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Abstract

This book intends to give the main definitions and theorems in math-
ematics which could be useful for workers in theoretical physics. It gives
an extensive and precise coverage of the subjects which are addressed, in
a consistent and intelligible manner.The first part addresses the Foun-
dations (mathematical logic, set theory, categories), the second Alge-
bra (algebraic strucutes, groups, vector spaces tensors, matrices, Clif-
ford algebra). The third Analysis (general topology, measure theory, Ba-
nach Spaces, Spectral theory). The fourth Differential Geometry (deriva-
tives, manifolds, tensorial bundle, pseudo-riemannian manifolds, symplec-
tic manifolds). The fifth Lie Algebras, Lie Groups.and representation the-
ory. The sixth Fiber bundles and jets. The last one Functional Analy-
sis (differential operators, distributions, ODE, PDE, variational calculus).
Several signficant new results are presented (distributions over vector bun-
dles, functional derivative, spin bundle and manifolds with boundary).

The purpose of this book is to give a comprehensive collection of precise
definitions and results in advanced mathematics, which can be useful to workers
in mathematic or physics.

The specificities of this book are :

- it is self contained : any definition or notation used can be found within

- it is precise : any theorem lists the precise conditions which must be met
for its use

- it is easy to use : the book proceeds from the simple to the most advanced
topics, but in any part the necessary definitions are reminded so that the reader
can enter quickly into the subject

- it is comprehensive : it addresses the basic concepts but reaches most of
the advanced topics which are required nowodays

- it is pedagogical : the key points and usual misunderstandings are under-
lined so that the reader can get a strong grasp of the tools which are presented.

The first option is unusual for a book of this kind. Usually a book starts with
the assumption that the reader has already some background knowledge. The
problem is that nobody has the same background. So a great deal is dedicated
to remind some basic stuff, in an abbreviated way, which does not left much
scope to their understanding, and is limited to specific cases. In fact, starting



from the very beginning, it has been easy, step by step, to expose each concept
in the most general settings. And, by proceeding this way, to extend the scope
of many results so that they can be made available to the - unavoidable - special
case that the reader may face. Overall it gives a fresh, unified view of the math-
ematics, but still affordable because it avoids as far as possible the sophisticated
language which is fashionable. The goal is that the reader understands clearly
and effortlessly, not to prove the extent of the author’s knowledge.

The definitions choosen here meet the ”generally accepted definitions” in
mathematics. However, as they come in many flavors according to the authors
and their field of interest, we have striven to take definitions which are both the
most general and the most easy to use.

Of course this cannot be achieved with some drawbacks. So many demon-
strations are omitted. More precisely the chosen option is the following :

- whenever a demonstration is short, it is given entirely, at least as an ex-
ample of "how it works”

- when a demonstation is too long and involves either technical or specific
conditions, a precise reference to where the demonstation can be found is given.
Anyway the theorem is written in accordance with the notations and defini-
tions of this book, and a special attention has been given that they match the
reference.

- exceptionnaly, when this is a well known theorem, whose demonstration
can be found easily in any book on the subject, there is no reference.

The bibliography is short. Indeed due to the scope which is covered it could
be enormous. So it is strictly limited to the works which are referenced in the
text, with a priority to the most easily available sources.

This is not mainly a research paper, even if the unification of the concepts is,
in many ways, new, but some significant results appear here for the first time,
to my knowledge.

- distributions over vector bundles

- a rigorous definitition of functional derivatives

- a manifold with boundary can be defined by a unique function

and several other results about Clifford algebras, spin bundles and differen-
tial geometry.

1j.c.dutailly@free.fr
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Part I
PART1 : FOUNDATIONS

In this first part we start with what makes the real foundations of today mathe-
matics : logic, set theory and categories. The two last subsections are natural in
this book, and they will be mainly dedicated to a long list of definitions, manda-
tory to fix the language that is used in the rest of the book. A section about
logic seems appropriate, even if it gives just an overview of the topic, because
this is a subject that is rarely addressed, except in specialized publications, and
should give some matter for reflection, notably to physicists.

1 LOGIC

For a mathematician logic can be addressed from two points of view :

- the conventions and rules that any mathematical text should follow in order
to be deemed ”right”

- the consistency and limitations of any formal theory using these logical
rules.

It is the scope of a branch of mathematics of its own : ”mathematical logic”

Indeed logic is not limited to a bylaw for mathematicians : there are also
theorems in logic. To produce these theorems one distinguishes the object of the
investigation (”language-object” or "theory”) and the language used to proceed
to the demonstrations in mathematical logic, which is informal (plain english).
It seems strange to use a weak form of ”logic” to prove results about the more
formal theories but it is related to one of the most important feature of any
scientific discourse : that it must be perceived and accepted by other workers in
the field as ”sensible” and ”convincing”. And in fact there are several schools
in logic : some do not accept any nonnumerable construct, or the principle of
non contradiction, which makes logic a confusing branch of mathematics. But
whatever the interest of exotic lines of reasoning in specific fields, for the vast
majority of mathematicians, in their daily work, there is a set of ”generally
accepted logical principles”.

On this topic we follow mainly Kleene where definitions and theorems can
be found.

1.1 Propositional logic

Logic can be considered from two points of view : the first ("models”) which is
focused on telling what are true or false statements, and the second (”demonstra-
tion”) which strives to build demonstrations from premisses. This distinction is
at the heart of many issues in mathematical logic.
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1.1.1 Models

Formulas

Definition 1 An atondd is any given sentence accepted in the theory.

The atoms are denoted as latin letters A ,B,..
Definition 2 The logical operators are :

~: equivalent
= imply

A : and (both)
V : or (possibly both)

7 negation

(notation and list depending on the authors)

Definition 3 A formula is any finite sequence of atoms linked by logical op-
erators.

One can build formulas from other formulas using these operators. A for-
mula is "well-built” (it is deemed acceptable in the theory) if it is constructed
according to the previous rules.

Examples : if ?34+2=2","v5 -3 > 2,722 + 22 — 1 = 0” are atoms then
(B3+2=2)A (22422 —1=0)) = (v/5—3 > 2) is a well built formula.

In building a formula we do not question the meaning or the validity of the
atoms (this the job of the theory which is scrutinized) : we only follow rules to
build formulas from given atoms.

When building formulas with the operators it is always good to use brackets
to delimite the scope of the operators. However there is a rule of precedence (by
decreasing order): ~>=> A >V >~

Truth-tables

The previous rules give only the ”grammar” : how to build accepted formulas.
But a formula can be well built but meaningless, or can have a meaning only if
certain conditions are met. Logic is the way to tell if something is true or false.

Definition 4 To each atom of a theory is attached a “truth-table”, with only
two values : true (T) or false (F) exclusively.

Definition 5 A model for a theory is the list of its atoms and their truth-table.

Definition 6 A proposition is any formula issued from a model

2The name of an object is in boldface the first time it appears (in its definition)
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The rules telling how the operators work to deduce the truth table of a
formula from the tables ot its atoms are the following (A,B are any formula) :

A B (A~B) (A=B) (AAB) (AVB)

T T T T T T A (74)
T F F F F T T F
F T F T F T F T
F F T T F F

The only non obvious rule is for = . It is the only one which provides a
full and practical set of rules, but other possibilities are mentioned in quantum
physics.

Valid formulas
With these rules the truth-table of any formula can be computed (formulas
have only a finite number of atoms).
The formulas which are always true (their truth-table presents only T) are
of particular interest.

Definition 7 A formula A of a model is said to be valid if it is always true. It
is then denoted E A.

Definition 8 A formula B is a valid consequence of A if E (A= B). This
is denoted : AF B.

More generally one writes : Ay,..A4,, F B

Valid formulas are crucial in logic. There are two different categories of valid
formulas:

- formulas which are always valid, whatever the model : they provide the
”"model” of propositional calculs in mathematical logic, as they tell how to pro-
duce ”true” statements without any assumption about the meaning of the for-
mulas.

- formulas which are valid in some model only : they describe the properties
assigned to some atoms in the theory which is modelled. So, from the logical
point of view, they define the theory itself.

The following formula are always valid in any model (and most of them are
of constant use in mathematics). Indeed they are just the traduction of the
previous tables.

1. first set (they play a specific role in logic):
(ANB)= A;(ANB)=B

A= (AVB);B=(AVB)

TA= A

A= (B=A4)
(A~B)= (A= B);(A~B)= (B=A)
(A= B)= (A= (B=0C))=(4A=0))
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A= (B= (AADB))

(A= B)= ((A="B)="4)

(A= B)= ((B=A) = (A~ B))

2. Others (there are infinitely many others formulas which are always valid)

A= A;

A~ A (A~ B)~ (B~ A); (A~ B)A (B~ () = (A~ C)

(A= B) ~ ((4) = ("B))

A= (A= B)

A~ AT(AN(TA)); AV (TA)

AV B) ~ ((CA)A(B); V(AN B) ~ (TA)V (B)); (A= B) ~ (AA (B))
Notice that F A V (TA) meaning that a formula is either true or false is an

obvious consequence of the rules which have been set up here.

An example of formula which is valid in a specific model : in a set theory the

expressions "a € A”,” A C B” are atoms, they are true or false (but their value
is beyond pure logic). And ” ((a € A) A (A C B)) = (a € B)” is a formula. To
say that it is always true expresses a fundamental property of set theory (but
we could also postulate that it is not always true, and we would have another
set theory).

Theorem 9 IfE A and E (A = B) then : EB

Theorem 10 F A~ B Uﬂ A and B have same tables.

Theorem 11 Duality: Let be E a formula built only with atoms Ai,..Ap, , their
negation 1Ay, .. A, , the operators V, A\, and E’ the formula deduced from E by
substituting V with A, A with V, A; with 7A;, "A; with A; then :

IfE E then ETE’

If EE then F E'

With the same procedure for another similar formula F:
IfF E= F thenE F' = E'

IfE E~F thenEE ~F'

1.1.2 Demonstration

Usually one does not proceed by truth tables but by demonstrations. In a
formal theory, axioms, hypotheses and theorems can be written as formulas. A
demonstration is a sequence of formulas using logical rules and rules of inference,
starting from axioms or hypotheses and ending by the proven result.

In deductive logic a formula is always true. They are built according to the

following rules by linking formulas with the logical operators above :

i) There is a given set of formulas (A1, Az, ...Ap,, ..) (possibly infinite) called

the axioms of the theory

3We will use often the usual abbreviation ”iff’” for ”if and only if”’
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ii) There is an inference rule : if A is a formula, and (A = B) is a formula,
then (B) is a formula.

iii) Any formula built from other formulas with logical operators and using
the "first set” of rules above is a formula

For instance if A,B are formulas, then ((A A B) = A) is a formula.

The formulas are listed, line by line. The last line gives a "true” formula
which is said to be proven.

Definition 12 A demonstration is a finite sequence of formulas where the
last one B is the proven formula, and this is denoted : |+ B. B is provable.

Similarly B is deduced from A;, Ao, .. is denoted : Ay, As,.. A, .. IF B: . In
this picture there are logical rules (the ”first set” of formulas and the inference
rule) and "non logical” formulas (the axioms). The set of logical rules can vary
according to the authors, but is roughly always the same. The critical part is
the set of axioms which is specific to the theory which is under review.

Theorem 13 A;, Ay, ... An IF Ay with 1<p< m

Theorem 14 ]f Al,Ag,...Am I Bl,Al,AQ,...Am I BQ,...Al,Ag,...Am I+ Bp
and Bl,BQ, Bp I+ C then Al,AQ, Am I-C

Theorem 15 If IF (A= B) then A I+ B and conversely : if A I+ B then
I (A= B)

1.2 Predicates

In propositional logic there can be an infinite number of atoms (models) or
axioms (demonstration) but, in principle, they should be listed prior to any
computation. This is clearly a strong limitation. So the previous picture is ex-
tended to predicates, meaning formulas including variables and functions.

1.2.1 Models with predicates

Predicate
The new elements are : variables, quantizers, and propositional functions.

Definition 16 A variable is a symbol which takes its value in a given collection
D (the domain).

They are denoted x,y,z,...It is assumed that the domain D is always the
same for all the variables and it is not empty. A variable can appears in different
places, with the usual meaning that in this case the same value must be assigned
to these variables.
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Definition 17 A propositional function is a symbol, with definite places for
one or more variables, such that when one replaces each variable by one of their
value in the domain, the function becomes a proposition.

They are denoted : P(xz,y),Q(r),...There is a truth-table assigned to the
function for all the combinations of variables.

Definition 18 A quantizer is a logical operator acting on the variables.

They are :

v : for any value of the variable (in the domain D)

3 : there exists a value of the variable (in the domain D)

A quantizer acts, on one variable only, each time it appears : Va, 3y, .. . This
variable is then bound. A variable which is not bound is free. A quantizer
cannot act on a previously bound variable (one cannot have Vz,3z in the
same formula). As previously it is always good to use different symbols for the
variables and brackets to precise the scope of the operators..

Definition 19 A predicate is a sentence comprised of propositions, quantizers
preceding variables, and propositional functions linked by logical operators.

Examples of predicates :

(Va, (2 +3 > 2)) A A) =7 (Ely, («/yQ 1= a)) V(2 =0)

Vn((n>N)A(G@p,(p+a>n))) =B

To evaluate a predicate one needs a truth-rule for the quantizers V, 3 :

- a formula (Vz, A (z)) is T if A(x) is T for all values of x

- a formula (3z, A(z))) is T if A(x) has at least one value equal to T

With these rules whenever all the variables in a predicate are bound, this
predicate, for the thuth table purpose, becomes a proposition.

Notice that the quantizers act only on variables, not formulas. This is spe-
cific to first order predicates. In higher orders predicates calculus there are
expressions like "VA”, and the theory has significantly different outcomes.

Valid consequence
With these rules it is possible, in principle, to compute the truth table of any
predicate.

Definition 20 A predicate A is D-valid, denoted P = A if it is valid whatever
the value of the free variables in D. It is valid if is D-valid whatever the domain
D.

The propositions listed previously in the ”first set” are valid for any D.
E A ~ B iff for any domain D A and B have the same truth-table.
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1.2.2 Demonstration with predicates

The same new elements are added : variables, quantizers, propositional func-
tions. Variables and quantizers are defined as above (in the model framework)
with the same conditions of use.

A formula is built according to the following rules by linking formulas with
the logical operators and quantizers :

i) There is a given set of formulas (A1, Az, ...Ap, ..) (possibly infinite) called
the axioms of the theory

ii) There are three inference rules :

- if A is a formula, and (A = B) is a formula, then (B) is a formula

- If C is a formula where x is not present and A(x) a formula, then :

if C = A(z) is a formula, then C' = VzA(z) is a formula

if A(x) = C is a formula, then JxA(x) = C is a formula

iii) Any formula built from other formulas with logical operators and using
the "first set” of rules above plus :

VzA(x) = A(r)

A(r) = JzA(x)

where r is free, is a formula

Definition 21 B is provable if there is a finite sequence of formulas where the
last one is B, which is denoted : |- B.

B can be deduced from A;, As,...A,, if B is provable starting with the for-
mulas Ay, As,...A,, ,and is denoted : A, Ao, ...A,, IF B

1.3 Formal theories
1.3.1 Definitions

The previous definitions and theorems give a framework to review the logic of
formal theories. A formal theory uses a symbolic language in which terms are
defined, relations between some of these terms are deemed ”true” to express
their characteristics, and logical rules are used to evaluate formulas or deduce
theorems. There are many refinements and complications but, roughly, the
logical rules always come back to some kind of predicates logic as exposed in
the previous section. But there are two different points of view : the "models”
side and the ”demonstration” side : the same theory can be described using a
model (model type theory) or axioms and deductions (deductive type).
Models are related to the ”semantic” of the theory. Indeed they are based
on the assumption that for every atom there is some truth-table that could be
exhibited, meaning that there is some ”extra-logic” to compute the result. And
the non purely logical formulas which are set to be valid (always true in the
model) characterize the properties of the objects "modelled” by the theory.
Demonstrations are related to the ”syntactic” part of the theory. They deal
only with formulas without any concern about their meaning : either they are
logical formulas (the first set) or they are axioms, and in both cases they are

16



assumed to be ”true”, in the meaning that they are worth to be used in a
demonstration. The axioms sum up the non logical part of the system. The
axioms on one hand and the logical rules on the other hand are all that is
necessary to work.

Both model theories and deductive theories use logical rules (either to com-
pute truth-tables or to list formulas), so they have a common ground. And the
non-logical formulas which are valid in a model are the equivalent of the axioms
of a deductive theory. So the two points of view are not opposed, but proceed
from the two meanings of logic.

In reviewing the logic of a formal theory the main questions that arise are :

- which are the axioms needed to account for the theory (as usual one wants
to have as few of them as possible) ?

- can we assert that there is no formula A such that both A and its negation
7A can be proven ?

- can we prove any valid formula ?

- is it possible to list all the valid formulas of the theory ?

A formal theory of the model type is said to be "sound” (or consistent) if
only valid formulas can be proven. Conversely a formal theory of the deductive
type is said to be ”"complete” if any valid formula can be proven.

1.3.2 Completness of the predicate calculus

Predicate logic (first order logic) can be seen as a theory by itself. From a set
of atoms, variables and propositional functions one can build formulas by using
the logical operators for predicates. There are formulas which are always valid
in the propositional calculus, and there are similar formulas in the predicates
calculus, whatever the domain D. Starting with these formulas, and using the
set of logical rules and the inference rules as above one can build a deductive
theory.

The Godel’s completness theorem says that any valid formula can be proven,
and conversely that only valid formulas can be proven. So one can write in the
first order logic : F A iff IF A.

It must be clear that this result, which justifies the apparatus of first order
logic, stands only for the formulas (such as those listed above) which are valid
in any model : indeed they are the pure logical relations, and do not involve
any "non logical” axioms.

A 7 compactness” theorem by Godel says in addition that if a formula can be
proven from a set of formulas, it can also be proven by a finite set of formulas :
there is always a demonstration using a finite number of steps and formulas.

These results are specific to first order logic, and does not hold for higher
order of logic (when the quantizers act on formulas and not only on variables).

Thus one can say that mathematical logic (at least under the form of first
order propositional calculus) has a strong foundation.
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1.3.3 Incompletness theorems

At the beginning of the XX° century mathematicians were looking forward to
a set of axioms and logical rules which could give solid foundations to mathe-
matics (the ”Hilbert’s program”). Two theories are crucial for this purpose :
set theory and natural number (arithmetics). Indeed set theory is the language
of modern mathematics, and natural numbers are a prerequisite for the rule of
inference, and even to define infinity (through cardinality). Such formal theo-
ries use the rules of first order logic, but require also additional "non logical”
axioms. The axioms required in a formal set theory (such as Zermelo-Frankel’s)
or in arithmetics (such as Peano’s) are well known. There are several systems,
more or less equivalent.

A formal theory is said to be effectively generated if its set of axioms
is a recursively enumerable set. This means that there is a computer program
that, in principle, could enumerate all the axioms of the theory. Godel’s first
incompleteness theorem states that any effectively generated theory capable of
expressing elementary arithmetic cannot be both consistent and complete. In
particular, for any consistent, effectively generated formal theory that proves
certain basic arithmetic truths, there is an arithmetical statement that is true
but not provable in the theory (Kleene p. 250). In fact the "truth” of the
statement must be understood as : neither the statement or its negation can
be proven. As the statement is true or false the statement itself or its converse
is true. All usual theories of arithmetics fall under the scope of this theorem.
So one can say that in mathematics the previous result ( F A iff IF A) does not
stand.

This result is not really a surprise : in any formal theory we can build
infinitely many predicates, which are ”grammatically” correct. To say that
there is always a way to prove any such predicate (or its converse) is certainly
a crude assumption. It is linked to the possibility to write computer programs
to automatically check demonstrations.

1.3.4 Decidable and computable theories

The incompletness theorems are closely related to the concepts of ”decidable”
and ”computable”.

In a formal deductive theory computer programs can be written to ”formal-
ize” demonstrations (an exemple is "Isabelle” see the Internet), so that they
can be made safer.

One can go further and ask if it is possible to design a program such that
it could, for any statement of the theory, check if it is valid (model side) or
provable (deducible side). If so the theory is said decidable.

The answer is yes for the propositional calculus (without predicate), because
it is always possible to compute the truth table, but it is no in general for
predicates calculus. And it is no for theories modelling arthmetics.

Decidability is an aspect of computability : one looks for a program which
could, starting from a large class of inputs, compute an answer which is yes or
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no.

Computability is studied through ” Tiiring machines”, which are schematic
computers. A Tiring machine is comprised of an input system (a flow of binary
data read bit by bit), a program (the computer has p ”states”, including an
"end”, and it goes from one state to another according to its present state
and the bit that has been read), and an output system (the computer writes
a bit). A Tiring machine can compute integer functions (the input, output
and parameters are integers). One demonstration of the Godel incompletness
theorem shows that there are functions that cannot be computed : notably the
function telling, for any given input, in how many steps the computer would
stop.

If we look for a program that can give more than a ”Yes/No” answer one
has the so-called ” function problems”, which study not only the possibility but
the efficiency (in terms of ressources used) of algorithms. The complexity of
a given problem is measured by the ratio of the number of steps required by a
Tiiring machine to compute the function, to the size in bits of the input (the
problem).
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2 SET THEORY

2.1 Axiomatic

Set theory was founded by Cantor and Dedekind in early XX° century. The ini-
tial set theory was impaired by paradoxes, which are usually the consequences of
an inadequate definition of a ”set of sets”. Several improved versions were pro-
posed, and its most common , formalized by Zermello-Fraenkel, is denoted ZFC
when it includes the axiom of choice. For the details see Wikipedia ” Zermelo—
Fraenkel set theory”.

2.1.1 Axioms of ZFC

Some of the axioms listed below are redundant, as they can be deduced from
others, depending of the presentation. But it can be useful to know their names

Axiom 22 Aziom of extensionality : Two sets are equal (are the same set) if
they have the same elements.

Equality is defined as: (A=B)~ (Vx(r € A~x € B))A (Vx (A€ x~ B € x)))

Axiom 23 Aziom of regularity (also called the Aziom of foundation) : Every
non-empty set A contains a member B such that A and B are disjoint sets.

Axiom 24 Aziom schema of specification (also called the axiom schema of sep-
aration or of restricted comprehension) : If A is a set, and P(z) is any property
which may characterize the elements x of A, then there is a subset B of A con-
taining those x in A which satisfy the property.

The axiom of specification can be used to prove the existence of one unique
empty set, denoted &, once the existence of at least one set is established.

Axiom 25 Aziom of pairing : If A and B are sets, then there exists a set which
contains A and B as elements.

Axiom 26 Aziom of union : For any set S there is a set A containing every
set that is a member of some member of S.

Axiom 27 Aziom schema of replacement : If the domain of a definable func-
tion fis a set, and f(z) is a set for any x in that domain, then the range of f is
a subclass of a set, subject to a restriction needed to avoid paradozes.

Axiom 28 Aziom of infinity : Let S(z) abbreviate x U {x}, where z is some
set. Then there exists a set X such that the empty set is a member of X and,
whenever a set y is a member of X, then S(y) is also a member of X.

More colloquially, there exists a set X having infinitely many members.
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Axiom 29 Aziom of power set : For any set A there is a set, called the power
set of A whose elements are all the subsets of A.

Axiom 30 Well-ordering theorem : For any set X, there is a binary relation R
which well-orders X.

This means R is an order relation on X such that every non empty subset
of X has a member which is minimal under R (see below the definition of order
relation).

Axiom 31 The aziom of choice (AC) : Let X be a set whose members are all
non-empty. Then there exists a function f from X to the union of the members
of X, called a "choice function”, such that for all Y € X one has f(Y) € Y.

To tell it plainly : if we have a collection (possibly infinite) of sets, its is
always possible to choose an element in each set.

The axiom of choice is equivalent to the Well-ordering theorem, given the
other 8 axioms. AC is characterized as non constructive because it asserts the
existence of a set of chosen elements, but says nothing about how to choose
them.

2.1.2 Extensions

There are several axiomatic extensions of ZFC, which strive to incorporate larger
structures without the hindrance of "too large sets”. Usually they introduce a
distinction between ”sets” (ordinary sets) and ”classes” or ”universes” (which
are larger but cannot be part of a set). A universe is comprised of sets, but is
not a set itself and does not meet the axioms of sets. This precaution precludes
the possibility of defining sets by recursion : any set must be defined before it
can be used.

von Neumann organizes sets according to a hierarchy based on ordinal num-
bers : at each step a set can be added only if all its elements are part of a
previous step (starting with &). The final step gives the universe.

”New foundation” (Jensen, Holmes) is another system based on a different
hierarchy.

We give below the extension used by Kashiwara and Schapira which is typical
of these extensions, and will be used later in categories theory.

A universe U is an object satisfying the following properties :

1. oaeU

22.ueU=ucCU

3. u € U = {u} € U (the set with the unique element u)

4. uw e U = 2" € U (the set of all subsets of u)

5. if for each member of the family (see below) (u;),.; of sets u; € U then
Uieru; € U

6. NeU
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A universe is a " collection of sets” , with the implicit restriction that all its
elements are known (there is no recursive definition) so that the ususal paradoxes
are avoided. As a consequence :

7. u €U = Ugeyxr €U

. u,velU=uxvel

. uCcvelU=ueclU

10.if for each member of the family (see below) of sets (u;);c; u; € U then
Hui eU
i€l

An axiom is added to the ZFC system : for any set x there exists an universe
U such that x € U

A set X is U-small if there is a bijection between X and a set of U.

2.1.3 Operations on sets

In formal set theories "x belongs to X” : € X is an atom (it is always true
or false). In ”fuzzy logic” it can be neither.

1. From the previous axioms and this atom are defined the following opera-
tors on sets:

Definition 32 The Union of the sets A and B, denoted A U B, is the set of
all objects that are a member of A, or B, or both.

Definition 33 The Intersection of the sets A and B, denoted A N B, is the
set of all objects that are members of both A and B.

Definition 34 The Set difference of U and A, denoted U\ A is the set of
all members of U that are not members of A.

Example : The set difference {1,2,3} \ {2,3,4} is {1} , while, conversely, the
set difference {2,3,4} \ {1,2,3} is {4} .

Definition 35 A subset of a set A is a set B such that all its elements belong
to A

Definition 36 The complement of a subset A with respect to a set U is the
set difference U\ A

If the choice of U is clear from the context, the notation A¢ will be used.
Another notation is 0} = A°

Definition 37 The Symmetric difference of the sets A and B, denoted ANB =
(AU B)\ (AN B) is the set of all objects that are a member of exactly one of A
and B (elements which are in one of the sets, but not in both).

Definition 38 The Cartesian product of A and B, denoted A x B, is the set
whose members are all possible ordered pairs (a,b) where a is a member of A
and b is a member of B.
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The cartesian product of sets can be extended to an infinite number of sets
(see below)

Definition 39 The Power set of a set A is the set whose members are all
possible subsets of A. It is denoted 2.

Theorem 40 Union and intersection are associative and distributive

AU(BUC) =(AUB)UC
AN(BNC)=(ANB)NC
AN(BUC)=(ANB)U(ANC)
AU(BNC)=(AUB)N(AUC)

Theorem 41 Symmetric difference is commutative, associative and distributive
with respect to intersection.

