
HAL Id: hal-00735313
https://hal.science/hal-00735313v1

Preprint submitted on 25 Sep 2012 (v1), last revised 16 Dec 2014 (v7)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recovering the twisting function in a twisted waveguide
from the DN map

Mourad Choulli, Eric Soccorsi

To cite this version:
Mourad Choulli, Eric Soccorsi. Recovering the twisting function in a twisted waveguide from the DN
map. 2012. �hal-00735313v1�

https://hal.science/hal-00735313v1
https://hal.archives-ouvertes.fr


RECOVERING THE TWISTING FUNCTION IN A TWISTED WAVEGUIDE

FROM THE DN MAP

MOURAD CHOULLI† AND ERIC SOCCORSI‡

Abstract. We consider the inverse problem of determining the twisting function in a infinite cylindrical
twisted waveguide from the corresponding DN map. This problem, which is naturally linked to some inverse
anisotropic conductivity problem in a straight waveguide, remains generally open, unless 1) the twisting
function is assumed to be affine, or, 2) its first derivative is sufficiently close to some a priori fixed constant.
In both cases, we prove Lipschitz stability in the determination of the twisting function from a suitable DN
map.
Key words : Dirichlet Laplacian, twisted infinite cylindrical waveguide, twisting function, DN map, sta-

bility estimate.
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1. Introduction

Let ω be a bounded domain of R2. To Ω = ω × R and θ ∈ C1(R) we associate the infinite twisted
cylindrical domain

Ωθ = {(Rθ(x3)x
′, x3); x

′ = (x1, x2) ∈ ω, x3 ∈ R},

where Rξ denotes the rotation in R2 of angle ξ ∈ R. Twisted waveguides modeled by Ωθ exhibit interesting
propagation properties such as the occurence of propagating waveguide modes with phase velocities slower
than those of similar modes in a straight waveguide. This explains why twisted waveguides are at the center
of the attention of many theoretical and applied physicists (see e.g. [Ka, DR, KF, NZG, Sh, Wi, YM]).
Moreover, it turns out that they are the source of challenging spectral and PDE problems, some of them
having been extensively studied in the mathematical literature (see e.g. [BK, EKK, KK, KS, KZ1, KZ2]).

Nevertheless, the inverse problem of identifying the twisting function from the Dirichlet-to-Neumann (DN
in short) map, has, to our knowledge, not been examined in this framework yet. The study of this open
problem is actually the main purpose of the present article. Namely, we consider in this paper the following
boundary value problem for the Laplacian in the twisted waveguide Ωθ,

(1.1)

{
∆v(y) = 0, y ∈ Ωθ,
v(y) = g(y), y ∈ ∂Ωθ,

and we address the problem of recovering the twisting function θ (actually its first derivative) from the DN
map

(1.2) Λ̃θ : g → B(y)∇v(y) · ν(y),
1



2 MOURAD CHOULLI AND ERIC SOCCORSI

where

B(y) =



1 0 −y2θ

′(y3)
0 1 y1θ

′(y3)
0 0 1


 .

More specifically, our aim is the stability issue for the problem of determining θ from Λ̃θ.

The DN map Λ̃θ acts on functional spaces depending on θ. Therefore it is not well suited to the analysis
of this inverse problem. This difficulty may be overcome by turning (1.1)-(1.2) into an equivalent system
associated to some θ-independent DN map. To this purpose we introduce

Tξ =

(
Rξ 0
0 1

)

and put u(x) = v(Tθ(x3)(x
′, x3)), x = (x′, x3) ∈ Ω. By performing the change of variable y = Tθ(x3)(x

′, x3)
in (1.1), we find by direct calculation that u is the solution to the following boundary value problem with
an elliptic operator in the divergence form

(1.3)

{
div

(
A(x′, θ′(x3))∇u

)
= 0, x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω,

where, f(x) = g(Tθ(x3)(x
′, x3)), x ∈ ∂Ω, and the matrix A is given by

A(x′, t) =



1 + x22t

2 −x2x1t
2 −x2t

−x2x1t
2 1 + x21t

2 x1t
−x2t x1t 1


 , x′ ∈ ω, t ∈ R.

Moreover, it holds true that

(1.4) B(y)∇v(y) · ν(y) = A(x′, θ′(x3))∇u(x) · ν(x), y = Tθ(x3)(x
′, x3), x = (x′, x3) ∈ Ω.

This identity justifies the choice of the boundary operator B appearing in (1.2), which provides the appropri-
ate Neumann condition, given by the right hand side of (1.4), on u. Formally, (1.4) indicates that recovering

θ from Λ̃θ is the same as determining θ from the following DN map

Λθ : f → A∇u · ν.

The major part of our work will therefore be devoted to studying Λθ in view of establishing stability in the
identification of θ from Λθ. In light of (1.3)-(1.4) we notice that this is the same kind of inverse anisotropic
conductivity problem, but stated here in an unbounded domain, as the one studied in a bounded domain
by Alessandrini [A] and Alessandrini and Gaburro [AG1], [AG2] (see also Gaburro and Lionheart [GL]).
However, it turns out that the usual monotonicity assumption on the conductivity, which is essential to the
identification of A from the DN map in this approach, is not fulfilled by the matrix A under consideration.
This is the main reason why the inverse problem associated to (1.3) remains open for general twisting
functions θ ∈ C1(R). Nevertheless, in this paper we are able to prove Lipschitz stability in the determination
of θ from the DN map when θ is either an affine function or sufficiently close to an arbitrarily fixed constant.

The paper is organized as follows. Section 2 contains the definition and the main properties of Λθ, needed
in the proofs of the coming sections. The first part of section 3 explains why the approach developped
by Alessandrini and Gaburro in [AG1] and [AG2] does not apply to the problem under consideration.
Nevertheless, we prove in the second part of section 3 that twisting functions close enough to some arbitrarily
fixed constant may actually be identified by solving an inverse conductivity problem which satisfies the above
mentioned monotonicity condition. Further, the particular case of affine twisting functions is examined in
section 4. This is by means of the Fourier transform with respect to the variable x3, in order to bring the
original problem into some anisotropic conductivity problem stated in ω. The corresponding conductivity
matrix satisfies a weak monotonicity condition, allowing to claim stability in the determination of the twisting

function from some suitable DN map. Finally, the original DN map Λ̃θ is rigorously defined and linked to
Λθ in section 5.
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2. The DN map

Extension lemma. As we are dealing with an infinitely extended domain Ω, we start by proving the
following useful extension lemma.

Lemma 2.1. Let g ∈ Hs+1/2(R;Hs(∂ω)) for s = 3/2 or s = 1/2. Then there exists G ∈ Hs+1/2(R;Hs+1/2(ω))
such that G(t) = g(t) on ∂ω and

(2.1) ‖G‖Hs+1/2(R;Hs+1/2(ω)) ≤ C(ω)‖g‖Hs+1/2(R;Hs(∂ω)),

where C(ω) is a constant depending only on ω.

Proof. We detail the proof for s = 3/2, the case of s = 1/2 being treated in a similar way. Let us first assume
that g ∈ C∞

0 (R;H3/2(∂ω)). For each h ∈ H3/2(∂ω), the boundary value problem

(2.2)

{
∆H = 0 in ω,
H = h on ∂ω,

admits a unique solution H ∈ H2(ω), according to [LM]. Moreover there exists a constant C(ω), depending
only on ω, such that the following estimate holds true:

(2.3) ‖H‖H2(ω) ≤ C(ω)‖h‖H3/2(∂ω).

Let G(t), t ∈ R, be the solution of (2.2) corresponding to h = g(t). Since G(t) − G(s), s, t ∈ R, is the
solution to the boundary value problem (2.2) with h = g(t)− g(s), we deduce from (2.3) that

‖G(t)−G(s)‖H2(ω) ≤ C(ω)‖g(t)− g(s)‖H3/2(∂ω).

