant adaptation of Terui’s methodology [18]: it is greatly simplified
by a strict linearity condition and based on a clever analysis of the
evaluation order of side effects which is shown to be preserved.

Related work The framework of light logics has been previously
applied to a higher-order π-calculus [14] and a functional language
with pattern-matching and recursive definitions [6]. The notion of
stratified region1 has been proposed [1, 7] to ensure the termination
of a higher-order multithreaded language with side effects . In
the setting of synchronous computing, static analyses have been
developed to bound resource consumption in a synchronous π-
calculus [2] and a multithreaded first-order language [3]. Recently,
the framework of complexity information flow have been applied to
characterize polynomial multithreaded imperative programs [17].

1 Here we speak of stratification by means of a type-and-effect discipline,
this is not to be confused with the notion of stratification by depth level that
is used in the present paper.
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