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Abstract

The rainfall-runoff modelling of a river basin can be divided into two processes: the

production function and the transfer function. The production function determines

the proportion of gross rainfall actually involved in the runoff. The transfer func-

tion spreads the net rainfall over time and space in the river basin. Such transfer

function can be modelled through an approach of the geomorphologic instantaneous

unit hydrograph type (GIUH). The effectiveness of geomorphological models is ac-

tually revealed in rainfall-runoff modeling, where hydrologic data are desperately

lacking, just as in ungauged basins. These models make it possible to forecast the

hydrograph shape and runoff variation versus time at the basin outlet. This article

is an introduction to a new GIUH model which proves to be simple and analytical.

Its geomorphological parameters are easily available on a map or from a DEM. This

model is based on general hypotheses on symmetry which provide it with multi-

scale versatile characteristics. After having validated the model in river basins of

very different nature and size, we present an application of this model for rainfall-

runoff modelling. Since parameters are determined relying on real geomorphological

data, no calibration is necessary, and it is then possible to carry out rainfall-runoff

simulations in ungauged river basins.
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1 Introduction

The purpose of rainfall-runoff modelling is the conversion of rainfall into

runoff at the river basin outlet. This complex process is the result of the

combination of multiple factors involved at various spatial scales. The

process pattern made by hydrologists usually includes two functions: the

production and the transfer functions. The production function makes it

possible to determine the fallen rain (gross rainfall) which is actually

involved in the runoff at the river outlet. The transfer function works out the

runoff at the outlet according to the net rainfall.

In the present article, we will exclusively focus on the transfer function and

its geomorphological characteristics.

The transfer function can be understood through an overall approach (Chow

et al., 1988): the instantaneous unit hydrograph theory (Sherman, 1932;

Nash, 1957; Dooge, 1959; Lienhard, 1964; Rodriguez-Iturbe and Valdès, 1979;

Duchesne et al., 1997). The instantaneous unit hydrograph theory (Sherman,

1932) is a determinist model which relies on three major hypotheses:

• A univocal relationship between rainfalls and runoff, in the case of

rainfalls having the same intensity and duration features;
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• Linearity between unit rainfalls of different intensity and the

corresponding runoffs;

• Uniformity of rainfalls over the whole surface of the river basin.

The three hypotheses are quite restrictive. However, the unit hydrograph

method has a major advantage: its simplicity; which is why it has been used

for many years on quite a large number of river basins throughout the world

(Chow et al., 1988). The unit hydrograph method is based on three basic

principles:

• The unit rainfall is a rainfall impulse by definition, which means that it is

short-lasting compared to the basin lag, homogeneous in space and with a

sufficient intensity to generate a runoff surge;

• For a unit rainfall involving a runoff depth h (m), the relation between the

rate of flow by unit area q(t) (m/s), the unit hydrograph T (t) (s−1) and h

is:

q(t) = h(t)T (t) (1)

• The additionality property applying to the unit hydrograph is a linear

element. Therefore, if a complex rainfall is divided into a succession of unit

rainfalls, it is possible to calculate the corresponding hydrograph as

follows:

q(t) =

t∫
0

i(τ)T (t − τ)dτ (2)

Where q(t) (m/s) is the rate of flow by unit area, i(t) (m/s) the net rainfall,

rainfall in excess of infiltration and interception, uniformly falling on the

drainage basin and T (t) (s−1) is a transfer function, and more precisely the

probability density function (pdf) of time transfer on the drainage basin
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(Gupta et al., 1980). Consequently, the difficulties to express the rate of flow

q(t) are twofold: what is the value of the net rainfall i(t) and which function

T (t) should be chosen ?

Choosing the characteristic IUH of a river basin is a delicate issue. Its

experimental measurement with real rainfall events is always worked out in

gauged river basins but remains difficult to carry out. Consequently,

theoretical approaches for identifying the suitable IUH have been used. For

example, Nash (1957, 1959, 1960) conceptualized the river basin and

compared it to a series of n identical linear reservoirs. Its analytical model for

unit hydrograph is a two-parameter Gamma law: n the number of cascade

reservoirs and τ the usual release rate from one reservoir into another.

The n and τ parameters have no physical reality and must be determined

relying on previous accounts of rainfall-runoff events. This is one of the

major drawbacks of Nash’s model and other similar models (Dooge, 1959;

Lienhard, 1964), which cannot therefore be used in non-gauged river basins.