Therefore G ∈ C(R;H2(ω)), and we have

(2.4) ‖G‖L2(R;H2(ω)) ≤ C(ω)‖g‖L2(R;H3/2(∂ω)),

from (2.3). Let us next consider the solution K(t) to the boundary value problem (2.2) associated to
h = g′(t). Similarly we have K ∈ C(R;H2(ω)), and (2.3) yields

‖G(t+ s)−G(t)− sK(t)‖H2(ω) ≤ C(ω)‖g(t+ s)− g(t)− sg′(t)‖H3/2(∂ω),

since G(t + s) − G(t) − sK(t), t, s ∈ R, is the solution of (2.2) associated to h = g(t + s) − g(t) − sg′(t).
From this then follows that G ∈ C1(R;H2(ω)), G′ = K, and

(2.5) ‖G′‖L2(R;H2(ω)) ≤ C(ω)‖g′‖L2(R;H3/2(∂ω)).

By substituting G′ for G in the above reasoning, we get that G ∈ C2(R;H2(ω)), and

(2.6) ‖G′′‖L2(R;H2(ω)) ≤ C(ω)‖g′′‖L2(R;H3/2(∂ω)).

Putting (2.4)-(2.6) together, we thus find out that

(2.7) ‖G‖H2(R;H2(ω)) ≤ C(ω)‖g‖H2(R;H3/2(∂ω)).

Further, g ∈ H2(R;H3/2(∂ω)) being fixed, we consider a sequence (gn)n in C∞
0 (R;H3/2(∂ω)) converging

to g in H2(R;H3/2(∂ω)). By uniqueness, Gn − Gm, where Gn (resp. Gm) denotes the corresponding
extension of gn (resp. gm), extends gn − gm to H2(R;H2(ω)). Therefore, (2.7) yields

‖Gn −Gm‖H2(R;H2(ω)) ≤ C(ω)‖gn − gm‖H2(R;H3/2(∂ω)),

so (Gn)n is a Cauchy sequence in H2(R;H2(ω)). We call G its limit. From the continuity of the trace
operator

W ∈ H2(R;H2(ω)) →W|∂Ω ∈ H2(R;H3/2(∂ω)),

we see that G extends g. Thus we end up getting (2.1) by applying (2.7) for gn, n ∈ N, and sending n to
infinity. �
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Fix s = 3/2 or s = 1/2. Since the trace operator w ∈ Hs+1/2(ω) → w|∂ω ∈ Hs(∂ω) is bounded, then the
same is true for

G ∈ Hs+1/2(R;Hs+1/2(ω)) → G|∂Ω ∈ Hs+1/2(R;Hs(∂ω)).

Hence,
‖|g‖|Hs+1/2(R;Hs(∂ω)) = inf{‖G‖Hs+1/2(R;Hs+1/2(ω)); G = g on ∂Ω},

is a norm on Hs+1/2(R;Hs(∂ω)), which is equivalent to the usual one. In the sequel, we shall use either one
of these two equivalent norms, each of them being denoted by the same above mentioned symbol.

Solution to the boundary value problem (1.3). Let us first make the following remark on the uniform
ellipticity of A, where A denotes either A(x′, t) or A(x′, θ(x3)), as defined in the previous section. For all
ζ ∈ R3, x′ ∈ ω and t ∈ R, we have

A(x′, t)ζ · ζ = ζ21 + ζ22 + ζ23 − 2tx2ζ1ζ3 + 2tx1ζ2ζ3 + t2(x2ζ1 − x1ζ2)
2

= ζ21 + ζ22 + (ζ3 + t(x2ζ1 − x1ζ2))
2, x′ = (x1, x2) ∈ ω, t ∈ R,

by a straightforward computation. For every x′ ∈ ω and t ∈ R, this entails that A(x′, t)ζ · ζ = 0 if and only
if ζ = 0. Therefore, since ω × [t, t] is compact for all real numbers t < t, there exists λ ≥ 1, depending on ω,
t and t, such that we have

(2.8) λ−1|ζ|2 ≤ A(x′, t)ζ · ζ ≤ λ|ζ|2 for all x′ ∈ ω, t ∈ [t, t], ζ ∈ R3.

In order to define the DN map associated to the boundary value problem (1.3), we first need to solve this
later. To this end, pick f ∈ H1(R;H1/2(∂ω)) and F ∈ H1(Ω) such that F = f on ∂Ω, where H1(R, H1(ω))
is identified with H1(Ω). Notice that the existence of such a function F is guaranteed by Lemma 2.1. In
light of (2.8) and the Lax-Milgram lemma, there is a unique v ∈ H1

0 (Ω) solving the variational problem

(2.9)

∫

Ω

A∇v · ∇wdx = −

∫

Ω

A∇F · ∇wdx, for all w ∈ H1
0 (Ω).

Hence u = v + F is the unique weak solution to the boundary value problem (1.3). That is, u satisfies
the first equation in (1.3) in the distributional sense and the second equation in the trace sense. Moreover,
taking w = v in (2.9), we obtain from Poincaré’s inequality (which holds true for Ω since ω is bounded) that
‖v‖H1(Ω) ≤ C‖F‖H1(Ω) for some constant C > 0 depending on ω. Therefore we have

‖u‖H1(Ω) ≤ C‖F‖H1(Ω),

where C denotes some generic positive constant depending on ω. Finally, as F may be chosen in H1(Ω) so
that F = f in ∂Ω, we deduce from this and (2.1) that

(2.10) ‖u‖H1(Ω) ≤ C‖f‖H1(R;H1/2(∂ω)).

Definition of the DN map. Prior to defining the DN map we need some technical result stated in the
coming proposition. To this purpose we preliminarily introduce the following H(div)-type space,

H(divA,Ω) = {P ∈ L2(Ω)3; div(AP ) ∈ L2(Ω)},

and recall that the dual space of H1(R;H1/2(∂ω)) is denoted by H−1(R;H−1/2(∂ω)).

Proposition 2.1. Let P ∈ H(divA,Ω). Then AP · ν ∈ H−1(R;H−1/2(∂ω)) and

(2.11) ‖AP · ν‖H−1(R;H−1/2(∂ω)) ≤ C
(
‖P‖L2(Ω) + ‖div(AP )‖L2(Ω)

)
.1

In addition, the following identity

(2.12) 〈AP · ν, g〉 =

∫

Ω

Gdiv(AP )dx +

∫

Ω

A∇G · Pdx,

holds true for any g ∈ H1(R;H1/2(∂ω)) and G ∈ H1(Ω) such that G = g on ∂Ω. Here 〈·, ·〉 denotes the

duality pairing between H1(R;H1/2(∂ω)) and its dual H−1(R;H−1/2(∂ω)).

1This means that the operator P ∈ C∞

0
(Ω) → AP · ν ∈ C∞(∂Ω) can be extended to a bounded operator from H(divA,Ω)

into H−1(R;H−1/2(∂ω)).
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Proof. We first consider the case of P ∈ C∞
0 (Ω)3. Fix g ∈ H1(R;H1/2(∂ω)) and let G ∈ H1(Ω) be chosen

in accordance to Lemma 2.1 so that G = g on ∂Ω. Since P has a compact support, we have

(2.13)

∫

Ω

Gdiv(AP )dx = −

∫

Ω

A∇G · Pdx+

∫

∂Ω

gAP · νdσ,

from Green’s formula, whence
∣∣∣
∫

∂Ω

gAP · νdσ
∣∣∣ ≤ C‖G‖H1(Ω)

(
‖P‖L2(Ω) + ‖div(AP )‖L2(Ω)

)
.

By taking the infimum over {G ∈ H1(Ω), G = g on ∂Ω} in the right hand side of above estimate, we find
that (2.11) holds true for every P ∈ C∞

0 (Ω)3.
Further, pick P ∈ H(divA,Ω). The set C

∞
0 (Ω)3 being dense in H(divA,Ω), as can be seen by mimmicking

the proof of Theorem 2.4 in [GR], we may find a sequence (Pk)k in C∞
0 (Ω)3 converging to P in H(divA,Ω).

