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Abstract

This paper presents a general mathematic model for a morphometric description of

trees. This model is based on the introduction of the fractal theory, and more par-

ticularly of the concept of self-similarity, into a statistical physics rationale. Fractal

theory provides the necessary tools to describe the complexity of tree structure.

Statistics, when applied to physics, makes it possible to explain the properties of

complex objects starting from their components. The combination of both tools al-

lowed us to develop a theoretical model which is anything other than the probability

density function of the morphometric lengths of trees. An example of validation of

this law is given here: the theoretical model is compared with the morphometric

lengths of Cupressocyparis.
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1 Introduction

Figure 1, shows two branching networks of a completely different nature.

One is a tree and the other is a stream network. Both networks are three-

dimensional but Figure 1 only represents their projected shape onto a plane.

The striking similarity between their structures led us to describe them using

this analogy.

1.1 Stream networks

Well before Mandelbrot (1988), developed his fractal theory, branching net-

works and more particularly stream networks structure had been studied very

accurately. In fact, geological scientists and hydrologists such as Horton (1945),

Schumm (1956), Strahler (1957) or Shreve (1969) took an interest in analysing

the complex ordering of these networks. They made topological and morpho-

metric analyses (Kirshen & Bras (1983)) which can be applied to all branching

networks that are three-dimensional and organised into a hierachy. A stream

network is made up of several headwaters which represent its origins upstream,

and an outlet which is a unique point downstream. The headwaters merge to

form confluences, thus creating stream stretches that merge in their turn, and

so forth down to the outlet. A stream stretch is a segment of a stream network

situated between two confluences. The precise position of a stream segment

within the whole river network can be identified by classifying the network.

Many classification systems have been put forward (Horton (1945)) but we

have decided upon Strahler’s system (1952) which is the most widely used.

The classification system (see diagram on Figure 2) is as follows:
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• headwaters are first order stream segments;

• when two stream segments within the same order i merge, the stream seg-

ment resulting from this confluence is within order i + 1;

• when two stream segments within different orders, i and j merge, the stream

segment resulting from this confluence is within order max (i, j).

Strahler’s classification thus makes it possible to organise the different seg-

ments of a stream network into a hierarchy. Consequently, the stream outlet

will have the highest index value, corresponding to the river network order.

Starting from the segments and their classification, it is possible to identify

one segment as being representative of all segments within the same order.

Hydrologists relied on this classification to put forward general geometric

laws concerning the ordering of stream networks. Among them, Horton’s laws

(1945), describe the way stream networks are organised. These laws express

the so-called bifurcation ratio RB and length ratio RL, also known as Horton’s

ratios. A great number of experimental studies on stream networks (Barbera

& Rosso (1987), Feder (1988), Barbera & Rosso (1989), Tarboton et al. (1990),

Barbera & Rosso (1990), Rosso et al. (1991)) reveal that these ratios are rather

stable and fluctuate between 3 and 5 for RB and between 1.5 and 3.5 for RL.

Nevertheless, it seems that Horton’s laws are governed by the homogeneity of

several factors, such as geological factors (Abrahams (1984)).

As Smart (1968) and Dooge (1986) point out: ”these laws have a statistical

nature”. It means that one should not expect an accurate description of a

stream network in isolation but, that these laws indicate an average pattern,

a general trend for a large number of networks.
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Besides Horton’s laws, Tokunaga’s laws (1984) , should also be mentioned.

They are more general and give a more accurate description of the structure

of stream networks. In fact, Tokunaga branching ratio indicates the average

number of i order segments that merge with j order stream segments (i <

j). Actually, this taxonomy is similar to Horton’s laws, especially when the

drainage density of the stream network is equal to the stream length in its

basin area (Dodds & Rothman (2000)).

Fractal geometry, which has been developed by Mandelbrot (1988), makes it

possible to describe complex objects having an irregular structure whereas

usual Euclidian geometry does not.