If the hydrograph depends on rainfall, it also depends strongly on the

geomorphological features of the river basin (shape, slope, organisation of

the river network). Therefore, determining a geomorphological transfer

function such as the Geomorphologic Instantaneous Unit Hydrograph

(GIUH, Rodriguez-Iturbe and Valdès (1979)), or the model described in the

present article, makes it possible to give a physical meaning to the unit

hydrograph which has been constructed on the basis of parameters set

according to the river basin’s geometry. Such geomorphological models are

based on the analyses of the morphological characteristics of river basins and

more particularly river networks.
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The purpose of this article is to present a new analytical model for

geomorphological transfer function, that is to say, a theoretical law giving

the distribution of hydraulic pathways according to the river basin

geomorphology. This model was already introduce in Fleurant and

Boulestreau (2005) and is a theoretical coupling of quantitative

geomorphology and hydrology. Here we present some applications of the

model. We will compare this theoretical law to the distribution of real

hydraulic pathways in two river basins. By way of an applied example, we

will also show how to use this geomorphological transfer function as an

Analytical Geomorphologic Instantaneous Unit Hydrograph (AGIUH) and

thus make rainfall-runoff simulations.

2 An analytical geomorphological transfer function

The geomorphological theory of unit hydrograph has been formulated by

Rodriguez-Iturbe and Valdès (1979). This model is called GIUH

(Geomorphologic Instantaneous Unit Hydrograph) and provides the times of

transfer according to the geomorphology of the drainage basin. It can be

expressed as follows (Rodriguez-Iturbe and Rinaldo, 1997):

T (t) =
∑
γ∈Γ

p(γ)fγ(t) (3)

p(γ) is the probability to have a γ path, γ being any path covered by a

raindrop in the stream network, and Γ is the set of all the possible paths γ.

fγ(t) (s−1) is the probability density function of the travel time of the path γ.

The GIUH model T (t) (equation 3) is the frequency distribution of travel

times from points within the drainage basin to the outlet.
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Rosso (1984) shows that the equation (3) can be fitted by a Gamma law

whose parameters depends on Horton’s parameters.

The GIUH model has generated a wealth of literature over the last twenty

five years. For most modifications, authors put forward the hypothesis that

the response to rainfall input coming out of each drain is either an

exponential function (Rodriguez-Iturbe and Valdès, 1979), or a single-valued

function (Gupta et al., 1980; Gupta and Waymire, 1983) or else a Gamma

function (van der Tak and Bras, 1990; Jin, 1992; Kirchner et al., 2001). In all

cases, these hypotheses are empirical and therefore influenced by

experimental observations.

The model described in the present article is different from the GIUH by

Rodriguez-Iturbe and Valdès (1979), and there are two main reasons for this:

• It is based on general hypotheses on symmetry combined with the fractal

properties of branched structures; thus it is able to be used to branched

structures in general (Duchesne et al., 2002; Fleurant et al., 2004), and not

to stream networks exclusively;

• The reasoning is carried out on the pathways’ lengths rather than on the

times of transfer to the basin.

The model introduced here uses findings of research carried out on stream

networks (Duchesne et al., 1997; Cudennec, 2000; Cudennec et al., 2004).

The focus is to describe networks structure thanks to Strahler stream

ordering (1964), and to apply Horton’s laws (1945) to a geomorphological

statistics rationale, in order to elaborate a descriptive theoretical model of

network lengths.

6



Well before Mandelbrot (1988) developed his fractal theory; branching

networks and more particularly stream networks structure had been studied

very accurately. In fact, geological scientists and hydrologists such as Horton

(1945), Schumm (1956), Strahler (1957) or Shreve (1969) took an interest in

analysing the complex ordering of these networks. They made topological

and hydraulic analyses (Kirshen and Bras, 1983) which can be applied to all

branching networks that are three-dimensional and organised into a

hierarchy. Many classification systems have been put forward (Horton, 1945)

but we have decided upon Strahler’s system (1952) which is the most widely

used. The classification system (Figure 1) is as follows:

• headwaters are first order stream segments;

• when two stream segments within the same order i merge, the stream

segment resulting from this confluence is within order i + 1;

• when two stream segments within different orders, i and j merge, the

stream segment resulting from this confluence is within order max (i, j).

Strahler’s classification thus makes it possible to organise the different

segments of a stream network into a hierarchy. Consequently, the stream

outlet will have the highest index value, corresponding to the river network

order.

Hydrologists relied on this classification to put forward general geometric

laws concerning the ordering of stream networks. Among them, Horton’s

laws (1945), describe the way stream networks are organised. One of these

laws expresses the so-called length ratio RL = li
li−1

, also known as Horton’s

ratio. A great number of experimental studies on stream networks

(LaBarbera and Rosso, 1987; Feder, 1988; LaBarbera and Rosso, 1989;
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Tarboton et al., 1990; LaBarbera and Rosso, 1990; Rosso et al., 1991) reveal

that this ratio is rather stable and fluctuate between 1.5 and 3.5.