Moreover, due to (2.11), (APk · ν)k is a Cauchy sequence in H−1(R;H−1/2(∂ω)). Therefore (APk · ν)k has
a limit in H−1(R;H−1/2(∂ω)), which is denoted by AP · ν, and (2.12) follows readily from (2.13). �

Let u denote the H1(Ω)-solution to (1.3). By applying Proposition 2.1 to P = ∇u, we deduce from (2.10)
that

Λθ : f → A∇u · ν

is well defined as a bounded operator from H1(R;H1/2(∂ω)) into H−1(R;H−1/2(∂ω)). Moreover the follow-
ing identity

(2.14) 〈Λθf, g〉 =

∫

Ω

A∇u · ∇Gdx,

holds true for all g ∈ H1(R;H1/2(∂ω)) and G ∈ H1(Ω) such that G = g on ∂Ω.

Further, by taking G = v in (2.14), where v is the solution to (1.3) with f replaced by g, we find out that

〈Λθf, g〉 =

∫

Ω

A∇u · ∇vdx =

∫

Ω

∇u ·A∇vdx.

Therefore we have

(2.15) 〈Λθf, g〉 = 〈f,Λθg〉, for all f, g ∈ H1(R;H1/2(∂ω)).

This proves that Λ∗
θ
∣∣H1(R;H1/2(∂ω))

= Λθ, where H
1(R;H1/2(∂ω)) is identified with a subspace of its bidual

space.
Finally, for i = 1, 2, put Ai = A(x′, θi(x3)) and Λi = Λθi , and let ui ∈ H1(Ω), i = 1, 2, be a weak solution

to the equation

div(Ai∇ui) = 0 in Ω.

By applying (2.14) to f = ui∣∣∂Ω and g = u3−i
∣∣∂Ω, i = 1, 2, we get that

〈Λ1u1, u2〉 =

∫

Ω

A1∇u1 · ∇u2dx and 〈Λ2u2, u1〉 =

∫

Ω

A2∇u2 · ∇u1dx.

In light of (2.15), this yields:

(2.16) 〈(Λ1 − Λ2)u1, u2〉 =

∫

Ω

(A1 −A2)∇u1 · ∇u2dx.

Restriction of the DN map. We turn now to establishing some smoothness property for the restriction
of Λθ to H2(R;H3/2(∂ω)). We shall assume for this purpose that Ω1 = ω × (−1, 1) has H2-regularity
property, i.e. that for every f ∈ L2(Ω) and any matrix-valued function C = (Cij(x))1≤i,j≤3 with coefficients
in W 1,∞(Ω1) satisfying the ellipticity condition

∃α > 0, C(x)ξ · ξ ≥ α|ζ|2, for all ζ ∈ C3, x ∈ Ω1,
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the following boundary value problem
{

div(C∇w) = f in Ω1,
w = 0 on ∂Ω1,

has a unique solution w ∈ H2(Ω1) obeying

‖w‖H2(Ω1) ≤ C(α,M)‖f‖L2(Ω1),

for some constant C(α,M) > 0 depending only on α, M = max1≤i,j≤3 ‖Cij‖W 1,∞(Ω1) and ω.

We notice that Ω1 has H2-regularity property if and only if Ωa = ω× (−a, a) has H2-regularity property
for some a > 0, and from [Gr] that Ω1 has H2-regularity property provided ω is convex.

Having said that we may now prove, upon identifying H2(Ω) with H2(R;H2(ω)), the following claim,
which is a cornerstone in the derivation of smoothness properties for the restriction of Λθ toH

2(R;H3/2(∂ω)).

Theorem 2.1. Assume that θ ∈ C1,1(R) and that Ω1 has H2-regularity property. Then for any f ∈
H2(R;H3/2(∂ω)), the boundary value problem (1.3) has a unique solution u ∈ H2(Ω). Moreover if ‖θ‖C1,1(R) ≤
M , for some M > 0, we may find a constant C > 0, depending only on M and ω, such that we have:

(2.17) ‖u‖H2(Ω) ≤ C‖f‖H2(R;H2/3(∂ω)).

Proof. For M > 0 fixed, let θ ∈ C1,1(R) be such that ‖θ‖C1,1(R) ≤ M and pick f ∈ H2(R;H3/2(∂ω)). We

know from Lemma 2.1 that there exists F ∈ H2(R;H3/2(ω)) such that F = f on ∂Ω and

(2.18) ‖F‖H2(Ω) ≤ C(ω)‖f‖H2(R;H3/2(∂ω)).

Set

Ψ = div(A∇F ).

In light of (2.8) there is a unique u0 ∈ H1
0 (Ω) satisfying simultaneously

(2.19)

∫

Ω

A∇u0 · ∇vdx =

∫

Ω

Ψvdx, for all v ∈ H1
0 (Ω),

and

(2.20) ‖u0‖H1(Ω) ≤ C0‖Ψ‖L2(Ω),

for some constant C0 > 0 depending on ω and M .
Further, we consider ξn ∈ C∞

0 (−(n+ 1), n+ 1), for n ≥ 1, such that ξn = 1 in [−n, n] and ‖ξ′n‖∞ ≤ 1/2,
‖ξ′′n‖∞ ≤ 1/2. For every v ∈ H1

0 (Ω), we get using standard computations that
∫

Ω

A∇(ξnu0) · ∇vdx =

∫

Ω

A∇u0 · ∇(ξnv)dx −

∫

Ω

(A∇u0 · ∇ξn)vdx +

∫

Ω

(A∇ξn · ∇v)u0dx.

An integration by parts in the last term of the right hand side of the above identity providing
∫

Ω

(A∇ξn · ∇v)u0dx = −

∫

Ω

(A∇ξn · ∇u0)vdx −

∫

Ω

div(A∇ξn)u0vdx,

we next find out that∫

Ω

A∇(ξnu0)·∇vdx =

∫

Ω

A∇u0 ·∇(ξnv)dx−

∫

Ω

(A∇u0 ·∇ξn)vdx−

∫

Ω

(A∇ξn ·∇u0)vdx−

∫

Ω

div(A∇ξn)u0vdx.

Since A is symmetric, it follows from the above equality (2.19) that
∫

Ω

A∇(ξnu0) · ∇vdx =

∫

Ω

Ψξnvdx− 2

∫

Ω

(A∇ξn · ∇u0)vdx −

∫

Ω

div(A∇ξn)u0vdx, for all v ∈ H1
0 (Ω).

As a consequence the function ξnu0 ∈ H1
0 (Ωn+1), where we recall that Ωa = ω × (−a, a) for any a > 0, is

the solution to the variational problem

(2.21)

∫

Ωn+1

A∇(ξnu0) · ∇vdx =

∫

Ωn+1

Ψ̃vdx, for all v ∈ H1
0 (Ωn+1),
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with
Ψ̃ = Ψξn − 2A∇ξn · ∇u0 − div(A∇ξn)u0.

The next step of the proof is to make the change of variables (x′, x3) ∈ Ωn+1 → (x′, y3) = (x′, 1/(n+1)x3) ∈
Ω1 in (2.21). To this end, we set

Jn =




1 0 0
0 1 0
0 0 1/n


 , n ≥ 1,

and for all (x′, y3) ∈ Ω1, we introduce the following notations:

A(x′, y3) = 1/(n+ 1)Jn+1A(x
′, (n+ 1)y3)Jn+1,

ξ(y3) = ξn((n+ 1)y3),

u(x′, y3) = u0(x
′, (n+ 1)y3),

wn(x
′, y3) = ξn((n+ 1)y3)u0(x

′, (n+ 1)y3),

div(P (x′, y3)) = ∂x1
P1(x

′, y3) + ∂x2
P2(x

′, y3) + 1/(n+ 1)∂y3
P3(x

′, y3),

Ψ(x′, y3) = 1/(n+ 1)
[
Ψ(x′, (n+ 1)y3)− 2Jn+1A(x

′, (n+ 1)y3)Jn+1∇ξ(y3) · ∇u(x
′, y3)

− div
(
A(x′, (n+ 1)y3)Jn+1∇ξ(y3)

)
u(x′, y3)

]
.

By performing the above mentioned change of variables, we find out that wn ∈ H1
0 (Ω1) is the solution of the

variational problem ∫

Ω1

A∇wn · ∇vdx =

∫

Ω1

Ψvdx, for all v ∈ H1
0 (Ω1).

