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Stochastic modelling of tracer transport in three
dimensions
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Abstract Modelling of solute transport remains a key issue in the area of
groundwater contamination. The fundamental processes of solute transport are
advection and dispersion and an accurate description is needed for all
modelling studies. The most common approach (advection—dispersion
equation) considers an average advective flow rate and a Fickian-like
dispersion. Consequently, advection is independent of dispersion. Here we
propose a more accurate approach: advection is a function of the dispersive
behaviour of the solute and of the characteristics of the medium. This method
provides useful insight of the dispersion process in general. The aim of this
article is to present the mathematical background of the random walk model
and a simple numerical application.

INTRODUCTION

Solute transport model has been the subject of an intense research effort in recent years
and remains a key research area in hydrogeology. The motivations are the problems of
aquifer contamination and particularly migration of radionuclides from repository sites.

The movement of solute in porous media is commonly described by the
advection—dispersion equation:
dz‘v(D gradC - CU)= %-f- 1)
where C is the concentration, ¢ is the time, U is the average velocity, and D is the
dispersion tensor. This classical approach considers the dispersive mass flux equal to
Fick’s first law. With this approach, dispersion is said to be diffusive or Gaussian. The
most important drawbacks of use of the advection-dispersion equation (1) to simulate
solute transport can be attributed to the non-Fickian behaviour of the dispersive
transport as well as the apparent scale dependence of the dispersivity (Matheron & de
Marsily, 1980; Neuman, 1990; Dagan, 1990; Gelhar, 1993).

The fit of the advection—dispersion equation (1) to experimental data sometimes
fails because of non-Fickian behaviour leading to long tails in breakthrough curves and
skewness in the spatial dissemination of the solute.

PRINCIPLES OF THE 3-D MODEL

Transport of matter in a porous medium is a function of the pore-velocity. Its random
nature leads to an average advective velocity U but also to a random noise which
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represents the dispersion. Increasing the spatial scale will increase the number of
movements, hence the noise. Consequently, dispersion is scale-dependent.

Notations are introduced according to an orthonormal coordination system (i,,k)
such that i points to X, the direction of the average flow velocity vector. As
schematically shown in Fig. 1, vector v can be expressed relative to the basis (i,/,k) in
terms of the angles 8 and ¢. Then, the change in position of a particle during one time
step is written:

j : J _ s ;
—— =u’ cosB -qz—:u’sinecoscb Ez—=w’sinBsin¢;
dr de dt

where #/ is the velocity of the particle ;.

Fig. 1 Geometrical principles and general notation of the approach.

The stochastic behaviour of angles 6 and ¢ represents the spatial variance of the
vector w. The azimuthal angle ¢ is distributed within [0,x] in the plane perpendicular
to the main flow direction according to a uniform probability density function.

The polar angle 0 is distributed such that the probability of moving in the main
flow direction (X, by definition) is large, while a pathway perpendicular to X is very
weak. This probability is well described by a cosine function:

pdf(0) = Zcos’ 6 L P
b 2 2
Even in a homogeneous porous medium, the porosity distribution is scattered leading
to variation of particle velocities. A straightforward particle velocity distribution is the
Gaussian pdf, but also lognormal (like) distributions are plausible as tracers may move

in almost stagnant zones:

1112 um _uj
pdf (u’) = L exp| — s
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where #max 1s a parameter which denotes the faster velocity. Here, ¢ denotes the
skewness of the distribution, defined within 0 (no skewness, Gaussian) and ~2 (left-
skewed, lognormal).

The diffusion process is superimposed on the advective motion using the common
Gaussian law, here denoted by:

Eaal e - Dd:
pdf (&) = 3 mexp[ ZGZJ c Zpodx

where dz is the time step and Dy denotes the molecular diffusion coefficient. The
complete Markovian process including advection—diffusion—dispersion is then:

X! = i(xﬁ"' +u’dtcos, )

¥ = i(y“ +u’dtsin®, cosd),.)

i=1
Z! = Z(zg‘f +u’dtsin®, sind)i)
i=1
Dispersion is governed by parameter o. Figure 2 shows the resulting breakthrough
curves after transport through a simple column system.
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Fig. 2 Breakthrough curves for different values of the parameter o.

NUMERICAL MODEL VALIDATION TEST

In order to validate the mathematical basis of the model, it is useful to compare the
numerical calculations with an analytical solution. As we have no reliable solutions for
non-Fickian dispersion, the tests have been limited to Fickian transport, i.e. the
f:lassical one-dimensional (1-D) advection—dispersion. The model is tested for a pulse
injection with variations of molecular diffusion coefficient, of the average velocity and
of the spatial scale. The transport model is forced to be 1-D, i.e. the column length is
very long compared to the diameter. In a semi-infinite medium subjected to a uniform

flow, the analytical solution of a variable time injection is (Bear, 1972; de Marsily,
1986):



112 Cyril Fleurant & Jan van der Lee

~C(x,t)=& erfc x—_Ut +exp| — L erfc A (2)
2 2Dt D, 2Dt
where C, is the initial injected concentration, U is the average velocity, x is the

observation point, D, is the longitudinal dispersion coefficient and ¢ is the time, and
erfc denotes the complementary error function.

