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We investigate in a nonperturbative way the dynamics of a correlated quantum capacitor. We find that the
many-body correlations do not disturb the universal low-frequency relaxation resistance per channel,Rq(ω =
0) = h/4e2 ensured by the Korringa-Shiba rule whereas the interpretation of the quantum capacitanceCq

in terms of the density of states fails when strong correlations are present. The AC resistanceRq(ω) shows
huge peaks (with values larger thanh/4e2) at ~ω ≈ ±Γ∗, whereΓ∗ is the renormalized level broadening.
These peaks are merged to a single one atω = 0 when a finite Zeeman field is applied comparable toΓ∗. The
observed features ofRq , being most evident in the Kondo regime, are attributed to the generation of particle-hole
excitations in the contacts accomplished by spin-flip processes in the dot.

PACS numbers: 73.63.-b, 74.50.+r, 72.15.Qm, 73.63.Kv

Introduction.— Optoelectronic devices such as light
sources emitting single photons on demand are of an enor-
mous interest in quantum information. Recently, its solid-state
analogue, aquantum capacitor(QC), was created by Fèveet
al. [1], in which a quantum dot (QD) was coupled to a single
reservoir via a quantum point contact. Fast time-controlled
variations of fractions of nanoseconds on the dot gate poten-
tial produced the single-electron source of emitting electrons
in a desirable quantum state. Previously, Gabelliet al. [2]
showed that the QC could act as a RC circuit with a quan-
tized resistance as predicted in a series of seminal works [3–
5]. The experimental interest in the AC properties of meso-
scopic conductors [6–11] has been revived recently due to
the experimental confirmation of the quantization of both the
AC current [1] and the quantum resistance [2]. In a coherent
conductor the AC transport is highly sensitive to the internal
distribution of charges and potentials that need to be calcu-
lated in a self-consistently manner to ensure a gauge invariant
and current conserving description. For a macroscopic capaci-
tor the low-frequency dynamical conductance depends on two
elements: the geometrical capacitanceC, and the resistance
R. Classically, the electric field on the surface of the metallic
plates is completely screened andC is characterized solely via
Coulomb forces. However, Büttikeret al. pointed out that for
a coherent nanoscale system that rule statement is not longer
valid, since electric fields penetrate at distances of the order
of the Thomas-Fermi screening length [3, 4, 12, 13]. Con-
sequently, the capacitance for a coherent conductor, termed
aselectrochemical capacitance, depends on the geometry, on
its physical properties and particularly on its density of states
(DOS) through the quantum capacitanceCq. Even more sur-
prisingly, the resistance becomes quantized independently of
the value of the transmission through the mesoscopic con-
ductor [14–17]. To distinguish it from the DC resistance,
Rq is calledcharge relaxation resistance, and together with
Cµ = (C−1 + C−1

q )−1 defines the RC time for a QC, that is,

the charge relaxation time upon the action of time-dependent
potential.

So far several aspects of AC conductance for RC quantum
circuits have been addressed [18–25] focusing mostly on the
spin polarized case. Therefore the understanding on the ef-
fect of many-body correlations in RC circuits is still missing.
This Letter attempts to fill this gap, offering a physical pic-
ture of the influence of many-body interactions on the dynam-
ics of QCs. We consider a QC formed by an ultrasmall QD
and calculate itsCq andRq by using their relations with the
charge susceptibility in the linear response regime. We per-
form a thorough study by tuning the QD from the resonant
tunneling regime to the Kondo regime. In the Kondo regime
virtual tunneling transitions between the dot and the reservoir
flip efficiently the dot spin resulting in a many-body singlet
spin state with binding energy given by the Kondo energy
kBTK . First, we find that the Korringa-Shiba (KS) relation
[26], valid only in the Fermi-liquid regime, ensures the quan-
tization ofRq even in the Kondo regime as long as the fre-
quency is low enough,~ω ≪ kBTK . However, it is pointed
out that the relation ofCq with the localized DOS should be
revised when the charge dynamics is frozen due to Kondo cor-