A brief outline of the model is given hereafter, while the detailed description

can be found in the appendix.

2.1 Definition of hydraulic lengths

Before giving the theoretical expression of probability density function of

hydraulic lengths, it is necessary to define this variable accurately. As shown

in Figure 1, if we take an indefinite point on the river bassin which

represents a rain drop, the path to be covered between this point and the

outlet successively goes over channels of increasing orders. The hydraulic

length is defined as follows:

L = l0 +
n∑

k=1

lk (4)

lk (m) is the length of the channel in k order and n is the order of the river

network. l0 (m) is the length on the hillslope. Hence, the hydraulic length is

the added lengths n of the channels.

The hydraulic length L (m), in the river network, may be calculated using a

vector with n components (l1, l2, · · ·, ln). It is importante to notice that

some lenght can be nill: a first-order channel might join a third order one

directly, so l2 would be zero in that particular instance.
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2.2 The transfer function of the drains

The rationale of Duchesne et al. (1997), Cudennec (2000) and Cudennec et

al. (2004), founded on the hypotheses on symmetry combined with fractal

geometry, leads to the probability density function of the drains’ hydraulic

lengths of order k that we have reformulated as follows (see appendix for

details):

pdf(lk) =
1√
2πlk

1√
lk

e
− lk

2lk k=1, 2, . . . , n (5)

A Gamma distribution with α = 1
2

and β = 1
2lk

can be recognised here and

named Γ
(
lk,

1
2
, 1

2lk

)
, where lk is the mean of lk.

.

2.3 The geomorphological transfer function in the stream network

We put forward the hypothesis that this above distribution law (equation 5)

is an appropriate model for representing the hydraulic pathways of

individual drains, which is consistent with research work by van der Tak and

Bras (1990), Jin (1992) and Kirchner et al. (2001).

Now, the step consists of determining the probability density distribution for

L, knowing that L =
∑n

k=1 lk. The most usual way to calculate the

probability density function of L, is to use the following property (Feller,

1971):

If we have n independent random variables lk, k = 1, 2, . . . , n of probability

density function pdf(lk) then the random variable L defined as L =
∑n

k=1 lk
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has a probability density function pdf(L) such as:

pdf(L) = pdf(l1) � pdf(l2) � . . . � pdf(ln) (6)

Where � is the convolution integral. Full explanation of the convolution

operator � is given in appendix.

Equation (6) can be calculated very easily with numerical calculation

software, though an analytical solution exists that is explained in this paper.

The result of the convolution integral for n Gamma distributions is obtained

by working out the generalised characteristic function (Mathai, 1982;

Moschopoulos, 1985) and we can thus assert the following theorem (Sim,

1992):

Let l1, l2, . . . , ln, be n independent random distributed according to a

Gamma distribution of the following type Γ
(
lk,

1
2
, 1

2lk

)
, then the probability

density for L =
∑n

k=1 lk, is:

pdf(L)= pdf(l1) � pdf(l2) � . . . � pdf(ln)

= Γ

(
l1,

1

2
,

1

2l1

)
� Γ

(
l2,

1

2
,

1

2l2

)
� . . . � Γ

(
ln,

1

2
,

1

2ln

)

=
1√√√√2n

n∏
i=1

li

L
n
2
−1

Γ
(

n
2

)e

(
− L

2ln

) ∞∑
k=0

bn(k)
(

n−1
2

)
k

k!
(

n
2

)
k

⎛
⎝ L

2
(
ln − ln−1

)
⎞
⎠

k

(7)

with

bi(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if i = 2

k∑
j=0

bi−1(j)
(

i−2
2

)
j
(−k)j

j!
(

i−1
2

)
j

(
li−1 − li−2

li−1 − li

li−1

li−2

)j

for i = 3, 4, . . . , n
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and

(x)k = x(x + 1)(x + 2) . . . (x + k − 1) (8)

The equation (7) is a geomorphological transfer analytical function since it

represents the distribution of hydraulic pathways through which water

travels inside the river network. Moreover, the parameters of this analytical

function are geomorphological:

• The Strahler order n, represents the rate of the hierarchical system of the

river network;

• The lengths lk (m), are the average hydraulic lengths for each Strahler

order.

In fact, this transfer function is equivalent to a Width function

Rodriguez-Iturbe and Rinaldo (1997) since it gives the probability of having

a given distance between a definite point of the stream network and the

outlet of the drainage basin.

