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Dispersion de particules inertes dans une fracture rugueuse

Dispersion of inert particles in a rough fracture. This paper aims to show a transport model of either smooth or rough fractures. These are numerically generated by means of a fractal surface method. In order to study dispersion processes, a 3D transport model is used. This model is based on a random walk that takes into account both the sizes of the particles and the size exclusion effect of particles on the fracture walls. Simulations are carried out to study dispersion processes in which transport cases in either smooth or rough fractures and transport of several sizes particles are involved.

modelling / mass transport / non-Fickian dispersion / stochastic processes / poly-dispersion

Résumé -Cet article présente un modèle de transport en fracture, lisse ou rugueuse. La fracture est numériquement créée par le biais d'une méthode de surface fractale. Un modèle tridimensionnel de transport est alors utilisé, afin d'étudier les processus de dispersion. Ce modèle est basé sur une marche aléatoire, qui tient compte de la taille des particules et de l'effet d'exclusion de ces particules sur les parois de la fracture. Des simulations sont effectuées afin d'étudier les processus de dispersion pour les cas de transport en fractures lisses ou rugueuses et de transport de particules de tailles différentes.  2001 Académie des sciences / Éditions scientifiques et médicales Elsevier SAS modélisation / transport de masse / dispersion non fickienne / processus stochastique / polydispersion

Abridged version

In the case of a single fracture, the transport of aqueous solution might be considered either in two-dimensions, or in three-dimensions [START_REF] Neretnieks | Tracer movement in a single fissure in granitic rock: some experimental results ant their interpretation[END_REF][START_REF] Novakowski | Example of measuring hydrodynamic dispersion in a single fracture[END_REF]. In two-dimensions (in a plan), one supposes that the fluid runs out at a constant speed. In three-dimensions, one introduces a parabolic velocity profile on the cross-section of the fracture (figure 1).

In a single fracture, the transport processes are the convection and the molecular diffusion, which act longitudinally and transversely. This phenomenon is commonly called the Taylor-Aris dispersion.

In the case of Fickian transport, the longitudinal dispersion coefficient is given, for instance, by [START_REF] Aris | On the dispersion of a solute in a fluid flowing through a tube[END_REF] (equation ( 1)) and transport is modeled by advection-dispersion equation. In the case of three-dimensional transport, local velocities of particles are determined by a velocity profile known as Poiseuille (equation ( 2)), which expresses that the velocity is nil on the walls of the fracture and that it is maximum in its center.

In order to simulate the transport of particles in a rough fracture, it is convenient to generate first the roughness of the fracture. The method we used is described in detail by [START_REF] Brown | Simple mathematical model of rough fracture[END_REF] and [START_REF] Jeong | Fault hydrogeology[END_REF].

The walls of a single fracture are generated by fractal surfaces. The fractal surfaces being both non symmetrical, it allows the value of the aperture to decrease and zones of contact to be created (mechanical normal constraint of the rock). In order to apply a transport model, it is advisable to determine velocities for each mesh. The best way is to use the software FRACAS [START_REF] Cacas | Développement d'un modèle tridimensionnel stochastique discret pour la simulation de l'écoulement et des transferts de masse et de chaleur en milieu fracturé[END_REF][START_REF] Jeong | Fault hydrogeology[END_REF], which allows to calculate the hydrodynamics by a finite difference method. Then, the classical 3D random walk equations are used as the particle transport model [START_REF] Kinzelbach | Groundwater modeling[END_REF].

Then the various approaches of some of the fracture models are applied to clarify and to propose information in the field of dispersion.

First, one generates various fractures with several fractal dimensions. Figures 4 and5 show the results of simulations of the stochastic model.

At a second level, we suggest to simulate the transport of different sizes of particles (table). The 3D model of smooth fracture is used in order to take into account the particle sizes and the boundary conditions. The breakthrough curves of various simulations are presented in figure 6.

In a third stage one proposes to simulate the transport of poly-dispersed particle sizes. Obviously, only 3D models of fractures can take into account this variability of sizes.

