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Abstract: Planners and designers are interested in replicating biospheric landscape patterns to reclaim surface 
mines to match existing natural landscape patterns.  One approach that shows promise is the use of fractal 
geometry to generate biospheric landscape patterns.  While the measurement of the actual fractal dimension of a 
landscape can be difficult, a box-counting method was developed at INHP, Angers, France which approximates 
the spatial patterns of biospheric landscapes.  Essentially the procedure entails covering a natural object/pattern 
with a regular grid of size r and then one simply counts the number of grid boxes, N(r), that contain some part 
of the object.  The boxes are subdivided and the value of r is progressively reduced and N(r) is similarly re-
measured until some of the boxes become empty (containing no landscape objects of interest).  Then the fractal 
dimension of the object is approximated to be the log(N(r))/log(1/r).  We illustrate this procedure by measuring 
and replicating a stand of trees in the Upper Peninsula of Michigan.  Our study revealed a fractal number of 
1.017 (p<0.01), with a mean of 77.4 trees per 100 m by 100 m stand, and a standard deviation of 34.87 trees per 
stand. 
 
Key-words: - landscape architecture, landscape planning, physical geography, landscape ecology, landscape 
science, plant ecology   
 
1  Introduction 
Planners, designers, and environmental specialists 
are interested in assessing the spatial composition of 
landscape features such as the distribution of hills, 
arrangement of vegetation, and shapes of water 
bodies to blend disturbed landscapes with natural 
landscapes.  However natural looking compositions 
were difficult to mathematically replicate.  Typical 
approaches employed to replicate landscapes 
included gestalt methods and ecological field 
laboratory methods. The gestalt method was 
heuristic in nature where an individual would 
artistically blend and integrate patterns together.  
The ecological field laboratory method employed the 
measures of frequency, density, and size to construct 
patterns. A different approach evolved that relied 
upon the concept of fractals to quantify spatial 
patterns in the landscape.  
 
1.1  Origin of Fractals 
Fractals were first noticed/observed at the end of the 
19th century.  Although the term "fractal" was only 
attributed later, the Peano curves seem to be the very 

first examples of fractal objects, first described by 
Giuseppe Peano (1858 – 1932).  These were curves 
that could, through a series of iterations and a few 
simple rules, fill a space [10].  Such mathematical 
objects have been considered as mere mathematical 
curiosities for a long time.  
Fractals have been the heart of a new branch of 
mathematics only in the second half of the 20th 
century, thanks to the work of the French 
mathematician Benoît Mandelbrot. While 
researching "econometry" (mathematics applied to 
economy), he discovered that there is no difference 
in the shape/pattern of the curves of predicting short-
term and long-term prices.  He presents a 
comprehensive description of the curves following 
this property and invented the word fractal (coming 
from the latin word fractus, meaning broken) to 
name the objects where irregularity distinguishes 
them from the Euclidian geometry curves.  Since 
their discovery, the use and application of fractals 
have spread. They are now used in many sciences 
like geology, biology or econometrics.  
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1.2 Further Descriptions Illustrating Fractals 
To illustrate the concept of fractals, imagine a tour 
along the French coastline of Brittany, a rugged 
rocky coastline.  What is the actual length of this 
coastline?  To determine the length of the coastline, 
one can look at two forms for resolution: 
1. a series of pictures from 10 000 meters high 
and calculating the visible length of the coast. 
2. a second series of pictures from 500 m high 
and observing details of the coastline one meter by 
one meter. 
After calculating the length, one will discover the 
coast is more precisely known in the second case 
and the calculated length is actually longer.  If one 
examines the coast at an even higher resolution, new 
details appear and the length of the coast will 
increase even more.  The more precise the 
measuring instrument is, the more the length of the 
coast increases, because any one section of the 
coastline is equally as complex at any scale or 
resolution. The Brittany coastline example 
introduces a fundamental understanding of the 
fractal world.  The complexity of the Brittany coast 
(being unable to be described with Euclidian 
geometry) makes it a fractal object.   
A useful conceptual definition of a fractal is a 
"geometrical shape resulting from infinite regular 
fragmentation of a given form."  It is indeed possible 
to describe a fractal as a repetition of the same 
operation on each part of the curve.  An essential 
property results from this kind of internal 
homothetia: self-similarity.  If one looks closely at a 
piece of the curve, it looks like the whole curve 
itself.  The von Koch’s snowflake illustrates this 
property.  This von Koch's snowflake fractal, as 
most all the fractals, is easy to design even if the 
resulting shape is complex. The von Koch’s 
snowflake has the geometric property where as the 
construction iteration process increases towards 
infinity, the total length L increases towards infinity.  
Therefore, the length of the curve is infinite. Here 
lies a paradox: the area of the von Koch’s snowflake 
A is a finite measure (see equations 1 and 2). 
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In many respects there are little differences between 
the mathematics of fractals and descriptive statistics. 
 