C4YE = (AUB)® = A°N B, (AN B)" = A°U B¢
Remark : there are more sophisticated operators involving an infinite number
of sets (see Measure).

2.2 Maps
2.2.1 Definitions

Definition 42 A map f from a set E to a set F, denoted f : E — F ::y = f(x)
is a relation which associates to each element x of E one element y=f(z) of F.
z in f(z) is called the argument, f(z) is the value of f for the argument z.
E is the domain of f, F is the codomain of f.
The set f(E) ={y = f(z),z € E} is the range (or image) of f.
The graph of f is the set of all ordered pairs {(z, f(z)),x € E}.

(formally one can define the map as the set of pairs (x,{(x)))
We will usually reserve the name ”function” when the codomain is a field
(R,C).

Definition 43 The preimage (or inverse image) of a subset BC F of the
map f:E— F is the subset denoted f~1 (B) C E such thatVx € f~1(B): f(z) €
B

It is usually denoted :f~! (B) = {x € E: f(x) € B}.
Notice that it is not necessary for f to have an inverse map.

Definition 44 The restriction fa of a map f: E — F to a subset AC E is
the map : fa: A— F Ve e A: fa(x)= f(x)

Definition 45 An embedding of a subset A of a set Ein Eisamapi: A — E
such that Ve € A 1 (z) = x.
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Definition 46 A retraction of a set E on a subset Aof Eisamap: p: E— A
such that : Yz € A,p(x) = x. Then A is said to be a retract of E

Retraction is the converse of an embedding. Usually embedding and retrac-
tion maps are morphisms : they preserve the mathematical structures of both
A and E, and x could be seen indifferently as an element of A or an element of
E.

Example : the embedding of a vector subspace in a vector space.

Definition 47 The characteristic function (or indicator funtion) of the sub-
set A of the set E is the function denoted : 14 : E — {0,1} with 14 (z) =1 if
x€Als(x)=0ifx ¢ A

Definition 48 A set H of maps f : E — F' is said to separate E if : Vx,y €
Ex#y3feH: f(z)# f(y)

Definition 49 If E,K are sets, F a set of maps : f: E — K the evaluation
map at x € E isthe map : T: F - K =2 (f) = f (z)

This definition, which seems a bit convoluted, is met often with different
names.

Definition 50 Let I be a set, the Kronecker function is the function : § :
IxI—={0,1}::6(i,4)=114fi=j, 6(4,5) =0 if i£ j

When I is a set of indices it is usually denoted 6} =0(i,7) or &;j.
2. The two following theorems are a consequence of the axioms of the set
theory:

Theorem 51 There is a set, denoted F¥ , of all maps with domain E and
codomain F'

Theorem 52 There is a unique map Idg over a set E, called the identity,
such that : Idg : E — E :: x = Idg(z)

Maps of several variables
A map f of several variables (z1,%2,...xp) is just a map with domain the
cartesian products of several sets F; X Fs... X I,
From a map f : Fy X Es — F one can define a map with one variable by
keeping x;1 constant, that we will denote f (x1,-): B2 — F

Definition 53 The canonical projection of 'y x Fs... x E, onto Ey, is the
map T : E1 X Es... X E, = Ey & m (21, T2, ... Zp) = Tk

Definition 54 A map f : E x E — F is symmetric if Vo1 € E,Vaxy € E =
[ (@1, 22) = f (22, 21)
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Injective, surjective maps

Definition 55 A map is onto (or surjective) if its range is equal to its codomain

For each element y € I of the codomain there is at least one element z € F
of the domain such that : y = f(z)

Definition 56 A map is one-to-one (or injective) if each element of the
codomain is mapped at most by one element of the domain

(WeF:f(x)=f@)=a=1)& (Vata €E:[(x) £ (@)

Definition 57 A map is bijective (or one-one and onto) if it is both onto and
one-to-one. If so there is an inverse map

ffLeF—sEzx=fYy):y=f(z)

2.2.2 Composition of maps

Definition 58 The composition, denoted go f , of the maps f : E — F,g :
F — G is the map :

gof:E—>G::x€Ei>y:f(:c)EFiz:g(y):gof(a:)eG

Theorem 59 The composition of maps is always associative : (fog)oh =
folgoh)

Theorem 60 The composition of a map [ : E — E with the identity gives f :
foldg =1Idgof=f

Definition 61 The inverse of a map f : E — F for the composition of maps
is a map denoted f~1: F — E such that : fo f~'=1Idg,f 'of=Idr

Theorem 62 A bijective map has an inverse map for the composition

Definition 63 If the codomain of the map f is included in its domain, the n-
iterated map of f is the map f* = fo f...of (n times)

Definition 64 A map f is said idempotent if f>= fo f = f.

Definition 65 A map f such that f2 = Id is an involution. If its range is
strictly included in its codomain it is a projection :

f:E—SF:ufof=1Idf(E)#F
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2.2.3 Sequence

Definition 66 A family of elements of a set E is a map from a set I, called
the index set, to the set £

Definition 67 A sequence in the set E is a family of elements of E indexed
on the set of natural numbers N.

Notation 68 (x;),.; € E' is a family of elements of E indexed on I
(Tn)pen € EN is a sequence of elements in the set E

Notice that if X is a subset of E then a sequence in X is a map  : N — X

Definition 69 A subfamily of a family of elements is the restriction of the
family to a subset of the index set
A subsequence is the restriction of a sequence to an infinite subset of N.

The concept of sequence has been generalized to "nets” (Wilansky p.39).
A directed set (or a directed preorder or a filtered set) is a non empty set A
together with a reflexive and transitive binary relation < (that is, a preorder),
with the additional property that every pair of elements has an upper bound:
in other words, for any a and b in A there must exist ¢ in A with a < c and b
< c. A net is then a map with domain a directed set. N is a directed set and a
sequence is a net.

Definition 70 On a set E on which an addition has been defined, the series
(Sn) is the sequence : Sp =Y _ox, where (), cy € EN is a sequence.

2.2.4 Family of sets

Definition 71 A family of sets (E;),.; , over a set E is a map from a set I
to the power set of E

For each argument i E; is a subset of E: F': [ — 2F .. F (i) = E,.

The axiom of choice tells that for any family of sets (E;),.,; there is a map
f : I = E which associates an element f(i) of F; to each value i of the index :
Af:I—-E: f(i) e E;

If the sets E; are not previously defined as subsets of E (they are not related),
following the previous axioms of the enlarged set theory, they must belong to a
universe U, and then the set F = U;crFE; also belongs to U and all the E; are
subsets of E.

Definition 72 The cartesian product E = [[ E; of a family of sets is the set
icl

of all maps : f : I — UjerE; such that Vi € I : f (i) € E;. The elements f (i)

are the components of f.

This is the extension of the previous definition to a possibly infinite number
of sets.
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Definition 73 A partition of a set E is a family (E;),.;. of sets over E such
that :
Uier B = E

Definition 74 A refinement (4;),.; of a partition (E;),c; over E is a par-
tition of E such that : Vj e J,diel: A; CE;

Definition 75 A family of filters over a set E is a family (F;);,.; over E
such that :

Vi:F; # @

Vi,j:3kel:F, C F;NF;

For instance the Fréchet filter is the family over N defined by : F,, = {p €
N:p>n}

2.3 Binary relations
2.3.1 Definitions

Definition 76 A binary relation R on a set E is a 2 variables propositional
function : R: Ex E — {T,F}

Definition 77 A binary relation R on the set E is :
reflexive if : Ve € E: R(zx,z) =T
symmetric if : Yo,y € E: R(z,y) ~ R(y,x)
antisymmetric if : Vz,y € E: (R(z,y) AR(y,z)) =z =y
transitive if : Vz,y,z € E: (R(z,y) A R(y, 2)) = R(z,2)
total if FVz € E,Vy € E,(R(x,y) V R(y,x))

2.3.2 Equivalence relation

Definition 78 An equivalence relation is a binary relation which is reflezive,
symmetric and transitive

It will be usually denoted by ~

Definition 79 If R is an equivalence relation on the set E,

- the class of equivalence of an element z€ E is the subset denoted [x] of
elements ye E such that y ~ x .

- the quotient set denoted E/R is the partition of E whose elements are
the classes of equivalence of E.

Theorem 80 There is a natural bijection from the set of all possible equivalence
relations on E to the set of all partitions of E.
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So, if E is finite set with n elements, the number of possible equivalence
relations on E equals the number of distinct partitions of E, which is the nth
Bell number : B, =137 &

T e

Example : for any map f : E — F the relation = ~ y if f(x)=f(y) is an
equivalence relation.

2.3.3 Order relation

Definition 81 An order relation is a binary relation which is reflexive, anti-
symmetric and transitive. If the relation is total it is a total ordering , if not
the relation is a partial ordering (or preorder).

In a partial ordering there are couples (x,y) for which R(x,y) is not defined.

Example : the relation < is a total ordering over R, but is only a partial
ordering over R?

An antisymmetric relation gives 2 dual binary relations (”greater or equal
than” and ”smaller or equal than”).

Bounds
Definition 82 An upper bound of a subset A of E is an element of E which
is greater than all the elements of A

Definition 83 A lower bound of a subset A of E is an element of E which is
smaller than all the elements of A

Definition 84 A bounded subset A of F is a subset which has both an upper
bound and a lower bound.

Definition 85 A maxzimum of a subset A of E is an element of A which is
also an upper bound for A

m=maxAsmeENVreA - m>zx

Definition 86 A minimum of a subset A of E is an element of A which is
also a lower bound for A

m=minAsmeFEvVreA:m<x
Maximum and minimum, if they exist, are unique.

Definition 87 If the set of upper bounds has a minimum, this element is unique
and is called the least upper bound or supremum

denoted : s =supA =min{me E:Vz € E:m >z}

Definition 88 If the set of lower bounds has a maximum, this element is unique
and is called the greatest lower bound or infimum.
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denoted :s =inf A =max{me E:Vz € E:m <z}

Theorem 89 Over R any non empty subset which has an upper bound has a
least upper bound, and any non empty subset which has a lower bound has a
greatest lower bound,

If f: E— Ris a real valued function, a maximum of f is an element M of
E such that f(M) is a maximum of f(E), and a mimimum of f is an element m
of E such that f(m) is a minimum of f(E)

Axiom 90 Zorn lemna : if E is a set with a partial ordering, such that any
subset for which the order is total has a least upper bound, then E has also a
mazimum.

The Zorn lemna is equivalent to the axiom of choice.

Definition 91 A set is well-ordered if it is totally ordered and if any non
empty subset has a minimum. FEquivalently if there is no infinite decreasing
sequence.

It is then possible to associate each element with an ordinal number (see
below). The axiom of choice is equivalent to the statement that every set can
be well-ordered.

As a consequence let I be any set. Thus for any finite subset J of I it is
possible to order the elements of J and one can write J={j1,j2,...jn} with
n=card(J).

Definition 92 A lattice is a partially ordered set (also called a poset) in which
any two elements have a unique supremum (the least upper bound, called their
join) and an infimum (greatest lower bound, called their meet).

Example : For any set A, the collection of all subsets of A can be ordered
via subset inclusion to obtain a lattice bounded by A itself and the null set. Set
intersection and union interpret meet and join, respectively.

Definition 93 A monotone map f : E — F between sets E,F endowed with
an ordering is a map which preserves the ordering:

The converse of such a map is an order-reflecting map :
Ve,y € E, f(z) <r fly) >z <py

2.3.4 Cardinality

Theorem 94 Bernstein (Schwartz I p.23) For any two sets E,F, either there
s an injective map f : E — F ,or there is an injective map g : F' — E. If there
s an injective map f: E — F and an injective map : g : I — E then there is
a bijective map o : E — F, o' : F - E
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Cardinal numbers
The binary relation between sets E,F : ”"there is a bijection between E and
F” is an equivalence relation.

Definition 95 Two sets have the same cardinality if there is a bijection be-
tween them.

The cardinality of a set is represented by a cardinal number. It will be
denoted card(E) or #E.

The cardinal of @ is 0.

The cardinal of any finite set is the number of its elements.

The cardinal of the set of natural numbers N , of algebric numbers Z and of
rational numbers Q is Ry (aleph null: hebraic letter).

The cardinal of the set of the subsets of E (its power set 2F) is 2¢a74(F)

The cardinal of R (and C, and more generally R",n € N) is ¢ = 280 called
the cardinality of the continuum

It can be proven that : M0 = ¢, ¢¢ = 2¢

Infinite cardinals

The binary relation between sets E,F : ”there is an injection from E to F” is an
ordering relation. The cardinality of E is said to be smaller than the cardinality
of F if there is no injection from F to E. So it is possible to order the classes of
equivalence = the cardinal numbers.

Definition 96 A set is finite if its cardinality is smaller than Rg
A set is countably infinite if its cardinality is equal to Ny
A set is uncountable if its cardinality is greater than Wo.

The cardinals equal or greater than Xy are the transfinite cardinal num-
bers. The continuum hypothesis is the assumption that there is no cardinal
number between Rg and 2%, Depending of the formal system used for set theory
it can be an axiom (as in ZFC), to be added or not to the system (Cohen 1963),
or an hypothesis (to be proven true or false) .

Theorem 97 A set E is infinite iff there is bijective map between E and a
subset of E distinct of E.

This theorem has different interpretations (the ”Dedekind infinite”) accord-
ing the the set theory used.
2.3.5 Ordinality

Definition
Cardinality is the number of elements of a set. Ordinality is related to the
possibility to order them in an increasing sequence.
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Definition 98 Two totally ordered sets E and F are of the same order type
(or ordinality) if there is a bijection f : E — F such that f and f~* are order
preserving maps.

The relation ”E and F are of the same order type” is an equivalence relation.

Ordinal numbers
The ordinality of a totally ordered set is represented by an ordinal number.

The sets ot the same order type have the same cardinality but the converse
is not always true.

For finite sets the ordinal number is equal to the cardinal number.

For infinite sets, the transfinite ordinal numbers are not the same as the
transfinite cardinal numbers.

The order type of the natural integers N is the first transfinite ordinal num-
ber, denoted w which can be identified with Xg

The next ordinal number following the transfinite ordinal number « is de-
noted o + 1.

Whereas there is only one countably infinite cardinal, namely N itself, there
are uncountably many countably infinite ordinals, namely

No, Ng + 1, ..., Ng-2, Ng-2 + 1, ..., N2, ..., Vo3, ..., NgRg, ..., RoRgR,

Here addition and multiplication are not commutative: in particular 1 + Ny
is Ny rather than Ny + 1 and likewise, 2-Ng is Ny rather than Ng-2. The set
of all countable ordinals constitutes the first uncountable ordinal w;, which is
identified with the next cardinal after Ng.

The order type of the rational numbers Q is the transfinite ordinal number
denoted 1. Any countable totally ordered set can be mapped injectively into the
rational numbers in an order-preserving way.

Transfinite induction
Transfinite induction is the following logical rule of inference (which is
always valid):

Axiom 99 For any well-ordered set, any property that passes from the set of
ordinals smaller than a given ordinal o to « itself, is true of all ordinals : if
P(a) is true whenever P(f3) is true for all B<a, then P(a) is true for all .
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3 CATEGORIES

Categories is now a mandatory part of advanced mathematics, at an almost egal
footing as the set theory. However it is one of the most abstract mathematical
theories. It requires the minimum of properties from its objects, so it provides
a nice language to describe many usual mathematical objects in a unifying way.
It is also a powerful tool in some specialized fields. But the drawback is that it
leads quickly to very convoluted and abstract constructions when dealing with
precise subjects, that border mathematical pedantism, without much added
value. So, in this book, we use it when, and only when, it is really helpful and
the presentation is limited to the main definitions and principles, in short to the
vocabulary needed to understand what lies behind the language.
On this topic we follow mainly Lane and Kashiwara.

3.1 Categories

In mathematics, whenever a set is endowed with some structure, there are some
maps, meeting properties matching those of the structure of the set, which are of
special interest : the continuous maps with topological space, the linear maps
with vector space,... The basic idea is to consider packages, called categories,
including both sets and their related maps.

All the definitions and results presented here, which are quite general, can
be found in Kashirawa-Shapira or Lane

3.1.1 Definitions

Definition 100 A category C consists of the following data:

- a set Ob(C') of objects

- for each ordered pair (X,Y) of objects of Ob(C), a set of morphisms
hom(X,Y) from the domain X to the codomain Y:

V(X,Y) € Ob(C)xOb(C),Thom(X,Y) = {f,dom (f) = X, codom (f) =Y}

- a function o called composition between morphisms :

o:hom(X,Y) x hom(Y,Z) — hom(X, Z)

which must satisfy the following conditions :

Associativity

f €hom(X,Y),g € hom(Y,Z),h € hom(Z,T)= (fog)oh=fo(goh)

Ezistence of an identity morphism for each object

VX € Ob(C) ,Fidx € hom(X,X) : Vf € hom(X,Y) : foidx = f,Vg €
hom(Y, X) :idx og=g

If Ob(C) is a set of a universe U (therefore all the objects belong also to
U), and if for all objects the set hom (A, B) is isomorphic to a set of U then
the category is said to be a ”U-small category”. Here ”isomorphic” means that
there is a bijective map which is also a morphism.
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Remarks :

i) When it is necessary to identify the category one denotes home (X,Y) for
hom(X,Y)

ii) The use of ”"universe” is necessary as in categories it is easy to run into
the problems of "too large sets”.

iii) To be consistent with some definitions one shall assume that the set of
morphisms from one object A to another object B can be empty.

iv) A morphism is not necessarily a map f : X — X'. Let U be a universe
of sets (the sets are known), C the category defined as : objects = sets in U,
morphisms : home (X,Y) = {X C Y} meaning the logical proposition X C Y
which is either true of false. One can check that it meets the conditions to define
a category.

As such, the definition of a category brings nothing new to the usual axioms
and definitions of set theory. The concept of category is useful when all the
objects are endowed with some specific structure and the morphisms are the

2 7

specific maps related to this structure: we have the category of "sets”, ”vector
spaces”, "manifolds”,..It is similar to set theory : one can use many properties
of sets without telling what are the elements of the set. The term ”morphism”
refer to the specific maps used in the definition of the category.

The concept of morphism is made precise in the language of categories,
but, as a rule, we will always reserve the name morphism for maps between
sets endowed with similar structures which ”conserve” these structures. And

similarly isomorphism for bijective morphism.

Examples
1. For a given universe U the category U-set is the category with objects the

sets of U and morphisms any map between sets of Ob(U-set). It is necessary to
fix a universe because there is no ”Set of sets”.

2. 0 is the empty category with no objects or morphisms

3. The category U of ”vector spaces over a field K” : the objects are vector
spaces, the morphisms linear maps

4. The category of ”topological spaces” (often denoted " Top”) : the objects
are topological spaces, the morphisms continuous maps

5. The category of ”smooth manifolds” : the objects are smooth manifolds,
the morphisms smooth maps

Notice that the morphisms must meet the axioms (so one has to prove that
the composition of linear maps is a linear map). The manifolds and differentiable
maps are not a category as a manifold can be continuous but not differentiable.
The vector spaces over R (resp.C) are categories but the vector spaces (over any
field) are not a category as the product of a R-linear map and a C-linear map
is not a C-linear map.

6. A monoid is a category with one unique object and a single morphism
(the identity).. It is similar to a set M, a binary relation MxM associative with
unitary element (semi group).
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7. A simplicial category has objects indexed on ordinal numbers and
morphisms are order preserving maps.

More generally the category of ordered sets with objects = ordered sets
belonging to a universe, morphisms = order preserving maps.

3.1.2 Additional definitions about categories

Definition 101 A subcategory C’ of the category C has for objects Ob(C’)C
0b(C) and for X, Y € C',home (X,Y) C home (X,Y)
A subcategory is full if home (X,Y) = home (X,Y)

Definition 102 If C is a category, the opposite category, denoted C*, has
the same objects as C and for morphisms :

home+ (X, Y) = homg (Y, X)

with the composition :

f €home«(X,Y),g € home«(Y,Z): go* f=fog

Definition 103 A category is

- discrete if all the morphisms are the identity morphisms

- finite it the set of objects and the set of morphisms are finite

- connected if it is non empty and for any pair X,Y d’objects there is a
finite sequence d’objects Xg = X, X1,. X1, Xpn =Y such that Vi € [0,n — 1]
at least one of the sets hom (X;, X;4+1), hom (X;4+1, X;) is non empty.

Definition 104 If (C;),.; is a family of categories indexed by the set I

the product category HC’i has
i€l

- for objects : Ob <HCZ-> = HOb (Cy)

icl el

- for morphisms : homHCi HXj’ I_IY7 = Hhomcj (X;,Y5)
iy JjeI JjeI Jjel
the disjoint union category U;c;C; has
- for objects : Ob(UC;) = {(X;,1),i € I, X, € Ob(C;)}
- for morphisms : homyc, (X, ), (Yi, k) = home, (X,.Y)) if j=k; =@ if
j#k
Definition 105 A pointed category is a category with the following properties

- each object X is a set and there is a unique x € X (called base point) which
is singled : let x =1 (X)
- there are morphisms which preserve z : 3f € hom (X,Y) : ¢ (Y) = f (+ (X))

Example : the category of vector spaces over a field K with a basis and linear
maps which preserve the basis.
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3.1.3 Initial and terminal objects

Definition 106 An object I is initial in the category Cif VX € Ob(C), #hom(I, X) =
1

meaning that there is only one morphism going from I to X

Definition 107 An object T is terminal in the category Cif VX € Ob(C),# hom(X,T) =
1

meaning that there is only one morphism going from X to T

Definition 108 An object is null (or zero object) in the category C if it is
both initial and terminal.

It is usually denoted 0. So if there is a null object, VX, Y there is a morphism
X — Y given by the composition : X -0 —Y

In the category of groups the null object is the group 1, comprised of the
unity.

Example : define the pointed category of n dimensional vector spaces over
a field K, with an identified basis:

- objects : E any n dimensional vector space over a field K, with a singled
basis (€;);_,

- morphisms: hom(F, F') = L(FE; F) (there is always a linear map F : f (e;) =
fi)

All the objects are null : the morphisms from E to F such that f (e;) = f;
are unique

3.1.4 Morphisms

Basic definitions

1. The following definitions generalize, in the language of categories, concepts
which have been around for a long time for strctures such as vector spaces,
topological spaces,...

Definition 109 An endomorphism is a morphism in a category with domain
= codomain : f € hom(X, X)

Definition 110 If f € hom(X,Y),g € hom(Y, X) such that : fog = Idy then
f is the left-inverse of g, and g is the right-inverse of f

Definition 111 A morphism f € hom(X,Y) is an isomorphism if there ex-
ists g € hom(Y, X) such that fog=Idy,go f=Idx

Then the two objects X,Y are said to be isomorphic and we is usually denoted
X ~Y

Definition 112 An automorphism is an endomorphism which is also an iso-
morphism
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Definition 113 A category is a groupoid if all its morphisms are isomor-
phisms

2. The following definitions are specific to categories.

Definition 114 Two morphisms in a category are parallel if they have same
domain and same codomain. They are denoted : f,g: X =Y

Definition 115 A monomorphism f € hom(X,Y) is a morphism such that
for any pair of parallel morphisms :

91,92 €hom(Z, X): fogi=foga= g1 =92

Which can be interpreted as f has a left-inverse and so is an injective mor-
phism

Definition 116 An epimorphism f € hom(X,Y) is a morphism such that
for any pair of parallel morphisms :

91,92 €hom(Y,Z) :giof =gao f = g1 =9

Which can be interpreted as f has a right-inverse and so is a surjective
morphism

Theorem 117 If f € hom(X,Y),g € hom(Y, Z) and f,g are monomorphisms
(resp.epimorphisms, isomorphisms) then gof is a monomorphism (resp.epimorphism,
isomorphism)

Theorem 118 The morphisms of a category C are a category denoted hom (C)
- Its objects are the morphisms in C : Ob (hom (C)) = {hom¢ (X,Y), X, Y € Ob(C)}
- Its morphisms are the maps u,v such that :
VX, Y, X')Y € Ob(C),Vf € hom (X,Y),g9 € hom (X',Y) : u € hom (X, X') v €
hom (Y,Y') :vo f=gou

The maps u,v must share the general characteristics of the maps in C

Diagrams
Category theory uses diagrams quite often, to describe, by arrows and sym-
bols, morphisms or maps between sets. A diagram is commutative if any path
following the arrows is well defined (in terms of morphisms).
Example : the following diagram is commutative :
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Exact sequence
Used quite often with a very abstract definition, which gives, in plain lan-
guage:

Definition 119 For a family (X))
phisms f, € home (Xp, Xpi1)
fp fn—l

the sequence : X el X1.Xp, = Xpp1.... 5 X, is exact if f, (X)) =
ker (fp+1)

An exact sequence is also called a complex. It can be infinite.

That requires to give some meaning to ker. In the usual cases ker may be
understood as the subset :

if the X, are groups : ker f, = {z € X, f, (z) = 1x,,,} 50 fpo fr_1 =1

if the X, are vector spaces : ker f, = {z € X, f, (z) = 0x,., } s0 frofp_1 =

p<n of objects of a category C and of mor-

0

Definition 120 A short exact sequence in a category Cis : X Ly % g
where : f € home (X,Y) is a monomorphism (injective) ,g € home (Y, Z) is
an epimorphism (surjective), equivalently iff f o g is an isomorphism.

Then Y is, in some way, the product of Z and {(X)
it is usally written :

0= XLy 2 750 for abelian groups or vector spaces
15 XL v % Z 1 for the other groups

A short exact sequence X Ly 4 g splits if either :
3t € home (Y, X) =:to f=Idx

0 - X L v % 7

S

of Ju € home (Z,Y) 1 gou=1Idy

0 - X L v % 7z

&

then :
- for abelian groups or vector spaces : ¥ =X & Z
- for other groups (semi direct product) : ¥ =X x Z

3.2 Functors

Functors are roughly maps between categories. They are used to import struc-
tures from a category C to a category C’, using a general procedure so that some
properties can be extended immediately. Example : the functor which associates
to each vector space its tensorial algebra. There are more elaborate examples
in the following parts.
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3.2.1 Functors

Definition 121 A functor (a covariant functor) F between the categories C
and C’ is :
a map F, : Ob(C) — Ob(C")
maps F,, : hom (C) — hom (C") :: f € home(X,Y) — F,, (f) € homer (F, (X), F, (Y))
such that
Fo (Idx) = Idp,x)
Frn(go f)=Fmn(g)oFn(f)

Definition 122 A contravariant functor F between the categories C and C’
is :
a map F, : Ob(C) — Ob(C")
maps Fy, : hom (C) — hom (C’) :: f € home(X,Y) — Fp, (f) € homer (F, (X), F, (Y))
such that
Fo (Idx) = Idp,x)
Fm(gof):Fm(f)oFm(g)

Notation 123 F : C — C’ (with the arrow ) s a functor F between the
categories C,C’

Example : the functor which associes to each vector space its dual and to
each linear map its transpose is a functor from the category of vector spaces
over a field K to itself.

So a contravariant functor is a covariant functor C* — C'*.

A functor F induces a functor : F* : C* — C™*

A functor F : C' — Set is said to be forgetful (the underlying structure in
C is lost).

