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Abstract: Planners and designers are interested in replicating biospheric landscape patterns to reclaim surface 

mines to match existing natural landscape patterns.  One approach that shows promise is the use of fractal 

geometry to generate biospheric landscape patterns.  While the measurement of the actual fractal dimension of a 

landscape can be difficult, a box-counting method was developed at AgroCampus Ouest, Angers, France which 

approximates the spatial patterns of biospheric landscapes.  Essentially the procedure entails covering a natural 

object/pattern with a regular grid of size r and then one simply counts the number of grid boxes, N(r), that 

contain some part of the object.  The boxes are subdivided and the value of r is progressively reduced and N(r) 

is similarly re-measured until some of the boxes become empty (containing no landscape objects of interest).  

Then the fractal dimension of the object is approximated to be the log(N(r))/log(1/r).  We illustrate this 

procedure by measuring and replicating a stand of trees in the Upper Peninsula of Michigan and applying the 

method for a planting plan on a surface mine. Our study revealed a fractal number of 1.017 (p<0.01), with a 

mean of 77.4 trees per 100 m by 100 m stand, and a standard deviation of 34.87 trees per stand. 

 

Key-words: - landscape architecture, landscape planning, physical geography, landscape ecology, landscape 

science, plant ecology   

 

1  Introduction 
Planners, designers, and environmental specialists 

are interested in assessing the spatial composition of 

landscape features such as the distribution of hills, 

arrangement of vegetation, and shapes of water 

bodies to blend disturbed landscapes with natural 

landscapes.  However natural looking compositions 

were difficult to mathematically replicate.  Typical 

approaches employed to replicate landscapes 

included gestalt methods and ecological field 

laboratory methods. The gestalt method was 

heuristic in nature where an individual would 

artistically blend and integrate patterns together.  

The ecological field laboratory method employed the 

measures of frequency, density, and size to construct 

patterns. A different approach evolved that relied 

upon the concept of fractals to quantify spatial 

patterns in the landscape.  

 

 

1.1  Origin of Fractals 
Fractals were first noticed/observed at the end of the 

19th century.  Although the term "fractal" was only 

attributed later, the Peano curves seem to be the very 

first examples of fractal objects, first described by 

Guiseppe Peano (1858 – 1932).  These were curves 

that could, through a series of iterations and a few 

simple rules, fill a space [12].  Such mathematical 

objects have been considered as mere mathematical 

curiosities for a long time.  

Fractals have been the heart of a new branch of 

mathematics only in the second half of the 20th 

century, thanks to the work of the French 

mathematician Benoît Mandelbrot. While 

researching "econometry" (mathematics applied to 

economy), he discovered that there is no difference 

in the shape/pattern of the curves of predicting short-

term and long-term prices. He presents a 

comprehensive description of the curves following 

this property and invented the word fractal (coming 
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from the Latin word fractus, meaning broken) to 

name the objects where irregularity distinguishes 

them from the Euclidian geometry curves.  Since 

their discovery, the use and application of fractals 

have spread. They are now used in many sciences 

including geology, biology and econometrics.  

 

 

1.2 Further Descriptions Illustrating Fractals 
To illustrate the concept of fractals, imagine a tour 

along the French coastline of Brittany, a rugged 

rocky coastline. What is the actual length of this 

coastline?  To determine the length of the coastline, 

one can look at two forms for resolution: 

 

1. a series of pictures from 10,000 meters high 

and calculating the visible length of the coast. 

 

2. a second series of pictures from 500 m high 

and observing details of the coastline one meter by 

one meter. 

 

After calculating the length, one will discover the 

coast is more precisely known in the second case 

and the calculated length is actually longer.  If one 

examines the coast at an even higher resolution, new 

details appear and the length of the coast will 

increase even more. The more precise the measuring 

instrument is, the more the length of the coast 

increases, because any one section of the coastline is 

equally as complex at any scale or resolution. The 

Brittany coastline example introduces a fundamental 

understanding of the fractal world. The complexity 

of the Brittany coast (being unable to be described 

with Euclidian geometry) makes it a fractal object. 

In the landscape, fractals are everywhere. 

A useful conceptual definition of a fractal is a 

"geometrical shape resulting from infinite regular 

fragmentation of a given form."  It is indeed possible 

to describe a fractal as a repetition of the same 

operation on each part of the curve.  An essential 

property results from this kind of internal 

homothetia: self-similarity.  If one looks closely at a 

piece of the curve, it looks like the whole curve 

itself.  The von Koch’s snowflake illustrates this 

property.  This von Koch's snowflake fractal, as 

most all the fractals, is easy to design even if the 

resulting shape is complex.  The von Koch’s 

snowflake has the geometric property where as the 

construction iteration process increases towards 

infinity, the total length L increases towards infinity.  