The radii of the particles are distributed according to two simple laws: uniform and Gaussian. Each particle has its own radius and its own molecular diffusion coefficient, thus the transport process takes them into account when boundary conditions and diffusion processes are computed. In figure 7, the results of simulations are presented and show the influence of the size distribution of the particles on transport.

This paper aimed to present a fracture transport model. The fractures can only be generated by means of two fractal surfaces more or less distant from one another. The fractal dimension of these surfaces depend on the roughness of the fracture and makes it easier to treat the synthetic case of laboratory fractures (smooth) and of natural fractures (roughness, zones of contact).

The application of the software FRACAS [START_REF] Cacas | Développement d'un modèle tridimensionnel stochastique discret pour la simulation de l'écoulement et des transferts de masse et de chaleur en milieu fracturé[END_REF][START_REF] Jeong | Fault hydrogeology[END_REF] allowed to calculate the velocity field into the fracture and thus to use a model of transport. The model of dispersion in fracture was thus developed in the general case of a threedimensional flow in a rough fracture (with or without zones of contact), simplified cases (smooth and rough fracture in two-dimensions, smooth fracture in three-dimensions) were also presented.

Introduction

Nous allons envisager successivement dans cet article différents cas de transport conservatif et non réactif dans une fracture, lisse et rugueuse [START_REF] Fleurant | Modélisation stochastique du transport de masse dans les milieux poreux et fracturés[END_REF]. Dans le cas d'une fracture unique, le transport de soluté peut être envisagé, soit en bidimensionnel, soit en tridimensionnel [START_REF] Neretnieks | Tracer movement in a single fissure in granitic rock: some experimental results ant their interpretation[END_REF][START_REF] Novakowski | Example of measuring hydrodynamic dispersion in a single fracture[END_REF]. En bidimensionnel, on suppose alors que le fluide s'écoule à vitesse constante. En tridimensionnel, on introduit un profil parabolique des vitesses sur la section de la fracture. Dans une fracture unique, les processus de transport sont la convection et la diffusion moléculaire, qui agit longitudinalement et transversalement, c'est ce que l'on appelle plus communément la dispersion de Taylor.

Dans une fracture lisse, si L est la longueur de la fracture, U la vitesse moyenne du fluide (figure 1), alors [START_REF] Hull | Laboratory and simulation studies of solute transport in fracture networks[END_REF] donnent quelques indications sur les conditions de transport du fluide : si le temps de séjour moyen est inférieur à un temps critique ( 6

a 2 π 2 D m ), où a [L] est l'ouverture de la fracture et D m [m 2 •s -1 ]
la diffusion moléculaire, le transport est alors non fickien. Dans le cas contraire, lorsque la diffusion moléculaire est significative et homogénéise la concentration du traceur sur l'ouverture de la fracture, le transport est alors fickien et est modélisé par l'équation classique de convection-dispersion. Le coefficient de dispersion longitudinale s'écrit alors [START_REF] Aris | On the dispersion of a solute in a fluid flowing through a tube[END_REF] :

(1) Ce coefficient de dispersion, dit de Taylor-Aris, est une valeur asymptotique, qui n'est valable qu'à partir d'une longueur critique de la fracture [START_REF] Kessler | Dissolved and colloidal contaminant transport in a partially clogged fracture[END_REF]. Dans le cas du transport tridimensionnel, les vitesses locales des particules sont déterminées par un profil des vitesses, dit de Poiseuille, de la forme :

D X = D m + U 2 a 2 210 D m
(2) u X (z) = 3 2 U 1 - 4 z 2 a 2
Ce profil exprime que la vitesse est nulle aux parois de la fracture et qu'elle est maximale ( 3 2 U ) au centre. Si le temps de séjour est inférieur au temps critique ( 6 a 2 π 2 D m ), alors le problème est tridimensionnel (c'est-àdire qu'il faut tenir compte de la distribution parabolique des vitesses). Dans le cas contraire, on peut simplifier le problème en le traitant comme bidimensionnel (c'est-à-dire qu'on utilise la dispersion de Taylor-Aris). 