Definition 124 A constant functor denoted Ax : I — C between the cate-
gories I,C, where X € Ob(C) is the functor :

Vie Ob(I): (Ax), (1) =X

Vi,j € Ob (I) ,Vf S hOHl] (Z,]) : (Ax)m (f) = IdX

Composition of functors
Functors can be composed :
F:C—C,F:C—(C
FoF :C—C" = (FoF'), =F,0F);(FoF'), =Fy,oF),
The composition of functors is associative whenever it is defined.

Definition 125 A functor F is faithful if F,,, : home(X,Y) — homer (F, (X), F, (Y))
18 injective

Definition 126 A functor Fis full if F,,, : home(X,Y) — home (F, (X), F, (Y))
18 surjective

Definition 127 A functor F is fully faithful if F,,, : home(X,Y) — home: (F, (X), F, (Y))

is bijective
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These 3 properties are closed by composition of functors.

Theorem 128 If F : C — C' is faithful, and if F(f) with f € home (X,Y) is
an epimorphism (resp. a monomorphism) then f is an epimorphism (resp. a
monomorphism)

Product of functors
One defines naturally the product of functors. A bifunctor F : C x ¢’ — C”

is a functor defined over the product CxC’, so that for any fixed X € C, X’ € ¢’
F(X,.),F(,X') are functors

If C,C’ are categories, CxC’ their product, the right and left projections
are functors defined obviously :

Lo( X xX)Y=X;R, (X, X') = X'

Lot (f % f') = f; R (f.F) = I

They have the universal property : whatever the category D, the functors
F:Dw— C;F': D~ C’ there is a unique functor G : D — C x C’ such that
LoG=FRoG=F

3.2.2 Natural transformation

A natural transformation is a map between functors. The concept is mostly used
to give the conditions that a map must meet to be consistent with structures
over two categories.

Definition 129 Let F,G be two functors from the categories C'to C’. A natural
transformation ¢ (also called a morphism of functors) denoted ¢ : F — G is
a map : ¢ : Ob(C') — homer (Ob(C'), 0b(C")) such that the following diagram
commutes :

C (o}
X Fx) B g,
A 1 A
£ } Fo (f) b G (f)
A A A
Y Fy) % 6.
VX,Y € Ob(C),Vf € home (X,Y) :
Gm (f)ed(X)=9¢(Y)o m( ) € homer (F, (X),Go (Y))
Fn (f) € homer (Fo (X)), Fo(Y))
G (f) € homer (G, (X ) o(Y))
¢ (X) € homer (Fy (X)), Go(X))
¢ (Y) € home (Fo (Y), Go(Y))
The components of the transformation are the maps ¢ (X), ¢ (Y)
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If VX € Ob(C) ¢ (X) is inversible then the functors are said to be equiva-
lent.
Natural transformations can be composed in the obvious way. Thus :

Theorem 130 The set of functors from a category C to a category C’ is it-
self a category denoted Fc(C,C"). Its objects are Ob(Fc(C,C")) any functor
F : C — C' and its morphisms are natural transformations : hom (Fy, Fy) =
{(]5 B — F2}

3.2.3 Yoneda lemna

(Kashirawa p.23)

Let U be a universe, C a category such that all its objects belong to U, and
USet the category of all sets belonging to U and their morphisms.

Let :

Y be the category of contravariant functors C' — USet

Y* be the category of contravariant functors C' — USet*

he be the functor : he : C — Y defined by : he (X) = home (—, X) . To an
object X of C it associes all the morphisms of C whith codomain X and domain
any set of U.

ke be the functor : ke : C'+— Y™ defined by : k¢ (X) = home (F, —). To an
object X of C it associes all the morphisms of C whith domain X and codomain
any set of U.

So: Y =Fc(C*,USet),Y* = Fc(C*,USet")

Theorem 131 Yoneda Lemna

i) For Fe Y, X € C : homy (h¢ (X),F) ~ F (X)

ii) For Ge Y*, X € C : homy~ (k¢ (X),G) ~ G (X)

Moreover these isomorphisms are functorial with respect to X,F,G : they
define isomorphisms of functors from C*xY to USet and from Y**zC to USet.

Theorem 132 The two functors hc, ko are fully faithful

These abstracts definitions are the basis of the theory of representation of a
category. For instance, if G is a group and E a vector space, a representation of G
over E is a map f to the set L(E;E) of linear maps on E such that f(gh)=f(g)f(h).
The group structure of G is transfered into E through an endomorphism over E.
The inversible endomorphisms over a vector space have a group structure with
composition law, so a vector space can be included in the category of groups
with these morphisms. What the Yoneda lemna says is that to represent G we
need to consider a larger category (of sets) and find a set E and a map from G
to morphisms over E.

Theorem 133 A contravariant functor F : C'— Uset is representable if there
are an object X of C, called a representative of F, and an isomorphism ho (X) —
F

Theorem 134 A covavariant functor F' : C +— Uset is representable if there are
an object X of C, called a representative of F, and an isomorphism kc (X) — F
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3.2.4 TUniversal functors

Many objects in mathematics are defined through an ”universal property” (ten-
sor product, Clifford algebra,...) which can be restated in the language of cate-
gories. It gives the following.

Let : F': C — C’ be a functor and X’ an object of C’

1. An initial morphism from X’ to F is a pair (4, ¢) € Ob (C')xhomer (X', F, (A))
such that :

VX € Ob(C), f € homer (X', F, (X)),3g € home (A, X): f=F,(g)0¢

The key point is that g must be unique, then A is unique up to isomorphism

X' == ¢ — F,(A) A
\ ' '
f } Finl(9) Ly
N \J
F,(X) X

2. A terminal morphism from X’ to F is a pair (4,¢) € 0b(C) x
homer (F, (A), X’) such that :

VX € Ob(X), f € home (F(X); X'),3g € home (X, A) : f =¢o Fy (9)

The key point is that g must be unique, then A is unique up to isomorphism

X Fo(X)

A LN

g Fnlg) { f

\ | N\

A F,(A) —» ¢ =X’

3. Universal morphism usually refers to initial morphism.
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Part II
PART2 : ALGEBRA

Given a set, the theory of sets provides only a limited number of tools. To go
further one adds ”mathematical structures” on sets, meaning operations, special
collection of sets, maps...which become the playing ground of mathematicians.

Algebra is the branch of mathematics that deals with structures defined by
operations between elements of sets. An algebraic structure consists of one or
more sets closed under one or more operations, satisfying some axioms. The
same set can be given different algebraic structures. Abstract algebra is primar-
ily the study of algebraic structures and their properties.

To differentiate algebra from other branches of mathematics, one can say that
in algebra there is no concepts of limits or ” proximity” such that are defined by
topology.

We will give a long list of definitions of all the basic objects of common
use, and more detailed (but still schematic) study of groups (there is a part
dedicated to Lie groups and Lie algebras) and a detailed study of vector spaces
and Clifford algebras, as they are fundamental for the rest of the book.

4 USUAL ALGEBRAIC STRUCTURES

We list here the most common algebraic structures, mostly their definitions.
Groups and vector spaces will be reviewed in more details in the next sections.

4.0.5 Operations

Definition 135 An operation over a set Aisamap : - : AXA— A:zy==z
It is :
- associative if Vx,y,z € A: (x-y) - z=xz-(y- 2)
- commutative ifVe,y € A:x-y=y- -z

Definition 136 An element e of a set A is an identity element for the op-
eration - if :VNr € Ate-x=x-e==x

An element x of a set A is a :

- right-inverse of y for the operation - if : y-x=e

- left-inverse of y for the operation - if : x-y=e

- is tnvertible if it has a right-inverse and a left-inverse (which then are
necessarily equal and called inverse)

Definition 137 If there are two operations denoted + and * on the same set
A, then x is distributive over (say also distributes over) + if: Va,y,z € A :
ex(y+z)=(rxy)+(@*2), (y+2)xx=(y*z)+ (22
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Definition 138 An operation - on a set A is said to be closed in a subset B
of A ifVe,ye B:z-ye B

If E and F are sets endowed with the operations -, * the product set ExF is
endowed with an operation in the obvious way :

(z,2") " (y,y) = (& y,2" x )

4.1 From Monoid to fields

Definition 139 A monoid is a set endowed with an associative operation for
which it has an identity element

but its elements have not necessarily an inverse.
Classical monoids :

N : natural integers with addition

7 : the algebraic integers with multiplication
the square nxn matrices with multiplication

4.1.1 Group

Definition 140 A group (G,-) is a set endowed G with an associative opera-
tion -, for which there is an identity element and every element has an inverse.

Theorem 141 In a group, the identity element is unique. The inverse of an
element is unique.

Definition 142 A commutative (or abelian) group is a group with a commu-
tative operation

Notation 143 + denotes the operation in a commutative group
0 denotes the identity element in a commutative group
- = denotes the inverse of x in a commutative group
1 (or 1¢ ) denotes the identity element in a (non commutative) group G
21 denotes the inverse of z in a a (non commutative) group G

Classical groups (see the list of classical linear groups in ”Lie groups”):

Z : the algebraic integers with addition

Z/KZ :the algebraic integers multiples of k € Z with addition

the mxp matrices with addition

@Q : rational numbers with addition and multiplication

R : real numbers with addition and multiplication

C : complex numbers with addition and multiplication

The trivial group is the group denoted {1} with only one element.

A group G is a category, with Ob=the unique element G and morphisms
hom (G, G)
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4.1.2 Ring

Definition 144 A ring is a set endowed with two operations : one called ad-
dition, denoted + for which it is an abelian group, the other denoted - for which
it is a monoid, and - is distributive over +.

Remark : some authors do not require the existence of an identity element
for - and then call unital ring a ring with an identity element for - .

If 0=1 (the identity element for + is also the identity element for -) the ring
has only one element, said 1 and is called a trivial ring.

Classical rings :

Z : the algebraic integers with addition and multiplication

the square nxn matrices with addition and multiplication

Ideals

They are important structures, which exist in more elaborate ways on other
algebraic structures. So it is good to understand the concept in this simple
form.

Definition 145 A right-ideal of a ring E is a subset R of E such that :

R is a subgroup of E for addition andVa € RNx € E:z-a € R

A left-ideal of a ring E is a subset L of E such that :

L is a subgroup of E for addition andVa € L,Nx € E:a-x € L

A two-sided ideal (or simply an ideal) is a subset which is both a right-
ideal and a left-ideal.

Definition 146 For any element a of the ring F :

the principal right-ideal is the right-ideal :R = {x - a,z € E}
the principal left-ideal is the left-ideal :L = {a-x,x € E}

Division ring :

Definition 147 A division ring is a ring for which any element other than
0 has an inverse for the second operation -.

The difference between a division ring and a field (below) is that - is not
necessarily commutative.

Theorem 148 Any finite division ring is also a field.

Examples of division rings : the square invertible matrices, quaternions
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Quaternions :

This is a division ring, usually denoted H, built over the real numbers, us-
ing 3 special "numbers” i,j,k (similar to the i of complex numbers) with the
multiplication table :

i - -1

2=72=k>=-1ij=k=—ji,jk=1=—kj ki=j = —ik,

Quaternions numbers are written as : * = a+ bi+c¢j +dk with a,b,¢,d € R.
Addition and multiplication are processed as usual for a,b,c,d and as the table
above for i,j,k. So multiplication is not commutative.

R, C can be considered as subsets of H (with b=c=d=0 or c=d=0 respec-
tively).

The "real part” of a quaternion number is :Re(a 4+ bi + ¢j + dk) = a so
Re(zy) = Re(yz)

The ”conjugate” of a quaternion is : a + bi + ¢j +dk = a — bi — ¢j — dk so
Re(29) = Re(yT) , 2T = a® + 0> + 2 + d® = ||z| 3

4.1.3 Field

Definition

Definition 149 A field is a set with two operations (+ addition and x multi-
plication) which is an abelian group for +, the non zero elements are an abelian
group for x, and multiplication is distributive over addition.

A field is a commutative division ring.

Remark : an older usage did not require the multiplication to be commuta-
tive, and distinguished commutative fields and non commutative fields. It seems
now that fields=commutative fields only. ”Old” non commutative fields are now
called division rings.

Classical fields :
Q : rational numbers with addition and multiplication

R : real numbers with addition and multiplication

C : complex numbers with addition and multiplication

Algebraic numbers : real numbers which are the root of a one variable
polynomial equation with integers coefficients

reAeIn ()] qeQ:a™ + EZ;& gk =0

QCACR

Fora € A a ¢ Q, define A* (a) = {x cR: El(qk);;ll LGk €Q 1z = ZZ;& qkak}

then A* (a) is a field. It is also a n dimensional vector space over the field Q
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Characteristic :

Definition 150 The characteristic of a field is the smallest integer n such
that 1+1+...+1 (n times)=0. If there is no such number the field is said to be
of characteristic 0 .

All finite fields (with only a finite number of elements), also called ” Gallois
fields”, have a finite characteristic which is a prime number.
Fields of characteristic 2 are the boolean algebra of computers.

Polynomials
1. Polynomials can be defined on a field (they can also be defined on a ring
but we will not use them) :

Definition 151 A polynomial of degree n with p variables on a field K is a
function : . .

P:KP -5 K P(X1,.,Xp) =Y ai i X1 X)), 5’:1 ij < n,aq..q, €
K

If Zle i; = n the polynomial is said to be homogeneous.

Theorem 152 The set of polynomials of degree n with p variables over a field
K has the structure of a finite dimensional vector space over K denoted usually

K, [X1,..X,)]

The set of polynomials of any degree with k variables has the structure of a
commutative ring, with pointwise multiplication, denoted usually K[X1,...X,].
So it is a (infinite dimensional) commutative algebra.

Definition 153 A field is algebraically closed if any polynomial equation
(with 1 variable) has at least one solution :

Vag,..an, € K,3x € K : P(x) = apz"™ + ap_ 12"+ ... +a1x +ao=0

R is not algebraically closed, but C is closed (this is the main motive to
introduce C).

Anticipating on the following, this generalization of a classic theorem.

Theorem 154 Homogeneous functions theorem (Kolar p.213): Any smooth
n

function f : [[ E; — R where F;,i = 1..n are finite dimensional real vector
i=1

spaces, such that : Ja; > 0,b € R\ Vk € R: f (k% xy, .., k% x,) = kP f (21, ..,2)

is the sum of polynomials of degree d; in x; satisfying the relation : b =

Yoiq dia;. If there is no such non negative integer d; then f=0.
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Complex numbers
This is the algebraic extension C of the real numbers R. The fundamental

theorem of algebra says that any polynomial equation has a solution over C.

Complex numbers are written : z = a + ib with a,b € R,i? = —1

The real part of a complex number is :Re(a + bi) = a and the imaginary
part is Im (a + ib) = b.

The conjugate of a complex number is : a + bi = a — bi

So there are the useful identities :

Re(zz') = Re(z)Re (2') — Im (2) Im (2')

Im (22') = Re (2) Im (2') + Im (2) Re (2')

Re(z) =Re(z);Im(2) = —Im (2)

Re (22’) = Re (2) Re (2') 4+ Im (z) Im ()

Im (22") = Re (2) Im (2') — Im (z) Re (/)

The module of a complex number is : |a 4 ib| = vaZ + b2 and 27z = |z|°

The infinite sum : ZZO:O %T; = exp z always converges and defines the ex-
ponential function. The cos and sin functions can be defined as : expz =
|z| (cos @ + i sin €) thus any complex number can be written as: z = |z| (cosf + isinf) =
|z] €% 6 € [0,7] and exp(z1 + 22) = exp 21 exp 2a.

The set denoted SU(1)={z € C: |z| =1} = {e% 6 € [0,27]} is frequently
used.

A formula which can be useful. Let be z = a + ib then the complex numbers
o + i3 such that (o +1i8)> = z are :

cn 1 . b _ 1 N z+|z|
ot =t \ vt Z\/a+|z|) = e @l ) = 25

4.2 From vector spaces to algebras
4.2.1 Vector space

(or linear space)
Affine spaces are considered in the section vector spaces.

Definition 155 A wvector space E over a field K is a set with two operations
: addition denoted + for which it is an abelian group, and multiplication by a
scalar : K x E — E which is distributive over addition.

The elements of vector spaces are vectors. And the elements of the field K
are scalars.

Remark : a module over a ring R is a set with the same operations as above.
The properties are not the same. Definitions and names differ according to the
authors.

4.2.2 Algebra

Algebra is a structure that is very common. It has 3 operations.
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Definition

Definition 156 An algebra (A,-) over a field K is a set A which is a vector
space over K, endowed with an additional internal operation - : A X A — A with
the following properties :

- is associative : VXY, Z € A X - (Y -Z)=(X"'Y)-Z

- is distributive over addition : VX, Y, Z € A: X - (Y+Z)=X -Y +X-
Z;(Y+2)-X=Y - X+7-X

- is compatible with scalar multiplication : VX, Y € AVA\p € K : (AX) -
(nY) =) XY

If there is an identity element I for - the algebra is said to be unital.

Remark : some authors do not require - to be associative _
An algebra A can be made unital by the extension : A - A=K ® A =
{(k, X)},I=(1,0),(k,X)=k1+ X

Definition 157 A subalgebra of an algebra (A,-) is a subset B of A which is
also an algebra for the same operations

So it must be closed for the operations of the algebra.

Examples :
quaternions
square matrices over a field
polynomials over a field
linear endomorphisms over a vector space (with composition)
Clifford algebra (see specific section)

Ideal

Definition 158 A right-ideal of an algebra (A,-) is a vector subspace R of A
such that : YVae RNx e F:x-a € R

A left-ideal of an algebra (A,-) is a vector subspace L of A: Va € L,Vx €
F:a-z€elL

A two-sided ideal (or simply an ideal) is a subset which is both a right-
ideal and a left-ideal.

Definition 159 An algebra (A,-) is simple if the only two-sided ideals are 0
and A

Derivation

Definition 160 A derivation over an algebra (A, -) is a linear map : D : A —
A such that
Vu,v € A: D(u-v) = (Du) -v+u-(Dv)
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(we have a relation similar to the Leibniz rule for the derivative of the product
of two scalar functions)

Commutant

Definition 161 The commutant, denoted S’, of a subset S of an algebra
(A,-), is the set of all elements in A which commute with all the elements of S
for the operation -.

Theorem 162 (Thill p.63-64) A commutant is a subalgebra, containing I if A
is unital.

ScT=Tcds

For any subset S, the elements of S commute with each others iff S C S’
S’ is the centralizer (see Groups below) of S for the internal operation .

Definition 163 The second commutant of a subset of an algebra (A,-), is
the commutant denoted S” of the commutant S’ of S

Theorem 164 (Thill p.64)
Scs”
S/ — (Sn)/
ScT=(8)c()
X, X leAd=X"1e(X)”

Projection and reflexion
Definition 165 A projection in an algebra (A,-) is a an element X of A such
that : X - X =X

Definition 166 Two projections X,Y of an algebra (A,-) are said to be or-
thogonal if X - Y =0 (then Y - X =0)

Definition 167 Two projections X,Y of a unital algebra (A,-) are said to be
complementary if X+Y=I

Definition 168 A reflexion of a unital algebra (A,-) is an element X of A
such that X = X1

Theorem 169 If X is a reflexion of a unital algebra (A, -) then there are two
complementary projections such that X=P-Q

Definition 170 An element X of an algebra (A, ") is nilpotent if X - X =0
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*_algebra
*-algebras (say star algebra) are endowed with an additional operation similar
to conjugation-transpose of matrix algebras.

Definition 171 A *-algebra is an algebra (A,-) over a field K, endowed with
an involution : *: A — A such that :

VX, Y e A e K

(X+Y) ' =X*+Y*

(X-Y) =Y*. X*
(AX)" = XX* (if the field K is C)
(X*) =X

Definition 172 The adjoint of an element X of a *-algebra is X*

Definition 173 A subset S of a *-algebra is stable if it contains all its adjoints
:XeS=X"eS

The commutant S’ of a stable subset S is stable
Definition 174 A *-subalgebra B of A is a stable subalgebra : B* € B

Definition 175 An element X of a *-algebra (A4, -) is said to be :
normal if X-X*=X*X,
self-adjoint (or hermitian) if X=X*
anti self-adjoint (or antihermitian) if X=-X*
unitary if X-X*=X*X=I

(All this terms are consistent with those used for matrices where * is the
transpose-conjugation).

Theorem 176 A *-algebra is commutative iff each element is normal

If the *algebra A is over C then :

i) Any element X in A can be written : X =Y + i¢Z with Y,Z self-adjoint :

Y =1(X+X"),Z=45(X—-X"

i) The subset of self-adjoint elements in A is a real vector space, real form
of the vector space A.

4.2.3 Lie Algebra

There is a section dedicated to Lie algebras in the part Lie Groups.

Definition 177 A Lie algebra over a field K is a vector space A over K
endowed with a bilinear map called bracket :[| : A x A — A

VXY, Z e AV ue K : DX +uY, Z]| = XX, Z]|+plY. Z]

such that :

(X, Y] = —[Y, X]

(X, [V, Z)) +[Y,[Z, X]| + [Z,[X,Y]] =0 (Jacobi identities)
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Notice that a Lie algebra is not an algebra, because the bracket is not
associative. But any algebra (A,-) becomes a Lie algebra with the bracket :
[X,Y] =X Y —Y - X. This is the case for the linear endomorphisms over a
vector space.

4.2.4 Algebraic structures and categories

If the sets E and F are endowed with the same algebraic structure a map f :
E — F is a morphism (also called homomorphism) if f preserves the structure
= the image of the result of any operation between elements of E is the result
of the same operation in F between the images of the elements of E.

Groups : Ve,y € E: f(zxy) = f(x)- f(y)

Ring : Vo,y,z € E: f((x+y)x2) = f(z) - f(2) + f(y) - [ (2)

Vector space : Va,y € E,\, u € K : f(Ax + py) = Af () + nf (v)

Algebra : Va,y € A\ p € K == f(zxy) = f(x)- f);fQx+puy) =
Af (@) + pf (y)

Lie algebra : VX, Y € E: f([X,Y]g) = [f(X),f(V)]p

If f is bijective then f is an isomorphism

If E=F then f is an endomorphism

If f is an endomorphism and an isomorphism it is an automorphism

All these concepts are consistent with the morphisms defined in the category
theory.

There are many definitions of ”"homomorphisms”, implemented for various
mathematical objects. As far as only algebraic properties are involved we will
stick to the universal and clear concept of morphism.

There are the categories of Groups, Rings, Fields, Vector Spaces, Algebras
over a field K.
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5 GROUPS

We see here mostly general definitions about groups, and an overview of the
finite groups. Topological groups and Lie groups are studied in a dedicated
part.

5.1 Definitions

Definition 178 A group (G,-) is a set endowed G with an associative opera-
tion -, for which there is an identity element and every element has an inverse.

In a group, the identity element is unique. The inverse of an element is
unique.

Definition 179 A commutative (or abelian) group is a group whith a commu-
tative operation

Definition 180 A subgroup of the group (G,-) is a subset A of G which is
also a group for -

So:lg€AVz,ycA:x-ycAz e

5.1.1 Involution

Definition 181 An involution on a group (G,-) is a map : * : G — G such
that :
Vg,heG:(g*) =g;(g-h)"=h*-g5(1) =1

RN -1
= (97") =(9")

A group endowed with an involution is said to be an involutive group.
Any group has the involution : (g)* = g~! but there are others

Example : (C, x) with (2)" =2

5.1.2 Morphisms

Definition 182 If (G,-) and (G/,%) are groups a morphism (or homomor-
phism) is a map : f: G — G’ such that :
v,y e G f(z-y)=f(z)xf(y) ; f(le) =le

= f(z7) = f@)"

The set of such morphisms f is denoted hom (G, G")

The category of groups has objects = groups and morphisms = homo-
morphisms.

Definition 183 The kernel of a morphism f € hom (G, G’) is the set : ker f =
{9€G:f(9) =1}
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5.1.3 Translations

Definition 184 The left-translation by ac (G, ) is the map : L, : G — G =
Lior=a-x
The right-translation by ac (G,-) is the map : R, : G — G :: Ryx =z -a

So: Ly = -y = Ryx. Translations are bijective maps.

Definition 185 The conjugation with respect to a€ (G, -) is the map : Conj, :
G—-G:Conjyx=a-x-a

Conjax = Lg o Ry—1(x) = Rq—1 0 Lo (x)

Definition 186 The commutator of two elements z,ye (G,-) is : [z,y] =
Iil . y71 - y

It is 0 (or 1) for abelian groups.

It is sometimes useful (to compute the derivatives for instance) to consider
the operation - as a map with two variables :

x -y = M (z,y) with the property M (M (z,y),z) = M (x, M (y, z))

5.1.4 Centralizer

Definition 187 The normalizer of a subset A of a group (G,-) is the set :
Ny ={x e G:Conjy(A) = A}

The centralizer of a subset A of a group (G,-) is the set Za of elements of
G which commute with the elements of A

The center Zg of G is the centralizer of G

Za={reG:Va€ A:ax =za}
Z 4 is a subgroup of G.

5.1.5 Quotient sets

Cosets are similar to ideals.

Definition 188 For a subgroup H of a group (G,-) and a € G
The right coset of a (with respect to H) is the set : H-a={h-a,h € H}
The left coset of a (with respect to H) is the set : a- H ={a-h,h € H}

The left and right cosets of H may or may not be equal.

Definition 189 A subgroup of a group (G,-) is a normal subgroup if its
right-coset is equal to its left coset

Then for all gin G, g = Hg, andVx € G:z-H -2~ € H.
If G is abelian any subgroup is normal.

Theorem 190 The kernel of a morphism f € hom (G,G’) is a normal sub-
group. Conversely any normal subgroup is the kernel of some morphism.
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Definition 191 A group (G,-) is simple if the only normal subgroups are 1
and G itself.

Theorem 192 The left-cosets (resp.right-cosets) of any subgroup H form a par-
tition of G

that is, the union of all left cosets is equal to G and two left cosets are either
equal or have an empty intersection.

So a subgroup defines an equivalence relation

Definition 193 The quotient set G/H of a subgroup H of a group (G,-) is
the set G/ ~ of classes of equivalence : x ~y < 3Jh e H :x=y-h

The quotient set H\G of a subgroup H of a group (G,-) is the set G/ ~ of
classes of equivalence : x ~y< 3Jhe H:x=h-y

It is useful to characterize these quotient sets.

The projections give the classes of equivalences denoted [z] :

1,:G—G/H:mp(x)=[z|, ={yeG:3he H:x=y-h}=x-H

TR:G—=H\G:7gp(x) =zl ={yeG:3he H:a=h-y}=H -z

Then :

xe€H=mp(z)=nr(x)=[z] =1

Because the classes of equivalence define a partition of G, by the Zorn lemna
one can pick one element in each class. So we have two families :

For G/H : ()\i)iel N o€ G PV]L = A\ - H,V’L',j : [)\1]1/ n [/\j]L =
@, Uier [Ni], =G

For H\G : (pj)jc; + pi € G : lpjlg = H - p¥i,j = |pilg O [pjlg =
2, Ujes pslp = G

Define the maps :

oL G = (Ni)jep : Ou (x) = Xi g (3) = [N,

Or: G = (pj)jcs Or (@) = p; TR (2) = [pjlp

Then any x € G can be written as :xz = ¢, (x)-h or = h'- ¢ (z) for unique
hh’e H

Theorem 194 G/H=H\G iff H is a normal subgroup. If so then G/H=H\G is
a group and the sequence 1 - H — G — G/H— 1 is exact (in the category of
groups, with 1=trivial group with only one element). The projection G — G/H
18 a morphism with kernel H.