2.4 The transfer function applied to the hillslopes

First, the impact of time transfer applied to the slopes was not considered by

the GIUH model. Then, van der Tak and Bras (1990) took this impact into

account by convoluting a transfer function on the basin slopes thanks to the

GIUH model. The transfer function applied to the basin slopes is a Gamma

pdf(l0) = Γ (l0, αh, βh) law.

The αh shape parameter can be determined experimentally and can reach

values ranging from 1.2 to 3.1 (van der Tak and Bras, 1990). The value of
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the scale parameter is βh = α
l0

so that the Γ (l0, αh, βh) integral is still equal

to 1 (Figure 2).

3 Methodology and experimental data

In order to compare this geomorphological transfer analytical function

(equation 7) with data from real river basins, it is first necessary to assess

the parameters’ value of the model (Strahler order n and average lengths lk

within the different orders k). Then we will just have to compare the graph

of the function (7) with that of the experimental Width function of the

studied river basins.

3.1 Assessment of the model’s parameters

The parameters of the model are of geomorphological nature and easily

available, these are the Strahler order (n) of the river basin and the drains’

average lengths of order k (lk). These parameters can be assessed either with

numerical data from the river basin (DEM, digitalisation), combined with a

retrieval software for geomorphological data (ArcView, MapWindow), or

manually with a map of the stream network. In the second case, the

procedure is the following: first, the river basin is divided into a number of

points representing raindrops falling uniformly on the river basin surface.

The path of the raindrops down the hill slope to the stream network is

determined using the contour lines; it is represented by length l0 on Figure 1.

Finally, the distance from this point to the river basin outlet is assessed by

combining the covered lengths with the different Strahler order; they
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correspond to lengths l1, l2, . . ., ln.

For each point (or raindrop) we have the lengths l1, l2, . . ., ln - some of them

are obviously equal to zero - corresponding to the distance covered by

raindrop through the river network, within the different Strahler orders.

Thus, we can calculate the average distance l1, l2, . . ., ln covered for all the

raindrops.

A sensitivity study of this methodology was carried out by Kartiwa (2004),

revealing that it is not necessary to have a large number of points, that is to

say too detailed a grid. In fact, Kartiwa’s study on several river basins

highlights the fact that shifting from a 3000-point grid to a 30- point grid

involves very few measurement errors exceeding 10% of the estimated lk

averages.

As for the Strahler order n of the river basin, it is obtained even more

quickly by reading the map and applying the Strahler’s rules specified before.

This sensitivity study highlights the fact that the parameters of the model

are manually available quite rapidly.

3.2 Experimental data

In order to compare the analytical equation of the geomorphological transfer

function (equation 7) with reality, we have chosen two very different river

basins with regard to scale and morphology (Figures 3 and 4).

The Bunder river basin is located in Indonesia, its surface area is 29 ×104m2

and its Strahler order is 3. It is situated in the Wonosari region, 80 km north

of Yogyakarta, the province capital, 07◦53S and 110◦32E.

The river basin of Saint-Michel Mont-Mercure is located in France (Vendée),

13



its surface area is 673 ×104m2, and its Strahler order is 5. Its precise location

is Vendée, 46◦48’3”N and 0◦54’8”W.

The model parameters resulting from the experimental river basins are

manually determined with the above described method, and appear in table

1.

4 Results and applications

4.1 The geomorphological transfer function

The comparison between the model (equation 7) and the experimental data

is shown in Figure 5. The model parameters are given in table 1 for each

river basin and equation (7) can thus be compared with the experimental

Width function of the river basins.

It can be noted that, even though it is far from being perfect, the analytical

function of geomorphological transfer provides the experimental Width

function with a relatively good trend. It should be noticed that no

calibration is necessary since the geomorphological parameters of the transfer

function are directly derived from the experimental basins. Here is the major

asset of such a function, which is based on general laws on symmetry, and

repeats the hydraulic paths distribution (Width function) of the river basin,

the geomorphological features of the latter being known (Strahler order and

average lengths of hydraulic paths within the different orders).

Moreover, it can be noted that the combination of the symmetry hypotheses

with fractal geometry (see model development in appendix), makes it

possible to skip scale problems. In fact, although the Saint-Michel river basin
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has a surface area which is more than twenty times as big as that of Bunder,

this scale aspect does not necessarily limit the use of the model.

4.2 The AGIUH model

Equation (2) shows the relation between the GIUH, rainfall and hydrograph.