As Ω1 hasH
2-regularity property by assumption, we get by straightforward computations that ‖wn‖H2(Ω1) ≤

C(M,ω)‖Ψ‖L2(Ω1). On the other hand, since ‖Ψ‖L2(Ω1) ≤ (n+1)−3/2C(M,ω)‖Ψ‖L2(Ω), from (2.20), it holds
true that

(2.22) ‖wn‖H2(Ω1) ≤ (n+ 1)−3/2C(M,ω)‖Ψ‖L2(Ω).

Moreover, putting (2.20) and (2.22) together we obtain that

(2.23) ‖ξnu0‖H2(Ω) ≤ C(M,ω)‖Ψ‖L2(Ω).

Therefore, upon eventually extracting a subsequence, we may assume that (ξnu0)n converges weakly to ũ in
H2(Ω). On the other hand, since (ξnu0)n converges to u0 in L2(Ω), we have u0 ∈ H2(Ω) and thus (ξnu0)n
converges weakly to u0 in H2(Ω). Further, the norm ‖ · ‖H2(Ω) being lower semi-continuous, we have

‖u0‖H2(Ω) ≤ lim inf
n

‖ξnu0‖H2(Ω) ≤ C(M,ω)‖Ψ‖L2(Ω),

from (2.23). Bearing in mind that ‖Ψ‖L2(Ω) ≤ C(M,ω)‖F‖H2(Ω) and ‖F‖H2(Ω) ≤ C(ω)‖f‖H2(R;H3/2(∂ω),
this entails that

‖u0‖H2(Ω) ≤ C(M,ω)‖f‖H2(R;H3/2(∂ω)).

As a consequence u = u0 + F ∈ H2(Ω) is the unique solution to (1.3), and it satisfies in addition

‖u‖H2(Ω) ≤ C(M,ω)‖f‖H2(R;H3/2(∂ω)).

This proves the result. �

For each θ obeying the assumptions of Theorem 2.1, the mapping

Λθ : f ∈ H2(R;H3/2(∂ω)) → ∂νu ∈ H2(R;H1/2(∂ω)),

where u denotes the unique H2(Ω)-solution to (1.3), is well defined by Theorem 2.1.
Further, bearing in mind that C∞

0 (R;H2(ω)) is dense in H2(Ω) and arguing in the same way as in the
derivation of Lemma 2.1, we find out that the trace operator

τ̃ : w ∈ H2(Ω) → ∂νw ∈ H2(R;H1/2(∂ω))
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is bounded. Moreover, we have ‖τ̃‖ ≤ ‖τ‖, where τ : w ∈ H2(ω) → ∂νw ∈ H1/2(∂ω) denotes the usual
trace operator. From this and (2.17) then follows that ‖Λθ‖ ≤ C(M,ω), as a linear bounded operator from
H2(R;H3/2(∂ω)) into H2(R;H1/2(∂ω)).

3. Determining the twisting function from the DN map: an open problem

Open problem. We first detail the reason why the problem of the identification of θ from Λθ remains open,
at least in its full generality. To this purpose we consider a nonempty open subset γ of ∂ω, and, for L > 0
fixed, we put ΩL = ω× (−L,L) and Γ = γ× (−L,L). Next we introduce the two following functional spaces

H1
Γ(R;H

1/2(∂ω)) = {f ∈ H1(R;H1/2(∂ω)); suppf ⊂ Γ},

and

W(R) = {θ ∈ W 2,∞
loc (R); θ′ ∈W 1,∞(R)}.2

Further, for i = 1, 2, we pick θi ∈ W(R) and set Ai = A(x′, θ′i(x3)), Λi = Λθi . In light of (2.15), we see that

(3.1) 〈(Λ1 − Λ2)u1, u2〉 =

∫

Ω

(A1 −A2)∇u1 · ∇u2dx,

for any function ui ∈ H1(Ω), i = 1, 2, which is a weak solution to the equation div(Ai∇ui) = 0 in Ω.
Therefore, assuming θ1(x3) = θ2(x3) for |x3| > L, we deduce from (3.1) that

(3.2) 〈(Λ1 − Λ2)u1, u2〉 =

∫

ΩL

(A1 −A2)∇u1 · ∇u2dx.

For 0 < ρ ≤ ρ0, where ρ0 is some characteristic constant defined in [AG2] and depending only on ω, we put

Γρ = {x ∈ Γ; dist(x,Γ) > ρ},

Uρ = {x ∈ R3; dist(x,Γρ) < ρ/4}.

Then, in view of [AG2], we may find a Lipschitz domain Ωρ satisfying simultaneously:

Ω ⊂ ΩL
ρ , ∂Ω

L ∩ ΩL
ρ ⋐ Γ and dist(x, ∂ΩL

ρ ) ≥ ρ/2 for all x ∈ Uρ.

Moreover we know from [AG1] that there exists a unitary C∞ vector field ν̃, defined in some suitable
neighborhood of ∂Ω, which is non tangential to ∂ω. For x0 ∈ Γρ and τ ∈ R, we define zτ = x0 + τ ν̃ and
consider the H1(ΩL

ρ )-solution Gi, i = 1, 2, to the following boundary value problem
{

div(Ai∇Gi) = −δ(x− zτ ) in ΩL
ρ ,

Gi = 0 on ∂ΩL
ρ .

By applying [AG2][Theorem 3.3], Gi can be brought into the form

(3.3) Gi(x) = C(det (Ai(zτ )))
−1/2

(
A(zτ )

−1(x− zτ ) · (x− zτ )
)−1/2

+Ri(x),

where C > 0 is a constant and the reminder Ri obeys the condition:

∃(r0, α) ∈ R∗
+ × (0, 1), |Ri(x)| + |x− zτ | |∇Ri| ≤ C|x− zτ |

5+α, x ∈ ΩL
ρ , |x− zτ | ≤ r0.

Since Gi|∂ΩL
ρ
= 0, then the extension by zero outside ΩL

ρ of Gi, denoted by G̃i, belongs to H1(Ω) and is

solution to the equation

div(Ai∇G̃i) = 0 in Ω,

in the weak sense. From this and (3.2) then follows that

〈(Λ1 − Λ2)G̃1, G̃2〉 =

∫

ΩL

(A1 −A2)∇G1 · ∇G2dx.

2We could equivalently choose W(R) = {θ ∈ D′(R); θ′ ∈ W 1,∞(R)}.
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Moreover, taking into account that G̃i
∣∣∂Ω ∈ H1

Γ(R;H
1/2(∂ω)), we obtain that

∫

ΩL

(A1 −A2)∇G1 · ∇G2dx ≤ ‖ΛΓ
1 − ΛΓ

2‖‖G̃1‖H1(R;H1/2(∂ω))‖G̃2‖H1(R;H1/2(∂ω)),

where ΛΓ
i , i = 1, 2, is the restriction of Λi to the closed subspace H1

Γ(R;H
1/2(∂ω)). As a consequence we

have

(3.4)

∫

ΩL

(A1 −A2)∇G1 · ∇G2dx ≤ C‖ΛΓ
1 − ΛΓ

2‖‖G1‖H1(ΩL)‖G2‖H1(ΩL).

Now, fix x̃ ∈ ∂ω and let x03 ∈ [−L,L] be such that |θ′1(x
0
3) − θ′2(x

0
3)| = ‖θ′1 − θ′2‖L∞(−L,L). Actually,

we may assume without loss of generality that |θ′1(x
0
3) − θ′2(x

0
3)| = θ′1(x

0
3) − θ′2(x

0
3). In view of (3.3) and

[AG2][Formula (4.2)], the main term in the left hand side of (3.4) has the following expression
∫

B(xτ ,ρ)∩Ω

[
A−1(x̃′, t0)−A−1(x̃′, s0)

]
(x − xτ ) · (x− xτ )

[P0(x− xτ ) · (x− xτ )]
3/2

[Q0(x− xτ ) · (x − xτ )]
3/2

dx,

with t0 = θ′1(x
0
3), s = θ′2(x

0
3), P0 = A−1(z̃′τ , t0) and Q0 = A−1(z̃′τ , s0).