In many scientific fields, fractal theory has imposed itself very quickly as an

essential means to describe natural objects. References to numerous works

show the multidisciplinary use of this theory (Mandelbrot (1988), Mandelbrot

(1995), Barnsley (1988), Feder (1988), Schroeder (1991), Peitgen H. & Saupe

(1992)) as well as its applications in earth sciences (Korvin (1992), Turcotte

(1992), Vicsek (1994), Barton (1995), Rodriguez-Iturbe & Rinaldo (1997)),

landscape sciences (Frankhauser (1994), Dauphiné (1995), Roland & Fleurant

(2002)), engineering sciences (Nakagawa (1999), Dekking (1999)), physical sci-

ences (Gouyet (ales), Sapoval (1997)), and life sciences (West et al. (1997),

Douady & Couder (1992)). The fractal structure of stream networks has been

studied more specifically by (Tarboton et al. (1988), Barbera & Rosso (1987),

Barbera & Rosso (1989), Nikora (1991), Nikora et al. (1993), Nikora & Sapozh-

nikov (1993)).

The above-mentioned authors have studied the self-similarity of the structure

of stream networks and its relationship with the fractal dimension. They also

demonstrated that self-similarity includes a statistical dimension for these
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stream networks that are in fact natural fractals, and relies heavily on the

power laws; in fact the latter give evidence of similar characteristics at differ-

ent scales. The Table 1 gives a synthesis of the various expressions of fractal

dimension which have been found out by the above-mentioned authors. It can

be noticed that these expressions take Horton’s ratios into account and assume

that stream networks are self-similar, whereas many studies reveal that they

are self-affine Nikora et al. (1993) Even though the expression put forward by

Nikora et al (1993) is not so wrong, the most accurate method to determine

the fractal dimension of stream networks seems to be the box counting method

or mass method.

Beyond these considerations, it should be added that calculation of the frac-

tal dimension of a stream network varies according to the observation scale;

the stream network is therefore a multifractal object (Rodriguez-Iturbe &

Rinaldo (1997)). The fractal nature of stream networks could be due to the

self-organisation of landscape (Rigon et al. (1994), P. (1996), Rodriguez-Iturbe

& Rinaldo (1997), Dodds & Rothman (2000)) This means that its characteris-

tics belong to universality classes. Setting up the probability density function

of lengths is one of the major issues of hydrology since it allows a precise de-

scription of the probability of having a specific distance between the outlet and

the segments of stream networks. This function was first developed by Shreve

(1969) and known as Width function. It represents a direct connection be-

tween the shape, development and hydrological response of a stream network,

consequently it has been the subject of many very detailed studies (Gupta

& Mesa (1988), Jin (1992), Rodriguez-Iturbe & Rinaldo (1997), Gandolfi &

Bischetti (1997)).
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1.2 Fractals and Morphometry of trees

Fitter (1982) distinguishes between two classifications that regulate tree struc-

ture: one is morphogenetic and follows the example of trees and starts with

a single common branch (tree trunk), the other one is morphometric, it fol-

lows the example of stream networks and starts with external branches. In his

methodological study of the root systems of herbaceous plants, Fitter suggests

that Horton’s laws may be applied in terms of ordering branches according to

the morphometric order, so as to quantify and organise root branching.

Holland (1969) shows that the branching pattern of several Eucalyptus species

may be described and explained thanks to Horton’s laws and the effect of api-

cal dominance on shoot growth.

Leopold (1971) carried out research on several species with different archi-

tectures (Abies concolor, Pinus taeda) and reached a similar conclusion. In

addition, he claims that the most probable arrangement seems to minimise

the total length of twigs in the branching system.

Oohata & Shidei (1971) use Horton’s method to study the branching of four

different ligneous plants: evergreen shrubs with broad leaves (Cinnamomum

camphora), evergreen conifers, deciduous trees with broad leaves. They show

that the branching ratio fluctuates in a much larger extent than stream net-

works: from 3.0 to 8.0. This ratio varies according to life form.

Withney (1972) shows that the branching ratio of 16 ligneous plants essen-

tially depends on the arrangement of leaves, the deciduous nature of leaves

and branches and the size of needles, and that it does not entirely depend on

external conditions but is rather specific to one species.

Using Stralher’s morphometric tree diagram, Barker et al. (1973) demonstrate
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that in the case of birches and apple trees, logarithms of the average numbers

of terminal branches in each branching order, average diameter and number

of buds on these branches are lined up with the branching orders on the

abscissa. Logarithms of the average lengths of the corresponding branches are

much more scattered. They deduce that both species have fractal branching

and that lengths are more characteristic of the specific shape of trees.