(a) (b)
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FIG. 1: (color online) (LEFT) Illustration of a quantum capacitor
and (RIGHT) second-order tunneling processes that generate a single
particle-hole pair in the conduction band without [(a)] andwith [(b)]
a spin flip in the dot. Filled and empty arrows in the contact indicates
particles and holes, respectively. Here we assume∆Z > 0.
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relations. More importantly, the AC resistanceRq(ω) displays
peaks at~ω ∼ ±Γ∗, not present in a mean-field description
for the Coulomb interaction. HereΓ∗ is the renormalized level
broadening of the major tunneling dot level andΓ∗ = kBTK

in the Kondo regime. Third, a departure from the universal
value forRq(ω = 0) is achieved when an applied Zeeman
field∆Z is comparable toΓ∗. The enhancement ofRq at zero
and finite frequencies is attributed to the creation of particle-
hole (p-h) excitations accompanying a spin-flip in the dot due
to the strong Coulomb interaction, see Fig. 1(b).

Model.— The essential features of a mesoscopic RC cir-
cuit in the presence of correlations can be well captured in the
Anderson model where an interacting single-level QD is cou-
pled to a single-channel electron reservoir subject to a weak
time-dependent voltageV (t) = Vac cosωt. The Hamiltonian
of this system isH = HL + HD + HT. The lead part,
HL =

∑

kµ[ǫk + eV (t)]c†
kµckµ, describes the noninteract-

ing conduction electrons with energyǫk (measured with re-
spect to the Fermi energyǫF = 0) and spinµ in the reservoir,
and the tunneling of electrons between the reservoir and the
dot is modeled byHT =

∑

kµ

[

tkd
†
µckµ + (h.c.)

]

in terms
of energy-independent tunneling matrix element,tk = t.
The hybridization between the dot and the lead is character-
ized by a tunneling amplitudeΓ = πρ0|t|2 (ρ0 is the con-
tact DOS at the Fermi energy). The dot Hamiltonian reads
HD =

∑

µ [ǫµ + eV (t)] nµ+2ECn↑n↓, wherenµ = d†µdµ is
the dot occupation operator andEC = e2/2C is the Coulomb
charging energy. The orbital levelǫµ = ǫd − µ∆Z/2 is spin-
dependent due to a Zeeman energy∆Z . The time-dependent
voltageV (t) induces the polarization chargesNU (t) between
the dot and the gate, which in turn leads to the time-dependent
potentialU(t) = |e|NU (t)/C inside the dot. Consequently,
the applied voltage not only generates a currentI(t) between
the lead and the dot, but also induces a dot-gate displace-
ment currentId(t) = e(dNU/dt) = −C(dU/dt). Charge
conservation requiresI(t) + Id(t) = 0. Assuming that the
gate-invariant perturbationV (t) − U(t) is sufficiently small,
the linear response theory leads to the relation,I(ω) =
g(ω)(V (ω) − U(ω)), whereg(t) = (ie/~) 〈[I(t),N ]〉Θ(t)
is the equilibrium correlation function between the occupa-
tion operatorN =

∑

µ nµ and the current operatorI =
e(dN/dt). Note that the current-density correlation function
g(ω) is directly related to the charge susceptibilityχc(t) =
−i 〈[N (t),N ]〉Θ(t), which is preferable for numerical com-
putation, via the relationg(ω) = iω(e2/~)χc(ω). Then, with
the help ofI(ω) = −Id(ω) = −iωCU(ω), the dot-lead
impedanceZ(ω) = V (ω)/I(ω), which is experimentally ac-
cessible, is given byZ(ω) = 1/(−iωC) + 1/g(ω). The re-
laxation resistance and the quantum capacitance are then ex-
pressed in terms of the charge susceptibility as

Rq(ω)

h/e2
=Re

[

1

2πiωχc(ω)

]

,
e2/h

Cq(ω)
=Im

[

1

2πiχc(ω)

]

. (1)

The numerical normalization group (NRG) [27, 28] treats the
Coulomb interaction in a nonperturbative way being the most
adequate method for computing the charge susceptibility [29].
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FIG. 2: (color online) (a) Zero-frequency limits ofRq andCq versus
ǫd. (b) Typical spectral structure of the real and imaginary parts of the
charge susceptibilityχc. (c,d) Enlarged views ofIm[χc] nearω = 0
for two values ofǫd. The dashed (blue) and dotted (green) lines are
tangent lines at infinitesimally smallω and at points (indicated by
arrow) where the slope is maximal, respectively. (e, f)Rq(ω) in the
logarithmic scale. HereΓ = 0.04, andEC = 0.5.