The main ingredient in the analysis developped in [AG2] is the ellipticity condition [AG2][Formula (2.5)]
imposed on ∂tA(x

′, t). Indeed, this assumption entails

(3.5)

∫

B(xτ ,ρ)∩Ω

[
A−1(x̃′, t0)−A−1(x̃′, s0)

]
(x− xτ ) · (x− xτ )

[P0(x− xτ ) · (x− xτ )]
3/2

[Q0(x− xτ ) · (x− xτ )]
3/2

dx ≥ Cτn−2(t0 − s0),

for some constant C > 0, which leads ultimately to the desired result. Unfortunately, in this framework, the
ellipticity condition [AG2][Formula (2.5)] is not fulfilled by ∂tA(x

′, t). This can be seen from the following
explicit expression

λ1 = 0,

λ2 = |x′|2t−
√
|x′|4t2 + |x′|2,

λ3 = |x′|2t+
√
|x′|4t2 + |x′|2,

of the eigenvalues of ∂tA(x
′, t), showing that the spectrum of ∂tA(x

′, t) has a negative component for x′ ∈ ∂ω.
Moreover, it can be noticed that, due to the occurence of this negative eigenvalue, the weak monotonicity
assumption [AG1][Formula (5.7)] is not satisfied by the conductivity matrix under consideration either.
Therefore, the approach developped in [AG2] does not apply to the problem under study. This explains why
the determination of the twisting function from the corresponding DN map remains an open problem in the
general case.

Nevertheless, we shall establish in the coming section that this is not the case for affine twisting functions
anymore. Prior to examining this very peculiar framework, we first address the case of twisting functions
which are close to some a priori fixed constant value.
The case of twisting functions close to a constant value. Put

A∗(x′, t) = t



1 + x22 −x2x1 −x2
−x2x1 1 + x21 x1
−x2 x1 1


 , x′ ∈ ω, t ∈ R,

and denote by Λ∗
θ the DN map Λθ where A∗(x′, θ(x3)) is substituted for A(x′, θ(x3)). Then, by arguing as

in the derivation of (2.16), we obtain that

(3.6) 〈(Λθ − Λ∗
θ)u, u

∗〉 =

∫

Ω

(A(x′, θ(x3))−A∗(x′, θ(x3))∇u · ∇u∗dx,

for all solutions u, u∗ ∈ H1(Ω) to the equations

div(A(x′, θ(x3))∇u) = 0 in Ω,

div(A∗(x′, θ(x3))∇u
∗) = 0 in Ω,
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in the weak sense. Let us now assume that ‖θ′ − 1‖∞ ≤ 1
2
3. In light of (3.6), we get that

‖Λθ − Λ∗
θ‖L(H−1(R,H−1/2(∂ω)),H1(R,H1/2(∂ω))) ≤ C‖θ′ − 1‖∞,

where C = C(ω) is some positive constant. Therefore, if θ′ is sufficiently close to 1, we may actually replace
Λθ by Λ∗

θ in the inverse problem of determining θ′ from Λθ. The main benefit of dealing with Λ∗
θ instead of

Λθ, boils down to the fact that

∂tA
∗(x′, t) = A∗(x′, 1) = A(x′, 1), for all x′ ∈ ω and t ∈ R,

so the ellipticity condition [AG2][Formula (2.5)] required by the method developped in [AG2], is fulfilled by
A∗. Therefore, by repeating the arguments of the proof of [AG2][Theorem 2.2], we obtain the:

Theorem 3.1. Let L > 0 and M > 0. Assume that θ1, θ2 ∈ W(R) obey θ′1(x3) = θ′2(x3) for |x3| > L and

that

‖θ′1‖W 1,∞(R), ‖θ
′
2‖W 1,∞(R) ≤M.

Then there exists a constant C = C(M,ω,L) > 0 such that we have

‖θ′1 − θ′2‖L∞(R) ≤ C‖(Λ∗
θ1)

Γ − (Λ∗
θ2)

Γ‖L(H−1(R,H−1/2(∂ω)),H1(R,H1/2(∂ω))).

4. The case of affine twisting functions

In this section we address the case of affine twisting functions by means of the partial Fourier transform
Fx3

with respect to the variable x3. This is suggested by the translational invariance of the system under
consideration in the infinite direction x3, arising from the fact that the matrix A(x′, θ′(x3)) appearing in
(1.3) is independent of x3 in this peculiar case.

In the sequel, we note ξ the Fourier variable associated to x3 and we write ŵ instead of Fx3
w for every

function w = w(x′, x3):

ŵ(x′, ξ) = (Fx3
w)(x′, ξ), x′ ∈ ω, ξ ∈ R.

The first step of the method is to re-express the system (1.3) in the Fourier plane {(x′, ξ), x′ ∈ ω, ξ ∈ R}.
Rewriting the boundary value problem in the Fourier domain. We start with the two following
useful technical lemmas.

Lemma 4.1. For every w ∈ H1(Ω) it holds true that ∂̂xjw = ∂xj ŵ, j = 1, 2.

Proof. Fix j = 1, 2. For every ϕ ∈ C∞
0 (ω) and ψ ∈ S(R), we have

∫

ω

ϕ(x′)

(∫

R

∂xjw(x
′, x3)ψ̂(x3)dx3

)
dx′ =

∫

R

ψ̂(x3)

(∫

ω

∂xjw(x
′, x3)ϕ(x

′)dx′
)
dx3,

from Fubini’s theorem. By integrating by parts in the last integral, we obtain
∫

ω

∂xjw(x
′, x3)ϕ(x

′)dx′ = −

∫

ω

w(x′, x3)∂xjϕ(x
′)dx′, a.e. x3 ∈ R,

so we get
∫

ω

ϕ(x′)

(∫

R

∂xjw(x
′, x3)ψ̂(x3)dx3

)
dx′ = −

∫

R

ψ̂(x3)

(∫

ω

w(x′, x3)∂xjϕ(x
′)dx′

)
dx3

= −

∫

ω

∂xjϕ(x
′)

(∫

R

w(x′, x3)ψ̂(x3)dx3

)
dx′.

Further, the operator Fx3
being selfadjoint in L2(R), it holds true that
∫

R

w(x′, x3)ψ̂(x3)dx3 =

∫

R

ŵ(x′, ξ)ψ(ξ)dξ, a.e. x′ ∈ ω,

3Note that 1 can be replaced by any constant.
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whence
∫

ω

ϕ(x′)

(∫

R

∂xjw(x
′, x3)ψ̂(x3)dx3

)
dx′ = −

∫

ω

∂xjϕ(x
′)

(∫

R

ŵ(x′, ξ)ψ(ξ)dξ

)
dx′

=

∫

ω

ϕ(x′)

(∫

R

∂xj ŵ(x
′, ξ)ψ(ξ)dξ

)
dx′,

by integrating by parts. From the density of C∞
0 (ω) in L2(ω), the above identity entails that

∫

R

∂xjw(x
′, x3)ψ̂(x3)dx3 =

∫

R

∂xj ŵ(x
′, ξ)ψ(ξ)dξ, a.e. x′ ∈ ω,

for every ψ ∈ S(R). From this, the selfadjointness of Fx3
and the density of S(R) in L2(R), then follows

that ∂̂xjw = ∂xj ŵ. �

Lemma 4.2. Let C = (Ckl)1≤k,l≤3 ∈W 1,∞(ω)3×3 be such that (Ckl(x
′))1≤k,l≤3 is symmetric for any x′ ∈ ω.

Then every w ∈ H1(Ω) obeying

(4.1)

∫

Ω

C∇w · ∇vdx = 0 for all v ∈ H1
0 (Ω),

satisfies the equation

(4.2) −divx′(C̃(x′)∇x′ŵ) + P (x′, ξ) · ∇x′ŵ + q(x′, ξ)ŵ = 0 in D′(Ω),

where

C̃(x′) = (Cij(x
′))1≤i,j≤2

P (x′, ξ) = −i2ξ

(
C31(x

′)
C32(x

′)

)

q(x′, ξ) = −iξdivx′

(
C31(x

′)
C32(x

′)

)
+ ξ2C33(x

′).