The function T (t), corresponds to the distribution of rainfall transfer times

over the whole river basin. And yet, the analytical geomorphological transfer

function (equation 7) specified in the present article is a theoretical Width

function; consequently, it determines the lengths distribution covered by rain

throughout the whole river basin. It is thus possible to shift from function

pdf(L) to function T (t), supposing (Beven and Wood, 1993) an average

runoff speed v in the stream network and vh in the hillslopes. Then the

geomorphological transfer function (equation 7) becomes an analytical GIUH

(AGIUH) that reads:

T (t) = pdf
(

L

v

)
� pdf

(
l0
vh

)
(9)

=
1√√√√(2v)n

n∏
i=1

li

t
n
2
−1

Γ
(

n
2

)e

(
− vt

2ln

) ∞∑
k=0

bn(k)
(

n−1
2

)
k

k!
(

n
2

)
k

⎛
⎝ vt

2
(
ln − ln−1

)
⎞
⎠

k

� pdf

(
l0
vh

)

with bn(k) and (x)k given in equation (7).

The aim of this paper is not to discuss the rainfall-runoff modelling.

However, it seems important to describe an application of such AGIUH.
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4.3 Data watershed

To keep as close as possible to the theory of unit hydrograph, the smaller

river basin (Bunder) is chosen in order to fulfil the hypothesis of rainfall

homogeneity. The used rainfall-runoff data (Kartiwa, 2004) correspond to

two short events. The gross rainfall data are assessed with a tipping bucket

rain gauge, allowing measurements with an accuracy to within 0.2 mm.

Measurements are recorded every 6 minutes. Water depths at the river outlet

are measured with an ultrasound sensor, which gives the distance between

the sensor and the depth of runoff. The transformation of water depth into

runoff is carried out with a rating curve which has been previously

established.

The region is situated in an inter-tropical zone and has an equatorial type of

climate under the influence of monsoon. It is characterised by an alternation

of a rainy season lasting 6 months in average (from November to April) and

a dry season starting from May until October. Average annual rainfall is

between 1500 and 3000 mm.

4.4 Production function

In order to determine the net rainfall which transforms gross rainfall into

rainfall runoff, it is necessary to assess the runoff deficit. This runoff deficit

may be analysed more precisely by studying the infiltration of water into the

soil. Several methods are available to assess the infiltration rate of water:

Green and Ampt (1911), Horton (1933), Philip (1957) or Holtan (1961). We

have chosen Horton’s law because in our present state of knowledge, we
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believe it is the most appropriate method to explain the hydraulic

functioning of our specific case: the Indonesian drainage basin Kartiwa

(2004).

This law makes it possible to express the instant capacity for infiltration

according to time, in the case of saturating rainfall, in the form of (Horton,

1933):

f(t) = fc + (f0 − fc) e−kt (10)

with

f(t): infiltration capacity at time t (mm/mn)

f0: inital infiltration capacity (mm/mn)

fc: final infiltration capacity (mm/mn)

k: constant (mn−1)

t: time (mn)

The value of the mass infiltration (F ) is then worked out in the case of

saturating rainfall:

F (t) = fct +

(
f0 − fc

k

)(
1 − e−kt

)
(11)

To make the most of Horton’s law for modelling, it is necessary to start from

the equation linking f and F to be able to express (accurately enough) at

any time the instant capacity for infiltration according to the amount of

water already infiltrated into the ground, whether rainfall is saturating or

not:

f(t) = f0 − k (F (t) − fct) (12)
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Net rainfall (RE, Rainfall Excess) is then worked out using the following

formula:

RE(t) = R(t) − (f0 − k (F (t) − fct)) (13)

The prevailing types of soils are Mollisols of the haplustolls type on the one

hand and haplustolls and Inceptisols of the utropets and ustropets type on

the other hand. Land-use is mainly gardens (37.8%) and agroforestry (30%),

rice fields/groundnut cultivation (24%), 8.2% of the basin’s surface are

residential areas. Infiltration rate of water has been measured using the

submersion method (double-ring infiltrometer) (Hills, 1970). The measuring

points are chosen for each type of land-use. After setting the measured

infiltration with the equation of Horton’s law , the three parameters f0, fc

and k of Horton’s law, are determined (table 2).

4.5 Model parameters

The averages hydraulic pathways within the various orders are respectively

l1 = 39 m, l2 = 68 m and l3 = 336 m, which represents an average of L =

443 m for all the whole river network.

The theoretical probability density function of the hillslopes hydraulic

pathways pdf(l0) = Γ (l0, αh, βh) is adjusted to experimental data (Figure 2).

The shape parameter αh is 1.6 and matches van der Tak and Bras (1990)

observations.