While the imaginary part of the susceptibility is obtained by
the NRG procedure its real part is calculated via the Kramers-
Kronig relation. Note that the NRG results for the finite-
frequency linear response in the Kondo regime are known to
be reliable as long as the perturbation is weak enough [30].
We focus on the zero-temperature case and use the contact
bandwidthD as the energy unit. We setkB = 1 hereafter.

No Zeeman splitting,∆Z = 0.— Figure 2(a) shows our
main results forRq and Cq for the spin-degenerate case.
First, the zero-frequency limit of the relaxation resistance,
Rq(ω → 0) is always close to the universal valueh/4e2, re-
gardless of values ofǫd andEC. This value can be interpreted
as the composite resistance of two parallel resistors of resis-
tanceh/2e2, the well-known universal resistance per channel
[3–5, 20]. The NRG results show the quantization of charge
relaxation even in the Kondo regime where many-body corre-
lations are effective. The observed small deviations from the
exact valueh/4e2, persisting even in the noninteracting case,
are attributed to the finiteness of the contact bandwidthD,
which introduces a frequency-dependent real part into the dot
self energy ,Re[Σ(ω)] = −(Γ/2π) ln |(D− ~ω)/(D+ ~ω)|.
Its presence slightly violates the Fermi-liquid assumptions
and, consequently, the KS relation is not exactly fulfilled so
that the universal value is not recovered: SinceRe[Σ(ω)] in-
creases withω in magnitude, the deviations are larger as the
resonant level becomes far fromǫF = 0. The universal value
can be restored by setting all the relevant energy scales to be
much smaller thanD [31]. Second, the quantum capacitance,
Cq exhibits two remarkable considerations:(i) at the degen-
erate points,ǫd ∼ ǫF and ǫd + 2EC ∼ ǫF , Cq shows two
pronounced peaks [see Fig. 2(a)], which is consistent with
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the known understanding thatCq is proportional to the dot
DOS ρdot(ǫF ) [3, 4, 12], and(ii) Cq remains quite small in
the Kondo regime although the DOS at the Kondo resonant
level pinned at the Fermi level achieves its maximum value.
It implies that the Kondo resonant level, even though it can
open a tunneling channel, is not a real level which can hold
real charges and cannot contribute to the capacitance. Hence,
in the presence of many-body correlationsCq is not, always,
directly related to the DOS.

The frequency dependence ofRq(ω) andCq(ω) is analyzed
in Fig. 2 where the the behavior of the real and imaginary part
of the charge susceptibilityχc(ω) is shown, see Fig. 2(b) for
ǫd = −0.3. The imaginary part ofχc(ω) reflects the cou-
pling between the ground state andp-h excitations due to the
dot-lead hybridization. Since the spectral density of multiple
p-h excitations increases with energy,|Im[χc]| would grow
monotonically with|ω|. However, a finiteD puts an upper
limit to the energy forp-h excitations [|ω| & O(D)] resulting
in the observed nonmonotonic behavior forIm[χc]. More-
over, Im[χc] has two kinks at|ω| = min(|ǫd|, |ǫd + 2EC|)
since beyond this frequencyp-h excitations accompanied with
a charge excitation contributes toIm[χc] as well. An interest-
ing structure appears inIm[χc] nearω = 0, see Figs. 2(c)
and (d) for two dot level positions,ǫd = −0.1 (correspond-
ing to the fluctuating valence regime) andǫd = −0.3 (Kondo
regime). Close toω = 0, Im[χc] depends linearly withω,
mainly due to singlep-h excitations [see tangent (dashed)
lines in Figs. 2(c) and (d)]. However,Im[χc] departs from
linearity whenω becomes of the order of the effective hy-
bridizationΓ∗ (= TK in the Kondo regime). The renormal-
ized hybridizationΓ∗(TK) is extracted from the width of the
resonance close to(at)ǫF in ρdot. Besides, we found that the
slope ofIm[χc(ω)]/ω is the largest at~ω = Γ∗, while the
change inRe[χc(ω)] is marginal. As a consequence,Rq(ω)
(see Eq. (1)) exhibits two side peaks at~ω = ±Γ∗ as shown
in Figs. 2(e) and (f). Notice that in the Kondo regimeRq(ω)
becomes much larger in order of magnitude than the univer-
sal value, see Fig. 2(f). Remarkably, such peak structure in
Rq(ω) is absent in the noninteracting case. For a noninteract-
ing system, the analytical expression ofRq(ω) in the wide-
band limit is given by [32]Rnon