Moreover, if w ∈ H2(Ω) is solution to (4.1) then the identity (4.2) holds true for a.e. (x′, ξ) ∈ Ω.

Proof. Choose v = ϕ⊗ ψ̂ in (4.1), where ϕ ∈ C∞
0 (ω) and ψ ∈ S(R), so we have:

(4.3)
∑

k,l=1,2,3

∫

Ω

Ckl(x
′)∂xk

w(x′, x3)∂xl
(ϕ⊗ ψ̂)(x′, x3)dx

′dx3 = 0.

For 1 ≤ k, l ≤ 2, we notice that
∫

Ω

Ckl(x
′)∂xl

w(x′, x3)∂xk
(ϕ⊗ ψ̂)(x′, x3)dx

′dx3 =

∫

ω

Ckl(x
′)∂xk

ϕ(x′)

(∫

R

∂xl
w(x′, x3)ψ̂(x3)dx3

)
dx′

=

∫

Ω

Ckl(x
′)∂xl

ŵ(x′, ξ)∂xk
(ϕ⊗ ψ)(x′, ξ)dx′dξ,(4.4)

directly from Lemma 4.1. Further, for all l = 1, 2, it holds true that
∫

Ω

C3l(x
′)∂xl

w(x′, x3)∂x3
(ϕ⊗ ψ̂)(x′, x3)dx

′dx3 =

∫

ω

C3j(x
′)ϕ(x′)

(∫

R

∂xl
w(x′, x3)ψ̂

′(x3)dx3

)
dx′.

=

∫

ω

C3l(x
′)ϕ(x′)

(∫

R

∂xl
w(x′, x3) ̂(−iξ)ψ(x3)dx3

)
dx′.

Therefore we have

(4.5)

∫

Ω

C3l(x
′)∂xl

w(x′, x3)∂x3
(ϕ⊗ ψ̂)(x′, x3)dx

′dx3 =

∫

Ω

C3l(x
′)(−iξ)∂xl

ŵ(x′, ξ)(ϕ ⊗ ψ)(x′, ξ)dx′dξ.
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Next, for k = 1, 2, we may write that
∫

Ω

Ck3(x
′)∂x3

w(x′, x3)∂xk
(ϕ⊗ ψ̂)(x′, x3)dx

′dx3 =

∫

ω

Ck3(x
′)∂xk

ϕ(x′)

(∫

R

∂x3
w(x′, x3)ψ̂(x3)dx3

)
dx′

= −

∫

ω

Ck3(x
′)∂xk

ϕ(x′)

(∫

R

w(x′, x3)ψ̂
′(x3)dx3

)
dx′,

with ∫

R

w(x′, x3)ψ̂
′(x3)dx3 = −

∫

R

w(x′, x3)(̂iξ)ψ(x3)dx3 = −

∫

R

(iξ)ŵ(x′, ξ)ψ(ξ)dξ,

hence ∫

Ω

Ck3(x
′)∂x3

w(x′, x3)∂xk
(ϕ⊗ ψ̂)(x′, x3)dx

′dx3 =

∫

Ω

Ck3(x
′)(iξ)ŵ(x′, ξ)∂xk

(ϕ⊗ ψ)(x′, ξ)dx′dξ.

By integrating by parts in the right hand side of the above identity we obtain that
∫

Ω

Ck3(x
′)∂x3

w(x′, x3)∂xk
(ϕ⊗ ψ̂)(x′, x3)dx

′dx3 =

∫

Ω

Ck3(x
′)(−iξ)∂xk

ŵ(x′, ξ)(ϕ ⊗ ψ)(x′, ξ)dx′dξ

+

∫

Ω

∂xk
Ck3(x

′)(−iξ)ŵ(x′, ξ)(ϕ⊗ ψ)(x′, ξ)dx′dξ.(4.6)

Finally, bearing in mind that ∂x3
(ϕ⊗ ψ̂) = ϕ⊗ ̂(−iξ)ψ and noticing that

∫

R

∂x3
w(x′, x3) ̂(−iξ)ψ(x3)dx3 = −

∫

R

w(x′, x3) ̂(−iξ)2ψ(x3)dx3 = −

∫

R

ŵ(x′, ξ)(−iξ)2ψ(ξ)dξ,

we find out that

(4.7)

∫

Ω

C33(x
′)∂x3

w(x′, x3)∂x3
(ϕ⊗ ψ̂)(x′, x3)dx

′dx3 =

∫

Ω

C33(x
′)(−iξ)2ŵ(x′, ξ)(ϕ⊗ ψ)(x′, ξ)dx′dξ.

Now, putting (4.3)-(4.7) together, we end up getting that

〈−divx′(C̃(x′)∇x′ŵ) + P (x′, ξ) · ∇x′ŵ + q(x′, ξ)ŵ,Φ〉 = 0, Φ ∈ C∞
0 (ω)⊗ C∞

0 (R),

where 〈·, ·〉 denotes the duality pairing between C∞
0 (Ω) and D′(Ω). From this and the density of C∞

0 (ω)⊗
C∞

0 (R) in C∞
0 (Ω) then follows that

−divx′(C̃(x′)∇x′ŵ) + P (x′, ξ) · ∇x′ŵ + q(x′, ξ)ŵ = 0 in D′(Ω),

which completes the proof. �

In the remaining of this section we assume that θ(x3) = ax3+b, where a and b are two fixed real numbers.
With the help of Lemma 4.2 we may now re-express (1.3) in the Fourier plane. For the sake of simplicity,
we shall write Aa(x

′) instead of A(x′, θ(x3)), as we have θ′(x3) = a for all x3 ∈ R.
For g ∈ H1(R) ∩ L1(R) such that

∫
R
g(x3)dx3 = 1 and for h ∈ H1/2(∂ω), we consider the H1(Ω)-solution

u to (1.3), with:

f(x′, x3) = g(x3)h(x
′), x′ ∈ ∂ω, x3 ∈ R.

Since u is solution to (4.1) with C = Aa ∈ W 1,∞(ω)3×3, we deduce from Lemma 4.2 that û ∈ L2(R;H1(ω))
is solution to the system

(4.8)

{
−divx′

(
Ãa(x

′)∇x′ û(x′, ξ)
)
− 2iaξx′⊥ · ∇x′ û+ ξ2û = 0 in D′(Ω),

û(·, ξ) = ĝ(ξ)f on ∂ω, for all ξ ∈ R,

where

x′⊥ = (−x2, x1) and Ãa(x
′) =

(
1 + x22a

2 −x2x1a
2

−x2x1a
2 1 + x21a

2

)
.

We turn now to examining the variational problem associated to (4.8).
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Variational problem associated to (4.8). Let us consider the bilinear form

Aξ[(v, w), (ϕ, ψ)] =

∫

ω

Ãa∇v · ∇ϕdx
′ − 2aξ

∫

ω

x′⊥ · ∇wϕdx′ + ξ2
∫

ω

vϕdx′

+

∫

ω

Ãa∇w · ∇ψdx′ + 2aξ

∫

ω

x′⊥ · ∇vψdx′ + ξ2
∫

ω

wψdx′, (v, w), (ϕ, ψ) ∈ H,

defined on the Hilbert space H = H1
0 (ω)×H1

0 (ω) endowed with the norm

‖(v, w)‖H =
(
‖∇v‖2L2(ω) + ‖∇w‖2L2(ω)

)1/2
.

Taking into account that

Ãa(x
′)ζ · ζ ≥ |ζ|2, for all ζ ∈ R2 and x′ ∈ ω,

and that

2a|ξ|

∫

ω

∣∣∣x′⊥ · ∇vw
∣∣∣dx′ ≤ a2δ2

∫

ω

|∇v|2dx′ + ξ2
∫

ω

w2dx′, (v, w) ∈ H,

where δ = maxx′∈ω |x′|, it is easy to see that

(4.9) Aξ[(v, w), (v, w)] ≥ (1− a2δ2)‖(v, w)‖2H.