Crawford & Young (1990) indicate that, in the case of oak trees (Quercus

robur), the distribution of branch lengths follows a basic fractal algorithm

which can be found in other living organisms. Berger (1991) uses fractals to

establish a tree growth scheme (ficus elastica), Chen et al. (1993)) uses them

to establish a model of canopy architecture of a poplar stand (Populus sp.)

and Mahon & Kronauer (1976), a model of tree mechanic (Quercus rubra).

Tree structure is still a very topical subject involving intensive research (Sis-

milich et al. (2003)). Issues involved are multiple, but some of the main areas

of interest should be mentioned (Muhar (2001)) : in the field of botany, bio-

mathematic description is a research theme which is strongly encouraged to

develop predictive models on plant production, and more particularly on tree

diseases. There exists many mathematic models of tree developement and some

of them resort to a terminology which is very similar to stream networks, since

they deal with plant hydraulics (Niklas (1992), Fruh & Kurth (1999), Bidel et

al. (2000)). In the field of forestry, managing forest development requires that

the changes in the shape of trees resulting from the planting conditions (types

of soil, co-existence with other species, etc.) be known. It can also help in

anticipating the evolution of the forest visual impact and in taking preventive

measures (Berezovskaya et al. (1997)). Finally in the field of image process-

ing, working out the most faithful computer simulation of a tree has become
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a central objective especially in terms of commercial software (Viennot et al.

(1989)). Whether the methods are determinist such as L-systems (Lidenmayer

& Prusinkiewicz (1988)), stochastic such as the AMAP approach (Jaeger &

de Reffye (1992)) or botanical such as the TREE approach (Bosanac (1990)),

the only aim is to obtain the most faithful image of a tree compared to reality.

1.3 Physical statistics

Two attempts have been made to apply a physical statistic rationale to hy-

drography. Lienhard (1964) was the first to become aware of the importance

of physical statistics, when applied to rain drops rather than to stream net-

works. But he simply applied the findings from physical statistics - in this case

Maxwell’s speed distribution - onto the flow changes after a rainfall. He did

not take the characteristics of the drainage area into account, consequently he

obtained a model which is neither a forecasting flow model - the only worth-

wile variable in hydrology - nor a geomorphological model.

Shreve (1966) paved an innovative way when he assumed that the law of

stream number of a particular classification order is the result of statistics

made on a large number of river segments joining randomly, in the same way

as the perfect gas law is the result of statistics of a huge number of molecules

colliding randomly. He then undertook to count up directly all the possible

combinations, a task which rapidly becomes tedious as the classification order

of the network increases. It is obvious that Shreve adopted physical statistics

terminology (Shreve (1967)) when he assumed that all stream networks with

the same number of headwaters but with different topological characteristics,

have the same occurrence probability. Going by a second assumption, also
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used by Smart (1968), he indicated that the lengths of a stream network are

independent random variables resulting from one population. Unfortunately,

he did not develop this idea through a physical statistics rationale. Several

authors will later use these theories on segment distribution, but they will

work on assumptions which will not be easily justified (Troutman & Karlinger

(1984)).

As Mandelbrot (1988) explains, we think that when mechanics deals with

systems involving a great number of molecules, laws governing influences at

the local level are known with great accuracy, but their interaction at the

global level remains little known. The situation is worse when it comes to

geomorphology, since local and global levels are both unknown. Therfore, in

geomorphology more so than in mechanics, the solution should be statistical.

The physician’s concept of chance has been shaped by quantum mechanics

and thermodynamics. In both theories, chance occurs at the microscopic level

where it plays an essential role, whereas at the microscopic level, its role is

a very minor one. Conversely, concerning the objects we are studying, in-

ternal homothecy gives chance precisely the same importance at both levels

and speaking of the microscopic or macroscopic levels consequently becomes

irrelevant.

Actually, it seems that in the field of geomorphology, only a statistical ap-

proach can be productive. According to Diu et al. (1995), physical statistics

aims to explain the properties of bodies on a standard scale (macroscopic di-

mension) using the properties of microscopic constituents. Nevertheless, since

geomorphology does not make a clear separation of the order of magnitude

between the microscopic dimension and the macroscopic one, physical statis-

tics rationales could be applied to this area of research, provided physical
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statistics is assigned a broader objective: to explain the properties of complex

systems such as stream networks starting from the properties of their elemen-

tary constituents, though not necessarily microscopic ones. Nevertheless, it is

necessary to make sure that two conditions which implicitely constitute the

foundation of physical statistics are fulfilled:

• compared to the analysed constituents, the system should be very large;

• localised properties of the system should be fairly homogeneous.