Le modèle de transport en fracture 2.1. Génération de la rugosité

Afin de simuler le transport de particules dans une fracture rugueuse, il convient en premier lieu de générer la rugosité de la fracture. La méthode que nous avons utilisée est décrite en détail dans [START_REF] Brown | Simple mathematical model of rough fracture[END_REF] et dans [START_REF] Jeong | Fault hydrogeology[END_REF].

Génération d'une fracture

Il suffit de générer deux surfaces fractales de même moyenne et de même écart type, puis de définir l'ouverture de cette fracture comme étant la distance a entre les deux moyennes des rugosités. Le fait de ne pas avoir de surfaces identiques permet d'obtenir des zones de contact lorsque la distance a diminue. Les zones de contact apparaissent en fonction de la contrainte mécanique normale de la roche et exercent des conséquences primordiales sur le comportement hydrodynamique de la fracture. La figure 2 montre une fracture générée par la méthode décrite ci-dessus ; la dimension fractale est de 2,3. La moyenne des rugosités est de 1•10 -4 m et l'écart type de 5•10 -5 m ; l'ouverture moyenne est de 1•10 -4 m.

Caractéristiques hydrodynamiques des fractures

Afin d'appliquer le modèle de marche aléatoire, il convient de déterminer les vitesses u X (z) et u Y pour chacune des mailles. Nous utilisons pour cela le logiciel FRACAS [START_REF] Cacas | Développement d'un modèle tridimensionnel stochastique discret pour la simulation de l'écoulement et des transferts de masse et de chaleur en milieu fracturé[END_REF][START_REF] Jeong | Fault hydrogeology[END_REF], qui permet de calculer l'hydrodynamique dans la fracture par une méthode aux différences finies.

FRACAS est utilisé pour une fracture rugueuse (figure 2), afin d'obtenir les champs de vitesse (figure 3) pour différentes ouvertures moyennes. On constate que, lorsque l'ouverture moyenne diminue, des zones de contact apparaissent. L'écoulement doit alors contourner ces zones ; on parle alors de chenalisation.

Le modèle de transport

Un modèle classique de marche aléatoire tridimensionnelle est utilisé pour le transport des particules [START_REF] Kinzelbach | Groundwater modeling[END_REF] :

(3) 

                       X j = n-1 i=0 u j X (Z j 1 ) dt + δξ X i,D m Y j = n-1 i=0 u j Y dt + δξ Y i,Dm Z j = n-1 i=0 δξ Z i,

Comportement du modèle

Dans cette partie, nous allons étudier successivement l'influence de la rugosité d'une fracture et de la taille des particules sur leur transport et leur dispersion.

Variation de la rugosité

On se propose ici de comparer la dispersion des particules dans des fractures de rugosités différentes. On génère donc différentes fractures, dont les moyennes et écart type des rugosités sont respectivement 1•10 -4 et 5•10 -4 m et dont les dimensions fractales valent 2,3, 2,5 et 2,9.

L'ouverture moyenne reste constante et égale à 5•10 -4 m, ainsi que la différence de charge, qui vaut 1,86. La figure 4 présente les résultats des simulations du modèle de transport. On constate que, plus la dimension fractale augmente, plus la fracture est rugueuse, et plus le nuage de particules se déplace vite en moyenne et plus il est dispersé. C'est également ce que confirme la figure 5 : sur cette dernière, Tableau. Résultats de simulation des modèles de transport 2D et 3D pour des particules de tailles différentes. Le temps de séjour moyen est ici de 10 000 s.

Table.

Simulation results of 3D and 2D transport models for several particle sizes. Average residence time is 10 000 s.