There is a similar relation of equivalence with conjugation:

Theorem 195 The relation : * ~y < =y -x-y P S x-y =y T 15 an
equivalence relation over (G, -) which defines a partition of G : G = Upe pGp, p #
q: GpNGy = @ . FEach subset G, of G is a conjugation class. If G is
commutative there is only one subset, G itself

(as any element commutes with ist powers 2™ the conjugation class of x
contains at least its powers,including the unity element).
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5.1.6 Semi-direct product of groups

Any subgroup H defines a partition and from there any element of the group
can be written uniquely as a product of an element of H and an element of a
family (A;);e; or (pj);cs- It these families are themselves a subgroup then G
can be written as the product of two subgroups. More precisely :

Theorem 196 Let (G,-) be a group, N a normal subgroup and H a subgroup of
G. The following statements are equivalent:

i) G =NHand NN H={1}.

i) G = HNand NN H = {1}.

iii) Every element of G can be written as a unique product of an element of
N and an element of H.

iv) Every element of G can be written as a unique product of an element of
H and an element of N.

v) There exists a morphism G — H which is the identity on H and whose
kernel is N.

If one of these statement holds, then G is said to be semidirect product of
N and H.

One says also that G splits over N.

If a group is simple its only normal subgroups are trivial, thus it cannot be
decomposed in the semi-product of two other groups. Simple groups are the
basic bricks from which other groups can be built.

5.1.7 Generators

Definition 197 A set of generators of a group (G,-) is a (;);c; a family of
elements of G indexed on an ordered set I such that any element of G can be
written uniquely as the product of a finite ordered subfamily J of (x;);c;
Vge G,3J ={j1,..0n, -} C1,: g=xj, - xj,... - Tj,, ..
The rank of a group is the cardinality of the smallest set of its generators
(if any). A group is free if it has a finite family of generators.

5.1.8 Action of a group

Maps involving a group and a set can have special properties, which deserve
definitions because they are frequently used.

Definition 198 A left-action of a group (G,-) on a set E is a map : A :
G x E — FE such that :

Ve € E\Vg, g € G: A(g,A\(¢',z))=A(g-¢,z);\(L,x) =x

A right-action of a group (G,-) on a set Eis a map : p: Ex G — E such
that :

Vee ENg, g €G:p(p(x,9),9)=p(x,9 -g9)ip(x,1)=2x
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Notice that left, right is related to the place of g.

Any subgroup H of G defines left and right actions by restriction of the map
to H.

Any subgroup H of G defines left and right actions on G itself in the obvious
way.

As a consequence of the definition :

AMg~hz) = Mg, 2) i (2,97") = plz,9) "

All the following definitions are easily adjusted for a right action.

Definition 199 The orbit of the action through a€ G of the left-action )\ of a
group (G,-) on a set E is the subset of E denoted G(a) = {\(g,a),9 € G}

The relation y € G () is an equivalence relation between x,y. The classes of
equivalence form a partition of G called the orbits of the action (an orbit = the
subset of elements of E which can be deduced from each other by the action).

The orbits of the left action of a subgroup H on G are the right cosets defined
above.

Definition 200 A left-action of a group (G,-) on a set E is

transitive if ; Yx,y € E,3g € G : y = A(g,x) . If so E is called an
homogeneous space.

freeif : AMg,z) =z =g=1

effective if : Vr : Mg, z) = A(h,z) =>g=h

Definition 201 A subset F of E is tnvariant by the left-action \ of a group
(G,)on Eif :Vx € F,Ng e G: \(g,z) € F.

F is invariant iff it is the union of a collection of orbits. The minimal non
empty invariant sets are the orbits.

Definition 202 The stabilizer of an element ac E with respect to the left-
action A of a group (G,-) on E is the subset of G : A(a) ={g € G : X\(g,a) = a}

It is a subgroup of G also called the isotropy subgroup (with respect to
a). If the action is free the map : A : E — G is bijective.

Definition 203 Two set E,F are equivariant under the left actions A1 : G X
E—E X :GXxF — F of a group (G,-) if there is a map : f: E — F such
that : Yz € EXNg € G : f (M1 (g,2)) = A2 (g, f ()

Then f is a natural tranformation for the functors A1, Ao
So if E=F the set is equivariant under the action if : Vo € E,Vg € G :

f (X (g,2)) = Mg, f ()

56



5.2 Finite groups

A finite group is a group which has a finite number of elements. So, for a finite
group, one can dress the multiplication table, and one can guess that there a
not too many ways to build such a table : mathematicians have strive for years
to establish a classification of finite groups.

5.2.1 Classification of finite groups
1. Order:

Definition 204 The order of a finite group is the number of its elements. The
order of an element a of a finite group is the smallest positive integer number k
with a® = 1, where 1 is the identity element of the group.

Theorem 205 (Lagrange’s theorem) The order of a subgroup of a finite group
G divides the order of G.
The order of an element a of a finite group divides the order of that group.

Theorem 206 If n is the square of a prime, then there are exactly two possible
(up to isomorphism) types of group of order n, both of which are abelian.

2. Cyclic groups :

Definition 207 A group is cyclic if it is generated by an element : G =
{aP,p € N}.

A cyclic group always has at most countably many elements and is com-
mutative. For every positive integer n there is exactly one cyclic group (up to
isomorphism) whose order is n, and there is exactly one infinite cyclic group
(the integers under addition). Hence, the cyclic groups are the simplest groups
and they are completely classified. They are usually denoted Z/pZ : the algebric
number multiple of p with addition.

3. All simple finite groups have been classified (the proof covers thousands
of pages). Up to isomorphisms there are 4 classes :

- the cyclic groups with prime order : any group of prime order is cyclic and
simple.

- the alternating groups of degree at least 5;

- the simple Lie groups

- the 26 sporadic simple groups.

5.2.2 Symmetric groups

Symmetric groups are the key to the study of permutations.
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Definitions
1. Permutation:

Definition 208 A permutation of a finite set E is a bijective map : p: E —
E.

With the composition law the set of permutations of E is a group. As all
sets with the same cardinality are in bijection, their group of permutations
are isomorphics. Therefore it is convenient, for the purpose of the study of
permutations, to consider the set (1,2,....n) of integers.

Notation 209 & (n) is the group of permutation of a set of n elements, called
the symmetric group of order n

An element s of & (n) can be represented as a table with 2 rows : the first
row is the integers 1,2..n, the second row takes the elements s(1),s(2),...s(n).

S (n) is a finite group with n! elements. Its subgroups are permutations
groups. It is abelian iff n<2.

Remark : one always consider two elements of E as distinct, even if it happens
that, for other reasons, they are indicible. For instance take the set {1,1,2,3}
with cardinality 4. The two first elements are considered as distinct : indeed in
abstract set theory nothing can tell us that two elements are not distinct, so we
have 4 objects {a,b, ¢, d} that are numbered as {1,2,3,4}

2. Transposition:

Definition 210 A transposition is a permutation which exchanges two ele-
ments and keep inchanged all the others.

A transposition can be written as a couple (a,b) of the two numbers which
are transposed.

Any permutation can be written as the composition of transpositions. How-
ever this decomposition is not unique, but the parity of the number p of trans-
positions necessary to write a given permutation does not depend of the de-
composition. The signature of a permutation is the number (—1)” = +1. A
permutation is even if its signature is +1, odd if its signature is -1. The product
of two even permutations is even, the product of two odd permutations is even,
and all other products are odd.

The set of all even permutations is called the alternating group A, (also
denoted 2A,,). It is a normal subgroup of & (n), and for n > 2 it has n!/2
elements. The group & (n) is the semidirect product of A, and any subgroup
generated by a single transposition.

Young diagrams

For any partition of (1,2,...n) in p subsets, the permutations of & (n) which
preserve globally each of the subset of the partition constitute a class of conju-
gation.
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Example : the 3 permutations (1,2,3,4,5),(2,1,4,3,5), (1,2,5,3,4), pre-
serve the subsets (1,2),(3,4,5) and belong to the same class of conjugation.

A class of conjugation is defined by p integers A1 < Ag... < A, such that
P, Xi =n and a partition of (1,2,..n) in p subsets (i1, ..i5,) containing each
A elements taken in (1,2,..n). The number S(n,p) of different partitions of n in
p subsets is a function of n, which is tabulated (this is the Stirling number of
second kind).

Given such a partition denoted A, as above, a Young diagram is a table
with p rows i=1,2,...p of A\; cells each, placed below each other, left centered.
Any permutation of & (n) obtained by filling such a table with distinct numbers
1,2,...n is called a Young tableau. The standard (or canonical) tableau is
obtained in the natural manner by filling the cells from the left to the right in
each row, and next to the row below with the ordered numbers 1,2,...n.

Given a Young tableau, two permutations belong to the same class of con-
jugation if they have the same elements in each row (but not necessarily in the
same cells).

A Young diagram has also q columns, of decreasing sizes yj,j = 1...q . with

b N =D =i >y > g > 1

If a diagram is read columns by columns one gets another diagram, called
the conjugate of \.

5.2.3 Symmetric polynomials

Definition 211 A map of n variables over a set E : f : E™ — F is symmetric
in its variables if it is invariant for any permutation of the n variables : Yo €

S (’I’L) ) f (xa’(l)7 7xa’(n)) = f (xlu ) :En)

The set Sq[X1,...X] of symmetric polynomials of n variables and degree d
has the structure of a finite dimensional vector space. These polynomials must
be homogeneous : _

P (l‘l, LL‘n) = Zail,,,iplel...x;",zyzl ij =d, iy ...y eF X, eF

The set S[X7,...X,,] of symmetric polynomials of n variables and any degree
has the structure of a graded commutative algebra with the multiplication of

functions.

Basis of the space of symmetric polynomials

A basis of the vector space S[X7,...X,] is a set of symmetric polynomials
of n variables. Their elements can be labelled by a partition A of d : A =
(A > A2. >0, >0), Z?:l Aj = d. The most usual bases are the following.

1. Monomials : the basic monomial is x1\1 . arg‘z -z}, The symmetric
. . L. . A
polynomial of degree d associated to the partition A is Hx = >, ce(n) T (1)
xia)... . :1:2?”) and a basis of Sy [X71,...X,] is a set of Hy for each partition A.

2. Elementary symmetric polynomials : the p elementary symmetric poly-
nomial is : E, = Z{il_’___ip} Tiy * Tiy.. - T;, where the sum is for all ordered
combinations of p indices taken in (1,2,..n): 1 < iy < iz.. < iy, < n. It is a sym-
metric polynomial of degree p. The product of two such polynomials E, - E,
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is still a symmetric polynomial of degree p+q. So any partition A defines a
polynomial : Hy = [[E\,...Ex, €Sq[z1,...7,] and a basis is a set of H) for all
A
i=1
partitions A. There is the identity : H (L+ait) = 3772, Bt
n
3. Schur polynomials :the Schur polynomial for a partition A is defined by
. Sy = det [x;Jr"’Z] /A where : A = H (x; — x;).is the discriminant of a

set of n variables.

There is the identiity : det [1_;“/]} = H (x; —xj) H (yi — yj) /H (1—mzy;)
4,3

i<j 1<j

5.2.4 Combinatorics

Combinatorics is the study of finite structures, and involves counting the number
of such structures. We will just recall basic results in enumerative combinatorics
and signatures.

Enumerative combinatorics
Enumerative combinatorics deals with problems such as ”how many ways to
select n objects among x 7 or many ways to group in n packets x objects 7...”

1. Many enumerative problems can be modelled as following :

Find the number of maps :f : N — X where N is a set with n elements, X a
set with x elements and meeting one of the conditions : f injective, f surjective,
or no condition. Moreover any two maps f,f’ :

i) are always distinct (no condition)

or are deemed equivalent (counted only once) if

ii) Up to a permutation of X : f~ f/:3sx € & (x): f'(N) =sxf(N)

iii) Up to a permutation of N : f ~ f': sy € & (n) : f'(N) = f (syN)

iv) Up to permutations of N and X : f ~ f' : s € &(z),sy € &(n) :
' (N)=sxf(snN)

These conditions can be paired in 12 ways.

2. Injective maps from N to X:

i) No condition : this is the number of sequences of n distinct elements of X

z!

without repetitions. The formula is : =)

ii) Up to a permutation of X : 1 sin <z ,0 if n>x

iii) Up to a permutation of N : this is the number of subsets of n elements
of X, the binomial coefficient : C} = #ln), = (2). If n>x the result is 0.

iv) Up to permutations of N and X : 1 sin <z 0 if n>x

3. Surjective maps f from N to X:

i) No condition : the result is xS (n,x) where S(n,x), called the Stirling
number of the second kind, is the number of ways to partition a set of n elements
in k subsets (no simple formula).

ii) Up to a permutation of X : the result is the Stirling number of the second
kind S(n,x).
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iii) Up to a permutation of N: the result is : C7~}

iv) Up to permutations of N and X : this is the the number p, (n) of partitions
of n in x non zero integers : Ay > XAo... > Ay >0: A1+ da+ .. A, =n

4. No restriction on f :

i) No condition : the result is "

ii) Up to a permutation of X : the result is >, _, S(n, k) where S(n,k) is the
Stirling number of second kind

iii) Up to a permutation of N : the result is : C, _; = (**"~"

iv) Up to permutations of N and X : the result is : p, (n 4+ x) where py, (n) is
the number of partitions of n in k integers : Ay > Ao... > A : A1+ Ao+ A =n

5. The number of distributions of n (distinguishable) elements over r (dis-
tinguishable) containers, each containing exactly k; elements, is given by the
multinomial coefficients :

n _ n!

(klkg..kT) T Flkall k!

They are the coefficients of the polynomial : (z1 + z2 + ... + )"

6. Stirling’s approximation of n! : n! ~ /27mn (%)n

The gamma function : T'(2) = [(~t*te'dt : n! =T (n+1)

Signatures

1. To compute the signature of any permutation, the basic rule is that the
parity of any permutation of integers (as, az, ..., ap) (consecutive or not) is equal
to the number of inversions in the permutation = the number of times that
a given number a; comes before another number a;y, which is smaller than
Qi : Aigr < A4

Example : (3,5,1,8)

take3: > 1 — +1

take 5: > 1 —= +1

take 1: — 0

take 8 : — 0

take the sum : 1+1=2 — signature (—1)* = 1

2. It is most useful to define the function :

Notation 212 € is the function at n variables : € : I — {—1,0,1} where I is
a set of n integers, defined by :

€ (41, ..y3n) = 0 if there are two indices which are identical : i, 4 k # 1
such that : i = 1;

€(1,...,9n) = the signature of the permutation of the integers (i1, ...,4n) it
they are all distinct

So €(3,5,1,8) = 1;¢(3,5,5,8) = 0
Notation 213 € (o) where o € & (n) is the signature of the permutation o

3. Basic formulas : o)
ppP—
reverse order : € (ap,ap—1,...,a1) = €(a1,as,...,ap) (—1) 2

inversion of two numbers : € (a1, ag, .a;...a;..,ap) = € (a1, az, .G;...a;.., ap) € (a5, a;)

inversion of one number : €(4,1,2,3,..i —1,i+1,...p) = (—1)1-71
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6 VECTOR SPACES

Vector spaces should are well known structures. However it is necessary to have
clear and precise definitions of the many objects which are involved. Furthermore
in this section we do our best to give definitions and theorems which are valid
whatever the field K, and for infinite dimensional vector spaces (as they are in
the many applications).

6.1 Vector spaces
6.1.1 Vector space

Definition 214 A wvector space E over a field K is a set with two operations
: addition denoted + for which it is an abelian group, and multiplication by a
scalar (an element of K) : K x E — E which is distributive over addition.

So:Vex,ye E,\,u€ K :

e+ py € E,

Mrx+y)=(x+y) A=+ Ay

Elements of a vector space are called vectors. When necessary (and only
when necessary) vectors will be denoted with an upper arrow : v

Warning ! a vector space structure is defined with respect to a given field
(see below for real and complex vector spaces)

6.1.2 Basis

Definition 215 A family of vectors (v;);c; of a vector space over a field K,
indexed on a finite set I, is linearly independant if :
V(2i);er ti € K1) e w0 =0= 12, =0

Definition 216 A family of vectors (vi);c; of a vector space, indexed on a set
I (finite of infinite) is free if any finite subfamily is linearly independant.

Definition 217 A basis of a vector space E is a free family of vectors which
generates E.

Thus for a basis (e;),c; : Vo € E,3J C I, #J < 00,3 (zi);c; € K7 1 v =
Dics Tii

Warning! These complications are needed because without topology there
is no clear definition of the infinite sum of vectors. This implies that for any
vector at most a finite number of components are non zero (but there can be
an infinite number of vectors in the basis). So usually ”Hilbertian bases” are
not bases in this general meaning, because vectors can have infinitely many non
zero components.

The method to define a basis is a common trick in algebra. To define some
property on a family indexed on an infinite set I, without any tool to compute
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operations on an infinite number of arguments, one says that the property is
valid on [ if it is valid on all the finite subsets J of I. In analysis there is another
way, by using the limit of a sequence and thus the sum of an infinite number of
arguments.

Theorem 218 Any vector space has a basis
(this theorem requires the axiom of choice).

Theorem 219 The set of indices of bases of a vector space have all the same
cardinality, which is the dimension of the vector space.

If K is a field, the set K™ is a vector space of dimension n, and its canonical
basis are the vectors ¢; = (0,0,..0,1,0,...0).
6.1.3 Vector subspaces

Definition 220 A vector subspace of a vector space E over a field K is a
subset F' of E such that the operations in E are algebraically closed in F :

Vu,v € F,\Vk,k' e K : ku+k'v' € F
the operations (+,x) being the operations as defined in E.

Linear span

Definition 221 The linear span of the subset S of a vector space E is the
intersection of all the vector subspaces of E which contains S.

Notation 222 Span(S) is the linear span of the subset S of a vector space

Span(S) is a vector subspace of E, which contains any finite linear combina-
tion of vectors of S.

Direct sum
This concept is important, and it is essential to understand fully its signfi-
cance.

Definition 223 The sum of a family (E;),.; of vector subspaces of E is the

linear span of (Ei)ie[

So any vector of the sum is the sum of at most a finite number of vectors of
some of the F;

Definition 224 The sum of a family (E;),.; of vector subspaces of E is direct
and denoted ®;crE; if for any finite subfamily J of I :
Eie]vi = Zieri,vi,wi S El' = V; = W;
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The sum is direct iff the E; have no common vector but 0 : Vj € I, E; N
—

(Zz‘el—j Ei) =0

Or equivalently the sum is direct iff the decomposition over each F; is unique
Yo e E,3J CI,#J < 00, Jv; unique € F; :v:ZjEij

If the sum is direct the projections are the maps : m; : ®jerE; — F;

Warning!

i) If @;erE; = E the sum is direct iff the decomposition of any vector of E
with respect to the E; is unique, but this does not entail that there is a unique
collection of subspaces F; for which we have such a decomposition. Indeed take
any basis : the decomposition with respect to each vector subspace generated
by the vectors of the basis is unique, but with another basis we have another
unique decomposition.

ii) If F is a vector subspace of E there is always a unique subset G of E such
that G=F° but G is not a vector subspace (because 0 must be both in F and
G for them to be vector spaces). Meanwhile there are always vector subspaces
G such that : £ = F & G but G is not unique. A way to define uniquely G is
by using a bilinear form, then G is the orthogonal complement (see below) and
the projection is the orthogonal projection.

Example : Let (e;),_, ,, be a basis of a n dimensional vector space E. Take
F the vector subspace generated by the first p e; and G the vector subspace
generated by the last n-p e; . Obviously £ = F& G . But G, = {w =
a(u+v),u € G,v € F} for any fixed a € K is such that : E=F @ G),

Product of vector spaces
These are obvious objects, but with subtle points.
1. Product of two vector spaces

Theorem 225 If EF are vectors spaces over the same field K, the product
set ExF can be endowed with the structure of a vector space over K with the
operations : (u,v) + (v',v") = (u+ v/, v+ ')k (u,v) = (ku, kv) ;0 = (0,0)

The subsets of ExF : E'=(u,0), F’=(0,v) are vector subspaces of ExF and
we have ExF=E'®F’.

Conversely, if Eq, Fo are vector subspaces of E such that £ = E; & Es
then to each vector of E can be associated its unique pair (u,v)€ Fj X Fs.
Define Ery = (u,0), Ere = (0,v) which are vector subspaces of E; x Fy and
Ey x E; = E} @ Ejy but Ff ¢ E) ~ E. So in this case one can see the direct
sum as the product Ey x Fy ~ E1 & F»

In the converse, it is mandatory that £ = Fy @& E5 . Indeed take ExE, the
product is well defined, but not the direct sum (it would be just E).

In a somewhat pedantic way : a vector subspace F; of a vector space E
splits in Eif : £ = F; ¢ Fs and E~ E; x Ey (Lang p.6)

2. Infinite product of vector spaces

This can be generalized to any product of vector spaces (F;),.; over the
same field where I is finite. If I is infinite this is a bit more complicated : first
one must assume that all the vector spaces F; belong to some universe.
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One defines : Er = U;er F; (see set theory). Using the axiom of choice there
aremaps : C: I — Er : C(i) =u; € F;

One restricts Ep to the subset E' of Ep comprised of elements such that only
finitely many u; are non zero. E can be endowed with the structure of a vector
space and E = [] F;

iel

The identity E = @®,erE; with E; = {u; =0,j # i € I'} does not hold any
longer : it would be Er.

But if the F; are vector subspaces of some E = @, F; which have only 0 as

common element on can still write [[ F; ~ @;erF;
i€l

Quotient space

Definition 226 The quotient space, denoted E/F, of a vector space E by any
of its vector subspace F is the quotient set E/~ by the relation of equivalence :
r,yeE:z—yeF &=y (modF)

It is a vector space on the same field.

The class [0] contains the vectors of F.

The mapping E — E/F that associates to x € E its class of equivalence [x]
, called the quotient map, is a natural epimorphism, whose kernel is F. This
relationship is summarized by the short exact sequence

0—-F—FE—FE/F—0

The dimension of E/F is sometimes called the codimension. For finite di-
mensional vector spaces : dim(E/F)=dim(E) - dim(F)

If E=F @ F'then E/F is isomorphic to F’

Graded vector spaces

Definition 227 A I-graded vector space is a vector space E endowed with
a family of filters (E;),c; such that each E; is a vector subspace of E and
E = @icrE;. A vector of E which belongs to a single E; is said to be an homo-
geneous element.

A linear map between two I-graded vector spaces f:E—F is called a graded
linear map if it preserves the grading of homogeneous elements: Vi € I : f (F;) C
F;

Usually the family is indexed on N and then the family is decreasing : E, 1 C
FE,,. The simplest example is E,, = the vector subspace generated by the vectors
(ei)@n of a basis. The graded space is grE = GpenFn/FEni1

Cone

Definition 228 A cone with apex a in a real vector space F is a mon empty
subset C of E such that : Vk > 0,u e C = k(u—a) € C
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A cone C is proper if CN(—C) = 0. Then there is an order relation on E by
: X>Y < X -Y e(C thus:
X>2Y=>X+2>2Y+2Z,k>0:kX > kY

Definition 229 A wvectorial lattice is a real vector space E endowed with an
order relation for which it is a lattice :

Vz,y € E,3Isup(z,y), inf(z,y)
r<y=VzeFE:x+z2<y+z

r>0,k>0=kx>0

On a vectorial lattice :

- the cone with apex a is the set : Cy, ={v € E:a > v}
- the sets :

x4 =sup(z,0);x_ = sup(—=z,0),|z| =24 +z_
a<b:la,b={reE:a<z<b}

6.2 Linear maps
6.2.1 Definitions

Definition 230 A linear map is a morphism between vector spaces over the
same field K :

feL(EF)e f:E—=F:Yabe KVU, U € E: glad +b0) =
ag(W) +bg(V) e F

Warning ! To be fully consistent, the vector spaces E and F must be defined
over the same field K. So if E is a real vector space and F a complex vector
space we will not consider as a linear map a map such that : f(u+v)=f(u)+{(v),
f(ku)=kf(u) for any k real. This complication is necessary to keep simple the
more important definition of linear map. It will be of importance when K=C.

If E=F then f is an endomorphism.

Theorem 231 The composition of linear map between vector spaces over the
same field is still a linear map, so vector spaces over a field K with linear maps
define a category.

Theorem 232 The set of linear maps from a vector space to a vector space on
the same field K is a vector space over K

Theorem 233 If a linear map is bijective then its inverse is a linear map and
fis an isomorphism.

Definition 234 Two vector spaces over the same field are isomorphic if there
18 an 1somorphism between them.

Theorem 235 Two vector spaces over the same field are isomorphic iff they
have the same dimension
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We will usually denote E ~ F' if the two vector spaces E,F are isomorphic.

Theorem 236 The set of endomorphisms of a vector space E, endowed with
the composition law, is a unital algebra on the same field.

Definition 237 An endomorphism which is also an isomorphism is called an
automorphism.

Theorem 238 The set of automorphisms of a vector space E, endowed with
the composition law, is a group denoted GL(E).

Notation 239 L(E;F) with a semi-colon (;) before the codomain F is the set
of linear maps hom (E, F).

GL(E;F) is the subset of invertible linear maps

GL(E) is the set of automorphisms over the vector space E

Definition 240 A linear endomorphism such that its k iterated, for some k>0
is null is said to be nilpotent :

FEL(E;E) : fofo.of=(f)f=0

Let (e;);c; be a basis of E over the field K, consider the set K of all maps
fromTto K:7:1 — K :: 7 (i) = 7; € K .Take the subset K} of K such that
only a finite number of z; # 0. This a vector space over K.

For any basis (e;);c; there is amap : 7. : E — K{ :: 7 (i) = 2;. This map is
linear and bijective. So E is isomorphic to the vector space K{. This property
is fundamental in that whenever only linear operations over finite dimensional
vector spaces are involved it is equivalent to consider the vector space K™ with a
given basis. This is the implementation of a general method using the category
theory : K{ is an object in the category of vector spaces over K. So if there is
a functor acting on this category we can see how it works on K{ and the result
can be extended to other vector spaces.

Definition 241 If E,F are two complex vector spaces, an antilinear map is
a map f: E— F such that :
Vu,v € E,z€ C: f(utv) =f(u)+ f(v); f(zu) =Zf (u)

Such a map is linear when z is limited to a real scalar.

6.2.2 Matrix of a linear map

(see the ”Matrices” section below for more)

Let L € L(E; F), E n dimensional, F p dimensional vector spaces with basis
(€i)i—1 + (f;)j—, respectively

The matrix of L in these bases is the matrix M , with p rows and n columns
: row i, column j : [M],; such that :

Le) =35 Mijf;

So that :

Yu = Z?:l ue; € B L (u) = ?:1 E?:l (szuz) fj
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U1 My .. M| |w
wl=1 - . . | ev=L(u)
Up Mpl .. Mpn Unp

or with the vectors represented as column matrices : [L (u)] = [M][u]

The matrix of the composed map Lo L’ is the product of the matrices MxM’
(the dimensions must be consistent).

The matrix is square is dim(E)=dim(F). f is an isomorphism iff M is invert-
ible (det(M) non zero).