The limits of validity of the law we are now going to establish are probably

closely linked to the fulfilment of both conditions.

2 The model

The model introduced here uses findings of research carried out on stream

networks, and applies them to trees, and more specifically to their branching

structures.

The focus is to describe tree structure thanks to Strahler stream ordering

(1964), and to apply Horton’s laws (1945) to a physical statistics rationale, in

order to elaborate a descriptive theoretical model of branch lengths.

2.1 Tree structure and ordering

The fundamental difference between studies carried out on stream networks

and the tree structural model proposed here, lies in the fact that the tree is

analysed in three dimensions, whereas stream networks are projected on to

a plane. Nevertheless, both approaches (Strahler stream ordering, Horton’s
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laws) to analyse stream networks in two dimensions can be applied directly

to a three-dimensional tree modelling.

The analogy with stream networks entitles us to assert that a branch (likened

to a segment) is an element of a tree situated between two successive branch-

ing. Consequently, Strahler stream ordering can be implemented:

• A bud or a terminal branch belong to the first order;

• Two order i branches form an order i + 1 branch;

• When two branches in different orders join, they form a branch which is

assigned the larger order.

The tree trunk (likened to the outlet) is assigned the larger order, correspond-

ing to the order of the tree.

Horton’s laws also make it possible to work out the RB and RL :

RL =
lk

lk−1

(1)

RB =
Nk−1

Nk

(2)

Where lk is the average value of the morphometric lengths of k order and Nk

is the number of morphometric lengths of k order.

2.2 Definition of morphometric length

Before giving the theoretical expression of probability density function of mor-

phometric lengths, it is necessary to define this variable accurately. As shown

in Figure 3, if we take an indefinite point on one branch, the path to be cov-

ered between this point and the trunk collar successively goes over branches
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of increasing orders. The morphometric length is defined as follows:

L =
n
∑

k=1

lk (3)

lk is the length of the branch or branch segment in k order and n is the order

of the tree. Hence, the morphometric length is the added lengths n of the

branches.

The morphometric length L may be calculated using a vector with n compo-

nents (l1, l2, · · ·, ln).

2.3 Choosing a symbolic space

Let us have a symbolic space, named morphometric lengths space. This sym-

bolic space has n dimensions corresponding to n axis onto which n compo-

nents of morphometric lengths are projected. Figure 3 is a specific example for

k = n = 3. Then the (l1, l2 et l3) three components of L can be projected onto

the axis of the symbolic space which is only three-dimensional in this case.

Let us consider an elementary volume dl = (dl1, dl2, · · · , dln), ), the probability

of having a morphometric length between (l1, l2, · · ·, ln) and (l1+dl1, l2+dl2,· · ·,

n + dln) ) volume interval is F (l1, l2, · · · , ln)dl1, dl2, · · · , dln.

Where F is the probability density function of L = (l1, l2, · · · , ln). If we have

dnN , , the number of morphometric lengths between (l1, l2, · · ·, ln) and (l1+dl1,

l2 + dl2, · · ·, ln + dln) volume interval, then:

F (l1, l2, · · · , ln)dl1dl2 · · ·dln =
dnN

N
(4)

Where N is the total number of morphometric lengths.
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At this stage of the rationale, we must take the self-similarity properties of

our branching system into account, and use one of Horton’s laws. Beside the

length ratio (RL) defined in this particular law, the following ratio may be

given:

r =
lk

lk−1

(5)

In fact Duchesne et al. (1997) and Cudennec (2000) demonstrate that r ≃ RL.

To explain the form of the function F with more accuracy, we should make

working hypotheses.

2.4 Choosing the fundamental hypothesis

• The independence hypotheses of the distribution function of components

reduced by the morphometric length. According to this hypothesis, the dis-

tribution function of a component lk only depends on lk, not on any of

the other components lj, k being different from j. This leads us to give an

expression of fonction F as a product of n fonctions for one variable:

F (l1, l2, · · · , ln) = f1(l1)f2(l2) · · · fn(ln) (6)

• The isotropy hypothesis of distributions. We consider that the distribution

law of lk is isotropic. Because of the self-similarity nature of tree structure

and Horton’s law, the k order component is one factor r larger on average

than the k − 1 order component. The isotropy hypothesis should then be

applied, with the reduced components of branch lengths lk
ri−1 as coordinates

of the symbolic space, rather than the components lk.