Rayon D m Temps D 2D X D 3D X (nm) (m 2 •s -1 ) critique (s) (m 2 •s -1 ) ( m 2 •s -1 )
1 on peut suivre l'évolution en fonction du temps de la dispersion des particules pour différentes rugosités de fracture. On constate que, pour la fracture lisse (D f = 2,3), le régime asymptotique de la dispersion longitudinale est atteint très rapidement (le régime asymptotique théorique, décrit par l'équation (1) est tracé en ligne continue). Pour la fracture qui présente la rugosité la plus faible (D f = 2,3), ce régime asymptotique est également atteint, mais moins rapidement que pour la fracture lisse. En revanche, pour les fractures les plus rugueuses (D f = 2,5 et D f = 2,9), la diffusion moléculaire n'a pas le temps d'homogénéiser les particules sur l'ouverture de la fracture et le régime asymptotique n'est pas encore atteint. Ce phénomène est également souligné dans [START_REF] Grindrod | Colloid migration in non-uniform fractures: particle tracking in 3D, Technical report[END_REF] et [START_REF] Wels | The influence of surface sorption on dispersion in parallel plate fractures[END_REF]. En effet, en augmentant la dimension fractale, on perturbe le champ des vitesses en le rendant plus hétérogène ; on augmente ainsi la dispersion des particules.

Variation de la taille des particules

Particules mono-taille

Des simulations successives sont faites pour quatre rayons différents de particules : 1, 10, 100 et 1 000 nm (tableau). Les particules sont transportées dans une fracture lisse de longueur 10 cm, de largeur 2,2 cm et d'ouverture constante et égale à 500 µm.

Le modèle de fracture lisse 3D est utilisé afin de tenir compte de deux processus : -à chaque taille de particules correspond un coefficient de diffusion moléculaire ; on prend donc en compte la diffusion moléculaire sur la verticale, qui aura des conséquences sur les vitesses longitudinales ; -les conditions aux limites sont différentes suivant la taille des particules ; c'est le processus d'exclusion.

Les courbes de restitution des différentes simulations sont présentées sur la figure 6. Sur cette figure, on compare le modèle de transport 3D avec le modèle 2D. On constate (figure 6 et tableau) que, pour les petites particules de 1 et 10 nm, les deux modèles de dispersion sont identiques (les courbes des modèles sont confondues). Ces deux simulations mettent en évidence des temps de séjour moyens des particules supérieurs au temps critique. On est donc dans le cas où la dispersion de Taylor-Aris peut être utilisée pour modéliser le transport des particules dans la fracture.

Pour les particules de taille plus importante, de 100 nm et 1 µm, il en est autrement. Le temps de séjour moyen est, dans ces deux cas, inférieur au temps critique, la diffusion moléculaire n'a donc pas le temps d'homogénéiser les particules dans la fracture ; le modèle de dispersion de Taylor-Aris ne convient donc plus.

Le modèle 2D suppose des temps de première arrivée des particules très courts, puisque le coefficient de dispersion de Taylor-Aris augmente avec la taille 2 ). Le temps de percé théorique est donc de 2 L 3 U ; dans notre cas, cette valeur vaut 6 666,6 s, ce qui correspond à la valeur du modèle numérique (figure 6). Cette différence entre les comportements des différents modèles induit, bien évidement, des coefficients de dispersion différents. Ainsi, on remarque dans le tableau que le modèle 2D surestime la dispersion, et ce d'autant plus que la taille des particules augmente.

Particules multi-tailles

Dans un deuxième temps, on se propose de simuler le transport de particules multi-tailles. Bien évidemment, seuls les modèles de fractures 3D (lisse et rugueuse) peuvent tenir compte de cette variabilité des tailles, car ils prennent en considération la dimension verticale de la fracture, c'est-à-dire le profil parabolique des vitesses et la diffusion moléculaire.