Therefore, the length of the curve is infinite. Here 

lies a paradox: the area of the von Koch’s snowflake 

A is a finite measure (see equations 1 and 2). 
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In many respects there is little difference between 

the mathematics of fractals and descriptive statistics. 

 

 
Figure 1.  Four iterations of the Koch Snowflake.  At an 

infinite number the perimeter of the snowflake 

approaches infinity but the area is finite.  
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1.3  Geometric Properties of Fractals 
Geometric properties of fractals are used in many 

models and numerous sciences [8] [9] [15].  For 

example in economics, fractals are used in complex 

random phenomena, such as in finance to represent 

the variations of the prices on the trade market.  In 

climatology, fractal models can also be applied to 

understand the turbulence of atmospheric 

movements. In geology, they can be used for 

modeling the earth relief or rock porosity.  For 

computer sciences, fractals assist in finding the 

optimal arrangement of electronic components, to 

avoid crossings of circuit tracks.  In chemistry, they 

are used to design new materials.  The fractal nature 

of such materials gives them exceptional properties, 

such as a very high thermal cooling power. 

 

 

1.4 Planning and Design Applications 
There is a belief that fractals may have an 

application to recreate complex landscape patterns 

that are difficult to describe with typical Euclidian 

approaches because the landscape is full of fractals: 

rivers, trees, landscape networks in general [1].  

Fractals are highly detailed, complex geometric 

shapes and one measure of their complexity is fractal 

dimension [12]. Thus several authorities have 

examined fractals in landscape planning and design 

including studies by Diaz-Delgado, Lloret, and Pon; 

DiBari; Griffith, Martinko, and K.P. Price; Li; 

Milne; Palmer; and  Thomas, Grankhauser, and 

Biernacki; [3] [4] [7] [10] [13] [14] [16]. However, 

the use of fractals seems to be looking for a practical 

application.  For example in describing landscapes, 

it has always been easy to calculate an existing 

pattern, but difficult to replicate the pattern.  In this 

paper we present an approach to replicate the pattern 

and possibly a practical approach in the use of 

fractals.  

 

 

2  Methodology 
The approach in the methodology is related to the 

dimensions of fractals.  Both Euclidian geometry 

and fractal geometry have dimension number.  In 

Euclidian geometry, the point (the elementary unit in 

geometry) is of Euclidian dimension 0.  Lines or 

curves are of dimension 1.  Areas are of dimension 

2, such as a circle or rectangle.  Volumes are of 

dimension 3, such as ball or cube.  Euclidian 

dimensions are also call topological dimensions and 

are named in honor of Euclidian geometric objects 

such as a circle or a square.  Fractal objects have 

dimensions too. 

2.1  Fractal Dimensions 
To illustrate fractal dimensions, consider the 

Brittany coastline.  If one needs to measure 1 m 

length of a relatively straight line with a 20 cm ruler, 

this ruler will be used 5 times, 10 times for a 10 cm 

ruler, 20 times for a 5 cm ruler.  Let’s suppose now 

that the line one needs to measure is highly variable 

and curved.  One will not be able to follow the 

coastline precisely with the ruler and one will under-

estimate the real length.  But, the smaller the ruler is, 

the more accurate the result.  To analyze this 

phenomenon in a mathematical way, one can say 

that the result tends towards the exact length of the 

line when the ruler is small when compared to the 

curvature of this line.  If one can divide the length of 

a ruler of an infinite small size by "n," one has to use 

this ruler n times more (same as if the line were 

straight). This property can define the topological 

dimension of the curve or line as we have (Equation 

3): 
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n
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                                         (3) 

 

Replicating the process again with a surface, one can 

use a square where the length of the side is L. To 

measure its area, one can use a smaller square where 

the length of the side is L/2, then you will need 4 of 

them, 16 with an L/4 square, and so on. So, if the 

length of the side of the measuring square is divided 

by "n," the number of such squares used is 

multiplied by "n" (Equation 4): 
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Similar results can be obtained for volumes and the 

topological dimension of a Euclidian geometric 

object with a fractal dimension of 3. 

