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Comment

Comment on ‘C. Cudennec, Y. Fouad, I. Sumarjo Gatot
and J. Duchesne, A geomorphological explanation of unit

hydrograph concept. Hydrological Processes 18
(2004) 603–621’

C. Fleurant1* and P. Boulestreau2

1 School of Geography and the Environment, Mansfield Road, University of Oxford, Oxford OX1 3TB, UK
2 French Institute of Forestry, Agricultural and Environmental Engineering, Paris, France

Cudennec et al. (2004) propose an original theoretical GIUH model (Rodriguez-Iturbe and Valdès, 1979)
following from a coupling of general symmetry assumptions and self-similarity of river networks. This
model has the originality to involve two additional disciplines: statistical physics and fractal geometry. Their
paper aims to derive theoretical expressions of probability density functions (p.d.f.s) of the river network’s
hydraulic lengths.

Cudennec et al. (2004) clarify the p.d.f.s of hydraulic lengths in two major steps. First, by using the
Strahler (1957) scheme, the authors can make an isotropy assumption on the reduced hydraulic lengths of
a river network. This assumption leads to the p.d.f. of the hydraulic lengths li [Equation (29) in Cudennec
et al. (2004)]:
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Equation (1) [or Equation (45) in Cudennec et al. (2004)] is a Gamma law with parameters ˛ D 1/2 and
ˇi D ri�1

l /�. One can easily calculate that � D ri�1/2li, where li is the mathematical expectation of li.
Our comment does not concern the first step, which is original and relevant, but the second one.
The second step aims at calculating the p.d.f. of L knowing that L D ∑n

iD1 li [Equation (6) in Cudennec
et al. (2004)]. A classical way to calculate p.d.f. (L) would have been to use the following property. If one
has n independent random variables li, i D 1, 2, . . . , n with respective p.d.f. �li�, then the random variable L
defined such as L D ∑n

iD1 li has the following p.d.f.:

p.d.f. �L� D p.d.f. �l1� Ł p.d.f. �l2� Ł Ð Ð Ð Ł p.d.f. �ln� �2�

where * is the convolution integral.
Cudennec et al. (2004) did not choose this way, but directed their reasoning towards physical considerations,

aimed at expressing the variable L according to li. The authors’ result [Equation (45) in Cudennec et al.
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(2004)] is that p.d.f. (L) is also a Gamma law with parameters ˛ D n/2 and ˇ D 2L/n:
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According to the authors’ assumptions, Equations (2) and (3) have to be equal. So, Cudennec et al.’s
(2004) result concludes that the convolution integral of n Gamma laws with different parameters �ˇi� also
gives a Gamma law. This is definitely wrong. In fact, the use of an estimation [Equation (35) in Cudennec
et al. (2004)] leads to a result [Equation (45) in Cudennec et al. (2004)] which is right only in the specific case
and only for one value of the Horton’s ratio rl D 1, which is indeed not a realistic value since 1Ð5 � rl � 3Ð5
in natural river networks (Rodriguez-Iturbe and Rinaldo, 1997).

We propose therefore to give the complete mathematical solution of Cudennec et al.’s (2004) problematic.
Let’s use the classical way stated above: if l1, l2, . . . , ln are n independent random variables distributed
according to a Gamma law given by Equation (1), then what is the p.d.f. of the variable L D ∑n

iD1 li? The
problematic can be solved using the calculation of the generalized characteristic functions (Sim, 1992) and
the result is (details are not developed because of lack of space):
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In order to compare easily Equations (45) in Cudennec et al. (2004) and (4), we choose, by making a change
of variables, to draw the p.d.f.s of the variable L/L. The p.d.f.s are drawn (Figure 1) for various values of the
Horton’s ratio rl, and for various values of the Strahler’s order n. One can see that the more n or rl increases,
the more Equations (45) in Cudennec et al. (2004) and (4) are different. Equations (45) in Cudennec et al.
(2004) and (4) are equal only for rl D 1, for any value of n.

Many mathematical ways are then possible to prove that Equation (45) in Cudennec et al. (2004) is a
particular case of Equation (4) for Horton’s ratio rl D 1. The simplest is by replacing rl D 1 in Equation (4),
which easily leads to Equation (45) in Cudennec et al. (2004). A more rigorous method shows that rl D 1 is
the unique solution to have Equations (45) in Cudennec et al. (2004) and (4) equal. This method, following
from theorems of the inverse Fourier transform and probability theory, is not developed here because of lack
of space, but can be obtained from the authors.

Consequently, one can say that Equation (45) in Cudennec et al. (2004) is only a partial result since the
authors’ model only takes into account networks with Horton’s ratio equal to 1, which is an unrealistic value
in natural cases. De facto, the authors’ measures of Horton’s ratio are valued, not surprisingly, between 1Ð5
and 3. So, what is the validity of the authors’ conclusions concerning their model validation comparison
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Figure 1. Comparison of the p.d.f.s: Equation (4) (a) and Equation (45) in Cudennec et al. (2004) (b). For top and bottom Figures, n is 3
and 4, successively and rl is 2 and 3, respectively for left and right figures

of experimental and theoretical p.d.f.s in Figure 5 of Cudennec et al. (2004)? The skewness of the model
presented here [Equation (4)] is more negative than Equation (45) in Cudennec et al. (2004), but represents
the complete mathematical solution of the authors’ problematic. So, is the presented model [Equation (4)]
still relevant to describe real river network structures?
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