q (ω) = (h/e2){[G(ω) +
(~ω/Γ)F (ω)]/[G(ω)2 + F (ω)2]} with G(ω) = ln{[(ǫd +
~ω)2 + Γ2][(ǫd − ~ω)2 + Γ2]/[ǫ2d + Γ2]} and F (ω) =
2{tan−1[Γ/(ǫd − ~ω)] − tan−1[Γ/(ǫd + ~ω)]}. Rnon

q (ω)
increases monotonically with increasing|ω|, and the only
characteristic energy scale isǫd. Hence, the peaks seen in
Figs. 2(e) and (f) are a genuine many-body effect. In sum-
mary many-body correlations, apparently having no impact
on the zero-frequency value do affectRq(ω) at finite frequen-
cies, by forming a pronounced peak at~ω = Γ∗(TK). The
explanation for these observations will be given later.

Finite Zeeman splitting,∆Z 6= 0.— The spin-split case
(∆Z > 0) in the presence of external magnetic fields is il-
lustrated in Fig. 3. Interestingly,Rq(ω → 0) versus∆Z ex-
hibits a peak structure reaching values much larger than the
quantized resistance in the spin-degenerate case: for example,
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FIG. 3: (color online) (a,b)Rq(ω = 0) andCq(ω = 0) versus∆Z

for annotated values ofǫd with EC = 0.2. The enlarged view of
Rq(ω = 0) for large∆Z is shown in the inset. (c) Contour plot of
Rq as a function ofω and∆Z in the logarithmic scale in the Kondo
regime (ǫd = −0.1). (d)Rq(ω = 0) versus∆Z for different values
of EC as annotated. HereΓ = 0.02 is used.

Rq(ω = 0)|max ∼ 100×h/4e2 for ǫd = −0.15. Furthermore,
the peak is exactly located at∆Z = Γ∗(TK) for the fluc-
tuating valence (Kondo) regime. The peak height increases
as the the effective hybridization decreases so it is the high-
est in the Kondo regime. In the meanwhile,Cq(ω → 0) re-
mains rather constant, except at the resonant tunneling regime
(ǫd ≈ 0) where it displays a small peak, see Fig. 3(b). The
evolution of the spectral distribution ofRq(ω) with ∆Z is dis-
played in Fig. 3(c) forǫd = −0.3 (Kondo regime). As∆Z

increases, the low-frequency part ofRq(ω) for |~ω| < kBTK

keeps going up until∆Z reacheskBTK ; the side peaks are
merged into the central peak. With increasing∆Z further,
the central peak diminishes gradually and, eventually, together
with the side peaks located at~ω = ±kBTK , disappear com-
pletely. We have observed a similar transition ofRq(ω) with
∆Z in the resonant tunneling regime (ǫd = −0.05, 0) ex-
cept that the variation of the central part is smaller. Finally,
Fig. 3(d) compares the zero-frequency values ofRq for dif-
ferent values of the Coulomb interaction in the resonant tun-
neling regime. In the noninteracting case, there is no peak at
all, with Rq(ω → 0) equal toh/4e2. However, as soon as the
charging energy2EC becomes comparable toΓ∗ ∼ Γ, a peak
starts to rise up and manifests itself for2EC ≫ Γ. It implies
that the existence of the peak structure observed in Fig. 3(d)
definitely has its origin in the Coulomb interaction.

Discussion.— Now we have two questions to be an-
swered: (1) How can Coulomb interaction increase the re-
laxation resistance far beyond the universal value,h/4e2 and
(2) Why does it take place noticeably at~ω = ±Γ∗(TK)
in the fluctuating valence (Kondo) regime for∆Z = 0 or at
~ω = 0 for ∆Z = Γ∗(TK)? The charge relaxation resistance
is attributed top-h pair generation in the conduction band as
shown in Fig. 1. Such processes are put in action when the
dot-lead tunneling is switched on. The tunneling in turn hy-
bridizes dot and conduction band electrons, resulting in low-
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ering of the ground state by the effective binding energyΓ∗