Let us fix a0 > 0 so small that α = 1− a20δ
2 > 0. Then, due to the above estimate, the bilinear form Aξ is

α-elliptic for every ξ ∈ R, provided we have |a| ≤ a0. For each Φ ∈ C(R;H′) and every ξ ∈ R, there is thus
a unique (v(ξ), w(ξ)) ∈ H satisfying

(4.10) Aξ[(v(ξ), w(ξ)), (ϕ, ψ)] = 〈Φ(ξ), (ϕ, ψ)〉 for all (ϕ, ψ) ∈ H,

by Lax-Milgram’s lemma. From this then follows that

Aξ+η[(v(ξ + η)− v(ξ), w(ξ + η)− w(ξ)), (ϕ, ψ)]

= Aξ[(v(ξ), w(ξ)), (ϕ, ψ)] −Aξ+η[(v(ξ), w(ξ)), (ϕ, ψ)] + 〈Φ(ξ + η)− Φ(ξ), (ϕ, ψ)〉,(4.11)

for each ξ, η ∈ R and (ϕ, ψ) ∈ H. Further, by noticing through elementary computations that

Aξ+η[(v, w), (ϕ, ψ)] = Aξ+η[(v, w), (ϕ, ψ)] − 2aη

∫

ω

x′⊥ · (ϕ∇x′w − ψ∇x′v)dx′ + η(2ξ + η)

∫

ω

(vϕ+ wψ)dx′,

for every (v, w), (ϕ, ψ) ∈ H, we deduce from (4.11) and Poincaré’s inequality that there is a constant C =
C(ξ, ω, a0) > 0 satisfying

Aξ[(v(ξ), w(ξ)), (v(ξ + η)− v(ξ), w(ξ + η)− w(ξ))]

− Aξ+η[(v(ξ), w(ξ)), (v(ξ + η)− v(ξ), w(ξ + η)− w(ξ))]

≤ C|η|‖(v(ξ), w(ξ))‖H‖(v(ξ + η)− v(ξ), w(ξ + η)− w(ξ))‖H,(4.12)

for all ξ ∈ R and η ∈ [−1, 1]. In light of (4.9), (4.11) written with (ϕ, ψ) = (v(ξ+ η)− v(ξ), w(ξ + η)−w(ξ))
and (4.12), we thus find out that

α‖(v(ξ + η)− v(ξ), w(ξ + η)− w(ξ))‖H ≤ C|η|‖(v(ξ), w(ξ))‖H + ‖Φ(ξ + η)− Φ(ξ)‖H′ .

This proves that (v, w) ∈ C(R;H). Moreover, we obtain

(4.13) ‖(v(ξ), w(ξ)‖H ≤ (1/α)‖Φ(ξ)‖H′ , ξ ∈ R,

directly from (4.9)-(4.10). Further, it is easy to check for Φ ∈ C1(R;H′) that (v′(ξ), w′(ξ)) ∈ C(R,H) is the
solution to the variational problem

Aξ[((v
′(ξ), w′(ξ)), (ϕ, ψ)] = 〈Φ0(ξ), (ϕ, ψ)〉 + 〈Φ′(ξ), (ϕ, ψ)〉 for all (ϕ, ψ) ∈ H,

where we have set

〈Φ0(ξ), (ϕ, ψ)〉 = 2a

∫

ω

x′⊥ · (ϕ∇x′w(ξ) − ψ∇x′v(ξ))dx′ + 2ξ

∫

ω

(v(ξ)ϕ + w(ξ)ψ)dx′.

Using (4.13) and putting 〈ξ〉 = (1 + |ξ|2)1/2, we deduce from the above estimate that

‖(v′(ξ), w′(ξ))‖H ≤ C
(
〈ξ〉‖Φ(ξ)‖H′ + ‖Φ′(ξ)‖H′

)
, ξ ∈ R,
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for some constant C = C(a0, ω) > 0. Similarly, if Φ ∈ C2(R;H′) then the same reasoning shows that(v, w) ∈
C2(R,H) and

‖(v′′(ξ), w′′(ξ))‖H ≤ C
(
〈ξ〉2‖Φ(ξ)‖H′ + 〈ξ〉‖Φ′(ξ)‖H′ + ‖Φ′′(ξ)‖H′

)
, ξ ∈ R.

Hence we have obtained the:

Proposition 4.1. For every Φ ∈ H2(R,H′) such that 〈ξ〉2−jΦ(j) ∈ L2(R,H′), j = 0, 1, the variational

problem (4.10) admits a unique solution (v, w) ∈ H2(R;H) satisfying

(4.14) ‖(v, w)‖H2(R;H) ≤ C
( 2∑

j=0

‖〈ξ〉2−jΦ(j)‖L2(R;H′)

)
,

for some constant C = C(ω, a0) > 0. The above assumptions on Φ are actually satisfied whenever Φ = Ψ̂ for

some Ψ ∈ H2(R;H′) such that x3Ψ ∈ H1(R;H′) and x23Ψ ∈ L2(R;H′). Moreover, the estimate (4.14) reads

(4.15) ‖(v, w)‖H2(R;H) ≤ C
( 2∑

j=0

‖xj3Ψ‖H2−j(R;H′)

)
,

in this case.

Armed with Proposition 4.1 we may now tackle the analysis of (4.8).
Analysis of the solution to (4.8). Pick F ∈ H1(ω) such that F = f on ∂ω and ‖F‖H1(ω) ≤ C(ω)‖f‖H1/2(∂ω).

Let ũr (resp. ũi) denote the real (resp. imaginary) part of ũ = û − ĝ(ξ)F = ũr + iũi. Since the Fourier
transform û of the H1(Ω)-solution u to (1.3) is actually solution to (4.8), we get by direct calculation that
(ũr, ũi) is solution to the variational problem (4.10), where

(4.16) 〈Φ(ξ), (ϕ, ψ)〉 = −Aξ[(ĝ
rF, ĝiF ), (ϕ, ψ)],

and ĝr (resp. ĝi) stands for the real (resp. imaginary) part of ĝ. Further, in light of (4.16) we check out
using elementary computations that

‖Φ(ξ)‖H′ ≤ C〈ξ〉2|ĝ(ξ)|‖f‖H1/2(∂ω)(4.17)

‖Φ′(ξ)‖H′ ≤ C
(
〈ξ〉2|ĝ′(ξ)|+ 〈ξ〉|ĝ(ξ)|

)
|‖f‖H1/2(∂ω)(4.18)

‖Φ′′(ξ)‖H′ ≤ C
(
〈ξ〉2|ĝ′′(ξ)|+ 〈ξ〉|ĝ′(ξ)|+ |ĝ(ξ)|

)
‖f‖H1/2(∂ω),(4.19)

for some constant C = C(a0, ω) > 0. Therefore we have 〈ξ〉jΦ(2−j) ∈ L2(R) for j = 0, 1, 2, provided

〈ξ〉4−j ĝj ∈ L2(R), this later condition being ensured by the assumption xj3g ∈ H4−j(R). From this and
Proposition 4.1 then follows the:

Corollary 4.1. Assume that g ∈ H4(R) is such that x3g ∈ H3(R), x23g ∈ H2(R) and
∫
R
g(x3)dx3 = 1. Then

it holds true that û ∈ H2(R;H1(ω)). Moreover we have u ∈ L1(R;H1(ω)) and U = û(·, 0) =
∫
R
u(·, x3)dx3 ∈

H1(ω) is the variational solution to the following boundary value problem

{
divx′

(
Ãa∇x′U

)
= 0 in ω

U = f on ∂ω.