 
 

1.3  Geometric Properties of Fractals 
Geometric properties of fractals are used in many 
models and numerous sciences.  For example in 
economics, fractals are used in complex random 
phenomena, such as in finance to represent the 
variations of the prices on the trade market.  In 
climatology, fractal models can also be applied to 
understand the turbulence of atmospheric 
movements.  In geology, they can be used for 
modeling the earth relief or rock porosity.  For 
computer sciences, fractals assist in finding the 
optimal arrangement of electronic components, to 
avoid crossings of circuit tracks.  In chemistry, they 
are used to design new materials.  The fractal nature 
of such materials gives them exceptional properties, 
such as a very high thermal cooling power. 
 
1.4 Planning and Design Applications 
There is a belief that fractals may have an 
application to recreate complex landscape patterns 
that are difficult to describe with typical Euclidian 
approaches because the landscape is full of fractals: 
rivers, trees, networks in general [1].  Fractals are 
highly detailed, complex geometric shapes and one 
measure of their complexity is fractal dimension 
[10].   
Thus several authorities have examined fractals in 
landscape planning and design including studies by 
Diaz-Delgado, Lloret, and Pon; DiBari; Griffith, 
Martinko, and K.P. Price; Li; Milne; Palmer; 
Thomas, Grankhauser, and Biernacki; Van 
Noordwijk and Mulia [3, 4, 7, 8, 11, 12, 13, 15]. 
However, the use of fractals seems to be looking for 
a practical application.  For example in describing 
landscapes, it has always been easy to calculate an 
existing pattern, but difficult to replicate the pattern.  
In this paper we present an approach to replicate the 
pattern and possibly a practical approach in the use 
of fractals.  
 

2  Methodology 
The approach in the methodology is related to the 
dimensions of fractals.  Both Euclidian geometry 
and fractal geometry have dimension.  In Euclidian 
geometry, the point (the elementary unit in 
geometry) is of Euclidian dimension 0.  Lines or 
curves are of dimension 1.  Areas are of dimension 
2, such as a circle or rectangle.  Volumes are of 
dimension 3, such as ball or cube.  Euclidian 
dimensions are also call topological dimensions and 
are named in honor of Euclidian geometric objects 
such as a circle or a square.  Fractal objects have 
dimensions too. 
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2.1  Fractal Dimensions 
To illustrate fractal dimensions, consider the 
Brittany coastline.  If one needs to measure 1 m 
length of a relatively straight line with a 20 cm ruler, 
this ruler will be used 5 times, 10 times for a 10 cm 
ruler, 20 times for a 5 cm ruler.  Let’s suppose now 
that the line one needs to measure is highly variable 
and curved.  One will not be able to follow the 
coastline line precisely with the ruler and one will 
under-estimate the real length.  But, the smaller the 
ruler is, the more accurate the result.  To analyze this 
phenomenon in a mathematical way, one can say 
that the result tends towards the exact length of the 
line when the ruler is small when compared to the 
curvature of this line.  If one can divide the length of 
a ruler of an infinite small size by "n," one has to use 
this ruler n times more (same as if the line were 
straight). This property can define the topological 
dimension of the curve or line as we have (Equation 
3): 
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Replicating the process again with a surface, one can 
use a square where the length of the side is L. To 
measure its area, one can use a smaller square where 
the length of the side is L/2, then you will need 4 of 
them, 16 with an L/4 square, and so on. So, if the 
length of the side of the measuring square is divided 
by "n," the number of such squares used is 
multiplied by "n" (Equation 4): 
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Similar results can be obtained for volumes and the 
topological dimension of a Euclidian geometric 
object with a fractal dimension of 3. 