Theorem 242 A change of basis in a vector space is an endomorphism. Its

matrix P has for columns the components of the new basis expressed in the old

basis : e_i> — F; = Z?Zl Pij?j .The new components U; of a vector u are given
-1

by : (U] = [P]"" [u]

Proof. 7 = Y/, ue, = Yy Ui 4 [u] = [P [U] & [U] = [P [u] m

Theorem 243 If a change of basis both in E and F the matriz of the map
Le L (E; F) in the new bases becomes : [M'] = [Q]" [M][P]

Proof. z 1?Z ZJ 1wa]

T =Y, 0l =YL ViE & Rl = [QV] & V] =@ [t

[v] = [M][u] = [Q] [V] = [M] [P][U] = [V] = [Q]" [M] [P][U]

[p,1] = [p,p] X [p, 2] X [, n] x [n, 1]

= [M']=[Q] [M][P] m

If L is an endomorphism then P=Q, and [M’] = [P]” " [M][P] = det M’ =
det M

An obvious, but most convenient, result : a vector subspace F of E is gener-
ated by a basis of r vectors f;, expressed in a basis e; of E by a nxr matrix [A]
tu€Fsu=3"_xfj =30 Y miAjie; = YL, wie;

so: u€F < dx]: [u] =[A] ][]

6.2.3 Eigen values

Definition

Definition 244 An eigen wvector of the endomorphism f € L(E;E) with
eigen value \ € K is a vector u # 0 such that f (u) = Au

Warning !

i) An eigen vector is non zero, but an eigen value can be zero.
ii) A linear map may have or not eigen values.

iii) the eigen value must belong to the field K
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Fundamental theorems

Theorem 245 The eigenvectors of an endomorphism f € L(E;E) with the
same eigenvalue X\, form, with the vector 0, a vector subspace Ey of E called an
etgenspace.

Theorem 246 The eigenvectors corresponding to different eigenvalues are lin-
early independent

Theorem 247 If u, A are eigen vector and eigen value of f, then, for k>0, u
and \F are eigen vector and eigen value of (Of)]C (k-iterated map)

So f is nilpotent if its only eigen values are 0.
Theorem 248 f is injective iff it has no zero eigen value.

If E is finite dimensional, the eigen value and vectors are the eigen value and
vectors of its matrix in any basis (see Matrices)

If E is infinite dimensional the definition stands but the main concept is a
bit different : the spectrum of f is the set of scalars A such that (f — AId) has
no bounded inverse. So an eigenvalue belongs to the spectrum but the converse
is not true (see Banach spaces).

6.2.4 Rank of a linear map
Rank

Theorem 249 The range f(E) of a linear map f € L(E; F) is a vector subspace
of the codomain F.

The rank rank(f) of f is the dimension of f(E) C F and rank(f )= dim f(E)
< dim(F)

f € L(E; F) is surjective iff f(E)=F, or equivalently if rank(f)=dimFE

Proof. f is surjective iff Vo € F,3u € E : f(u) = v & dim f(F) = dim F =
rank(f) m
So the map : f: E — f(F) is a linear surjective map L(E;f(E))

Kernel

Theorem 250 The kernel, denoted ker (f), of a linear map f € L(E;F) is
the set : ker (f)={ue E: f(u)=0p}.

It is a vector subspace of its domain E and

dimker(f) < dim E and if dimker(f) = dim E then f=0

f is injective if ker(f)=0
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Proof. fis injective iff Vui,uzs € E: f(u1) = f(uz) = w1 = ug < ker (f) =0g
[

So with the quotient space E/ker(f) the map : f: E/ker f — F is a linear
injective map L(E/ker(f);F) (two vectors giving the same result are deemed
equivalent).

Isomorphism

Theorem 251 If f € L(E;F) then rank(f)< min (dim E,dim F) and f is an
isomorphism iff rank(f)=dim(E)=dim(F)

Proof. g: E/ker f — f(F) is a linear bijective map, that is an isomorphism
and we can write : f (F) ~ E/ker (f)

The two vector spaces have the same dimension thus :

dim(E/ker(f)) = dim E - dimker(f) = dimf(E) =rank(f)

rank(f)< min (dim E, dim F') and f is an isomorphism iff rank(f)=dim(E)=dim(F)
|

To sum up
A linear map f € L (E; F) falls in one of the three following cases :
i) f is surjective : f(E)=F :
rank(f) = dim f (F) = dim F = dim E — dimker f < dim E (F is "smaller”
or equal to E)
In finite dimensions with dim(E)=n, dim(F)=p the matrix of fis [f],,,.,,p <

n

There is a linear bijection from E/ker(f) to F

ii) f is injective : ker(f)=0

dim E= dimf(E) =rank(f)< dim F' (E is ”smaller” or equal to F)

In finite dimensions with dim(E)=n, dim(F)=p the matrix of fis [f], ., ,n <
p

There is a linear bijection from E to f(E)

iii) f is bijective : f(E)=F ker(f)=0, dimE=dimF=rank(f)

In finite dimensions with dim(E)=dimF=n, the matrix of { is square [f]
and det [f] # 0

nxn

6.2.5 Multilinear maps

Definition 252 A r multilinear map is a map : f : E1 X Fy X ..E. — F,
where (E;)._, is a family of r vector spaces, and F a vector space, all over the
same field K, which is linear with respect to each variable

So :

Yu;,v; € B, k; € K -

f (klul, kz’u,g, ceey kTuT) = klkg...ka(ul,ug, ’U,T)

fur, ugy s 4 gy oy tr) = fug, ug, gy oy ty) + f(u, Ugy Uy ey Uy
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Notation 253 L" (Ey, Es..., E.; F) is the set of r-linear maps from Ey X Es... X
E, to F
L" (E; F) is the set of r-linear map from E to F

Warning ! F;, X F5 can be endowed with the structure of a vector space. A
linear map f : E1 X E5 — F' is such that :

V(’U,l,UQ) € Fy x By : (ul,u2) = (ul,O) + (O,UQ) SO f(ul,u2) = f(ul,()) +
f (Oa U‘Q)

that can be written : f (u1,u2) = f1 (u1) + fo (u2) with f1 € L(E1; F), f2 €
L(Es; F)

So: L(Ey X E9; F)~ L (Ey;F)® L(Es; F)

Theorem 254 The space L™ (E; F) =L (E;L (F;...L(E; F))

Proof. For f € L?(E,E;F) and u fixed f, : E — F = f,(v) = f(u,v) is a
linear map.

Conversely amap : g € L(E;L(E; F)) :: g(u) € L(E; F) is equivalent to a
bilinear map : f (u,v) =g (u) (v) =

For E n dimensional and F p dimensional the components of the bilinear
map f reads :

f eL? (E, F) : f (u,v) = ZZj:l uivjf(ei, ej) with : f(ei, ej) = Zi:l (F]”J) fk, F]ﬂ'j €
K

A bilinear map cannot be represented by a single matrix if F is not unidi-
mensional (meaning if F is not K). It is a tensor.

Definition 255 A r-linear map f € L" (E; F) is :
symmetricif : Yu; € Eji=1..1,0 € & (r) : f(ur,uz, ..., ur) = f(Ug(1), Us(2), -+ Uo(r))
antisymmetricif : Yu; € E,i = 1..1,0 € &, : f(u1,u2, ..., ur) = €(0) f(Uo(1), U(2)s s Uo(r))

6.2.6 Dual of a vector space

Linear form

A field K is endowed with the structure of a 1-dimensional vector space over
itself in the obvious way, so one can consider morphisms from a vector space E
to K.

Definition 256 A linear form on a vector space E on the field K is a linear
map valued in K

A linear form can be seen as a linear function with argument a vector of E
and value in the field K :w (u) = k

Warning ! A linear form must be valued in the same field as E. A ”linear
form on a complex vector space and valued in R” cannot be defined without a
real structure on E.
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Dual of a vector space

Definition 257 The algebraic dual of a vector space is the set of its linear
form, which has the structure of a vector space on the same field

Notation 258 E* is the algebraic dual of the vector space E

The vectors of the dual (K™)* are usually represented as 1xn matrices (row
matrices).

Theorem 259 A vector space and its algebraic dual are isomorphic iff they are
finite dimensional.

This important point deserves some comments.

i) Consider first a finite finite n dimensional vector space E.

For each basis (e;);, the dual basis (ei)?zl of the dual E* is defined by
the condition : e’ (e;) = d%. where &/ is the Kronecker’symbol =1 if i=j,=0 if
not. These conditions define uniquely a basis of the dual, which is indexed on
the same set .

Themap: L: E— E*: L (Ziel uiei) =D el u;e’ is an isomorphism.

In a change of basis in E with matrix P (which has for columns the compo-
nents of the new basis expressed in the old basis) :

o = E; = > i1 Pijej, the dual basis changes as : ¢ — E' = 7 | Q;;¢
with [Q] = [P] ™

Warning! This isomorphism is not canonical, even in finite dimensions, in
that it depends of the choice of the basis.

[iE—=FE ru=>" we — f(u)=> 1 ue

In another basis f(u) will not have the same simple components. In general
there is mo natural transformation which is an isomorphism between a vector
space and its dual, even finite dimensional. So to define an isomorphism one
uses a bilinear form (when there is one).

ii) Consider now an infinite dimensional vector space E over the field K.

Then dim (E*) > dim (F) . For infinite dimensional vector spaces the alge-
braic dual E* is a larger set then E.

Indeed if E has the basis (e;),.; there is a map : 7. : B — K{ 7 (i) = @;
giving the components of a vector, in the set K! of maps I — K such that
only a finite number of components is non zero and K} ~ E. But any map :
A: I — K gives a linear map ), ; A (i) z; which is well defined because only a
finite number of terms are non zero, whatever the vector, and can represent a
vector of the dual. So the dual E* ~ K which is larger than K{.

The condition Vi,j € I : ¢’ (e;) = &} still defines a family (ei)iel of linearly
independant vectors of the dual E* but this is not a basis of E*. However there
is always a basis of the dual, that we can denote (ei)iel, with #I’ > #I and
one can require that Vi,j € I : ¢’ (e;) = &}
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For infinite dimensional vector spaces one considers usually the topological
dual which is the set of continuous forms over E. If E is finite dimensional the
algebraic dual is the same as the topological dual.

Definition 260 The double dual E** of a vector space is the algebraic dual
of E*. The double dual E** is isomorphic to E iff E is finite dimensional

There is a natural homomorphism ¢ from E into the double dual E**, defined
by the evaluation map : (¢(u))(w) = w(u) for all v € E,w € E*. This map
¢ is always injective so E C (E*)"; it is an isomorphism if and only if E is
finite-dimensional, and if so then E~E**.

Definition 261 The annihiliator ST of a vector subspace S of E is the set :
ST={peE*:YueS:¢(u)=0}.

It is a vector subspace of E¥. ET =0; ST+ ST C (SN S")T

Transpose of a linear map

Theorem 262 If E,F are vector spaces on the same field, Vf € L(E; F) there
is a unique map, called the (algebraic) transpose (called also dual) and denoted
ft € L(F*; E*) such that : Yow € F*: f! (w) =wo f

The relation ! : L(E; F) — L(F*; E*) is injective (whence the unicity) but
not surjective (because E**=£ E if E is infinite dimensional).

The functor which associes to each vector space its dual and to each linear
map its transpose is a functor from the category of vector spaces over a field K
to itself.

If the linear map f is represented by the matrix A with respect to two bases
of E and F, then f! is represented by the same matrix with respect to the dual
bases of F* and E*. Alternatively, as f is represented by A acting on the left
on column vectors, f! is represented by the same matrix acting on the right on
row vectors. So if vectors are always represented as matrix columns the matrix
of ftis the transpose of the matrix of f :

Proof. Vu, A : [N [f1] [u] = [N [f] [u] < [f]=[f] =

6.2.7 Bilinear forms

Definition 263 A multilinear form is a multilinear map defined on vector
spaces on a field K and valued in K.

So a bilinear form g on a vector space E on a field K is a bilinear map on
E valued on K:

g: E x E — K is such that :

Vu,v,w € E kK € K : g(ku,k'v) = kk'g(u,v),g(u + w,v) = g(u,v) +
9(u, w), g(u,v +w) = g(u,v) + g(u, w)
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Notice that K can be any field.

Warning ! A multilinear form must be valued in the same field as E. A
”multilinear form on a complex vector space and valued in R” cannot be defined
without a real structure on E.

Symmetric, antisymmetric forms

Definition 264 A bilinear form g on a vector space E is
symmetric if : Yu,v € E: g (u,v) = g (v,u)
antisymmetric if : Yu,v € E : g (u,v) = —g (v,u)

Any bilinear symmetric form defines the quadratic form : Q : £ — K

Q(u) =g (u,u)
Conversely g (u,v) = 3 (Q (u+v) — Q (u) — Q (v)) (called the polarization

formula) defines the bilinear symmetric form g form Q.

Non degenerate bilinear forms

Definition 265 A bilinear symmetric form g& L* (EQ; K) is non degenerate
if :Yv:g(u,v)=0=>u=0

Warning ! one can have g(u,v)=0 with u,v non null.

Theorem 266 A non degenerate symmetric bilinear form on a finite dimen-
sional vector space E on a field K defines isomorphisms between E and its dual
E*:

Vo e E*,FJue E:Yve E:w() =g(u,v)

Vue E, 3w e E*:Ywv e E:w(v) =g(u,v)

This is the usual way to "map” vectors to forms and vice versa.

L?(E;K) = L(E;L(E;K)) = L(E;E*) .So to each bilinear form g are
associated two maps :

¢r: E— E* : ¢r (u) (v) =g (u,v)

ér: E— E* i ép (u) (v) =g (v,u)

which are identical if g is symmetric and opposite from each other if g is
skew-symmetric.

If g is non degenerate then ¢r, ¢, are injective but they are surjective iff E
is finite dimensional.

If E is finite dimensional g is non degenerate iff ¢r, ¢y € L(E;E*) are
isomorphisms. As E and its dual have the same dimension iff E is finite dimen-
sional it can happen only if E is finite dimensional. The matrix expression is :

[fr (w)] = 61 (w)] = [u]' [g]

Conversely if ¢ € L (F; E*) the bilinear forms are : gr (u,v) = ¢ (u) (v) ;91 (u,v) =

¢ (v) (u)

Remark : it is usual to say that g is non degenerate if ¢g, ¢y € L (E; E*)
are isomorphisms. The two definitions are equivalent if E is finite dimensional,
but we will need non degeneracy for infinite dimensional vector spaces.
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Matrix representation of a bilinear form
If E is finite dimensional g is represented in a basis (e;)_; by a square matrix

wen [gi5] = g (es,¢;) with : g (u,v) = [u]’ [g] [

The matrix [g] is symmetric if g is symmetric, antisymmetric if g is antisym-
metric, and its determinant is non zero iff g is non degenerate.

In a change of basis : the new matrice is [G] = [P]’ [g] [P] where [P] is the
matrix with the components of the new basis :

t trpt

9(u,v) = [u] [g] [v], [u] = [P][U],v = [P][v] = g(u,v) = [U] [P [g] [P][V] =

[G] = [P]"[g] [P]

Positive bilinear forms

Definition 267 A bilinear symmetric form g on a real vector space E is posi-
tive if: Yu € E : g(u,u) >0

A bilinear symmetric form g on a real vector space E is definite positive
if it is positive and Vu € E : g(u,u) =0=>u =0

definite positive = non degenerate . The converse is not true
Notice that E must be a real vector space.

Theorem 268 (Schwartz I p.175) If the bilinear symmetric form g on a real
vector space E is positive then Yu,v € E

i) Schwarz inegality : |g(u,v)| < v/g(u,u)g(v,v)

if g is positive definite |g(u,v)| = v/g(u,u)g(v,v) = Ik € R: v =ku

i) Triangular inegality : \/g(u+v,u+v) < \/g(u,u) +/g(v,v)
Valu+v,u+v) = /g(u,u) + /g(v,v) & g(u,v) =0 (Pythagore’s theo-

rem)

6.2.8 Sesquilinear forms

Definition 269 A sesquilinear form on a complex vector space E is a map
g: E x E — C linear in the second variable and antilinear in the first variable:

g (Au,v) = Xg (u,v)

g(u+u,v)=g(u,v)+g,v)

So the only difference with a bilinear form is the way it behaves by multi-
plication by a complex scalar in the first variable.

Remarks :

i) this is the usual convention in physics. One finds also sesquilinear = linear
in the first variable, antilinear in the second variable

ii) if E is a real vector space then a bilinear form is the same as a sesquilinear
form

The definitions for bilinear forms extend to sesquilinear forms. In most of
the results transpose must be replaced by conjugate-transpose.
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Hermitian forms

Definition 270 A hermitian form is a sesquilinear form such that : Yu,v €
E:g(v,u)=g(u,v)

Hermitian forms play the same role in complex vector spaces as the sym-
metric bilinear forms in real vector spaces. If E is a real vector space a bilinear
symmetric form is a hermitian form.

The quadratic form associated to an hermitian form is : @ : F — R =

Q(u,u):g(u,u):g(u,u)

Definition 271 A skew hermitian form (also called an anti-symmetric sesquilin-
ear form) is a sesquilinear form such that :
Yu,v € E: g(v,u) = —g(u,v)

Notice that, on a complex vector space, there are also bilinear form (they
must be C-linear), and symmetric bilinear form

Non degenerate hermitian form
To each sesquilinear form g are associated two antilinear maps :
¢r: E— E* : ¢r (u) (v) =g (u,v)
b1+ E = E* : 6r, (u) (v) = g (0,u)
which are identical if g is hermitian and opposite from each other if g is
skew-hermitian.

Definition 272 A hermitian form is non degenerate if N¥v € E : g (u,v) =
0=u=0

Warning ! one can have g(u,v)=0 with u,v non null.

Theorem 273 A non degenerate hermitian form on a finite dimensional vector
space defines the anti-isomorphism between E and E* :

Vowe E*,Jue E:Yv e E:w((v) =g (u,v)

Vue E,3we E*:Ye E:w(v)=g(u,v)

Matrix representation of a sequilinear form
If E is finite dimensional a sequilinear form g is represented in a basis (e;);;
by a square matrix nxn [g;;] = g (e;, ;) with : g (u,v) = mt l9] [v] = [u]" [g] [v]

The matrix [g] is hermitan ([g] = [g] = [g]") if g is hermitian, antihermitian

([g] = —mt = - [g]*) if g is skewhermitian, and its determinant is non zero iff
g is no degenerate.

In a change of basis : the new matrice is [G] = [P]" [g] [P] where [P] is the
matrix with the components of the new basis :

g(w,v) = [u]" [g] [v], [u] = [P][U], v = [P][v] = g(u,v) = [U]" [P]" [¢] [P] [V] =
[G] = [P]" [g] [P]
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Positive hermitian forms
As g (u,u) € R for a hermitian form one can define positive (resp. definite
positive) hermitian forms.

Definition 274 A hermitian form g on a complex vector space E is :
positive if: Yu € E : g (u,u) >0
definite positive if Vu € E: g (u,u) > 0,9 (u,u) =0=u=20

And the Schwarz and triangular inegalities stand for positive hermitian forms

Theorem 275 (Schwartz I p.178) If ¢ is a hermitian, positive form on a com-
plex vector space E, then Yu,v € E

Schwarz inegality : |g(u,v)| < \/g(u,u)g(v,v)

Triangular inegality : /g(u+v,u+v) < \/g(u,u) + \/g(v,v)

and if g is positive definite, in both cases the equality implies Ik € C : v = ku

6.2.9 Adjoint of a map

Definition 276 On a vector space E, endowed with a bilinear symmetric form
g if E is real, a hermitian sesquilinear form g if E is complex, the adjoint
of an endomorphism f with respect to g is the map f* € L(E;E) such that
Vu,v € E:g(f(u),v) =g (u, f*(v))

Warning ! the transpose of a linear map can be defined without a bilinear
map, the adjoint is always defined with respect to a form.

Theorem 277 On a vector space E, endowed with a bilinear symmetric form
g if E is real, a hermitian sesquilinear form g if E is complex, which is non
degenerate :

i) the adjoint of an endormorphism, if it exists, is unique and (f*)* = f

it) If E is finite dimensional any endomorphism has a unique adjoint

lg

The matrix of * is : [f*]

Proof. ([f][u])" [g] [v] = [u]" [_]

m
And usually [f*] # [f]"

17 141" [g] with [¢] the matrix of g
] < (] 9] = 9] [F*] < [f*] = [g) " [f]" [g]

Self-adjoint, orthogonal maps

Definition 278 An endomorphism f on a vector space E, endowed with a bi-
linear symmetric form g if E is real, a hermitian sesquilinear form g if E is
complez, is:
self-adjoint if it is equal to its adjoint : f* = f < g(f (u),v) =g (u, f (v))
orthogonal (real case), unitary (complex case) if it preserves the bilinear
symmetric form g :g (f (u), f (v)) = g (u,v)
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If E is finite dimensional the matrix [f] of a self adjoint map f is such that :

[T (91 = [9] []

Theorem 279 If the form g is non degenerate then for any unitary endomor-
phism : fo f*= f*o f=1d

Proof. Yu,v: g(f (u), f (1)) = g (u,0) = g (u, f*F (v)) = g (u, (Id — f* ) v) =
0= f'f=Id m

Definition 280 The orthogonal group denoted O(E,g) of a vector space E
endowed with a mon degenerate bilinear symmetric form g is the set of orthog-
onal invertible maps. The special orthogonal group denoted SO(E,qg) is its
subgroup comprised of elements with detf=1;

The unitary group denoted U(E,q) on a complex vector space E endowed
with a hermitian sesquilinear form g is the set of unitary invertible maps denoted
U(E,g). The special unitary group denoted SU(E,q) is its subgroup comprised
of elements with detf=1;

6.3 Scalar product on a vector space

Many interesting properties of vector spaces occur when there is some non de-
generate bilinear form defined on them. Indeed the elementary geometry is
defined in an euclidean space, and almost all the properties used in analysis
require a metric. So these vector spaces deserve some attention.

There are 4 mains results : existence of orthonormal basis, partition of the
vector space, orthogonal complement and isomorphism with the dual.

6.3.1 Definitions

Definition 281 A scalar product on a vector space E on a field K is either
a non degenerate, bilinear symmetric form g, or a mon degenerate hermitian
sesquilinear form g. This is an inner product if g is definite positive.

If g is definite positive then g defines a metric and a norm over E and E is a
normed vector space (see Topology). Moreover if E is complete (which happens
if E is finite dimensional), it is a Hilbert space. If K=R then E is an euclidean
space.

If the vector space is finite dimensional the matrix [g] is symmetric or hermi-
tian and its eigen values are all distinct, real and non zero. Their signs defines
the signature of g. g is definite positive iff all the eigen values are >0.

If K=R then the p in the signature of g is the maximum dimension of the
vector subspaces where g is definite positive

With E 4 real dimensional and g the Lorentz metric of signature + + + -
E is the Minkowski space of Relativity Theory (remark : quite often in physics
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the chosen signature is - - - 4, all the following results still stand with the
appropriate adjustments).

Definition 282 An isometry is a linear map f € L(E; F) between two vector
spaces (E,g),(F,h) endowed with scalar products, which preserves the scalar
product : Yu,v € E, g (f (u), f (v)) = h(u,v)

6.3.2 Orthonormal basis

Definition 283 Two vectors u,v of a vector space endowed with a scalar product
are orthogonal if g(u,v)=0.

A wvector u and a subset A of a vector space (E,g) endowed with a scalar
product are orthogonal if Vv € A, g (u,v) = 0.

Two subsets A and B of a vector space (E,g) endowed with a scalar product
are orthogonal if Yu € A,v € B,g (u,v) =0

Definition 284 A basis (e;);c; of a vector space (E,g) endowed with a scalar
product, such that Vi,j € I : g(e;,e;) = £6;; is orthonormal.

Notice that we do not require g (e;,e;) =1

Theorem 285 A finite dimensional vector space (E,g) endowed with a scalar
product has orthonormal bases. If E is euclidian g (e;,e;) = 0;5. If K = C it is
always possible to choose the basis such that g (e;,e;) = d;5.

Proof. the matrix [g] is diagonalizable : there are matrix P either orthogonal
or unitary such that [g] = [P]~"[A][P] with [P]™" = [P]" = [P] and [A] =
Diag(A1,...\n) the diagonal matrix with the eigen values of P which are all
real.

In a change the basis with new components given by [P] , the form is ex-
pressed in the matrix [A]

If K =R take as new basis [P] [D] with [D] = Diag (sgn (M) \/|)\i|) .

If K = C take as new basis [P][D] with [D] = Diag (u;), with p; = /||
if A, > O,ui :’L'\/|/\i| ifA<0 m

In an orthonormal basis g takes the following form (expressed in the com-
ponents of this basis):

If K =R:g(u,v) => 1 cuv; with ¢; = +1

K =C:g(uv)=> "

(remember that u;,v; € K)

Notation 286 7;; = £1 denotes usually the product g (e;, e;) for an orthonor-
mal basis and
[n] is the diagonal matriz [n;;]
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As a consequence (take orthonormal basis in each vector space):

- all complex vector spaces with hermitian non degenerate form and the same
dimension are isometric.

- all real vector spaces with symmetric bilinear form of identical signature
and the same dimension are isometric.

6.3.3 Time like and space like vectors

On a real vector space the bilinear form g, it is not definite positive, gives a
partition of the vector space.in three subsets which can be or not connected.

1. The quantity g(u,u) is always real, it can be >0, <0,or 0. The sign does
not depend on the basis. So one distinguishes the vectors according to the sign
of g(u,u) :

- time-like vectors : g(u,u)<0

- space-like vectors : g(u,u)>0

- null vectors : g(u,u)=0

Remark : with the Lorentz metric the definition varies with the basic con-
vention used to define g. The definitions above hold with the signature + + +
- . In Physics usually g has the signature - - - + and then time-like vectors are
such that g(u,u)>0.

The sign does no change if one takes u — ku, k > 0 so these sets of vectors
are half-cones. The cone of null vectors is commonly called the light-cone (as
light rays are null vectors).

2. This theorem is new.

Theorem 287 If g has the signature (+p,-q) a vector space (E,qg) endowed with
a scalar product is partitioned in 3 subsets :

E :space-like vectors, open, arc-connected if p>1, with 2 connected compo-
nents if p=1

E_ : time-like vectors, open, arc-connected if ¢>1, with 2 connected compo-
nents if g=1

FEy : null vectors, closed, arc-connected

Openness an connectedness are topological concepts, but we place this the-
orem here as it fits the story.
Proof. It is clear that the 3 subsets are disjoint and that their union is E. g
being a continuous map F; is the inverse image of an open set, and Ej is the
inverse image of a closed set.