Variations of diffusion coefficient

Three simulations were carried out with three different values of the diffusion
coefficient. For these three simulations, the average velocity is constant
(U= 10"ms") and the dispersion parameters of the random walk model (c) is
equal to 0.05. The control location (x) is at 0.1 m from the injection point. The
dispersivity of the analytical solution is fitted (ax = 1.5 x 10™*). Figure 3 confirms
that the random walk transport model compares well with the advection—dispersion
equation.
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Fig. 3 Comparison between curves simulated by the random walk model and
analytical solution (equation (1)) for different values of the molecular diffusion
coefficient. Column length is 10 cm and | average velocity is 10°ms™. The dispersivity
of the analytical solution is fit to 1.510™* m and thc ra.ndom walk model zparamzter is

o = 0.05. Diffusion coefficients are 9.310" m’s” (1), 1.8610° m’s™" (2) and
93107 m?s™ (3).

Variations of the average velocity

Simulations were carried out with three values of the average velocity. The system
parameters are the same as those descnbed m the previous section. The diffusion
coefficient is constant and equal to 9.310™° !. The simulation shown in Fig. 4 also
confirms the mathematical basis of the random walk model. The fitting value of the
dispersivity is the same that in the previous section (ct; = 1.510™ m).

These two tests are a validation of use of the numerical model to simulate a
Fickian dispersive transport as the classical advection—dispersion equation.
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Fig. 4 Comparison between curves simulated by the random walk model and
analytical solution (equation (1)) for different valucs of the average velocity. Column
length is 10 cm and diffusion coefﬁcu:ut is 9.310"° m?s™. The dispersivity of the
analytical solution is fit to 1. 510 m and the random walk modcl parameter iso=
0.05. Average velocities are 210”° ms™ (1), 10° ms™ (2) and 510° ms™ (3).

Scale variations

One simulation was carried out at constant velocity (U= 10" ms™) and with a constant
value of the dispersion parameter of the random walk model (¢ = 0.05). Control planes
were set at x = 0.05, 0.1, 0.15 and 0.2 m (Fig. 5).

This test is of significance to the random walk model behaviour: even though o is
constant, the values of the dispersivity have to be increased with the distance from the
injection point to fit the model (see Table 1). The intrinsic dispersion of the random
walk model allows for the non-scale-dependent nature of the parameter c.
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Fig. 5 Comparison between curves simulated by the random walk model and
analytical solution (equation (1)) for different transport scale. Results are summarized
in Table 1. Distance locations are 20 cm (1), 15 cm (2), 10 cm (3) and 5 cm (4).

Table 1 Comparison between valucs of analytical dispersivities and the dLspcrswn parameter values of
the model. Average velocity is 10° ms™ and diffusion coefficient is 9.310"" m®s™

Control locations (m) Dispersivity (m’s™) c

0.05 1.510° 0.05
0.1 4.510° 0.05
0.15 5.510° 0.05

0.2 6.510° 0.05

—
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CONCLUSION

The random walk model presented is based on a mechanistic description of solute
dispersion in a porous medium. Trajectories of solute particles are described in three
dimensions by a random walk equation. The random pathways of a particle are
determined by two random angles. The heterogeneity of the porous medium is
described by a law of the velocities; the randomness of the particle’s velocity is
actually a representation of the distribution of the heterogeneity (porosity or
permeability). These heterogeneities are described by a parameter (c) which is the
variance of the microscopic velocities around the average velocity.

Some simulations were then carried out in order to validate the random walk
model with a 1-D analytical solution in the case of Fickian transport, and for a small
dispersive medium. It is important to note that breakthrough curves are obtained
without use of a numerical method which could introduce numerical dispersion.
Indeed, particles are simply counted when they go through a virtual plane which
corresponds to the distance location of the concentration control. The analytical
solution and breakthrough curves of the random walk model were in good agreement
for the three kinds of test made. The last test (scale test) is a significant demonstration
of the random walk model behaviour and shows that when advection and dispersion
are dependent, dispersion of a solute increases with the distance from its injection
point. This allows the use of scale-constant dispersion parameters.

This model is an interesting tool for study of more complex systems such as
transport of colloidal suspensions, including the volume and charge exclusion effects,
and the porosity occlusion by particle filtration. In fact, colloidal transport lends itself
to this kind of model because it is very easy to distinguish precisely, the dispersive
behaviour of the colloids on one hand, and on the other, the dispersive behaviour of the
solute.
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