The average stream flow velocity in the river network has been determined

(Kartiwa, 2004) in the field with a pygmy current meter. Value of the

hillslope velocity is calculated by using Manning’s semi empirical equation
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(Chow, 1959):

vh =
D

2
3 S

1
2

nm
(14)

Where D is the average depth of runoff on the hillslope and S is the average

slope. The experimental values of the parameters related to slope appear in

table 2. Concerning the average depth of water, the value of parameter D, is

very hard to work out. Consequently, we have fixed a value for D making the

value of vh consistent with the observed runoff rates on the studied basin

slopes. The Manning parameter nm is nm = 0.075 (”heavy brush”). These

values lead to vh = 0.17 m/s.

Field method provide results in the order of 1 m/s and 0.9 m/s respectively.

As for the simulations (Figure 6), we have set an average velocity v = 0.95

m/s for the stream network.

For each of the two rainfall-runoff events in the Bunder river basin, the net

rainfall determined by the production function is convoluted with the

AGIUH model following equation (2), in order to simulate a hydrograph.

This simulated hydrograph is then compared with the real hydrograph

(Figure 6). The simulation quality is assessed thanks to the Nash and

Sutcliffe (1970) coefficient:

F = 1 −
∑

(Qexp − Qsim)2

∑(
Qexp − Qexp

)2 (15)

Where, Qexp (m3/s) is the actual flow rate, Qsim m3/s) is the simulated flow

rate and Qexp m3/s) is the average value of the actual flow rate.

A higher than 0.8 Nash-Sutcliffe coefficient means a good simulation which is

close to the stream measurements; this is the case of our simulations

resulting in coefficient values of 0.97 and 0.98.
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5 Conclusion and prospects

We have described here an analytical geomorphological transfer function

representing the theoretical distribution of hydraulic lengths in a river basin.

This model is based on the assumption that the reduced lengths

distributions ( lk
RL

) in order k (Strahler order) are similar and represented by

a Gamma law with (1
2
, 1

2lk
) parameters. The analytical geomorphological

transfer function results from the convolution of these n Gamma laws

(equations 6 and 7); n being the total Strahler order in the river basin. This

theoretical result is an analytical function depending on n + 1

geomorphological parameters which are easily available by simply reading a

map or analysing digital data (DEM for example). These parameters are: n,

the Strahler order in the stream network and the average lengths l1, l2, . . .,

ln from the drains to the different network orders.

After explaining the approach to obtain this analytical function (equation 7),

we have tested our theoretical model in two very different river basins, as far

as their morphological nature and scale were concerned. The results reveal

that this theoretical function, equivalent to a Width function by definition,

highlights the real structure of both experimental river basins, without any

calibration being implemented. Such function makes it possible to give a

fairly accurate description of the morphological structure of the stream

network in the river basin.

Then, we have put forward an applied example of this analytical

geomorphological transfer function for the rainfall-runoff modelling. In fact,

by assuming that flow velocity is homogenous through the stream network, it
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is possible to convert this analytical geomorphological transfer function into

a AGIUH (Analytical Geomorphologic Instantaneous Unit Hydrograph,

equation 9), and thus to model the conversion of rainfall into runoff in a

river basin.

Here are the major conclusions that can be drawn from this article:

• We have described the development of a new analytical GIUH model,

whose geomorphological parameters can easily and rapidly be determined;

• The transfer function, based on the fractal features of stream networks,

can be used at multiple scales and thus makes it possible to validate the

model on river basins having quite different scales;

• The hypotheses on symmetry Duchesne et al. (1997), which constitute the

foundations of the model, make it universal and versatile. In this

particular case, the model provides a description of the geomorphometric

structure of stream networks; but it may be used for branched structures

in general Duchesne et al. (2002); Fleurant et al. (2004);

• Since the analytical model of transfer function is parameterized with

geomorphological variables derived from the real river basin, the

corresponding AGIUH makes it possible to carry out rainfall-runoff

simulations, through a simple convolution with rainfall and with no

calibration. Consequently, the model proves to be a useful tool for

anticipating floods and studying the resulting hydrological response even

in ungauged river basins.

These findings pave the way for additional validation work of the model, at

various scales and with regards to even more varied hydrological

applications. Actually, the relation which exists between the river basin’s
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geomorphology and the rainfall-runoff response is a significant issue for the

understanding of hydro-geomorphological processes (Poole et al., 2002; Yair

and Raz-Yassif, 2004).
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Appendix

Detailed calculations concerning the present model

The determination of both pdf(lk) and pdf(L) needs some mathematical

developments that are presented in this section.