For arc-connectedness we will exhibit a continuous path internal to each
subset. Choose an orthonormal basis e; (with p+ and g- even in the complex
case). Define the projections over the first p and the last q vectors of the basis :

w=3y " ute; = Py(u) =30 u'es; Py(u) = Z?:erl u'e

and the real valued functions : fj,(u) = g(Pp(u), Pr(w)); fo(u) = g(Py(u), Py(u))

50 : g(u,u) = fr(u) — fu(w)

Let be ug,up € Et @ frn(ug)—fo(ta) > 0, fr(up)—folus) > 0= fr(uq), fnlup) >
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Define the path z(t) € E with 3 steps:
a)t=0—=t=1:2(0) =u, — 2(1) = (ul,0)

z(t) i <p:a'(t) =ulif p>1 0 >p:a'(t) = (1 —t)ul
9(z(t),2(t)) = fa(ua) = (1= )*fo(ua) > fr(ua) = fo(ta) = 9(ua,ua) > 0=

z(t) € By
b)yt=1—=t=2:2(1)= (u},0) = (nz(%,) .
x(t) i <p:a'(t) = (t—l)ub (2 — t)ul, = ulsif p>1:i > p:ai(t) =0
900, 2(8) = Ful(t ~ Dyt (2 Dug) > 0 = 2(t) € B,
c)t:2—>t:3:x(2):(ub,) ) = wp

7
Up

x(t) :iSp:xl(t)_ub,lfp>lz>p (t—2)u
) v(u Tulup) = folup) = glup, up) >0 =

g(@(t),z(t)) = fu(w) — (t — 2)*f,
So if ug, up € E4,x(t) C E4 whenever p>1.
For E_ we have a similar demonstration.
If g=1 one can see that the two regions t<0 and t>0 cannot be joined : the
component along ¢, must be zero for some t and then g(x(t),x(t))=0

If ug,up € Eo & frn(ua) = folta), frn(up) = folus)
The path comprises of 2 steps going through 0 :

a)t=0—=t=1:2(t) =1 —tu, = g(z(t)) = (1 — t)%9(ua,us) =0
byt=1—t=2:2(t)=(t— Dup = g(z(t)) = (1 — t)%g(up,up) =0
This path does always exist. m

(3
@ (t)
) >

Up

3. The partition of E_ in two disconnected components is crucial, because
it gives the distinction between ”past oriented” and ”future oriented” time-like
vectors (one cannot go from one region to the other without being in trouble).
This theorem shows that the Lorentz metric is special, in that it is the only one
for which this distinction is possible.

One can go a little further. One can show that there is always a vector
subspace F of dimension min(p, ¢) such that all its. vectors are null vectors. In
the Minkowski space the only null vector subspaces are 1-dimensional.

6.3.4 Induced scalar product

Let be F a vector subspace, and define the form h: F x F — K :: Yu,v € F :
h(u,v) = g (u,v). that is the restriction of g to F. h has the same linearity or
anti-linearity as g. If F is defined by the nxr matrix A (u € F & [u] = [4] [x]),
then h has the matrix [H] = [A]" [¢] [4] .

If g is definite positive, so is h and (F,h) is endowed with an inner product
induced by g on F

If not, h can be degenerate,because there are vector subspaces of null-vectors,
and its signature is usually different

Definition 288 A wector subspace, denoted F-, of a vector space E endowed
with a scalar product is an orthogonal complement of a vector subspace F of
E if F+ is orthogonal to F and E = F @ F*.
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If E is finite dimensional there are always orthogonal vector spaces F’ and
dim F +dim F’ = dim E (Knapp p.50) but we have not necessarily £ = F @ F*
(see below) and they are not necessarily unique.

Theorem 289 In a vector space endowed with an inner product the orthogonal
complement always exist and is unique.

This theorem is important : if F is a vector subspace there is always a
vector space B such that £ = F'&® B but B is not unique. This decomposition is
useful for many purposes, and it is an hindrance when B cannot be defined more
precisely. This is just what g does : A' is the orthogonal projection of A. But
the theorem is not true if g is not definite positive. The problem of finding the
orthogonal complement is linked to the following : starting from a given basis
(e;)i—, how can we compute an orthonormal basis (¢;);_,? This is the so-called
” Graham-Schmitt’s procedure”:

Find a vector of the basis which is not a null-vector. If all the vectors of the
basis are null vectors then g=0 on the vector space.

Solet be: g1 = mel

Then by recursion : ; = e; — Z;;ll ggz;:;@

All the ¢; are linearly independant. They are orthogonal :

i—1 isE5 i>
9 (eirer) = g (eirer) = Y50y Heg (e5,ek) = g (€4, k) — HE225g (enex) =

The only trouble that can occur is if for some i : g(e;,e;) = g (e, e;) —

23;11 % = 0. But from the Schwarz inegality :

2

g(ei ;) < g(ej.e5) g (eireq)

and, if g is positive definite, equality can occur only if €; is a linear combi-
nation of the ¢;.

So if g is positive definite the procedure always works.

To find the orthogonal complement of a vector subspace F start with a
basis of E such that the first r vectors are a basis of F. Then if there is an
orthonormal basis deduced from (e;) the last n-r vectors are an orthonormal
basis of the unique orthogonal complement of F. If g is not positive definite
there is not such guaranty.

6.4 Symplectic vector spaces

If the symmetric biliner form of the scalar product is replaced by an antisym-
metric form we get a symplectic structure. In many ways the results are similar,
and even stronger : all symplectic vector spaces of same dimension are indis-
tiguishable. Symplectic spaces are commonly used in lagrangian mechanics.
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6.4.1 Definitions

Definition 290 A symplectic vector space (E,h) is a real vector space E
endowed with a non degenerate antisymmetric 2-form h called the symplectic
form

Yu,v € E: h(u,v) =—h(v,u) €R
Vue E:YweFE:h(u,v)=0=u=0

Definition 291 2 vectors u,v of a symplectic vector space (E,h) are orthogo-
nal if h(u,v)=0.

Theorem 292 The set of vectors orthogonal to all vectors of a vector subspace
F of a symplectic vector space is a vector subspace denoted F+

Definition 293 A wvector subspace is :
isotropic if FX C F
co-isotropic if F C F*
self-orthogonal if F+ = F

The 1-dimensional vector subspaces are isotropic
An isotropic vector subspace is included in a self-orthogonal vector subspace

Theorem 294 The symplectic form of symplectic vector space (E,h) induces a
map j: E* — E 2 X(u) = h(j (N\),u) which is an isomorphism iff E is finite
dimensional.

6.4.2 Canonical basis

The main feature of symplectic vector spaces if that they admit basis in which
any symplectic form is represented by the same matrix. So all symplectic vector
spaces of the same dimension are isomorphic.

Theorem 295 (Hofer p.3) A symplectic (E,h) finite dimensional vector space
must have an even dimension n=2m. There are always canonical bases (;);_,
such that h(g;,e;) = 0,Y]i — j| < m,h(e;,e5) = §;;,V]i — j| > m. All finite
dimensional symplectic vector space of the same dimension are isomorphic.

h reads in any basis : h (u,v) = [u]* [b] [v], with [h] = [hi;] skew-symmetric
and det(h)# 0.
In a canonical basis:

[h]—Jm—[ 0 In so J2 = —Izy

I, O
h(u,0) = [u]" [Tn] (V] = Y00 (Uitigm — tipmvs)
The vector subspaces E; spanned by (Ei)?;p E5 spanned by (&)
self-orthogonal and F = F, & F

2m

i=m+1 aT€
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6.4.3 Symplectic maps

Definition 296 A symplectic map (or symplectomorphism) between two sym-
plectic vector spaces (Ey,hi),(Ea,he), is a linear map fe L (Ey; E2) such that
Vu,v S h2 (f (U),f (1))) = hl (u,v)

f is injective so dim Fy < dim F,

Theorem 297 (Hofer p.6) There is always a bijective symplectomorphism be-
tween two symplectic vector spaces (Fy1,h ),(Ea,ha) of the same dimension

So all symplectic vector spaces of the same dimension are indistiguishable.

Definition 298 A symplectic map (or symplectomorphism) of a symplectic
vector space (E,h) is an endomorphism of E which preserves the symplectic form

hif € LBE): h(f (u), f(v) = h(u.v)

Theorem 299 The symplectomorphisms over a symplectic vector space (E,h)
constitute the symplectic group Sp(E,h).

In a canonical basis a symplectomorphism is represented by a symplectic
matrix A which is such that :

AT, A= Jn,

because : A (f (u), f (v)) = (Afu]) T [A[0] = [u]" A" A[0] = [u]" T [0]

sodet A =1

Definition 300 The symplectic group Sp(2m) is the linear group of 2mz2m
real matrices A such that : AtJ,A = Jn

A€ Sp(2m) & A7 Al € Sp (2m)

6.4.4 Liouville form

Definition 301 The Liouwille form on a 2m dimensional symplectic vector
space (E,h) is the 2m form : @ = ShARA..AR (m times). Symplectomorphisms
preserve the Liouville form.

In a canonical basis :
w=e' AemTLALAET AT

Proof. Put : h=3 " e Aettm =" h,
hi Nh;j =0 if i=j so (/\h)m = deem hg(l) AN hg(g).. VAN hg(m)
remind that : ha(l) A hg(g) = (—1)2X2 ha(2) A ha(l) = ha(2) A ha(l)
(AR)™ =m!Y s hiANhg Ahpy ®
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6.4.5 Complex structure

Theorem 302 A finite dimensional symplectic vector space (E,h) admits a
complex structure

Take a canonical basis and define : J : E — FE :: J(Z?; wig; + vip;) =
S (—vigi + uipi) So J? = —Id (see below)

It sums up to take as complex basis :(g;, i£j+m);.n:1 with complex compo-
nents. Thus E becomes a m-dimensional complex vector space.

6.5 Complex vector spaces

Complex vector spaces are vector spaces over the field C . They share all the
properties listed above, but have some specificities linked to :
- passing from a vector space over R to a vector space over C and vice versa
- the definition of the conjugate of a vector

6.5.1 From complex to real vector space

In a complex vector space E the restriction of the multiplication by a scalar to
real scalars gives a real vector space, but as a set one must distinguish the vectors
u and iu : we need some rule telling which are ”real” vectors and ”imaginary”
vectors in the same set of vectors.

There is always a solution but it is not unique and depends on a specific
map.

Real structure

Definition 303 A real structure on a complex vector space E is a map :
o : E — E which is antilinear and such that o® = Idg :

zeRueEo(zu)=%0(u)=0c =0

Theorem 304 There is always a real structure o on a complex vector space FE.
Then FE is the direct sum of two real vector spaces : E=Fr @ iEg where Fg
called the real kernel of o, is the subset of vectors invariant by o

i) There is always a real structure
Proof. Take any (complex) basis (e;);.,; of E and define the map : o (¢;) =

ej,0 (iej) = —ie;
Yue E:u= ZJ—GI zjej — o (u) = Zje] Zj€;j

o (u) = 3 zjej = o (u)
It is antilinear :

o ((a+ibyu) = o (Tyes(a+ib)zse; ) = (a=ib) Sye; o (25¢5) = (a—ib)o (u)
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This structure is not unique and depends on the choice of a basis.

ii) There is a subset Eg of E which is a real vector subspace of E
Proof. Define Ex as the subset of vectors of E invariant by o : Er = {v € F: 0 (u) = u}.

It is not empty : with the real structure above any vector with real compo-
nents in the basis (e;);.; belongs to Eg

It is a real vector subspace of E. Indeed the multiplication by a real scalar
gives : ku =0 (ku) € Eg. m

iii) E=Fr ® iEg
Proof. Define the maps :

Re: E — Eg :: Reu =3 (u+0(u))

Im: E— Eg :Imu = 5- (u— o0 (u))

Any vector can be uniquely written with a real and imaginary part : v € E :
u = Re u+1i Im u which both belongs to the real kernel of E. Thus : E = Er®iExR
]

E can be seen as a real vector space with two fold the dimension of E :

EU = E]R X iE]R

Conjugate
Warning ! The definition of the conjugate of a vector makes sense only iff E
is a complex vector space endowed with a real structure.

Theorem 305 The conjugate of a vector u on a complex vector space E en-
dowed with a real structure o is o (u) =T
Proof. : E— E:u=Reu—ilmu=3(u+o0(u)—ig(u—0(u)=0(u) =
Remark : some authors (Wald) define the vector space conjugate E to a
complex vector space E as the algebraic dual of the vector space of antilinear
linear forms over E. One of the objective is to exhibit ”mixed tensors” on the
tensorial product £ ® F* ® E ® E". The algebraic dual E* of a vector space
being larger than E, such a construct can be handled safely only if E is finite
dimensional. The method presented here is valid whatever the dimension of E.
And as one can see conjugation is an involution on E, and E = E.

Real form

Definition 306 A real vector space F is a real form of a complex vector space
E if F is a real vector subspace of E and there is a real structure o on E for
which F is invariant by o.

Then E can be written as : = F @ iF
As any complex vector space has real structures, there are always real forms,
which are not unique.
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6.5.2 From real to complex vector space

There are two different ways for endowing a real vector space with a complex
vector space.

Complexification
The simplest, and the most usual, way is to enlarge the real vector space itself
(as a set). This is always possible and called complexification.

Theorem 307 For any real vector space E there is a structure Ec of complex
vector space on FxE, called the complexification of E, such that Ec = E®iFE

Proof. ExE is a real vector space with the usual operations :

Vu,v,u',v" € E.k € R: (u,v) + (v, v") = (u+ v, v+ ) k(u,v) = (ku, kv)

We add the operation : ¢ (u,v) = (—v,u). Then: z=a+ibe C: z(u,v) =
(au —vb,av +bu) € E X E

i(i(u,v)) =i(—v,u) = — (u,v)

ExE becomes a vector space E¢ over C . This is obvious if we denote :
(u,v) =u+iv

The direct sum of two vector spaces can be identified with a product of these
spaces, so E¢ is defined as :

FEc=E®iFE < Yu € Eg,3v,w unique € E:u=v+iworu=Reu+ilmu
with Reu,Imu € £ m

So E and iE are real vector subspaces of E¢.

Remark : the complexified is often defined as F¢c = F ®g C the tensoriel
product being understood as acting over R. The two definitions are equivalent,
but the second is less enlighting...

Definition 308 The conjugate of a vector of Ec is defined by the antilinear
map : : Ec — Ec:u— Reu—iImu

Theorem 309 Any basis (ej)jel of a real vector space E is a basis of the com-
plexified Ec with complexr components. Ec has same complex dimension as E.

As aset E¢ is ”larger” than E : indeed it is defined through ExE, the vectors
e; € E, and ie; € E¢ but ie; ¢ E.To define a vector in E¢ we need two vectors
in E. However E¢ has the same complexr dimension as the real vector space E
:a complex component needs two real scalars.

Theorem 310 Any linear map f € L (E;F) between real vector spaces has a
unique prolongation fc € L (Ec; Fr)
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Proof. i) If fc € L (Ec; Fc) is a C-linear map : fc (u+ i) = fc (u) +ifc (v)
and if it is the prolongation of f : fc (u) = f (u), fc (v) = f (v)

ii) fc (w+iv) = f (u) +if (v) is C-linear and the obvious prolongation of f.
[

If f € L(E;E) has [f] for matrix in the basis (e;);c; then its extension
fe € L (Ec; Ec) has the same matrix in the basis (e;),; .. This is exactly what
is done to compute the complex eigen values of a real matrix.

Notice that L (Ec; Ec) # (L (E; E)) whichis theset: {F = f +1ig, f,g € L(E; E)}
of maps from E to E¢

Similarly (Ec)" = {F; F(u+iv) = f(u) +if(v), f € E*}

and (E*)c ={F = f +ig,f,g € E*}

Complex structure
The second way leads to define a complex vector space structure Ec on the

same set E :

i) the sets are the same : if u is a vector of E it is a vector of E¢ and vice
versa

ii) the operations (sum and product by a scalar) defined in E¢ are closed
over R and C

So the goal is to find a way to give a meaning to the operation: Cx F — FE
and it would be enough if there is an operation with ¢ x £ — FE

This is not always possible and needs the definition of a special map.

Definition 311 A complex structure on a real vector space is a linear map

J € L(E; E) such that J* = —Idg

Theorem 312 A real vector space can be endowed with the structure of a com-
plex vector space iff there a complex structure.

Proof. a) the condition is necessary :

If E has the structure of a complex vector space then the map : J : £ —
E :: J (u) = iu is well defined and J? = —Id

b) the condition is sufficient :

What we need is to define the multiplication by i such that it is a complex
linear operation :

Define on E : iu = J (u). Theni x i x u=—u=J(J (v)) =J*(u) = —u =

Theorem 313 A real vector space has a complex structure iff it has a dimension
which is infinite or finite even.

Proof. a) Let us assume that E has a complex structure, then it can be made
a complex vector space and E' = Er @ tEr. The two real vector spaces Eg, 1 Er
are real isomorphic and have same dimension, so dim £ = 2dim Fg is either
infinite or even m

b) The condition is sufficient :
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Proof. Pick any basis (eicr);c; of E. If E is finite dimensional or countable we
can order I according to the ordinal number, and define the map :
J (e2r) = eant1

J (e2r+1) = —eak

It meets the condition :

J? (ear) = J (e2n41) = —eay,

J? (ea41) = —J (ear) = —€2p41

So any vector of E; can be written as :

U= o UkCk = D Ugkeak ) Uskt1€akt1 = p Uzkeak — p Uzks1d (ear) =
> (uok — tugky1) €2k = Y (—iUgk + Uzkt1) €2k+1

A basis of the complex structure is then either egy or egp1 ®

Remark : this theorem can be extended to the case (of scarce usage !) of
uncountable dimensional vector spaces, but this would involve some hypothesis
about the set theory which are not always assumed.

The complex dimension of the complex vector space is half the real dimension
of E if E is finite dimensional, equal to the dimension of E if E has a countable
infinite dimension.

Contrary to the complexification it is not always possible to extend a real
linear map f € L (E; E) to a complex linear map. It must be complex linear :
fliw) =if (u) & fod(u)=Jo f(u)so it must commute with J: Jo f = folJ.
If so then f € L(Ec; Ec) but it is not represented by the same matrix in the
complex basis.

6.5.3 Real linear and complex linear maps

Real linear maps
1. Let E,F be two complex linear maps. A map f: E — F is real linear if :
Vu,v € EYNkeR: fu+v)=f(u)+ f(v); f(ku) =kf (u)
A real linear map (or R-linear map) is then a complex-linear maps (that is
a linear map according to our definition) iff :
Vue E: f(iu) =1if (u)
Notice that these properties do not depend on the choice of a real structure
on E or F.
2. If E is a real vector space, F a complex vector space, a real linear map :
f: E — F can be uniquely extended to a linear map : fc : Ec — F where E¢
is the complexification of E. Define : fc (u+iv) = f (u) +if (v)

Cauchy identities

A complex linear map f between complex vector spaces endowed with real
structures, must meet some specific identities, which are called (in the homolor-
phic map context) the Cauchy identities.

Theorem 314 A linear map f : E — F between two complex vector spaces
endowed with real structures can be written : f(u) = Py (Reu) + Py(Imu) +
i (Qz (Reu) + Qu(Imwu)) where Py, Py, Qy, Q, are real linear maps between the
real kernels Ew, Fr which satifsfy the identities : Py = —Qg;Qy = Py
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Proof. Let 0,0’ be the real structures on E,F
Using the sums : E = Eg ®iERr, F' = Fr ® iFg one can write for any vector
uof E:

Imu = 5; (u—o0(u))

f(Reu —2|—iImu) = f(Reu)+if (Imu) = Re f (Reu)+iIm f (Reu)+iRe f (Imu)—
Im f (Imw)

P, (Reu) =Re f (Reu) = % (f (Reu) + o' (f (Rew)))

Q. (Reu) =Im f (Rewu) = %(f (Reu) — o’ (f (Reu)))

Py(Imu) = —Im f (Imu) = § (f (Imu) — o' f (Imu))

Qy (Imu) =Re f(Imu) =5 (f (Imu) + o' f (Imw))

So: f(Reu+iImu) = P, (Rew) + Py(Imu) + i (Q (Reu) + Qy(Imu))

As f is complex linear :

f(Reu+ilmu)) = f(—Imu+iReu) =if (Reu+ilmu)

which gives the identities :

f(—Imu+iReu) = Py (—Imu) + Py(Reu) + i (Qq (—Imu) + Qy(Reu)

if Reu+iImu) =iP; (Reu) + iPy(Imu) — Qg (Reu) — Qy(Imu)

P, (—Imu) + Py(Reu) = —Qy (Reu) — Qy(Imu)

Qu (—Imu) + Qy(Reu) = P, (Reu) + Py(Imw)

P,(Reu) = —Q, (Rew)

Qy(Reu) = P, (Reu)

P, (—Imu) = —Qy(Imu)

Qs (—Imu) = Py(Imu) m

f can then be written: f (Reu + iImu) = (P, —iP,) (Reu)+ (P, + iPy) (Imw)

N[

>
(

Conjugate of a map

Definition 315 The conjugate of a linear map f : E — F between two com-
plex vector spaces endowed with real structures o,o’ is the map : f =o' o foo

so f (u) = f (@). Indeed the two conjugations are necessary to ensure that f
is C-linear. . .
With the previous notations : P, = P,, P, = —F,

Real maps

Definition 316 A linear map f : E — F between two complex vector spaces
endowed with real structures is real if it maps a real vector of E to a real vector

of F.

Imu=0= f(Reu) = (P, —iP,) (Reu) = P (Reu) = P, = Q, =0
Then f = f
But conversely a map which is equal to its conjugate is not necessarily real.
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Definition 317 A multilinear form f € L" (E;C) on a complex vector space
E, endowed with a real structure o is said to be real valued if its value is real
whenever it acts on real vectors.

A real vector is such that o (u) = u so f (ouq,...,ou,) €R

Theorem 318 An antilinear map f on a complex vector space E, endowed with
a real structure o can be uniquely decomposed into two real linear forms.

Proof. Define the real linear forms :

g(w) =1 (f )+ T W)

h(w) =% (f () - Tl ()

fu)=g(u)+ih(u) m
Similarly :

Theorem 319 Any sesquilinear form v on a complex vector space E endowed
with a real structure o can be uniquely defined by a C-bilinear form on E. A
hermitian sesquilinear form v is defined by a C-bilinear form g on E such that

2 g(ou,ov) = g (v,u)

Proof. If g is a C-bilinear form on E then : v (u,v) = g(ou,v) defines a
sesquilinear form

If g is a C-bilinear form on E such that : Yu,v € E : g (ou,v) = g(ov,u)
then 7 (u,v) = g (ou,v) defines a hermitian sesquilinear form. In a basis with
0 (leq) = —ieq g must have components : gog = Jga

g (ou,v) = g(ov,u) < g(ou,ov) = g(o?v,u) = g((v,u) < g(ou,ov) =
7 (u,v) =g (v,u)

And conversely : v (ou,v) = g (u,v) defines a C-bilinear form on E m

This definition is independant of any basis, and always valid. But the ex-
pression in components needs attention.

The usual antilinear map o is expressed in a basis (eqa),c4 by @ o (€a)

€a,0 (ieq) = —ieq . In matrix form it reads : o (u) = [u] and g (ou,ov) =

g (0, u) & Tu] [9)Te] = [o] ] [u] & [ul o] [v] = [v]" [g] [u] = [u]' [g]' [o]
So the condition on g in the basis (eq),¢ 4 reads : [g] = [g]”
In a change of basis : eq — fo =>4 CPe, g has the new matrix : [G] =

()" [9] [C] and vectors : u = doauteq =, Ufo with [U] = (€] ).

o (W) = 0 (S, U o) = S, U0 (fo) = £, 0" Xy Caes = Sy WSa =
S WS, Cles < [C1[U] = [C] W]

So the components of o (u) in the new basis are : [W] = [C]™" [C][U]

One can check that g (cu,ov) = g (v, u)

9 (ou,00) = (€1 TT0T) (61 €} T = [U]" €] [o=)" (6] €] [TV

[U]" [C]" (9] [CTIV] = [u]" [g] [o] = g (v,u)
but usually [G] = [G]" does not hold any longer.
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Theorem 320 A non degenerate scalar product g on a real vector space E can
be extended to a hermitian, sesquilinear form ~ on the complezified Ec.

Proof. On the complexified Ec = F @ iE we define the hermitian, sesquilinear
form ~, prolongation of g by :
For any u,v € E :
¥ (u,0) = g (u,v)
iu v) —iy (u,v) = —ig (u,v)
u, 1) = iy (u,v) = ig (u,v)

7 (@
7(
v (iu, ) = g (u,v)
v (u+iv,u 4+ iv') = g (u, v )+g (v,0")+i (g (u,v') — g (v,u")) = v (v + v/, u + iv)
If (ei);c; is an orthonormal basis of E : g (e;, ¢;) = ni; = &1 then (ep) o is
a basis of F¢ and it is orthonormal :

v (ep, eq) = Tpq

So the matrix of + in this basis has a non null determinant and ~y is not
degenerate. It has the same signature as g, but it is always possible to choose a
basis such that [y] =1,,. m

6.6 Affine Spaces

Affine spaces are the usual structures of elementary geometry. However their
precise definition requires attention.

6.6.1 Definitions
Definition 321 An affine space (E, E) is a set ' with an underlying vector

space ﬁ over a field K and a map : — : E X B — ﬁ such that :
i) YA, B,C ¢ E: AB + BC + CA
it) VA € E fized the map T4 : B—)E AB = is bijective

Definition 322 The dimension of an affine space (E, ﬁ) is the dimension of

E.

) >VA,BeE:AB=-BAand AA =T

ii) éVﬁEB thereisauniqueBEE:ﬁ:ﬁ

On an affine space one can define the sum of points : £ x E — FE = (ﬁl +
O? = OC .The result does not depend on the choice of O.

We will usually denote : zﬁzﬁ@B:A—i—?@B—A:ﬁ

An affine space is fully defined with a point O, and a vector space

Define : B = {4 =(0,%),7 € B}, 0, 7)(0,7)=7 -7

So a Vec_t>or space can be endowed with the structure of an affine space by
taking O=0.
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Frame

Definition 323 A frame in an affine space (E, E) 1S a pair (O, (?i)ig) of
ier Of B The coordinates of a point M of E

are the components of the vector OM with respect to (71)

a point Oc E and a basis (€;)
i€l

If T is infinite only a finite set of coordinates is non zero.

An affine space (E , E) isreal if E is real (the coordinates are real), complex

it £ is complex (the coordinates are complex).

Affine subspace

Definition 324 An affine subspace F of E is a pair (A, ?) of a point A of

E and a vectoi_s_zibspace ? - ﬁ with the condition :
VM e F: AM €

Thus A e F
The dimension of F is the dimension of ?

Definition 325 A line is a 1-dimensional affine subspace.

Definition 326 A hyperplane passing through A is the affine subspace com-
plementary of a line passing through A.

If E is finite dimensional an hyperplane is an affine subspace of dimension
n-1.

If K =R,C the segment AB between two points A#B is the set :

ap={MeE:3te [0,1],tm+(1—t)ﬁi=o}

Theorem 327 The intersection of a family finite or infinite of affine subspaces
is an affine subspace. Conversely given any subset F of an affine space the affine
subspace generated by F is the intersection of all the affine subspaces which
contains F.