In the relatively simple case of self-similar 
fractal objects (meaning they seem the same 
whichever zooming factor is used), resulting in a 
constant iterative factor "k," the fractal dimension is 
(Equation 5): 

( )
( )k
nD fractal log
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=

    (5)
 

n = is the number of the subsets counted during the 
scaling process using a factor 1/k (self-similarity 
factor).  
k = is the number of iterations            

The von Koch’s snowflake illustrates how to 
calculate the fractal dimension of self-similar fractal 
objects.  Call L the initial length of the triangle (the 
snowflake starts as a equilateral triangle).  If one 
uses a ruler of length L and applies it on the 

snowflake, one can only measure the initial triangle 
and find a length of 3L for the snowflake.  If one 
uses a smaller ruler of size L/3, we can follow the 
snowflake more precisely and apply it 12 times.  
One can continue by dividing again the size of the 
ruler by 3 (the snowflake presents an infinite number 
of spikes, with smaller and smaller sizes), it will be 
applied 48 times, and so on.  In other words, each 
time the size of the ruler is divided by 3, the number 
of times it is applied on the snowflake is multiplied 
by 4.  This process can be carried on indefinitely.  
Then according to the same reasoning one can 
calculate the fractal dimension of the von Koch’s 
snowflake (Equation 6)  
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                                      (6)
 

Therefore, we can only conclude that the fractal 
dimension of this strange curve is not 1 as any of 
classic linear geometrical curves. The von Kock’s 
snowflake has a topological dimension equal to 1 
(it’s a broken line), but a fractal dimension strictly 
greater than 1, and moreover, which is not an integer 
but a real number. 
 
2.2  Inverse box-counting method: a tool for 
replicating landscapes 
The fractal dimension is not easy to calculate but can 
be estimated by several methods.  The box-counting 
method is one of the easier and more popular 
methods to implement: the natural object is covered 
with a regular grid of size r and one simply counts 
the number of grid boxes, N(r), that contain some 
part of the object. The value of "r" is progressively 
reduced and N(r) is similarly measured. As "r" tends 
to very small values (0 in a theoretical way) one 
finds that log(N(r))/log(1/r) tends to the fractal 
dimension of the object. 

In our study, we illustrate the application of 
fractals in the planting pattern of trees in the Upper 
Peninsula of Michigan in Iron and Dickinson 
counties.  The location of trees can be placed on a 
map (100 meters by 100 meters) derived from an 
aerial photograph and measured.  This set of points 
(location of trees) can be viewed as a complex and 
fractal object in the landscape.  The box-counting 
method is a simple way to characterize the 
complexity of this planting through the value of its 
fractal dimension. The greater the value of the 
fractal dimension (2 is the maximum value in a 
plane), the less the complexity of the planting 
pattern (in terms of scale, alignment, structure, etc.).  
This method was developed by Duchesne et al. [5] 
and computed by Durandet in the Landscape 
Department of the National Institute of Horticulture 
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and Landscape (Angers, France) [5, 6]. By using the 
inverse box-counting method one is able to control 
the randomness of a planting of trees or other natural 
landscape pattern with several parameters: the fractal 
dimension (D), the average minimum distance 
between two trees (εmin) and the average maximum 
size of the glades (εmax). 

In the process, the pairs of values r and the 
number of boxes N(r), start with a value of r being 
100 meters, and N(r) being one.  Then r is divided in 
half and r is 50 meters, while N(r) can range from 
one to four, depending upon how many boxes 
contain trees.  The pairs for the regression analysis 
start with the first pair where at least one box is 
empty and end when only one tree is found in any 
box.  We selected five 100 meter by 100 meter 
boxes in Iron County and five 100 meter by 100 
meter boxes in Dickinson County [9, 14].  The slope 
of the regression equations represents the fractal 
number.  The areas that we selected to measure were 
rocky and dry xeric northern forests, an environment 
similar to waste rock piles on a surface mine where a 
fractal planting plan for dry forests might be 
appropriate [2].  These forests are predominantly  
composed of about 16% red pine (Pinus resinosa 
Sol. Ex Aiton), 21% jack pine (Pinus banksiana 
Lamb.), 15% Eastern white pine (Pinus strobus L.), 
and 12% northern pin oak (Quecus ellipsoidalis E.J. 
Hill), plus a scattering of other trees such as 7% 
quaking aspen (Populus tremuloides Michx.), 3% 
red maple (Acer rubrum L.), 4% paper birch 
(Betulus papyrifera Marsh.), 4% northern red oak 
(Quercus rubra L.), 7% white oak (Quercus alba L.) 
and 7% of bigtooth aspen (Populus grandidentata 
Michx.). 
 