The distribution model of the lk drains’ hydraulic lengths (equation 5) is

based on two hypotheses on symmetry, which are combined with the fractal

nature of the stream networks (Duchesne et al., 1997; Cudennec, 2000;

Cudennec et al., 2004):

• The independence hypotheses of the distribution function of components

reduced by the morphometric length ( lk
RL

). According to this hypothesis,

the distribution function of a component lk only depends on lk, not on any

of the other components lj , k being different from j;

• The isotropy hypothesis of distributions. One considers that the

distribution law of lk is isotropic. Because of the self-similarity nature of
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tree structure and Horton’s law, the k order component is larger, on

average, than the k − 1 order component, because lk = RLlk−1. The

isotropy hypothesis should then be applied, with the reduced components

of branch lengths lk
Rk−1

L

as coordinates of the symbolic space.

Such hypotheses lead to the distribution the lk drains’ hydraulic lengths

(Duchesne et al., 1997; Cudennec, 2000; Cudennec et al., 2004):

pdf(lk) =
1√
π

√√√√ λ

Rk−1
L

1√
lk

e
− λlk

Rk−1
L (16)

The constant λ may be explained by expressing the lk components average,

named lk, it gives successively:

lk =

+∞∫
0

lkpdf(lk)dlk

=
1√
π

√√√√ λ

Rk−1
L

+∞∫
0

lk√
lk

e
− λlk

Rk−1
L dlk

=
1√
π

√√√√ λ

Rk−1
L

+∞∫
0

l
1
2
k e

− λlk

Rk−1
L dlk

=
1√
π

√√√√ λ

Rk−1
L

Γ
(

1

2
+ 1

)(
Rk−1

L

λ

) 3
2

=
Rk−1

L

2λ

After replacing this result in equation (16) we have:

pdf(lk) =
1√
2πlk

1√
lk

e
− lk

2lk (17)

A Gamma distribution with α = 1
2

and β = 1
2lk

can be recognised here and is

named Γ
(
lk,

1
2
, 1

2lk

)
.

The second step consists of determining the probability density distribution
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for L, knowing that L =
∑n

k=1 lk. The most usual way to calculate the

distribution pdf(L), is to use the following property (Feller, 1971):

If we have n independent random variables lk, k = 1, 2, . . . , n of probability

density function pdf(lk) then the random variable L defined as L =
∑n

k=1 lk

has a probability density function pdf(L) such as:

pdf(L) = pdf(l1) � pdf(l2) � . . . � pdf(ln) (18)

Where � is the convolution integral. To clarify this complex mathematical

process, here is a simplest example of what a convolution integral with only

two functions is:

If f(x) and g(x) are two functions:

h(x) = f(x) � g(x)

=

+∞∫
−∞

f(y)g(x− y)dy

Convolution integral of two Gamma distributions

Let us work out the convolution integral of two Gamma distributions with β

parameters which are different in pairs, we then try to calculate

Γ (α, β1) � Γ (α, β2). To do this calculation, we will use the characteristic

Gamma distribution functions. In fact, to convolute both Gamma

distributions means that we are looking for the probability density function

pdf(L) for L such as L = l1 + l2 where l1 and l2 have a probability density

function represented by the functions Γ (α, β1) and Γ (α, β2). Moreover, the

characteristic functions, named ϕ�
lk

, have the following property:

ϕ�
l1+l2

= ϕ�
l1
ϕ�

l2
(19)
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The characteristic function of a random variable, named lk variables here, is

defined as a mathematical expectation of the exponential function of this

random variable; in the present case we have therefore:

ϕ�
lk
(s) =E

[
e−slk

]

=

+∞∫
0

e−slkpdf(lk)dlk

=
1

Γ(α)βα
k

+∞∫
0

lα−1
k e

−lk

(
s+ 1

βk

)
dlk

=
1

(1 + sβk)
α

Here on has:

ϕ�
l1+l2(s) =

1

[(1 + sβ1) (1 + sβ2)]
α

Concerning our case, α = 1
2
, then function pdf(L) such as L = l1 + l2 can be

worked out thanks to Laplace transform tables:

pdf(L) =
1√
β1β2

e−
( 1

β1
+ 1

β2
)L

2 I0

⎛
⎝
(

1
β2

− 1
β1

)
L

2

⎞
⎠ (20)

Where I0(x) = 1 + x2

22 + x4

2242 + x6

224262 + . . . is the modified Bessel function of

the first kind and zero order. The result of the probability density function

of morphometric lengths L is therefore:

pdf(L) =
1

2
√

l1 l2
e−

(
1

l1
+ 1

l2

)
L

4 I0

⎛
⎝
(

1
l2
− 1

l1

)
L

4

⎞
⎠ (21)

Convolution integral of n Gamma distributions

The result of the convolution integral for n Gamma distributions is obtained

by working out the generalised characteristic functions (Mathai, 1982;
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Moschopoulos, 1985; Sim, 1992):

Let l1, l2, . . . , ln, be n independent random distributed according to a

Gamma distribution of the following type:

Γ (l, αi, βi) =
βαi

i lαi−1

Γ (αi)
e−βil (22)

Then the probability density function for L =
n∑

i=1

li, is:

pdf(L) =

(
n∏

i=1

βαi
i

)
L

n−1∑
i=1

αi − 1

Γ

(
n∑

i=1

αi

) e−βnL
+∞∑
k=0

bn(k)

(
n−1∑
i=1

αi

)
k

k!