In the relatively simple case of self-similar 

fractal objects (meaning they seem the same 

whichever zooming factor is used), resulting in a 

constant iterative factor "k," the fractal dimension is 

(Equation 5): 

( )
( )k

n
D fractal

log

log
=

    (5)

 

Where: 

n = is the number of the subsets counted 

during the scaling process using a factor 1/k 

(self-similarity factor). 

k = is the number of iterations            

The von Koch’s snowflake illustrates how to 

calculate the fractal dimension of self-similar fractal 
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objects.  Call L the initial length of the triangle (the 

snowflake starts as an equilateral triangle).  If one 

uses a ruler of length L and applies it on the 

snowflake, one can only measure the initial triangle 

and find a length of 3L for the snowflake.  If one 

uses a smaller ruler of size L/3, we can follow the 

snowflake more precisely and apply it 12 times.  

One can continue by dividing again the size of the 

ruler by 3 (the snowflake presents an infinite number 

of spikes, with smaller and smaller sizes), it will be 

applied 48 times, and so on.  In other words, each 

time the size of the ruler is divided by 3, the number 

of times it is applied on the snowflake is multiplied 

by 4.  This process can be carried on indefinitely.  

Then according to the same reasoning one can 

calculate the fractal dimension of the von Koch’s 

snowflake (Equation 6): 

 

( )
( )

262.1
3log

4log
≈=fractalD

                                      (6)

 

 

Therefore, we can only conclude that the fractal 

dimension of this strange curve is not 1 as any of 

classic linear geometrical curves. The von Koch’s 

snowflake has a topological dimension equal to 1 

(it’s a broken line), but a fractal dimension strictly 

greater than 1, and moreover, which is not an integer 

but a real number. 

 

 

2.2  Inverse box-counting method: a tool for 

replicating landscapes 
The fractal dimension is not easy to calculate but can 

be estimated by several methods.  The box-counting 

method is one of the easier and more popular 

methods to implement (Figure 2): the natural object 

is covered with a regular grid of size r and one 

simply counts the number of grid boxes, N(r), that 

contain some part of the object. The value of "r" is 

progressively reduced and N(r) is similarly 

measured. As "r" trends to very small values (0 in a 

theoretical way) one finds that log(N(r))/log(1/r) 

becomes the fractal dimension of the object. 

In our study, we illustrate the application of 

fractals in the planting pattern of trees in the Upper 

Peninsula of Michigan in Iron and Dickinson 

counties (Figure 3).  The location of trees can be 

placed on a map (100 meters by 100 meters) derived 

from an aerial photograph and measured.  This set of 

points (location of trees) can be viewed as a complex 

and fractal object in the landscape.  The box-

counting method is a simple way to characterize the 

complexity of this planting through the value of its 

fractal dimension. The greater the value of the 

fractal dimension (2 is the maximum value in a 

plane), the less the complexity of the planting 

pattern (in terms of scale, alignment, structure, etc.).  

This method was developed by Duchesne et al. [5] 

and computed by Durandet in the Landscape 

Department of the National Institute of Horticulture 

and Landscape (Angers, France), now the Unité de 

Recherche Paysage; AgroCampus Ouest [5] [6]. By 

using the inverse box-counting method one is able to 

control the randomness of a planting of trees or other 

natural landscape pattern with several parameters: 

the fractal dimension (D), the average minimum 

distance between two trees (εmin) and the average 

maximum size of the glades (εmax).  Figure 4 

illustrates some of the initial patterns for European 

vegetation generated by Unité de Recherche 

Paysage; AgroCampus Ouest. 

 

 
Figure 2.  Example of fractal pattern for a distribution of 

points and the plot, forming a regression line, supplied by 

Cyril Fleurant, Unité de Recherche Paysage; 

AgroCampus Ouest.  

 

 

 
Figure 3.  Location of the study areas of Iron and 

Dickinson Counties in the Upper Peninsula of Michigan.  
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Figure 4.  Fractal patterns of vegetation in European stands as supplied by Cyril Fleurant, Unité de Recherche Paysage; 

AgroCampus Ouest. 

 

In the process, the pairs of values r and the 

number of boxes N(r), start with a value of r being 

100 meters, and N(r) being one.  Then r is divided in 

half and r is 50 meters, while N(r) can range from 

one to four, depending upon how many boxes 

contain trees.  The pairs for the regression analysis 

start with the first pair where at least one box is 

empty and end when only one tree is found in any 

box. The slope of the regression equations represents 

the fractal number.   

We selected five 100 meter by 100 meter boxes 

in Iron County and five 100 meter by 100 meter 

boxes in Dickinson County [11] [17]. The areas that 

we selected to measure were rocky and dry xeric 

northern forests, an environment similar to waste 

rock piles on a surface mine where a fractal planting 

plan for dry forests might be appropriate [2].  These 

forests are predominantly composed of about 16% 

red pine (Pinus resinosa Sol. Ex Aiton), 21% jack 

pine (Pinus banksiana Lamb.), 15% Eastern white 
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pine (Pinus strobus L.), and 12% northern pin oak 

(Quercus ellipsoidalis E.J. Hill), plus a scattering of 

other trees such as 7% quaking aspen (Populus 

tremuloides Michx.), 3% red maple (Acer rubrum 

L.), 4% paper birch (Betulus papyrifera Marsh.), 4% 

northern red oak (Quercus rubra L.), 7% white oak 

(Quercus alba L.) and 7% of bigtooth aspen 

(Populus grandidentata Michx.). 