Les rayons des particules sont distribués suivant deux lois simples : uniforme et gaussienne. Les coefficients de diffusion moléculaire sont alors calculés en fonction de ces rayons par le biais de la formule de Stokes-Einstein. Chaque particule possède son rayon et son coefficient de diffusion moléculaire ; la fonction du transport les prend ainsi en compte pour les conditions aux limites et le processus de diffusion. Sur la figure 7 sont présentés les résultats des simulations, dont les caractéristiques techniques sont équivalentes à celles énoncées précédemment. Les courbes de restitution obtenues montrent l'influence de l'hétérogénéité des tailles des particules sur le transport. Très peu de différences sont observées entre les courbes issues de la loi normale et de la loi de taille constante (non présentée ici) : l'écart type de la loi normale proposée ne semble pas être suffisamment significatif pour pouvoir influencer le transport. En revanche, la loi uniforme impose une équiprobabilité des rayons entre 1 et 100 nm, ce qui donne une courbe de restitution déformée par la présence, en nombre équivalent, de très petites et de très grosses particules.

On retrouve certaines de ces conclusions dans la référence [START_REF] Wels | Influence of specific surface area on transport of sorbing solutes in fractures: an experimental analysis[END_REF], qui établit que la dispersion du strontium est supérieure à celle d'un traceur parfait (ceci montre que l'effet de taille peut s'appliquer également aux ions de grosse dimension), ainsi que dans la référence [START_REF] James | Transport of polydisperse colloid suspensions in a single fracture[END_REF].

Conclusion

Le modèle de dispersion en fracture a donc été développé dans le cas général d'un écoulement tridimensionnel en fracture rugueuse.

Le modèle permet de retirer un certain nombre de résultats sur le transport en fracture : -le choix du modèle 2D ou 3D est important suivant le système étudié (taille des particules, dimensions de la fracture) ; -en augmentant la rugosité de la fracture, on génère des chemins préférentiels ; des particules arrivent donc plus vite et la dispersion augmente ; -en introduisant des lois de distribution du rayon des particules, on montre que les courbes de restitution sont sensiblement différentes de celles obtenues avec une taille unique et ce, d'autant plus que l'hétérogénéité des rayons est importante ; -les grosses particules, du fait de leur encombrement, vont échantillonner en moyenne des vitesses plus rapides ; elles arrivent donc plus tôt ; la dispersion cinématique sera donc plus importante ; -l'augmentation de l'hétérogénéité des tailles (augmentation de l'écart type des tailles) augmente la dispersion.
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 1 Figure 1. Système d'une fracture avec son profil parabolique des vitesses.
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 1 Figure 1. Fracture system with a parabolic velocity profile.
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 2 Figure 2. Exemple de fracture rugueuse obtenue par la génération de deux surfaces fractales.
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 2 Figure 2. Example of rough fracture obtained by the generation of two fractal surfaces.
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 3 Figure 3. Champ de vitesses dans la fracture calculé à partir des épaisseurs, pour différentes ouvertures moyennes : 1•10 -4 m et 1•10 -5 m.

Figure 3 .

 3 Figure 3. Speed field in the fracture according to the distribution of the apertures, for several average apertures: 1•10 -4 m and 1•10 -5 m.

  D m On rappelle qu'ici δξ i,D m sont des nombres aléatoires, tirés d'une loi normale de moyenne nulle et d'écart type √ 2 D m dt, où D m est le coefficient de diffusion moléculaire. D m peut être calculé indépendamment pour chaque particule, en fonction de son diamètre, par le biais de l'équation de Stokes-Einstein.

Figure 4 .

 4 Figure 4. Courbes de restitution du modèle de transport, pour différentes rugosités.
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 4 Figure 4. Breakthrough curves of the transport model with several roughnesses.
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 5 Figure 5. Évolution du coefficient de dispersion longitudinale en fonction du temps, pour différentes valeurs de la rugosité.

Figure 5 .

 5 Figure 5. Longitudinal dispersion coefficient versus time for several fracture roughnesses.
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 6 Figure 6. Courbes de restitution des modèles 2D et 3D pour différentes tailles de particules.
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 6 Figure 6. Breakthrough curves of the 2D and 3D transport model for several particle size.

Figure 7 .

 7 Figure 7. Courbes de restitution du modèle de transport, pour différentes lois de distribution des rayons des particules.
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 7 Figure 7. Breakthrough curves of the transport model for several distribution laws of the particles' radii.