(
n∑

i=1

αi

)
k

[(βn − βn−1)L]k(23)

where

bi(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if i = 2

k∑
j=0

bi−1(j)

⎛
⎝i−2∑

p=1

αp

⎞
⎠

j

(−k)j

j!

⎛
⎝i−1∑

p=1

αp

⎞
⎠

j

Cj
i for i = 3, 4, . . . , n

with

Ci =
βi−2 − βi−1

βi − βi−1

(24)

and

(x)k = x(x + 1)(x + 2) . . . (x + k − 1) (25)

By returning to our initial notations, the probability density function of
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morphometric lengths is defined by the following equation:

pdf(L) =
1√√√√2n

n∏
i=1

li

L
n
2
−1

Γ
(

n
2

)e

(
− L

2ln

) ∞∑
k=0

bn(k)
(

n−1
2

)
k

k!
(

n
2

)
k

⎛
⎝ L

2
(
ln − ln−1

)
⎞
⎠

k

(26)

with

bi(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if i = 2

k∑
j=0

bi−1(j)
(

i−2
2

)
j
(−k)j

j!
(

i−1
2

)
j

(
li−1 − li−2

li−1 − li

li−1

li−2

)j

for i = 3, 4, . . . , n
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Figures and Tables

Figure 1: The concept of Stralher’s hierarchical classification system. The

hydraulic length is the added lengths of channel up to an indefinite rain drop

of the river basin. Here, the path between a rain drop of the river basin and

the outlet passes through first, second and third orders.

Figure 2: Distributions of the hydraulic lengths on the hillslopes of Bunder

and the corresponding probability density function pdf(l0).

Figure 3: Bunder watershed’s map, Wonosari, Yogyakarta, Indonesia. The

basin of Bunder is a 3 Strahler’s order river basin with only 29×104m2 of

area.

Figure 4: Saint-Michel river basin’s map, France. The basin of Saint-Michel

is a 5 Strahler’s order river basin with 673×104m2 of area.

Figure 5: Comparison between the experimental pdfs of the hydraulic

pathways (experimental Width functions) of the drainage basins of Bunder

(up - dash line) and Saint-Michel (down - dash line) and the corresponding

theoretical probability density functions (equation 7). Simulated parameters

are given in table 1.

Figure 6: Rainfall-runoff simulation on the river basin of Bunder. Observed

rainfall-runoff data for event November 14, 2001 at Bunder. Infiltration is

calculated by an original method from Kartiwa, 2004. Simulations are

carried out using the AGIUH (equation 9) convoluated within net rainfall

according to equation (2). Model parameters are given in the table 1 and the

average water velocity on the whole river basin is v = 0.95 m/s.
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River basin Area Strahler order l1 l2 l3 l4 l5

(× 104m2) (m) (m) (m) (m) (m)

Saint-Michel 673 5 149 240 1275 426 329

Bunder 29 3 39 62 329

Table 1

Geomorphological caracteristics of the studied river basins.
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Lad use area f0 fc k

(%) (mm.mn−1) (mm.mn−1) (mn−1)

garden 37.8 1.149 0.106 0.244

Agroforestry 30.0 1.335 0.107 0.253

Rice/Arachid 24.0 1.278 0.144 0.136

settlement 8.2 0.490 0.143 0.068

mean value 1.181 0.118 0.206

Table 2

Values of the Horton’s parameters on the watershed of Bunder.
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Model parameters value

n 3

l0 (m) 57

v (ms−1) 0.95

vh (ms−1) 0.17

l1 (m) 39

l2 (m) 68

l3 (m) 336

Table 3

Values of the simulation parameters corresponding to the model presented in this

article. the model has four common parameters: the Strahler order of the drainage

basin (n), the average rate of flow in the stream network (v), ), the average runoff

rate on the slopes (vh) and the average hydraulic lengths on the slopes (l0).
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Fig. 3. C. Fleurant
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Fig. 4. C. Fleurant
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