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 [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF]propose an original theoretical GIUH model [START_REF] Rodriguez-Iturbe | The geomorphologic structure of hydrologic response[END_REF] following from a coupling of general symmetry assumptions and self-similarity of river networks. This model has the originality to involve two additional disciplines: statistical physics and fractal geometry. Their paper aims to derive theoretical expressions of probability density functions (p.d.f.s) of the river network's hydraulic lengths. [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF] clarify the p.d.f.s of hydraulic lengths in two major steps. First, by using the [START_REF] Strahler | Quantitative analysis of watershed geomorphology[END_REF] scheme, the authors can make an isotropy assumption on the reduced hydraulic lengths of a river network. This assumption leads to the p.d.f. of the hydraulic lengths l i [Equation (29) in [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF]]: [or Equation (45) in [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF]] is a Gamma law with parameters ˛D 1/2 and ˇi D r i 1 l / . One can easily calculate that D r i 1 /2l i , where l i is the mathematical expectation of l i . Our comment does not concern the first step, which is original and relevant, but the second one. The second step aims at calculating the p.d.f. of L knowing that L D n iD1 l i [Equation (6) in [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF]]. A classical way to calculate p.d.f. (L) would have been to use the following property. If one has n independent random variables l i , i D 1, 2, . . . , n with respective p.d.f. l i , then the random variable L defined such as L D n iD1 l i has the following p.d.f.:

p.d.f. l i D 1 p r i 1 1 l i e l i r i 1 1 Equation (1)
p.d.f. L D p.d.f. l 1 Ł p.d.f. l 2 Ł Ð Ð Ð Ł p.d.f. l n 2
where * is the convolution integral. [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF] did not choose this way, but directed their reasoning towards physical considerations, aimed at expressing the variable L according to l i . The authors' result [Equation (45) in Cudennec et al.

C. FLEURANT AND P. BOULESTREAU (2004)] is that p.d.f. (L) is also a Gamma law with parameters ˛D n/2 and ˇD 2L/n:

p.d.f. L D n 2L n 2 L n 2 1  n 2 e nL 2L 3
According to the authors' assumptions, Equations ( 2) and (3) have to be equal. So, Cudennec et al.'s (2004) result concludes that the convolution integral of n Gamma laws with different parameters ˇi also gives a Gamma law. This is definitely wrong. In fact, the use of an estimation [Equation ( 35) in [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF]] leads to a result [Equation ( 45) in [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF]] which is right only in the specific case and only for one value of the Horton's ratio r l D 1, which is indeed not a realistic value since 1Ð5 Ä r l Ä 3Ð5 in natural river networks (Rodriguez-Iturbe and Rinaldo, 1997).

We propose therefore to give the complete mathematical solution of Cudennec et al.'s (2004) problematic. Let's use the classical way stated above: if l 1 , l 2 , . . . , l n are n independent random variables distributed according to a Gamma law given by Equation ( 1), then what is the p.d.f. of the variable L D n iD1 l i ? The problematic can be solved using the calculation of the generalized characteristic functions [START_REF] Sim | Point processes with correlated gamma interarrival times[END_REF]) and the result is (details are not developed because of lack of space):
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In order to compare easily Equations ( 45) in [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF] and ( 4), we choose, by making a change of variables, to draw the p.d.f.s of the variable L/L. The p.d.f.s are drawn (Figure 1) for various values of the Horton's ratio r l , and for various values of the Strahler's order n. One can see that the more n or r l increases, the more Equations ( 45) in [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF] and ( 4) are different. Equations ( 45) in [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF] and ( 4) are equal only for r l D 1, for any value of n. Many mathematical ways are then possible to prove that Equation (45) in [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF] is a particular case of Equation ( 4) for Horton's ratio r l D 1. The simplest is by replacing r l D 1 in Equation ( 4), which easily leads to Equation (45) in [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF]. A more rigorous method shows that r l D 1 is the unique solution to have Equations (45) in [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF] and ( 4) equal. This method, following from theorems of the inverse Fourier transform and probability theory, is not developed here because of lack of space, but can be obtained from the authors.

Consequently, one can say that Equation (45) in [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF] is only a partial result since the authors' model only takes into account networks with Horton's ratio equal to 1, which is an unrealistic value in natural cases. De facto, the authors' measures of Horton's ratio are valued, not surprisingly, between 1Ð5 and 3. So, what is the validity of the authors' conclusions concerning their model validation comparison of experimental and theoretical p.d.f.s in Figure 5 of [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF]? The skewness of the model presented here [Equation (4)] is more negative than Equation (45) in [START_REF] Cudennec | A geomorphological explanation of the unit hydrograph concept[END_REF], but represents the complete mathematical solution of the authors' problematic. So, is the presented model [Equation (4)] still relevant to describe real river network structures?

Figure 1 .

 1 Figure 1. Comparison of the p.d.f.s: Equation (4) (a) and Equation (45) in Cudennec et al. (2004) (b). For top and bottom Figures, n is 3 and 4, successively and r l is 2 and 3, respectively for left and right figures
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