For calculation reasons, we will extract the square root of these reduced com-
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ponents:

zk =

√

lk

rk−1
=

xk

r
k−1
2

(7)

The isotropy hypothesis helps consider all functions fk(lk) identical in relation

(6):

F (l1, l2, . . . , ln) = f(l1)f(
l2

r
) . . . f(

ln

rn−1
) (8)

then

φ(z1, z2, . . . , zn) = ϕ(z1)ϕ(z2) . . . ϕ(zn) (9)

Where functions φ and ϕ are respectively different from functions F and f .

Function φ can also be defined as:

φ(z1, z2, . . . , zn) =
dnN

Ndz1dz2 . . . dzn

(10)

The isotropy hypothesis means that the density of points representing the

extremities of vectors in the symbolic space has a spherical symmetry. The

reduced components zk represent a solution to the equation of a hypersphere:

z2
1 + z2

2 + . . . + z2
n = Cste (11)

The distribution function of zk should then have a constant value:

φ(z1, z2, . . . , zn) = Cste (12)

Both hypotheses allow us to determine the probability density function of

morphometric lengths.
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2.5 Determination of the probability density function of reduced morphome-

tric lengths

Derivating relations (11) and (12), we have:

2z1dz1 + 2z2dz2 + . . . + 2zndzn = 0 (13)

From which it follows:

∂φ

∂z1
dz1 +

∂φ

∂z2
dz2 + . . . +

∂φ

∂zn

dzn = 0 (14)

According to relation (9) :

1

φ

∂φ(zk)

∂zk

=
1

ϕ(zk)

dϕ(zk)

dzk

∀i, 1 ≤ i ≤ n (15)

So (12) can be replaced with:

1

ϕ(z1)

dϕ(z1)

dz1

+
1

ϕ(z2)

dϕ(z2)

dz2

+ . . . +
1

ϕ(zn)

dϕ(zn)

dzn

= 0 (16)

This mathematical expression helps determine the various values z1, z2, . . . , zn

where function ϕ reaches an extremum value. If there is no restrictive condi-

tion for this equation, we can demonstrate that a solution can be obtained by

cancelling all the derivatives of the function.

Still, equation (11) precisely expresses a restrictive relation on the zk compo-

nents. This constraint is handled by using Lagrange multipliers method (Sears

(1971)), relations (11) and (16) can then be combined, multiplying (11) by a

constant value λ and adding each term to relation (16). This results in the

following equation, in which n differentials are considered to be independent:

[

2λz1
1

ϕ(z1)

dϕ(z1)

dz1

]

dz1 + . . . +

[

2λzn

1

ϕ(zn)

dϕ(zn)

dzn

]

dzn = 0 (17)
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Only then can we consider differentials to be independent, and the solution to

equation (17) amounts to cancelling each differential successively:

1

ϕ(zk)

dϕ(zk)

dzk

= −2λzk ∀i, 1 ≤ i ≤ n (18)

Equation (18) is successively equal to:

d log (ϕ(zk))

dzk

=−2λzk ∀i, 1 ≤ i ≤ n (19)

log (ϕ(zk))=−λz2
k + Cste ∀i, 1 ≤ i ≤ n (20)

ϕ(zk)= Ae−λz2
k ∀i, 1 ≤ i ≤ n (21)

Fonction ϕ, is a normal distribution with a zero mean and a standard deviation

1√
2λ

. Constante A can be calculated since ϕ is a probability density function,

consequently by definition, its integral taken between −∞ and ∞ should be

equal to 1:

∞
∫

−∞

ϕ(zk)dzk =

∞
∫

−∞

Ae−λz2
kdzk = 1 (22)

The solution to this integral is definitely known (Spiegel (2000)) and gives to

A a value of
√

λ
π
. Therefore, function ϕ is known to the very λ Lagrange mul-

tiplier, and by modifying the variable of relation (7), we have the probability

density function of reduced components of branch lengths:

fdp(lk) =
1√
π

√

λ

ri−1

1√
lk

e−
λlk

ri−1 (23)