 

 

3  Results 
Figure 5 presents an aerial photograph of trees 

distributed in the study area of Iron County, 

Michigan; while Figure 6 illustrates the results 

related to one of the aerial plots, Iron County 2.  

Figure 7 and 8 illustrate a stand in Dickinson 

County, Michigan.   

 
Figure 5.  An aerial photograph from Iron County, 

Michigan with dimensions 100 meters by 100 meters.  

 
Figure 6.  The same aerial photograph from Iron County 

in Figure 5 now divided into grids with the location of 

trees. 

 
Figure 7.  An aerial photograph from Dickinson County, 

Michigan with dimensions 100 meters by 100 meters.  

 
Figure 8.  The same aerial photograph from Iron County 

in Figure 7 now divided into grids with the location of 

trees. 

 

From the 10 plots of trees, 43 pairs of numbers were 

derived (Table 1). The regression analysis revealed 

an adjusted r-square of 0.792, with a significant 

regression (p<0.01), a significant constant (p<0.01) 

and a significant predicator Ln(1/r) (p<0.01). The 

regression is expressed in Equation 7.  The slope of 

the line expressed in Equation 7 is 1.017.  This 

suggests that the fractal dimension is nearly a line in 

typology.   

 

Ln(N(r))= 1.017Ln(1/r)+5.875                               (7) 

Where: 

  N(r) = number of boxes with trees 

  r       = length of one side of box 
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The investigation revealed that each stand contained 

an average of 77.4 trees and a standard deviation of 

34.87 trees per stand. 

 

 

 

Table 1.  Pairs of numbers for regression analysis. 

 

Country Ln(1/r)  Ln(N(r)) 

 

Iron 1  -3.219  2.773 

   -2.526  4.043 

   -1.833  4.521 

   -1.139  4.787 

Iron 2  -3.219  2.773 

   -2.526  3.434 

   -1.833  3.738 

Iron 3  -4.605  0.000 

   -3.912  1.099 

   -3.219  2.485 

   -2.526  3.044 

   -1.833  3.526 

   -1.139  3.714 

Iron 4  -3.219  2.773 

   -2.526  3.951 

   -1.833  4.575 

   -1.139  4.796 

Iron 5  -3.912  1.386 

   -3.219  2.708 

   -2.526  3.219 

   -1.833  3.367 

Dickinson 1 -3.219  2.773 

   -2.526  4.060 

   -1.833  4.533 

   -1.139  4.727 

Dickinson 2 -3.219  2.773 

   -2.526  3.912 

   -1.833  4.489 

   -1.139  4.700 

   -0.446  4.718 

Dickinson 3 -3.912  1.386 

   -3.219  2.708 

   -2.526  3.526 

   -1.833  3.807 

   -1.139  3.829 

Dickinson 4 -3.219  2.773 

   -2.526  3.871 

   -1.833  4.407 

   -1.139  4.443 

Dickinson 5 -3.219  2.773 

   -2.526  3.714 

   -1.833  4.382 

   -1.139  4.190 

 

 

4  Discussion & Conclusion 
To apply the inverse box-counting approach to this 

area in the landscape one would then follow these 

procedures: 

A. Divide the landscape to be planted in 100 meter 

grids. 

B. Divide each 100 meter grid into grids with sides 

equal to 3.125 meters (the size of the smallest 

boxes in Figures 6 and 8). 

C. Randomly fill the 100 meter grids with an 

average of 77.4 trees per grid and a standard 

deviation of 35 trees.  The number of trees per 

grid can be increased proportionally if the 

mortality rate of the trees is known, such as a 

20% mortality rate means that the grids should 

be planted with an average of 97.75 trees. 

D.  The composition of the stands should be about:  

21% jack pine (Pinus banksiana Lamb.), 

16% red pine (Pinus resinosa Sol. Ex Aiton),  

15% Eastern white pine (Pinus strobus L.), 

12% northern pin oak (Quecus ellipsoidalis E.J. 

Hill)  

7% quaking aspen (Populus tremuloides 

Michx.),  

7% bigtooth aspen (Populus grandidentata 

Michx.), 

7% white oak (Quercus alba L.), 

4% paper birch (Betulus papyrifera Marsh.) 