In view of (4.8) and (4.10), we deduce from (4.17)-(4.19) that

‖divx′

(
Ãa∇x′ û(·, ξ)

)
‖L2(ω) ≤ C〈ξ〉4|ĝ(ξ)|‖f‖H1/2(∂ω)

‖∂ξdivx′

(
Ãa∇x′ û(·, ξ)

)
‖L2(ω) ≤ C

(
〈ξ〉5|ĝ′(ξ)| + 〈ξ〉4|ĝ(ξ)|

)
|‖f‖H1/2(∂ω)

‖∂2ξdivx′

(
Ãa∇x′ û(·, ξ)

)
‖L2(ω) ≤ C

(
〈ξ〉6|ĝ(ξ)|+ 〈ξ〉5|ĝ′(ξ)|+ 〈ξ〉4|ĝ′′(ξ)|

)
‖f‖H1/2(∂ω),

for some positive constant C depending only on a0 and ω. From this and Corollary 4.1 follows the:
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Proposition 4.2. Let g ∈ H6(R) be such that x3g ∈ H5(R), x23g ∈ H4(R) and
∫
R
g(x3)dx3 = 1. Then we

have Ãa∇x′ û · ν(x′) ∈ H2(R;H−1/2(∂ω)) and thus Aa∇u · ν(x) ∈ L1(R;H−1/2(∂ω)), with

Ãa∇x′U · ν(x′) = Ãa∇x′ û(·, 0) · ν(x′) =

∫

R

Aa∇u(·, x3) · ν(x
′)dx3 ∈ H−1/2(∂ω).

In light of Proposition 4.2 we now introduce the two following DN maps:

Λa : f ∈ H1/2(∂ω) → Aa∇u(·, x3) · ν(x) ∈ L1(R;H−1/2(∂ω))

Λ̃a : f ∈ H1/2(∂ω) → Ãa∇x′U · ν(x′) ∈ H−1/2(∂ω).

These two operators are bounded, and they satisfy the estimate

(4.20) ‖Λ̃1 − Λ̃2‖L(H1/2(∂ω),H−1/2(∂ω)) ≤ ‖Λ1 − Λ2‖L
(
H1/2(∂ω),L1(R;H−1/2(∂ω))

),

where, for the sake of simplicity, we write Λj (resp. Λ̃j) for Λaj (resp. Λ̃aj ), j = 1, 2.
Finally, the last step in the analysis of the case of affine twisting functions involves noticing by direct

calculation that the matrix ∂aÃ(x
′, a) has two eigenvalues λ0 = 0 and λ1 = |x′|2. Hence, by mimmicking

the proof of [AG1][CLAIM, page 169], we obtain the:

Theorem 4.1. Let a0 > 0 and let g be the same as in Proposition 4.2. Assume moreover that 1− a20δ
2 > 0.

Then there exists a constant C > 0, depending only on a0 and ω, such that the following stability estimate

|a1 − a2| ≤ C‖Λ1 − Λ2‖
L
(
H1/2(∂ω),L1(R;H−1/2(∂ω))

),

holds true whenever

|a1|, |a2| ≤ a0.

5. The DN map for the original problem

We first start by defining the trace space for functions in H1(Ωθ). To this purpose we set for all L > 0,

ΩL
θ = {(Rθ(x3)x

′, x3); x
′ = (x1, x2) ∈ ω, x3 ∈ (−L,L)}

and

ΓL
θ = {(Rθ(x3)x

′, x3); x
′ = (x1, x2) ∈ ∂ω, x3 ∈ [−L,L]}.

Given L > 0, it holds true for every u ∈ H1(Ωθ) that u ∈ H1(ΩL
θ ), whence u|∂ΩL

θ
∈ H1/2(∂ΩL

θ ). Putting

H1/2(ΓL
θ ) = {h = g|ΓL

θ
in L2(ΓL

θ ); g ∈ H1/2(∂ΩL
θ )},

we thus have u|ΓL
θ
∈ H1/2(ΓL

θ ). Here H
1/2(ΓL

θ ) is equipped with its natural (quotient) norm

‖h‖H1/2(ΓL
θ ) = inf{‖g‖H1/2(∂ΩL

θ ); g|ΓL
θ
= h}.

Further we define

H
1/2
loc (∂Ωθ) = {h ∈ L2

loc(∂Ωθ); h|ΓL
θ
∈ H1/2(ΓL

θ ) for all L > 0},

and introduce the following subspace of H
1/2
loc (∂Ωθ):

H̃1/2(∂Ωθ) = {h ∈ H
1/2
loc (∂Ωθ); there exists v ∈ H1(Ωθ) such that v|∂Ωθ

= h}.

Here and henceforth v|∂Ωθ
= h means that v|ΓL

θ
= h|ΓL

θ
in the trace sense for all L > 0. It can be checked

that H̃1/2(∂Ωθ) is a Banach space for the quotient norm

‖h‖H̃1/2(∂Ωθ)
= inf{‖v‖H1(Ωθ); v|∂Ωθ

= h}.

Let us now introduce the mapping

Iθ : C1
0 (∂Ωθ) −→ C1

0 (∂Ω)

g −→ f = g ◦ ϕθ,
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where, for the sake of shortness, we note

ϕθ(x) = Tθ(x3)(x
′, x3).

Further, pick g in C1
0 (∂Ωθ) and let v ∈ C1

0 (R
3) be such that v|∂Ωθ

= g. Setting u = v|Ωθ
◦ϕθ, we notice that

‖Iθg‖H1(R;H1/2(∂ω)) ≤ C(ω)‖u‖H1(Ω) ≤ C(ω, θ)‖v‖H1(Ωθ).

Therefore, we have

(5.1) ‖Iθg‖H1(R;H1/2(∂ω)) ≤ C(ω, θ)‖g‖H̃1/2(∂Ωθ)
for any g ∈ C1

0 (∂Ωθ).

Let us now consider g ∈ H̃1/2(∂Ωθ) and v ∈ H1(Ωθ) such that v|∂Ωθ
= g. For any sequence (vn)n ∈ C1

0 (R
3)

such that vn|Ωθ
−→ v in H1(Ωθ), it is clear that

‖g − gn‖H̃1/2(∂Ωθ)
≤ ‖v − vn‖H1(Ωθ),

provided we have gn = vn|∂Ωθ
. Hence (gn)n converges to g in H̃1/2(∂Ωθ)

For all n ≥ 1, put fn = Iθgn = gn ◦ ϕθ and un = vn ◦ ϕθ. Since fn = un|∂Ω, we see that

‖fn − fm‖H1(R;H1/2(∂ω)) ≤ C(ω)‖un − um‖H1(Ω) ≤ C(Ω, θ)‖vn − vm‖H1(Ωθ).

Consequently, (fn)n is a Cauchy sequence inH1(R;H1/2(∂ω)) so there exists f = limn fn ∈ H1(R;H1/2(∂ω)).

Set f = Iθg. In view of (5.1), Iθ extends to a bounded operator, still denoted by Iθ, from H̃1/2(∂Ωθ) into
H1(R;H1/2(∂ω)).

Arguing as above, we find out that the mapping

Jθ : C1
0 (∂Ω) −→ C1

0 (∂Ωθ)

f −→ g = f ◦ ψθ,

where ψθ = ϕ−1
θ , extends to a bounded operator, which is still called Jθ, from H1(R;H1/2(∂ω)) into

H̃1/2(∂Ωθ).
Evidently, we have IθJθf = f for all f ∈ C1

0 (∂Ω) and JθIθg = g for all g ∈ C1
0 (∂Ωθ). Therefore Jθ = I−1

θ ,
by density.

Next, by reasoning in the same way as in the derivation of (1.3), we prove with the help of the Lax-
Milgram’s lemma that the boundary value problem (1.1) has a unique solution v ∈ H1(Ωθ) for every g ∈

H̃1/2(∂Ωθ). Moreover the operator Λ̃θ is well defined as a bounded operator from H̃1/2(∂Ωθ) into its dual

space H̃−1/2(∂Ωθ). Similarly to Λθ, it is can be checked that Λ̃θ is characterized by the identity

〈Λ̃θg, h〉 =

∫

Ωθ

∇v · ∇Hdy,

which holds true for all h ∈ H̃1/2(∂Ωθ) and H ∈ H1(Ωθ) such that H|∂Ωθ
= h. By performing the change of

variable y = ϕθ(x) in the last integral, we get that

〈Λ̃θg, h〉 =

∫

Ω

A∇u · ∇(H ◦ ϕθ)dx,

where u is the solution of the boundary value problem (1.3) with f = Iθg. Therefore we have

〈Λ̃θg, h〉 = 〈ΛθIθg, Iθh〉,

which means that Λ̃θ = I∗θΛθIθ, or equivalently that Λθ = J∗
θ Λ̃θJθ.
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