Moreover, constant λ may be explained by expressing the lk components av-

erage, named lk, it gives successively:

lk =

∞
∫

0

lkfdp(lk)dlk
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=
1√
π

√

λ

rk−1

∞
∫

0

lk√
lk

e
−

λlk

rk−1 dlk

=
1√
π

√

λ

rk−1

∞
∫

0

l
1
2
k e

−
λlk

rk−1 dlk

=
1√
π

√

λ

rk−1
Γ
(

1

2
+ 1

)

(

rk−1

λ

)
3
2

=
rk−1

2λ

After replacing this result in equation (23) we have:

fdp(lk) =
1

√

2πlk

1√
lk

e
−

lk

2lk (24)

A Gamma distribution with α = 1
2

and β = 2lk can be recognised here and is

named Γ
(

1
2
, 2lk

)

.

The second step consists of determining the probability density distribution for

L, knowing that L =
n
∑

k=1

lk. The most usual way to calculate the distribution

pdf(L), is to use the following property: If we have n independent random

variables lk, k = 1, 2, . . . , n of probability density function fdp(lk) then the

random variable L defined as L =
n
∑

k=1

lk has a probability density function

pdf(L) such as:

pdf(L) = pdf(l1) ⋆ pdf(l2) ⋆ . . . pdf(ln) (25)

Where ⋆ is the convolution integral.
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2.6 Convolution integral of two Gamma distributions

Let us work out the convolution integral of two Gamma distributions with β

parameters which are different in pairs, we then try to calculate Γ (α, β1) ⋆

Γ (α, β2). To do this calculation, we will use the characteristic Gamma dis-

tribution functions. In fact, to convolute both Gamma distributions means

that we are looking for the probability density function pdf(L) for L such as

L = l1 + l2 where l1 and l2 have a probability density function represented by

the functions Γ (α, β1) and Γ (α, β2). Moreover, the characteristic functions,

named ϕ⋆
lk

, have the following property:

ϕ⋆
l1+l2

= ϕ⋆
l1
ϕ⋆

l2
(26)

The characteristic function of a random variable, named lk variables here,

is defined as a mathematical expectation of the exponential function of this

random variable; in the present case we have therefore:

ϕ⋆
lk
(s) =E

[

e−slk
]

=

∞
∫

0

e−slkfdp(lk)dlk

=
1

Γ(α)βα
k

∞
∫

0

lα−1
k e

−lk

(

s+ 1
βk

)

dlk

=
1

(1 + sβk)
α

Here on have:

ϕ⋆
l1+l2

(s) =
1

[(1 + sβ1) (1 + sβ2)]
α
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Concerning our case, α = 1
2
, then function pdf(L) such as L = l1 + l2 can be

worked out thanks to Laplace transform tables:

pdf(L) =
1√
β1β2

e−
( 1

β1
+ 1

β2
)L

2 I0





(

1
β2

− 1
β1

)

L

2



 (27)

Where I0(x) = 1 + x2

22 + x4

2242 + x6

224262 + . . . is the modified Bessel function of

the first kind and zero order. The result of the probability density function of

morphometric lengths L is therefore:

pdf(L) =
1 + r

2
√

rL
e
−

(1+r)2L

4rL I0

(

(1 − r)(1 + r)L

4rL

)

(28)

2.7 Convolution integral of n Gamma distributions

The result of the convolution integral for n Gamma distributions is obtained by

working out the generalised characteristic function(Mathai (1982), Moschopou-

los (1985), Sim (1992)) and we can thus assert the following theorem:

Let X1, X2, . . . , Xn, n be n independent random distributed according to a

Gamma distribution of the following type:

Γ (x, αi, βi) =
βαi

i xαi−1

Γ (αi)
e−βix (29)

Then the probability density for Y =
n
∑

i=1

Xi, is:

pdf(y) =

(

n
∏

i=1

βαi

i

)

y

n−1
∑

i=1

αi − 1

Γ

(

n
∑

i=1

αi

) e−βny
∞
∑

k=0

bn(k)

(

n−1
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i=1

αi

)

k

k!

(

n
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i=1

αi

)

k

[(βn − βn−1) y]k(30)
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where

bi(k) =




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With

Ci =
βi−2 − βi−1

βi − βi−1
(31)

and

(x)k = x(x + 1)(x + 2) . . . (x + k − 1) (32)

By returning to our initial notations, the probability density function of mor-

phometric lengths is defined by the following expression:

pdf(L) =


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and

bi(k) =


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3 Applications to Cupressocyparis

The only way of testing our theoretical model is to measure the morphomet-

ric lengths of a tree. To do so, we have chosen Cupressocyparis leylandii, (see

photos 4), a conifer which can grow up to several tens of meters high, and

which is often mistaken for Thuya plicata because both are currently used for

trimmed hedges. We have chosen a young tree (3 years) about one meter high.