Definition 328 Two affine subspaces are said to be parallel if they share the
same underlying vector subspace F' :

(A,?) // (3,8) sF=0
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Product of affine spaces
1. If B, ? are vector spaces over the same field, ﬁ ? can be identified
with ﬁ P ? Take any point O and define the affine space : (O, E &) ?) .

can be identified with the set product of the affine spaces : (O, ﬁ) X (O, ?) .
2. A real affine space (E, B) becomes a complex affine space (E, B@) with

the complexification ﬁ@ = ﬁ &) zﬁ
(E, ﬁc) can be dentified with the product of real affine space (O, ﬁ) X

(O, iﬁ) .
3. Conversely a complex affine space (E , B) endowed with a real structure

can be identified with the product of two real affine space (O, ER) X (O, iﬁ]@ .
The ”complex plane” is just the affine space C ~ R x iR

6.6.2 Affine transformations

Definition 329 The translation by the vector U € ﬁ on of an affine space

(E,B) isthemapT:E%E::T(A):B::ﬁzﬁ.

Definition 330 An affine map f : E — E on an affine space (E, B) 18

such that there is a map 7 eL (ﬁ, ﬁ) and :
YM,PeE:M = f(M),P = f(P): W:?(W)

If is fully defined by a triple (0,7,?) OcEdcF fel (}_f B)

then

Of (M) = 7+?(0M) so A= f(O )witho—falza>
With another point O’, the vector o = O'f (O’) defines the same map:

Proof.W—_”Jr?(O’ ) O’O+m+?(0’ )+7(OM)

00 +0f (M
“227 ()
Of (M) = ?+7((ﬁ)+?((ﬁ))+?(o_f4) = 7+?(0—M) -
Of (M) m

It can be generalized to an affine map between affine spaces: f: E — F :
take (0,01, @, f) e Ex Fx F x L E;?) . then

O’f(M§:E?+?(0W) 00 =a

If E is finite dimensional 7 is defined by a matrix [F] in a basis and the
coordinates of the image f(M) are given by the affine relation : [y] = A + [F] [z]

— —§
with O—/i = Ziel ai?i, OM = Eie] Ii?i, Of (M = Eie] yl?l
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Theorem 331 (Berge p.144) A hyperplane in an affine space E over K is de-
fined by f(x)=0 where f : E — K 1is an affine, non constant, map.

f is not unique.

Theorem 332 Affine maps are the morphisms of the affine spaces over the
same field K, which is a category

Theorem 333 The set of affine transformations over an affine space (E, B)

is a group with the composition law :

(0, @, ?1) 0 (0, ds, ?2) =(0.d1+ ?1 (72)7?1 o ?2);
0,7, )t =O,-F1 @), T

6.6.3 Convexity

Barycenter

Definition 334 A set of points (M;)

-
dependant if all the vectors (MlM]) are linearly independant.
ijel

se1r of an affine space E is said to be in-

If E has the dimension n at most n+1 points can be independant.

Definition 335 A weighted family in an affine space (E, E) over a field K is

a family (M;, w;);c; where M; € E and w; € K
The barycenter of a w@;ﬁed family is the point G such that for each finite
subfamily J of I:3,c; miGM; = 0.

One writes : G =Y, , miM;
In any coordinates : (z¢); =>_;c;m; (Tum;)

i

Convex subsets
Convexity is a purely geometric property. However in many cases it provides
a "proxy” for topological concepts.

Definition 336 A subset A of an affine space (E, ﬁ) is convex iff the barycen-
ter of any weighted family (M;,1),.; where M; € A belongs to A

Theorem 337 A subset A of an affine space (E, ﬁ) over R or C is convez iff
Vi e [0,1],VM,P e A,Q:tQM +(1-t)QP =0,Q € A

that is if any point in the segment joining M and P is in A.
Thus in R convex sets are closed intervals [a, b]
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Theorem 338 In an affine space (E, E) :

the empty set @ and E are convex.

the intersection of any collection of conver sets is conver.

the union of a non-decreasing sequence of convex subsets is a convex set.
if Ay, Ag are convex then Ay + As is convex

Definition 339 The convex hull of a subset A of an affine space (E, E) 18

the intersection of all the convex sets which contains A. It is the smallest convex
set which contains A.

Definition 340 A convez subset C of a real affine space (E, E) 18

i) A cone if for every x in C and 0 <\ < 1, Az is in C.

it) Balanced if for all z in C, |\ <1,z is in C

iii) Absorbent or absorbing if the union of tC over all t > 0 is all of E, or
equivalently for every x in E, tx is in C for some t > 0. The set C can be scaled
out to absorb every point in the space.

iv) Absolutely convex if it is both balanced and conver. A set Cis abso-
lutely convex iff :

YA € K, [N+ ] < 1,¥M € C,¥0 : \OM + uOM € ©

There is a separation theorem which does not require any topological struc-
ture (but uses the Zorn lemna).

Theorem 341 Kakutani (Berge p.162): If X,Y are two disjunct convex subset
of an affine space E, there are two convex subsets X', Y’ such that : XC X' Y C
Y X'NY' =2, X'UY' =F

Definition 342 A point a is an extreme point of a convex subset C of a real
affine space if it does not lie in any open segment of C

Meaning : VM, P € C,Vt €]0,1[: tM + (1 —t)P #a

Convex function

Definition 343 A real valued function f : A — R defined on a convez set A
of a real affine space (E, ﬁ) is convex if, for any two points M, P in A Nt €

0,1]: £(Q) < tf(M)+ (1 —1t) f (P) with Q such that : tQM + (1 — ) QP =0
It is stricly convex if Wt €]0,1[: f(Q) < tf(M)+ (1 —1t) f (P)

Definition 344 A function f is said to be (strictly) concave if -f is (strictly)
convezr.

Theorem 345 If g is an affine map : g: A — A and f is convex, then fog is
convex
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6.6.4 Homology

Homology is a branch of abstract algebra. We will limit here to the definitions
and results which are related to simplices, which can be seen as solids bounded
by flat faces and straight edges. Simplices appear often in practical optimization
problems : whenever one has to find the extremum of a linear function under
linear constraints (what is called a linear program) the solution is on the simplex
delimited by the constraints.

Definitions and results can be found in Nakahara p.110, Gamelin p.171

Simplex
(plural simplices)
1. Definition:

Definition 346 A k-simplex denoted (Ao, ...Ay) where

pendant points of a n dimensional real affine space (E,

: <AQ, Ak> = {P eFE:P= Zf:o tiAi;O <t; < 1,2};:0
A vertex (plural vertices) is a 0-simplex (a point)
An edge is a 1-simplex (the segment joining 2 points)

A polygon is a 2-simplex in a 3 dimensional affine space

A polyhedron is a 3-simplezx in a 8 dimensional affine space (the solid de-
limited by 4 points)

A p-face is a p-simplex issued from a k-simplex.

Ai)fzo are k+1 inde-

, s the convex subset

i =1}

~+ — —

So a k-simplex is a convex subset of a k dimensional affine subspace delimited
by straight lines.

A regular simplex is a simplex which is symmetric for some group of affine
transformations.

The standard simplex is the n-1-simplex in R™ delimited by the points of
coordinates A; = (0,..0,1,0,...0)

Remark : the definitions vary greatly, but these above are the most common
and easily understood. The term simplex is sometimes replaced by polytope.

2. Orientation of a k-simplex:

Let be a path connecting any two vertices A;, A; of a simplex. This path can
be oriented in two ways (one goes from A4; to A; or from A; to A;). So for any
path connecting all the vertices, there are only two possible consistent orienta-
tions given by the parity of the permutation (A;,, As, ..., Ai, ) of (Ao, A1, ...A%) .
So a k-simplex can be oriented.

3. Simplicial complex:

Let be (A;i);c; a family of points in E. For any finite subfamily J one can
define the simplex delimited by the points (A;),.; denoted (4;);.; = C;. .The
set C' =U;Cy is a simplicial complex if : VJ,J' : C;NCy C C or is empty

The dimension m of the simplicial complex is the maximum of the dimension
of its simplices.
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The Euler characteristic of a n dimensional simplicial complex is: x (C) =
oo (=1)" I, where I, is the number of r-simplices in C (non oriented). It is
a generalization of the Euler Number in 3 dimensions :

Number of vertices - Number of edges + Number of 2-faces = Euler Number

r-chains

It is intuitive that, given a simplicial complex, one can build many different
simplices by adding or removing vertices. This is formalized in the concept of
chain and homology group, which are the basic foundations of algebraic topology
(the study of "shapes” of objects in any dimension).

1. Definition:

Let C a simplicial complex, whose elements are simplices, and C, (C) its
subset comprised of all r-simplices. C, (C) is a finite set with I, different non
oriented elements.

A r-chain is a formal finite linear combination of r-simplices belonging to
the same simplicial complex. The set of all r-chains of the simplicial complex C
is denoted G, (C) :

G, (C) = {Ef;l 2:5:,8; € C. (C) ,2z; € Z} ,© = index running over all the
elements of C,. (C)

Notice that the coefficients z; € Z.

2. Group structure:

G, (C) is an abelian group with the following operations :

Soiny 2iSi+ iy 248 = iy (i + 21) S

0= 21'121 05;

—S; = the same r-simplex with the opposite orientation

The group G (C) = &,G, (C)

3. Border:

Any r-simplex of the complex can be defined from r+1 independant points.
If one point of the simplex is removed we get a r-1-simplex which still belongs
to the complex. The border of the simplex (Ag, A1, ...A,) is the r-1-chain :

(Ao, A1, LAY =10 (—1)k <A0, Ay, ., Ay, ...AT> where the point Aj, has
been removed

Conventionnaly : 9 (4g) =0

The operator 9 is a morphism 0 € hom (G, (C),G,_1 (C)) and there is the
exact sequence :

0 Gn(C) 3 G r(C) S ...Go(C) S0

3. Cycle:

A simplex such that 9S = 0 is a r-cycle. The set Z,. (C') = ker (9) is the
r-cycle subgroup of G, (C) and Zy(C) = Go(C)

Conversely if there is A € Gr41 (C) such that B = 04 € G, (C) then B
is called a r-border. The set of r-borders is a subgroup B, (C) of G, (C) and
B,(C)=0

B,.(C) c Z.(C) C G,(C)

4. Homology group:
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The r-homology group of C is the quotient set : H,. (C) = Z,.(C)/B, (C)

The rth Betti number is b, (C) = dim H,. (C)

Euler-Poincaré theorem : x (C) = >"""_ (—1)" b, (C)

The situation is very similar to the exact (w = dmr) and closed (dw = 0)
forms on a manifold, and there are strong relations between the groups of ho-
mology and cohomology.
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7 TENSORS

Tensors are mathematical objects defined over a space vector. As they are ubig-
uituous in mathematics, they deserve a full section. Many of the concepts
presented here stand in vector bundles, due to the functorial nature of tensors
constructs, so it is good to have a good grasp at these concepts in the simpler
framework of vector space in order to get along with the more difficult cases of
differential geometry.

7.1 Tensorial product of vector spaces

All definitions and theorems of this section can be found in Knapp Annex A.

7.1.1 Definition

Universal property

Definition 347 The tensorial product E ® F of two vector spaces on the
same field K is defined by the following universal property : there is a map 1 :
EXxXF — EQ®F such that for any vector space S and bilinear map f : EXF — S
, there is a unique linear map : F : E® F — S such that f = F o

This definition can be seen as abstract, but it is in fact the most natural
introduction of tensors. Let f be a bilinear map so :

flu,v) = f (Ei Ui, Y5 Ujfj) =i wivif (e f3) = 2i Fijruwivien

it is intuitive to extend the map by linearity to something like : )", ik FijrUsjex
meaning that U = u ® v

This can be expressed in category parlance (Lane p.58). Let be U the
category of vector spaces, Set the category of sets, H the functor U +— Set which
assigns to each vector space S the set of all bilinear maps to S :L? (V x V'; 9).
The pair (E ® F,1) is a universal morphism from U x U to H.

Definition is not proof of existence. So to prove that the tensorial product
does exist the construct is the following :

1. Take the product E x F' with the obvious structure of vector space.

2. Take the equivalence relation : (x,0) ~ (0,y) ~ 0 and 0 as identity
element for addition

3. Define EQ F=E X F/ ~

Example The set K, [x1,...2,] of polynomials of degree p in n variables is a
vector space over K.

P, € Kplz] reads : P,(z) = >."_ja,a” = >."_,are, with as basis the
monomials : e, =z",r =0..n
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Consider the bilinear map :

[ Kpla] x Kq[o] = Kpiqlz,y] = f(Pp(2), Py (y) = Pp(x) x Py(y) =
=0 25— OrbsT" Y

So there is a linear map : F': K [2] @ Kq[x] & Kpiq[z,y] : f =F o1

1(er,es) = e ® e

V(P (), Py (y)) = 32720 D sg wrbser ® es

Zf:o Zg:o arbsxrys = :::0 ZZ:O arbser @ es

Soe ®es =a"y®

And one can write : K, [z] ® K, [y] = Kpiq [z, Y]

7.1.2 Properties

Theorem 348 The tensorial product E® F of two vector space on a field K is
a vector space is a vector space on K whose vectors are called tensors.

Definition 349 The bilinear map : 1: EXF - EQF 11 (u,v) =u®wv is the
tensor product of vectors

with the properties :

vI,UT U € E® F,Va,be K

al' +bU e EQF

(@T+TYRU=aT@U+T'0U

TR @U+U)=aTU+TU’

0T=TR0=0€ EQF

But if E=F it is not commutative : u,v € E,u®v =v®u < 3k € K : v = ku

Theorem 350 If (€:);cr,(fj);c; are basis of E and F, (e; ® fj);, ; is a basis
of E® F called a tensorial basis.

So tensors are linear combinations of e;® f;. If E and F are finite dimensional
with dimensions n,p then E ® F' is finite dimensional with dimensions nxp.

fu=3 e Uici,v=>c,Vifjiu®v=232; hers UiViei © f

The components of the tensorial product are the sum of all combination of
the components of the vectors

HTeEQF:T = Z(i,j)e]x]njei 9] fj

A tensor which can be put in the form: t€e EQ F:t=u®uv,u € E,v € F
is said to be decomposable.

Warning ! all tensors are not decomposable : they are sum of decomposable
tensors

Theorem 351 The vector spaces EQ F ~F ® E,E® K ~ E are canonically
isomorphic and can be identified whenever E # F
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7.1.3 Tensor product of more than two vector spaces

Definition 352 The tensorial product F1 Q@ Fs... ® E,. of the vector spaces
(E;)i_, on the same field K is defined by the following universal property : there
is a multilinear map : 1: F1 X Ey... X B, — Fy ® Fs... ® E,. such that for any
vector space S and multilinear map f : E1 X Fs... x E. — S there is a unique
linear map : F : E1 @ E5... ® E. — S such that f = F o1

The order of a tensor is the number r of vectors spaces.

In components with : u, = Zjelk Ukjer;

u @ Uz @Uur =30, 5 el xiyx, Ui Ujae Urji€1j, @ €ajy. @ e,

The multilinear map :2 : E1 X Es... X E,. - Fy ® E>... ® E, is the tensor
product of vectors

As each tensor product E;, ® E;,...Q E;, is itself a vector space the tensorial
product of tensors can be defined.

Theorem 353 The tensorial product of tensors is associative, and distributes
over direct sums, even infinite sums :

E® (&1F)=¢1 (EQF)
In components :
i) EL X I x I, Linin..in €101 @ €20y @ €rg,

S =D irsinin) €Ty x o x s Dirdaeinf1in @ [2j20 @ foj,

T ® S = Z(il,iQ,...ir)efl><I2...><I7- Z(il,iz,...ir)e(]l><Jz...><JS 117:11.2~~7:7‘Sj1j2~~7;7“€17;1 ®
€2iy-- ® €ri, ® f1i;, ® faj,. ® foj,

The sets L(E;E’), L(F;F’) of linear maps are vector spaces, so one can define
the tensorial product L (E; E')® L (F; F') :

L(E;E)Y®L(F;F)e L(EQF;E'®F')

and it has the property : Vf € L(E;E’),g € L(F;F'),Yu € E,v € F :
(fog) (uev)=Ff(u)eg)

There is more on this topic in the following.

7.1.4 Tensorial algebra

Definition 354 The tensorial algebra, denoted T(E), of the vector space E
on the field K is the direct sum T(E) = @52 (@™ E) of the tensorial products
Q"E =FE®E...® E where for n=0 °E = K

Theorem 355 The tensorial algebra of the vector space E on the field K is an
algebra on the field K with the tensor product as internal operation and the unity
element is 1€ K.

The elements of @™ E are homogeous tensors of order n. Their components
in a basis (e;);c; are such that :

T = Z(il___in) titine, ®..®e; with the sum over all finite n-sets of indices
(11..000) 0 € T
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Theorem 356 The tensorial algebra T(E), of the vector space E on the field
K has the universal property : for any algebra A on the field K and linear map
l: E — A there is a unique algebra morphism L : T(E) — A such that : | = Loy
where ) E — Q'F

Definition 357 A derivation D over the algebra T(E) is a map D : T(E) —
T(E) such that :
Vu,v e T(E): D(u®v)=D(u)@v+u® D)

Theorem 358 The tensorial algebra T(E) of the vector space E has the univer-
sal property that for any linear map d : E — T(E) there is a unique derivation
D :T(E)— T(E) such that : d= D o j where j: E — @'E

7.1.5 Covariant and contravariant tensors

Definition 359 Let be E a vector space and E* its algebraic dual

The tensors of the tensorial product of p copies of E are p contravariant
tensors

The tensors of the tensorial product of q copies of E* are q covariant tensors

The tensors of the tensorial product of p copies of E and q copies of E* are
mized, p contravariant,q covariant tensors (or a type (p,q) tensor)

The tensorial product is not commutative if E=F, so in a mixed product
(p,q) the order between contravariant on one hand, covariant on the other hand,
matters, but not the order between contravariant and covariant. So :

(%E = (@B ® (E")? = (2FE*)? ® (2FE)°

Notation 360 ®UE is the vector space of type (p,q) tensors over E :
Components of contravariant tensors are denoted as upper index: a’
Components of covariant tensors are denoted as lower index: a;j...m-

Components of mized tensors are denoted with upper and lower indices:
%J...m
qr...t

The order of the upper indices (resp.lower indices) matters
Basis vectors e; of E are denoted with lower index, and
Basis vectors €' of E* are denoted with upper index.

j...m

a

Notice that a covariant tensor is a multilinear map acting on vectors the

usual way :
If T =5 t;e" ®el then T(uv)=>_; tijutv’ € K
Similarly a contravariant tensor can be seen as a linear map acting on 1-forms

If T =5 tVe; ®e; then TAp)=>4 ti\u; € K
And a mixed tensor is a map acting on vectors and giving vectors (see below)
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Isomorphism L(E;E)~ E® E*

Theorem 361 If the vector space E is finite dimensional, there is an isomor-
phism between L(E;E) and E ® E*

Proof. Define the bilinear map :

M EXE*—= LE;E):: Au,w) (v) =w (u)v

\€e L?(E,E*L(E;E))

From the universal property of tensor product :

tEx E*—- E®FE*

Junique A € L(E® E*;L(E;E)) : A=Aoq

te EQE*— f=A(t) € L(E;E)

Conversely :

Vfe L(E;E),3f* € L(EE*): f*(w)=wo f

JfRff e LIEQESEQE) = (fof) (u@w)=f(u)of (w)=f(v)®
(wof) € Ew B

Pick up any basis of E : (e;),; and its dual basis (')

Define : T'=3_, . (f® f*) (e;®el) e EQ E*

In components : f (u) =Y. glu'e; = T(f) =3, g/¢' @e; m

Warning ! E must be finite dimensional

This isomorphism justifies the notation of matrix elements with upper in-
dexes (rows, for the contravariant part) and lower indexes (columns, for the co-
variant part) : the matrix A= [aﬂ is the matrix of the linear map : fe L(E; E) :
f(u) =3, ; (afu?) e; which is identified with the mixed tensor in E® E* acting

J
on a vector of E.

icl

Definition 362 The Kronecker tensorisé =7y . ' Q@e; = D i die'@ej €
E®FE*

It has the same components in any basis, and is isomorphic to the identity
map £ — F

The trace operator

Theorem 363 If E is a vector space on the field K there is a unique linear map
called the trace Tr:E* @ E — K such that :Tr (w ® u) = w (u)

Proof. This is the consequence of the universal property :

For: f: E*xX FE— K : f(w,u) =w (u)

we have: f=Tro1e f(omu)=F(w®u)=w(u) n

So to any (1,1) tensor S is associated one scalar Tr(S) called the trace of
the tensor, whose value does not depend on a basis. In components it reads :

S = Zi,jej S’gei ®ej = Tr(S) = ic; S
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If E is finite dimensional there is an isomorphism between L(E;E) and
E® E*, and E* @ E = F® E* . So to any linear map f € L(E;FE) is as-
sociated a scalar. In a basis it is T (f) = >, ; fii- This is the geometric (basis
independant) definition of the Trace operator of an endomorphism.

Remark : this is an algebraic definition of the trace operator. This definition
uses the algebraic dual E* which is replaced in analysis by the topological dual.
So there is another definition for the Hilbert spaces, they are equivalent in finite
dimension.

Theorem 364 If E is a finite dimensional vector space and f,g € L(E; E) then
Tr(fog)=Tr(gof)

Proof. Check with a basis : ‘
f=Yierfle® €59 = Diergie' ®¢;
fog= Ei)j7ke] figfei ® ej
Tr(fog)=Yirer figh = Xiper 9ift ®

Contraction of tensors
Over mixed tensors there is an additional operation, called contraction.
Let T € ®VE. One can take the trace of T over one covariant and one
contravariant component of T (or similarly one contravariant component and
one covariant component of T). The resulting tensor € ®§jE . The result
depends of the choice of the components which are to be contracted (but not of
the basis).

Example :

. . 1 .
Let =3, ajei®@e’ ® ek e (?E, the contracted tensor is ), >, al.e; ®

ek € F
1

, . 1
2oi S ajei @k #E 3T Y aj e @k € OE

Einstein summation convention :

In the product of components of mixed tensors, whenever a index has the same
value in a upper and in a lower position it is assumed that the formula is the
sum of these components. This convention is widely used and most convenient
for the contraction of tensors.

Examples :

a;‘kbé = iaj’kbé

aibi = 21 aibi

So with this convention a}, = Y, al, is the contracted tensor
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Change of basis
Let E a finite dimensional n vector space. So the dual E* is well defined and

is n dimensional.

A basis (e;);; of E and the dual basis (¢'))_, of E*

In a change of basis : f; = Z?:l Pij e; the components of tensors change
according to the following rules :

-1

[P] = [Q]

- the contravariant components are multiplied by Q (as for vectors)

- the covariant components are multiplied by P (as for forms)

— -lp . . . J1 jq
T—Z“ D th e ®ep..®e, N ®..Qe

Tthzzl szjl --Ja J1 ZJ’I;fil®fi2"'®fip®fjl®"'®qu
wi

Tii.dp ll l
i f; = Zkl...kp le....l Q Pl "Pjs

Bilinear forms
Let E a finite dimensional n vector space. So the dual E* is well defined and

is n dimensional. Let (e;);—; be a basis of E with its the dual basis (ei)?zl of
E*.

1. Bilinear forms: g: EF x E — K can be seen as tensors : G : E* @ E* :

g(u,v) =34 giju'w) - G = > i) gije' ® ¢

Indeed in a change of basis the components of the 2 covariant tensor G =
> gije’ ® ¢l change as

G =3, G f @ f with Gij = 3", g PF P! so [g] = [P]' [g] [P] is transformed
according to the rules for bilinear forms.

Similarly let be [g] " = [¢%] and H = >2ij97ei®e; . his a2 contravariant
tensor h € ®%E

2. Let E be a a n-dimensional vector space over R endowed with a bilinear
symmetric form g, non degenerate (but not necessarily definite positive). Its
matrix is [g] = [g;5] and [g] " = [¢"]

By contraction with the 2 covariant tensor G = Zij gijet ® el one "lowers”
a contravariant tensor :

T= 211 “ip E]l --Jq ;1 611 ® €y @ 61' @t ®..@ek

—T= Do Zh Jqﬂ Z“ Gigsrin ;1 L®e, ®eN ® ... Q el

s0T€®p—>T€®q+1

This operation can be done on any (or all) contravariant components (it
depends of the choice of the component) and the result does not depend of the
basis.

Similarly by contraction with the 2 covariant tensor H = Zij g”e; ®ej one
”lifts” a covariant tensor :

T= 211 Zh 31 ZP  Ci ® €iy-.. @ €4, @ e ®...® el

T 7 K
—T= 211 “Apt1 ij --Jq 231 gzﬁult . Jp - ®ei,, ® e Q.. @l
SOT€®p—>TE®p+1
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These operations are just the generalization of the isomorphism E ~ E*
using a bilinear form.

Derivation

The tensor product of any mixed tensor defines the algebra of tensors over a
vector space E :
Notation 365 ®F = &X,_ (®LE) is the algebra of all tensors over E
Theorem 366 The tensorial algebra QFE of the vector space E on the field K

is an algebra on the field K with the tensor product as internal operation and
the unity element is 1€ K.

Definition 367 A derivation on the tensorial algebra QF is a linear map
D:®F — ®F such that :

i) it preserves the tensor type : ¥r,s,T € @ F : DT € @LE

it) it follows the Leibnitz rule for tensor product :

VS, Te®FE:D(S®T)=D(S)®T+S®D(T)

iii) it commutes with the trace operator.

So it will commute with the contraction of tensors.
A derivation on the tensorial algebra is a derivation as defined previously
(see Algebras) with the i),iii) additional conditions.

Theorem 368 The set of all derivations on QF is a vector space and a Lie
algebra with the bracket : [D,D'] =D oD’ — D' o D.

Theorem 369 (Kobayashi p.25) If E is a finite dimensional vector space, the
Lie algebra of derivations on QF is isomorphic to the Lie algebra of endomor-
phisms on E. This isomorphism is given by assigning to each derivation its value
on E.

So given an endomorphism f € L(E; E) there is a unique derivation D on
®FE such that :

Vu € E,w € E* : Du = f(u),D (w) = —f* (w) where f* is the dual of f
and we have Vk € K : D (k) =0

7.2 Algebras of symmetric and antisymmetric tensors

There are two ways to look at the set of symmetric (resp.antisymmetric) tensors

- the geometric way : this is a vector subspace of tensors, and using their
specificities one can define some additional operations, which fully come from
the tensorial product. But the objects stay tensors.

- the algebraic way : as a symmetric tensor can be defined by a restricted
set of components one can take the quotient of the vector subspace by the
equivalence relations. One gets another set, with a structure of algebra, whose
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objects are no longer tensors but classes of equivalence of tensors, upon which
specific operationscan be defined.

The way which is taken depends upon the authors, and of course of their
main topic of interest, but it is rarely explicited, and that brings much confusion
on the subject. I will expose below the two ways, but in all the rest of this book
I will clearly take the geometric way because it is by far the most convenient in
geometry, with which we will have to deal.

We will use contravariant tensors, but everything is valid with covariant
tensors as well (but not mixed tensors).

Notation 370 For any finite set I of indices:

(1,42, ...in) s any subset of n indexes chosen in I, two subsets deduced by
permutation are considered distinct

E(il,iz,...in) is the sum over all permutations of n indices in I

{1,142, ...in} s any strictly ordered permutation of n indices in I: i1 < ig <
<y

Z{ihi%”in} is the sum over all ordered permutations of n indices chosen in
1

[i1,42,...in] is any set of n indexes in I such that: i1 < iy < .. <1,

E[i1,i2,...in] is the sum over all distinct such sets of indices chosen in I

We remind the notations:

S(n) is the symmetric group of permutation of n indexes

o (i1,12,...in) = (0 (i1) ,0 (i2) , ...0 (in))is the image of the set (i1, iz, ...in) by
o€ 6(n)

€ (o) where o € &(n) is the signature of o

Permutation is a set operation, without respect for the possible equality
of some of the elements of the set. So {a,b,c} and {b,a,c} are two distinct
permutations of the set even if it happens that a=Db.