(TK in the Kondo regime). It means that thep-h generation
starts when the energy supplied by the source is larger than
Γ∗. This argument explains the observed peak inRq(ω) at
~ω = ±Γ∗ in the absence of the Zeeman splitting. In the
presence of finite but small Zeeman splitting, the energy cost
can be compensated by the Zeeman splitting. Thep-h pair
excitation states shown in Fig. 1(b) are now lowered by∆Z ,
and when∆Z ≈ Γ∗ they become almost degenerate with the
ground state, allowingp-h pair generation with negligible en-
ergy cost. Hence,Rq(ω) exhibits a single peak at~ω = 0
when∆Z = Γ∗. This argument works solely when∆Z . Γ∗

in which the ground state is not yet completely polarized and
there exists a finite coupling among spin-down dot states and
spin-up dot states accompanying with ap-h pair generation in
the reservoirs, see Fig. 1. The importance of the spin flip in the
boosting of the relaxation resistance also explains whyRq(ω)
can reach higher values in the Kondo regime. The Kondo
ground state is built from spin fluctuations due to spin-flip
scattering among the localized dot electron and the delocal-
ized electrons in the reservoirs, thus spin-flip processes have
large amplitudes in its wavefunction. Hence the processes as
shown in Fig. 1(b) can happen more frequently, leading to a
largeRq. Similarly, the answer for the first question is now
ready. The spectral weight for the charge correlation function
is proportional to| 〈α|N |gs〉 |2, whereα represent the excited
states. In the second-order perturbation theory, this weight
corresponding to the processes in Fig. 1(b) is given by

| 〈α|N |gs〉 |2 = t4

∣

∣

∣

∣

∣

2

EµEµ̄

−
∑

µ

µ

∆Z

(

1

Eµ

+
1

ǫµ

)

∣

∣

∣

∣

∣

2

(2)

in theω → 0 limit with Eµ = 2EC + ǫµ. Interestingly, this
weight vanishes forEC = 0 for any value of∆Z . Thus, for
the noninteracting case there exists nop-h pair generation pro-
cess accompanying spin flip in the dot, and no boosting of the
relaxation resistance can happen. For finite values ofEC, the
weight is finite [see Eq. (2)] and forEC → ∞, it becomes
t4/(ǫ↑ǫ↓)

2. This value can be substantial depending on the
level position. Note that this analysis is not correct quanti-
tatively because high-order events should be considerablyin-
volved in the observed phenomena. The observed boosting of
Rq at∆Z ∼ Γ∗ indicates that the perturbation in the dot-lead
tunneling orΓ is risky. A more general theoretical analysis
that treats∆Z andΓ on equal footing could provide more
quantitatively reliable interpretation. Besides, this perturba-
tive analysis does not work in the Kondo regime where the
strong dot-lead coupling is important. One may want to study
the Kondo regime by an effective single-particle Hamiltonian
with a dot level at the Fermi energy with the effective hy-
bridizationTK . However, this picture is only suitable in the
Fermi-liquid regime in whichp-h excitations accomplished
by spin-flip events in the dot are not allowed. Besides, this
effective model predicts an enhanced mesoscopic capacitance
Cq(ω → 0) due to the presence of the resonant level at the
Fermi level. As noted before, however, the Kondo resonant

level cannot contribute to the charging of real charges.

Conclusion.— In closing, we have investigated the dy-
namics of a many-body quantum capacitor. Using the rela-
tion of charge relaxation resistance and quantum capacitance
with the charge susceptibility, we find that in the deep Kondo
regime the KS rule ensures a quantizedRq(ω = 0) = h/4e2.
Besides we show that the interpretation ofCq in terms of
the DOS fails when many-body effects are present. Here,
Cq(ω = 0) becomes very small even whenρdot(ǫF ) becomes
large due to a completely frozen charge dynamics in the pres-
ence of Kondo correlations. Finally, we find thatRq(ω) is
built by dot-lead tunneling events connectingp-h excitations
in the reservoirs with spin-flip processes in the dot . This in-
terpretation explains our results forRq(∆Z = 0, ω) showing
peaks at~ω = ±Γ∗(TK) and forR(∆Z = Γ∗(TK), ω) ex-
hibiting a peak at~ω = 0.
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[3] M. Büttiker et al., Phys. Rev. Lett.70, 4114 (1993).
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