To determine the morphometric lengths of this tree means measuring distances

between its basis and all apexes. We have chosen a young tree in order to re-

strict the measurements.

First we have cut up the tree (see photos 4) and classified the branches to

keep the tree structure. Then we have taken 7490 measurements manually to

determine morphometric lengths. A concise account of measurements is given

in table 2. It includes the number of k order lengths, the average lengths for

each k and the corresponding Horton’s ratios (RL and RB).

It can be noticed that RL ratios are lower in average than stream networks’ratios,

whereas this not the case with RB ratios (according to the Oohata & Shidei

(1971)’s results). The high average values of RB reveal that there is a larger

number of branching in k + 1 order than k order. In fact, there are 7488 first

order branchings compared to 1608 second order branchings and so forth.

Concerning the RL ratio, its low values compared to those of stream networks,

show that the average lengths do not differ extremely from one order to an-

other.
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Once the morphometric lengths have been captured digitally, it is easy for us

to determine their distribution, that is to say the histogram of the tree mor-

phometric lengths. The borderline case histogram - when the class interval

approaches 0 - is a probability density function (pdf). Then this experimental

histogram may be compared with the theoretical law (33) which is in fact the

probability density function of morphometric lengths.

Our theoretical model (equation 33) requires three variables: Strahler ordering

n, the average of morphometric lengths L and Horton’s ratio r. But consider-

ing the variations in the ratio (see Table 2), which value should be chosen?

It should be remembered that in the demonstration section (see equation 5),

Horton’s ratio r is defined as the ratio of successive order components rather

than average components, as this is usually the case with stream networks.

This definition, along with our isotropy hypothesis has led us to establish the

probability density function of morphometric lengths lk given in equation (24).

To calculate the value r means assessing the optimal reduction factor, so that

the histograms of lk
rk−1 are as similar as possible. This is shown in Figure 5, as

well as the morphometric lengths histograms of orders 1 to 5, before (Figure

5 a) and after (Figure 5 b) reduction with factor r.

A value of r = 1.5 is found for Horton’s ratio; this value allows lk
rk−1 his-

tograms to be as superimposed as possible and it offers complete validation

to our isotropy hypothesis.

It is obvious that no factor r may adjust the 5 histograms accurately and

this is where our isotropy hypothesis reaches its limits. Indeed, this is the only

difference between self-similar fractal mathematics with infinite order and nat-
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ural fractal structures whose self-similarity is no longer obvious beyond some

order, which is often very small (n = 2 or 3).

With this value r, we have all variable values for our model:

• n = 5, for the Strahler hierarchical ordering of the studied tree;

• L = 163.7mm, for the average of morphometric total lengths;

• r = 1.5, for Horton’s ratio.

Our model can now be compared with the experimental histogram of mor-

phometric lengths, as shown in Figure 6. It can be noticed that the histogram

of the morphometric lengths which have been measured on the tree and the

theoretical law (equation 33) adjust almost perfectly. It is essential to add

that the adjustment does not require any fitting, since the variable values (ap-

pearing above) result from measurements on the tree; they are consequently

a necessary and sufficient condition to put forward equation (33).

This theoretical model not only simulates properly the allometry of the studied

tree, but also the relation which exists between the morphometric lengths

and the tree structure. We are tempted to think that this simulated relation

can be found in many tree species (forthcoming research on apple trees) as

shown for example on photo 8 representing a limetree showing clearly that the

distribution of apexes is more important near the tree base.
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4 Discussion et conclusion

The plant stem only grows at the first millimeters or centimeters level of stem

extremity, also called the apex. Photo 8 shows that the maximum number of

apexes is to be found slightly above plant base; beyond this point, the number

of apexes decreases very gradually. Branching points come out on the apex.