 

3  Results 
Figure 1 illustrates the results related to one of the 
aerial plots, Iron County 2.  From the 10 plots of 
trees, 43 pairs of numbers were derived (Table 1). 
The regression analysis revealed an adjusted r-
square of 0.792, with a significant regression 
(p<0.01), a significant constant (p<0.01) and a 
significant predicator Ln(1/r) (p<0.01). The 
regression is expressed in Equation 7.  The slope of 
the line expressed in Equation 7 is 1.017.  This 
suggests that the fractal dimension is nearly a line in 
typology.   
Ln(N(r))= 1.017Ln(1/r)+5.875                               (7) 
Where: 
  N(r) = number of boxes with trees 
  r       = length of one side of box 

The investigation revealed that each stand contained 
an average of 77.4 trees and a standard deviation of 
34.87 trees per stand. 

Figure 1.  An aerial photograph from Iron County. 
Michigan with dimensions 100 meters by 100 meters 
divided into grids and noting the location of trees. 
 
 

4  Discussion & Conclusion 
To apply the inverse box-counting approach to this 
area in the landscape one would then follow these 
procedures: 
A. Divide the landscape to be planted in 100m grid. 
B. Divide each 100m grid into grids with sides 

equal to 3.125 metes (the size of the smallest 
boxes in Figure 1). 

C. Randomly fill the 100m grids with an average of 
77.4 trees per grid and a standard deviation of 35 
trees.  The number of trees per grid can be 
increased proportionally if the mortality rate of 
the trees is known, such as a 20% mortality rate 
means that the grids should be planted with an 
average of 96.75 trees. 

D. The composition of the stands should be about:  
21% jack pine (Pinus banksiana Lamb.), 
16% red pine (Pinus resinosa Sol. Ex Aiton),  
15% Eastern white pine (Pinus strobus L.), 
12% northern pin oak (Quecus ellipsoidalis E.J. 

Hill)  
7% quaking aspen (Populus tremuloides 

Michx.),  
7% bigtooth aspen (Populus grandidentata 

Michx.), 
7% white oak (Quercus alba L.), 
4% paper birch (Betulus papyrifera Marsh.) 
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4% northern red oak (Quercus rubra L.), 
3% red maple (Acer rubrum L.), 
4% assorted list of 24 trees by Curtis [2]. 

 
Table 1.  Pairs of numbers for regression analysis. 
 
Country Ln(1/r)  Ln(N(r)) 
 
Iron 1  -3.219  2.773 
   -2.526  4.043 
   -1.833  4.521 
   -1.139  4.787 
Iron 2  -3.219  2.773 
   -2.526  3.434 
   -1.833  3.738 
Iron 3  -4.605  0.000 
   -3.912  1.099 
   -3.219  2.485 
   -2.526  3.044 
   -1.833  3.526 
   -1.139  3.714 
Iron 4  -3.219  2.773 
   -2.526  3.951 
   -1.833  4.575 
   -1.139  4.796 
Iron 5  -3.912  1.386 
   -3.219  2.708 
   -2.526  3.219 
   -1.833  3.367 
Dickinson 1 -3.219  2.773 
   -2.526  4.060 
   -1.833  4.533 
   -1.139  4.727 
Dickinson 2 -3.219  2.773 
   -2.526  3.912 
   -1.833  4.489 
   -1.139  4.700 
   -0.446  4.718 
Dickinson 3 -3.912  1.386 
   -3.219  2.708 
   -2.526  3.526 
   -1.833  3.807 
   -1.139  3.829 
Dickinson 4 -3.219  2.773 
   -2.526  3.871 
   -1.833  4.407 
   -1.139  4.443 
Dickisnon 5 -3.219  2.773 
   -2.526  3.714 
   -1.833  4.382 
   -1.139  4.190 
 

 
The planting scheme can be accomplished with 

seedlings being planted by hand or even with 

machine planting, as long as the tree is placed in the 
correct designated box.  

The inverse box-counting process illustrates that 
it possible to use the fractal pattern to create a stand 
of vegetation.  The process employs calculating the 
fractal score of an existing pattern and employing 
the inverse box process to apply the pattern to a 
landscape.  However the inverse box-counting 
process is a reverse process, as opposed to a forward 
process when investigators first began calculating 
the fractal scores of objects.  The reverse process 
takes an existing score to create something new.  
Currently there is no mathematical proof that this 
process is truly reversible.  

In addition this process has been employed with 
vegetation.  We believe that it is possible to replicate 
fractal patterns of hills, waterways, and complex 
multi-species patterns.  We expect to explore this 
potential in the future.  In our study we did no 
differentiate various species of vegetation.  With  
more careful on-site study, it may be possible to 
gather multi-species data and construct patterns with 
numerous species. 

We encourage reclamation and restoration 
planning and design specialists to explore the 
inverse box-counting method to create biospheric 
landscapes. 
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