4% northern red oak (Quercus rubra L.), 

3% red maple (Acer rubrum L.), 

4% assorted list of 24 trees by Curtis [2]. 

 

This approach is illustrated with Table 2 and with 

Figure 9, where 7.5 percent of random numbers were 

assigned to boxes with a 3.125 meter grid on a 100 

m by 100 m site located at the surface mine in the 

Upper Peninsula of Michigan.  In the Upper 

Peninsula of Michigan, a typical mine site contains 

waste rock, with environmental conditions similar to 

xeric forest sites in the region (Figure 10).  The 

process generated 46 boxes for planting trees.  46 

boxes are within one standard deviation (+35) of the 

average of 77.4, so 46 boxes were deemed 

acceptable.  Then each box was randomly assigned a 

tree species based upon the percentage of 

composition indicated by Curtis [2].  Table 3 lists 

the composition of the planting area.  Notice that 

because random numbers are employed, the 

composition may not be exactly the same as the 

percentages noted by Curtis [2].  The result will be 

that each planted stand will have variation. 

The planting scheme can be accomplished with 

seedlings being planted by hand or even with 

machine planting, as long as the tree is placed in the 

correct designated box.  
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Table 2.  Boxes with trees.  Both box number and 

tree species are randomly selected. 

 

Box Number Tree 

 

38 paper birch 

87 jack pine 

137 assorted trees 

154 northern pin oak 

160 Eastern white pine 

180 jack pine 

202 big tooth aspen 

205 Eastern white pine 

214 big tooth aspen 

232 northern red oak 

266 red pine 

317 big tooth aspen 

327 red maple 

366 jack pine 

379 Eastern white pine 

385 white oak 

401 quaking aspen 

417 red pine 

423 northern pin oak 

502 northern pin oak 

525 assorted trees 

544 jack pine 

545 jack pine 

561 red pine 

570 northern pin oak 

584 jack pine 

585 jack pine 

596 paper birch 

625 Eastern white pine 

665 red pine 

697 white oak 

706 white oak 

708 quaking aspen 

712 red pine 

719 jack pine 

729 Eastern white pine 

738 northern pin oak 

743 quaking aspen 

806 Eastern white pine 

878 quaking aspen 

890 Eastern white pine 

911 Eastern white pine 

931 Eastern white pine 

956 northern pin oak 

963 big tooth aspen 

972 jack pine 

 

 

 
 
Figure 9.  A planting plan example based in the 

methodology described in this paper: 1) jack pine, 2) red 

pine, 3) Eastern white pine, 4) northern pin oak, 5) 

quaking aspen, 6) big tooth aspen, 7) white oak, 8) paper 

birch, 9) northern red oak, 10) red maple, and 11) assorted 

trees from Curtis [2].  
 

 
Figure 10.  An example of a waste rock pile in the Upper 

Peninsula on Michigan (Used by permission of Jon Bryan 

Burley ©2007, all rights reserved).   
 

 

The inverse box-counting process illustrates that 

it is possible to use the fractal pattern to create a 

stand of vegetation.  The process employs 

calculating the fractal score of an existing pattern 

and employing the inverse box process to apply the 

pattern to a landscape.  However the inverse box-

counting process is a reverse process, as opposed to 

a forward process when investigators first began 

calculating the fractal scores of objects.  The reverse 

process takes an existing score to create something 

new.  Currently there is no mathematical proof that 

this process is truly reversible.  
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Table 3.  Tree  composition in the planting plan. 

 

Species   Plan  Curtis [2] 

 

jack pine   20%   21 % 

red pine   11%   16 % 

Eastern white pine  20%   15 % 

northern pin oak  13%   12 % 

quaking aspen     9%     7 % 

bigtooth aspen     9%     7 % 

white oak     7%     7 % 

paper birch     4%     4 % 

northern red oak    2%     4 % 

red maple     2%     3 % 

assorted list of 24 trees    3 %    4 % 

 

While this process has been employed with 

vegetation, we believe that it is possible to replicate 

fractal patterns of hills, waterways, and complex 

multi-species patterns.  We expect to explore this 

potential in the future.  In our study we did not 

differentiate various species of vegetation.  With  

more careful on-site study, it may be possible to 

gather multi-species data and construct patterns with 

numerous species (Figure 11). 

 

 
Figure 11.  This is a picture of the forest vegetation in the 

Upper Peninsula of Michigan.  Notice the interspersion of 

tree species.  Each species may have its own fractal 

number in the forest. 

 

We encourage reclamation and restoration 

planning and design specialists to explore the 

inverse box-counting method to create biospheric 

landscapes. 
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