Trees have two branching patterns depending on species (Hallé (1970)). In

the case of the continuous growth type, lateral branching comes out slightly

behind the apex, as the axis keeps on growing (Figure 7 a). This is the case of

Cupresocyparis leylandii. Concerning the rythmic growth type, branching only

comes out after a dormant period of several weeks or months of the main axis ;

then when the growth period starts again, branching occurs where growth has

stopped (Figure 7 b); this is the case of the apple tree Malus pumila, submitted

in a previous publication (Duchesne et al. (2002)). The Gamma law applies

to both branching patterns, although they are completely different.

The apex of the main stem causes inhibition of the secondary apexes and ex-

erts growth control, a common phenomenon in branched plants named apical

dominance by biologists. In young trees, apical dominance is exerted in suc-

cession on 5 - 7 branching orders, which are organised into a hierarchy. As

the plant grows, the main axis loses control of the branching, and then the

tree includes a set of several hierarchical systems which are more or less inde-

pendent from one another on the biological level (Raimbault & Tanguy (1993)

and Raimbault et al. (1995)). Visually, this evolution results in the withdrawal

of the main axis to the benefit of several equivalent axes (Figure 7 c). This

biological evolution results in a drift of the height of the curve representing
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the Gamma law towards the right, which tends to a Gaussian distribution

(forthcoming publication on apple trees).

What is the point of such a mathematical study?

If the branched shapes of trees are now described precisely, the genesis of

such shapes poses insoluble problems. Hierarchical branching of apical domi-

nance through gradient and flow of hormone distribution is now understood

quite well (Cline (1994) and Cline (1997)). But this does not account for the

complexity of branching. Studying the distribution of apexes morphometric

lengths should enhance discussion on the causality of plant morphogenesis.

Basically, do plants branch in response to an internal impulse, as viscous fin-

gering patterns are obtained by injecting between two blades poorly viscous

fluid into a more viscous fluid ?

Or does branching result from an external attraction from the environment?

It is likely that branching is the result of a strong interference between several

processes belonging to both categories.

Measuring morphometric lengths of trees and interpreting their structure is

arduous delicate work. Obviously, the research we have carried out on our

young Cupressocyparis proves to be impossible to do on an oak tree several

meters high. Consequently, we have developed a protocole of photogammet-

ric measures in order to make the task easier. Photogammetry helps the 3-D

reconstruction of complex objects, thanks to the processing of digital pho-

tographs.
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Rennes.
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Figures and Tables

Figure 1 : Left side, Cupressocyparis structure; right side, river Loire (France)

structure.

Figure 2 : The concept of Stralher’s hierarchical classification system.

Figure 3 : The morphometric length is the added lengths of branches up to an

indefinite point of the tree. Here, the path between an apex of the tree and

the trunk basis.

Figure 4 : The Cupressocyparis is first cut up and then is classified to keep its

structures.

Figure 5 : Experimental histogramms of lk (a) and lk
rk−1 (b) components for

the different values of k = 1, 2, 3, 4, 5.

Figure 6 : Comparison between the theorical model (équation 33) and exper-

imenatl data of Cupressocyparis.

Figure 7 : Several trees growth types: continuous (a), rythmic (b) and alter-

nate (c).

Figure 8 : A limetree structure whith Gamma distribution of its apexes.
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Fig. 8.

Fractal dimensions Authors

d = 2 ln(RL)
ln(RB) Feder, 1988

D = max
(

1, ln(RL)
ln(RB)

)

La Barbera et Rosso, 1987, 1989

D = d
ln(RB)
ln(RL) Tarboton, et al., 1990

D =
(

1
2−d

)

ln(RB)
ln(RL) La Barbera et Rosso, 1990

d = max
(

1, 2 ln(RL)
ln(RA)

)

Rosso, et al., 1991

D = min
(

2, 2 ln(RB)
ln(RA)

)

Rosso, et al., 1991

Table 1

The various findings of the fractal dimension in a stream network. d is a scaling

exponent of the stream sinuosity, D is the fractal dimension, RL, RB and RA are

respectively the Horton’s length ratio, bifurcation ratio and area ratio.
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order k 1 2 3 4 5

Nk 7488 1608 251 20 1

lk (mm) 5.4 8.4 22.5 77.6 49.7

RL 1.56 2.66 3.44 0.64

RB 4.65 6.4 12.55 20

Table 2

Experimental values of the mesured tree parameters (Cupressocyparis). Nk is the

number of morphometric length of k ordre, lk is the average value of the morpho-

metric lenghts of k order, RL and RB are the Horton’s ratios.
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