7.2.1 Algebra of symmetric tensors

Symmetric tensors
1. Symmetrizer :

Definition 371 On a vector space E the symmetrisation operator or sym-
metrizer is the map :

s B" = QF it s (u1,..,uy) = ZUGG(T) Ug(1) @ o @ Ug(r)

It is a multilinear symmetric map : s, € L" (E"; ®@"E)

Sr ((Ua(l), Ug(2)s ++es Ua(r))) = D gres, Uolo(1) @« @ Ugro(r) = Dges, Up(1) @
- ®ug(ry = Sp(u1, Uz, ..., Up)

So there is a unique linear map : S : éE — é)E : such that : s, = S, 01
with 2 : E" — ®F
sr(e1, ., er) =Srou(er,..,e.) =5 (e1®..Qe.) = Zaesr eo(1) ® - ® €y(r)
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For any tensor T' € é)E :

S (T) = X i) thir S (e ®@...®e;.) = > (ianin) ttr Y e €o(1) ®
-~ @ eg(r)

2. Symmetric tensors:

Definition 372 A symmetric r contravariant tensor is a tensor T such that

Sy (T)=rIT

In a basis a symmetric r contravariant tensor reads : T' = Z(il...u) thire; ®
...®e;,, where ti+ir = to(1-ir) with o is any permutation of the set of r-indices.

Example :

T = tlllel ®XeRer + t112€1 ®Xer ey + t12161 R e Qe+ t12261 X e @ eg

+t2 ey ®@er e +t212es ® e ®ea +t22lea @es ®er + 12226y Q ea ® e

S3(T) = 6t'te; @ e1 ® €1 + 61°*2ea @ €3 ® €3

F2 (M2 4+t 2 ey Rey Res+e1®es e +ea®ey ®ey)

F2 (122 1712 4 12) (1 e Qe +ea @ e ®er +ex ey ® en)

If the tensor is symmetric : t112 = ¢121 = ¢211 $122 — 4212 — 4221 4

S3(T) =6{t'e1@e1®@e1+t"? (e1Qe1 Qes+e1Qea el +e2 Qe Qey)

+t122 (61 RDea®ext+ea®e; Qer +ea®er® 61) + t22262 X es ® 62}

3. Space of symmetric tensors:

Notation 373 ©"E is the set of symmetric r-contravariant tensors on E
OrE* is the set of symmetric r-covariant tensors on E

Theorem 374 The set of symmetric r-contravariant tensors @"E is a vector
subspace of @"E.

A symmetric tensor is uniquely defined by a set of components t¥-#~ for all

ordered indices [i1...7,] with the rule :
ta’(il...’ir) — til...ir

If (€i);,c; is a basis of E, with I an ordered set, the set of ordered products
i, @iy @ ... @ e i1 < ige. < iy = (®e,)" @ (®Re,)”? @ ... (®e;,)"* i1 <
9. < ik,Zle ji = ris a basis of ©"FE

If E is n-dimensional dim ©"E = C,’::ll_H

4. Universal property:

For any r-linear symmetric map f € L" (E; E’) :

Vui € E;i = 1..r,0 € G, ¢ f(ur,ug, ..., ttr) = f(Ug(1)s Ug(2)s -+ Uo(r))

There is a unique linear map : F € L (éE, E’) such that : f=F oz

Fosr(ul, Uy ey ’U,T) = ZO’EST F (ua(l) ®.Q ua(r)) = EO’EST Fog (ua(l), ..,uU(T)) =
Yoes (o), Uo(n)

= o'esTf(ulv--;ur) :T'f (ulv--;ur)
So :
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Theorem 375 For any multilinear symmetric map f € L™ (E; E') there is a
unique linear map F' € L (éE, E’) such that : F os,.=rlf

The symmetrizer is a multilinear symmetric map : s, : B — O"E :: s, €
L"(E";0"E): F =5,

By restriction of F on ®"F the property still holds : for any multilinear
symmetric map f € L" (E; E’) there is a unique linear map F € L(®"E; E’)
such that : Fos, =7rlf

Symmetric tensorial product
1. Symmetric tensorial product of r vectors
The tensorial product of two symmetric tensors is not necessarily symmetric
so, in order to have an internal operation for S” (E) one defines :

Definition 376 The symmetric tensorial product of r vectors of E, denoted by
® , is the map :

O:E" =5 O"Enui Oug.. OUr = ) cp Ug(1) @ -+ @ Ug(r) = Sp (U, oy Up) =
Sy ot (ugy .., ur)

notice that there is no r!

2. Properties of the symmetric tensorial product of r vectors

Theorem 377 The symmetric tensorial product of r vectors is a multilinear,
distributive over addition, symmetric map : © : E" — O"FE

Ug(1) O Ug(2)- © Ug(r) = UL O U2.. © Uy

M+ po) Ow = O w+ v ©w

Examples:

UOQUV=uR®Rv+rvRu

Uy ®us ®usg =

U1 RU2RU3+ UL RU3R U2+ U2 XU XU+ U2 RU3 XU+ U3 RU RUo+UzRUs XU

3. Basisof ®"E :

Notation 378 O"E is the subset of " E comprised of symmetric tensors

Theorem 379 If (e;),.; is a basis of E, with I an ordered set, the set of ordered
products e;, ® €, © ... ®e; ., 91 < i2.. < i, is a basis of O"E

Any r symmetric contravariant tensor can be written equivalentely :
)T = Z[il___ir] thtre; ©eqy © ... © e, with ordered indices
i) T =4 2 i) titire, ® ... ®e;, with non ordered indices

4. Symmetric tensorial product of symmetric tensors :
The symmetric tensorial product is generalized for symmetric tensors :
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a) define for vectors :

(U1 © . O up) O (Upt1 © oo O Upyg) = EUGEPM Ug(1) @ Ug(2)-+ @ Ug(+q) =
UL O QU O Upy1 O oo O Upg

This product is commutative

b) so for any symmetric tensor :

T =3t e O s ©...€i,, U‘ =D g W O €y O e,

TOU =24, ) 2. g w06, © €y © ey, O €y O ejy O e

T O] U = Z[kl,.

p+q

q

) . . . i1.00p g J1-+-Jq
'kp+q]P+q Z['Ll”"Lp]v[ll"'Jq]c[klw--kp+q] ¢ u Chy © Chyore ©

€k

Theorem 380 The symmetric tensorial product of symmetric tensors is a bi-
linear, distributive over addition, associative, commutative map : © : OPE X
OIE — @;D-HJE

5. Algebra of symmetric tensors:

Theorem 381 If E is a vector space over the field K, the set OF = @22 O"E C
T (E), with O°E = K,0'E = E is, with symmetric tensorial product, a graded
unital algebra over K, called the symmetric algebra S(E)

Notice that ©F C T(E)

Algebraic definition (Knapp p.645)
The symmetric algebra S(E) is the quotient set :
S(E) =T(FE)/ (two-sided ideal generated by the tensors of the kind u ® v — v ® u with u,v € E)
The tensor product translates in a symmetric tensor product ® which makes
S(E) an algebra.
With this definition difficulties arise because the elements of S(E) are not
tensors (but classes of equivalence) so in practical calulations it is rather con-
fusing.

7.2.2 The set of antisymmetric tensors

Antisymmetric tensors
1. Antisymmetrizer:

Definition 382 On a vector space E the antisymmetrisation operator or
antisymmetrizer is the map :

ar : E" = QF :: a, (u1, .., u,) = ZO’EG(T) €(0) Ug(1) @ .. @ Ug(r)

The antisymmetrizer is an antisymmetric multilinear map : a, € L™ (E™; A™ (E))

ar (1) Uo(2)s 1 Uo()) = Eorear) € (0) Uoro(1)@-Blgro(r) = Logres(r) € (0) € (00") tgrg(1)®
. ® ucr’a’(r)

=€(0) X pee(r) € () uga) ® .. ® ug(ry = € (0) ar(us, uz, ..., uy)
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It is a multilinear map so there is a unique linear map : 2, : éE — éE :
such that : a, =AU, 02 with 2 : E" — éE

ar (€1, 6r) = Aror(er,.,ep) = (1 ® .. ®ep) = o, €(0) ) ® .. ®
€o(r)

For any tensor T € Q%E :

A, (T) = E(il...ir) th i (e, @ ... Qe ) = Z(il...u) i ZO’EG(’I‘) €(0) eg(1)®
-~ @ eg(r)

2. Antisymmetric tensor :

Definition 383 An antisymmetric r contravariant tensor is a tensor T such

that A, (T) = r!T

In a basis a r contravariant antisymmetric tensor 7' = E(il...u) thire, ®
... ® €4, is such that :

thir = e (o) 170 in) oy <dg. < 00 = e (0 (iy, gy ) E

where ¢ is any permutation of the set of r-indices.

It implies that ¢~ = 0 whenever two of the indices have the same value.
Thus one can write :

T = Z{h...iT} $i1eeie (ZUGG(T) € (0’) ea(il) RX... R ea(l}))

An antisymmetric tensor is uniquely defined by a set of components ¢!
for all ordered indices {i;...i, } with the rule :

ta(il...ir) —¢ (0,) til...ir

3. Vector space of r antisymmetric tensors

Notation 384 A"E is the set of antisymmetric r-contravariant tensors on E
A E* is the set of antisymmetric r-covariant tensors on E

Theorem 385 The set of antisymmetric r-contravariant tensors A"E is a vec-
tor subspace of T"(E).

A basis of the vector subspace A"E is : €;, ®ej, @ ... @ €;,., 11 < i2.. < ip
If E is n-dimensional dim A"E = (], and :

- there is no antisymmetric tensor of order r>N

- dim A"E =1 so all antisymmetric n-tensors are proportionnal

- A""E ~ A"E : they are isomorphic vector spaces

4. Universal property:
A r-linear antisymmetric map f € L" (E; E’) is such that :
Vu; € E;i =1..r,0 € &, 1 f(ur,ug, ..., ur) = €(0) f(Us(1), Us(2), - Uor(r))

There is a unique linear map : F € L (éE, E’) such that : f=F oz
Foa,(ur,ug, ..., u,) = Eaee(r) e(o)F (ua(l) ®..Q® ua(r)) = Eaee(r) € (o) Fo

1 (Ug(l), ‘o UU(T)) = ZUGG(T) € (U) f (ug(l), o UU(T))
=Y s f (W) =7 f (ur, . ur)
So :
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Theorem 386 For any multilinear antisymmetric map f € L™ (E; E') there is
a unique linear map F € L (éE, E’) such that :

Theorem 387 Foa, =r!f

For f =a,: F =%,

By restriction of F on A"E the property still holds : for any multilinear
antisymmetric map f € L" (E; E’) there is a unique linear map F' € L (A"E; E')
such that : Foa, =rlf

Exterior product
1. Exterior product of vectors:
The tensor product of 2 antisymmetric tensor is not necessarily antisymmet-
ric so, in order to have an internal operation for A" (E) one defines :

Definition 388 The exterior product (or wedge product) of r vectors is
the map :
A:E" — A"E : uiAus. . Au, = ZUEG(T) €(0) Up(1)®..QUg(r) = ar (U1, .., Uy)

notice that there is no r!

Theorem 389 The exterior product of vectors is a multilinear, antisymmetric
map , which is distributive over addition

Ug(1) N\ Ug(2)- N Ug(r) = € (0) up A\ ug.. \ Up

A+ po) Aw = uAw~+ pv Aw

Moreover :

u1 A ug.. A u, = 0 & the vectors are linearly dependant
uhNv=0&dke K :u=kv

Examples :

UNV=UQRQRUV—vQU

U7 A ug A us =

U1 QU2 QU3 — U] QU3 R U2 — U2 QU] DU+ U2 QU3 R UL +U3 QU] QU2 — U3 DU QU

2. Basis of ATE :

Theorem 390 The set of antisymmetric tensors : ej; Nei, A...€; i1 < io.. < ip,
s a basis of \"E

3. Exterior product of antisymmetric tensors:
The exterior product is generalized between antisymmetric tensors:
a) define for vectors :

(ur A Aup)A(Upar Ao Aiprg) = D pes,  €(0) U (1) OUo(2) - BUg(prq) =
UL A AUy AUpr1r A oo AN lpyg
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Notice that it is not anticommutative : (ug A ... Aup) A(Upp1 A oo A Uptq) =
(=D (Upg1 A oo Atiprg) A (ur A oo Auy)

b) so for any antisymmetric tensor :

T = Z{h...ip} thtre; A ey, /\ "'?ip ,-U : Z{il...jq} u]l-..ﬂqejl Nej, A €,

TANU = Z{il...z‘p} E{il...jq} t“”'.lpu.ﬁ“"hei‘l Neig Noei, Nejy Nej, N ...ej,

TANU = ﬁ Z(il...ip) E(ilqu) ttrydtdae; Neg, N e, Nej Nej, N .ej,

iy Neiy N eiy Nejy Nejy A ej, = € (i, ip, J1,--Jg) €k N ey Ao Aeg

where (k1,...kp+q) is the ordered set of indices : (i1, ..ip, j1, ---Jq)

Expressed in the basis e;, Aej,... Ae;,,, of APTIE .

TAS =

E{j1x~~jp+q}13+q (Z{jlx"jp}x{jp+17~~-jp+q}c{i17~~ip+q} € (']1’ --]p;.]erl; ""]erq

€y N €jyee NEj, 1,

or with

{A} = {j'la --jp}a'{B} = {jp+17 ---ijrq} A0 = {1, ~Jp> Jp+1, ---ijrq} = {{Atu{B}}

{B} = {Jp+1,-dprat = {C/{A}}

TAS = Yicy,,, (S, € (A} AC/ (AP TSN ey

p+aq

4. Properties of the exterior product of antisymmetric tensors:

Theorem 391 The wedge product of antisymmetric tensors is a multilinear,
distributive over addition, associative map :
AN:APE x NIE — APHIE

Moreover:
TANU=(-1)™"MUAT
ke K:TNkE=KT

5. Algebra of antisymmetric tensors:

Theorem 392 For the vector space E over the field K, the set denoted : AF =
@dmEA"E with A"E = K is, with the exterior product, a graded unital algebra
(the identity element is 1€ K) over K

dim AE = 2dimE
The elements T of AE which can be written as : T = u; A us... A u, are
homogeneous.

Theorem 393 An antisymmetric tensor is homogeneous iff T AT =0

Warning ! usually T AT # 0

There are the algebra isomorphisms :

hom (A"E,F) ~ L", (E"; F') antisymmetric multilinear maps
A"E* ~ (A"E)”

6. Determinant of an endomorphism
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Theorem 394 On a finite dimensional vector space E on a field K there is a
unique map, called determinant :

det : L (E; E) — K such that Yuy, ug,...un € E ¢ f (ur) A f(u2) . A f (ug) =
(det f)us Aug... Auy,

Proof. F=a,o0f:E" = A"E : F (u1,...,un) = f (u1) A f (u2) ... Af(un)

is a multilinear, antisymmetric map. So there is a unique linear map D :
A"FE — A"™FE such that

Doa, =nlF

F(u1,.un) = f(ur) A f(u2) oo A f (un) = 5D (ur Ao Auy)

As all the n-antisymmetric tensors are proportional, D (uj A ... Auy,) =
E(f)(ur Aooo Aup) withk: L(E}E) - K. m

Algebraic definition

(see Knapp p.651).

The algebra A (F) is defined as the quotient set :A(F) = T(E)/ (I) where
I =two-sided ideal generated by the tensors of the kind v ® v + v ® u with
u,v € E. The set of its homogeneous elements of order r is denoted A" (E),
AY(E)=K

The interior product of T(E), that is the tensor product, goes in A (E) as
an interior product denoted A and called wedge product, with which A (E) is
an algebra.

If (ei);c; is a basis of E, with I an ordered set, the set of ordered products
€iy Neiy Ny i1 < dg.. < iy, is a basis of A" (E)

So the properties are the same than above, but A" (E) is not a subset of
T

®F.
A" (E) (as defined algebraically here) is isomorphic (as vector space) to A"E
with :
T= S iy e s, € A(E) & T =S, iy (3 Toea e (@) 000 e
... Qe € AE
The wedge product is computed differently. Algebraically :
T.UcAE) > TANU=T®U (modI)
and more plainly one identifies A"(E) with its image in A"F and writes :
UL A o AUy = % Y oes, €(0(1,.1) Ug(1) ® .. @ Ug(r)
With this definition :
UL N\ ug = %(U,1®UQ — U2 ®’U,1)
Uy N\ ug AN ug =
% (U1 @ uz ®uz —u1 @uz @ug — U2 @ Uy @ Uz + Uz @ Uz @ Uy + Uz @ U1 ® Uug — Uz @ Uz @ uy)
But now to define the wedge product of u; A ug € A? (E) and ug is not so
easy (there is no clear and indisputable formula).
So, in order to avoid all these factorials, in this paper we will only consider
antisymmetric tensors (and not bother with the quotient space). But it is
common to meet the wedge product defined with factorials.
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7.2.3 Exterior algebra

All the previous material can be easily extended to the dual E* of a vector
space, but the exterior algebra AE™* is by far more widely used than AE and
has some specific properties which must be known.

r-forms
1. Definition:

Definition 395 The exterior algebra (also called Grassman algebra) of a
vector space E is the algebra AE* = A (E*) = (AE)".

So AE* = @MEA, E* and AgE* = K, A1 E* = E* (all indices down)
The tensors of A, E* are called r-forms : they are antisymmetric multilinear
functions £ — K

2. Components:

In the following E is a n-dimensional vector space with basis (e;);_, , and
the dual basis (¢')!_ of E*:e’ (¢;) = &
So w € A.E* can be written equivalently :
o= iy @iy et Ae2 AL Aelr with ordered indices
i) w =4 2 in) @iy et Ae2 AL Ae'r with non ordered indices
i) w = Z{il...iT} @iy i€ ®e? ® ... ® e’ with ordered indices

i — 1 I i T o
V) @ =532 3, i) Tir.ip € ®€? @ ... @ e with non ordered indices

3. Change of basis: ‘

In a change of basis : f; = Z?:l Ple; the components of tensors change
according to the following_ rules : _ _ _

w = Z(h...l}) wil...irezl Re?R..Qe" - w= Z(““) %h...ihf“ X flz ®
@ =y T AN LA

with @i, = Y5, oy @i PP = Y0y € (@) @, PRV BT =
Z{jl,,,,jr} wjl---j@det‘ [P]ﬁf:

where det [P]7! /" is the determinant of the matrix with r column (iy, ..i,)

1...2
comprised each of the components (j;...5,) of the new basis vectors

Interior product
1. Value of a r forms over r vectors:

The value of a r-form over r vectors of E is :

@ =23 00,) Pirein€ ®E? Q@€

@ (UL, s Ur) = D, ) Pinin€? (u1) €2 (uz) ...e' (ur)

@ (UL, oy Ur) = D5 ) Wi UL UG g7

The value of the exterior product of a p-form and a g-form w A 7 for p+q
vectors is given by the formula (Kolar p.62):
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wAn (ul, ceey up+q) = ﬁ deep+q € (U) w (ug(l), ...ug(p)) ™ (ug(erl), ...ug(erq))

Ifr=dimFE : Wiy — (il, Zn) wW12..n
1 2
@ (UL, ey Up) = W21 EUGG” e (o) u‘ly( )ug( ) = w12 det [ur, ug, ...uy]
This is the determinant of the matrix with columns the components of the
vectors u

g(n)

2. Interior product:

Definition 396 The interior product of a r form w € A.E* and a vector
u € E, denoted i,w, is the r-1-form : .

lyT = Z{il___ir} Z;Zl(—1)’“_1uikw&1mir}e{ilA...Aeik...Aeip} where " means
that the vector shall be omitted

with (ei)iej a basis of E*.

3. Properties:

For u fixed the map : i, : A, E* — A,_1E* is linear :i,, € L (AE; AE)

Ty Oy = —ly Oty

1y Oty =0

in ANA ) = (i A) A+ (=1 EX N A p

Orientation of a vector space

For any n dimensional vector space E a basis can be chosen and its vectors
labelled ey, ...e,,. One says that there are two possible orientations : direct and
indirect according to the value of the signature of any permutation of these
vectors. A vector space is orientable if it is possible to compare the orientation
of two different bases.

A change of basis is defined by an endomorphism f € GL (E; E) . Its deter-
minant is such that :

Yug, ug, ..un € Bt f(ur) A f(u2) ... A f (up) = (det f)ur Aug... Aup

So if E is a real vector space det(f) is a non null real scalar, and two bases
have the same orientation if det(f) > 0.

If E is a complex vector space, it has a real structure such that : £ = Ex &
iERg. So take any basis (e;)"_; of Eg and say that the basis : (e1,ieq, €2, €2, ...€p, i€y,)
is direct. It does not depend on the choice of (e;);-, and is called the canonical
orientation of E.

To sum up :

Theorem 397 All finite dimensional vector spaces over R or C are orientable.

Volume

Definition 398 A wvolume form on a n dimensional vector space (E,g) with
scalar product is a n-form w such that its value on any direct orthonormal basis
15 1.
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Theorem 399 In any direct basis (ei)?zl a volume form is w = +/|det glex A
es.. N\ ey
In any orthonormal basis (€;);_; @w =¢e1 Aea.. Ney

Proof. (FE,g) is endowed with a bilinear symmetric form g, non degenerate
(but not necessarily definite positive).

In (%)), g has for matrix is [g] = [gi;] . gi; = g (ei, €;)

Let g, = >, Ple; then g has for matrix in ¢; : [5] = [P]" [g] [P] with 7;; =
:|:5ij

The value of @ (£1,£2, ...6n) = W12, .n det [e1, €2, ...6,] = w12, det [P]

But : det [n] = det ([P]" [g] [P]) = |det [P]|* det [¢g] = #1 depending on the
signature of g

If E is a real vector space, then det [P] > 0 as the two bases are direct. So :
det [P] =1/+/|det g| and :

w = +/|detgler Aea.. ANe, = €1 Nea.. Aey

If E is a complex vector space [g] = [g]* and det [¢]" = det [¢] = det [¢] so
det [g] is real. it is always possible to choose an orthonormal basis such that :
ni; = 0,5 so we can still take w = (/|det gle1 Aea.. Nep, =1 Aea.. Ay, B

Definition 400 The volume spanned by n vectors (ui,...,u,) of a real n di-
mensional vector space (E, g) with scalar product endowed with the volume form
w S w0 (UL, ..., Up)

It is null if the vectors are linearly dependant.
Maps of the special orthogonal group SO(E,g) preserve both g and the ori-
entation, so they preserve the volume.

7.3 Tensorial product of maps

7.3.1 Tensorial product of maps

1. Maps on contravariant or covariant tensors:
The following theorems are the consequences of the universal property of the
tensorial product, implemented to the vector spaces of linear maps.

Theorem 401 For any vector spaces E1, Fo, F1, Fy on the same field, Vfi €
L (Ey; F), fo € L(Es; Fy) there is a unique map denoted f1Qfs € L (F1 ® F1; Fy ® F)
such that : Yu € E1,v € F1 : (f1® fo) (u®v) = f1 (u) @ fa (v)

Theorem 402 For any vector spaces E,F on the same field, Vr € N. Vf €
L(E;F)

i) there is a unique map denoted @ f € L (Q"E; @"F) such that :

Vurp € EJk=1..r: (@7 f) (w1 @ ua... @ uy) = f(u1) @ f (u2) ... ® f (uy)

ii) there is a unique map denoted @ f' € L (R°F*; ®*E*) such that :

VA, € F* k=1...s: (®Sft) ()\1 ® A2e.. @ N) = ft ()\1)®ft ()\2) ...®ft ()\T) =
Mof)@ (Ao f)...®@(Aso f)
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2. Maps on mixed tensors

If f is inversible : f~! € L(F;FE) and (f_l)t € L(E*;F*).So to extend
a map from L (E;F) to L(®LE;®LF) an inversible map f € GL(E;F) is
required.

Take as above :

Ei=QE,Fy=®°E* Fy = " F, F, = @, F* = @ F*,

feL(E;F),@ felL(Q"E;Q"F)

fl e L(Fy Bo),@° (f1)' = L(8°E*;@°F*)

There is a unique map : (®"f) ® (®5 (f_l)t> € L(®LE;®LF) such that :

Yup, € E; N € B k=.rl=.5:

(®Tf)®(®s (f_l)t) (u1 ®uz... ®ur) ® (M ® A2e. @A) = f (u1)®f (u2) ..®
flur) @ f (M) @ f(A2) .. @ f(Ar)

This can be done for any r,s and from a map f € L (F; F) build a family of
linear maps ®%f = (®"f) ® (®5 (f_l)t) € L(®LE;®LF) such that the maps
commute with the trace operator and preserve the tensorial product :

Se@ETe®yE: F'i (SeT)=FI(S) & F (T)

3. These results are summarized in the following theorem :

Theorem 403 (Kobayashi p.24) For any vector spaces E,F on the same field,
there is an isomorphism between the isomorphisms in L(E;F') and the isomor-
phisms of algebras L(QF; QF) which preserves the tensor type and commute
with contraction. So there is a unique extension of an isomorphism fe L(E, F)
to a linear bijective map F € L (QFE; ®F) such that F(S®T)=F (S)F(T),
F preserves the type and commutes with the contraction. And this extension can
be defined independantly of the choice of bases.

Let E be a vector space and G a subgroup of GL(E;E). Then any fixed f in
G is an isomorphism of L(E;E) and can be extended to a unique linear bijective
map F € L(QFE;®FE) such that F(S®T) = F(S)® F(T), F preserves the
type and commutes with the contraction. For F (T, 1) : @ F — QF we have a
linear map.

7.3.2 Tensorial product of bilinear forms

Derivatives of maps are multilinear symmetric linear maps. It can be handy to
extend a scalar product from the vector spaces to the spaces of these multilinear
maps. We see here how it can be done.

1. Bilinear form on Q" E :

Theorem 404 A bilinear symmetric form on a finite n dimensional vector
space E over the field K can be extended to a bilinear symmetric form : G, :
QEXQRE—-K: G =Q"g
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Proof. g € E*® E* . greads in in a basis (ei)?zl of E¥: g = ZZ;‘:1 gijet@el
- Ther tensorial product of g+ ®"g € @* E*reads: @"g =31 ) Givis--Ging_in. €D
e Qe
It acts on tensors U € @*"E : @"g (U) = 3.7 iy Givig--Giny_1in, U
Take two r contravariant tensors S,T€ ®"F then
®"g (S ® T) = Z?l...iz:l giliz"'giwfliwSZl.“ZrT“JAMZZT
From the properties of the tensorial product :
Qg((ES+ES)T) =k g(SQT)+k @ g(S'®T)
So it can be seen as a bilinear form acting on ®"E. Moreover it is symmetric

G, (S,T)=@"g(S®T)=G.(T,S) m
2. Bilinear form on L"(E;E):

Theorem 405 A bilinear symmetric form on a finite n dimensional vector
space E over the field K can be extended to a bilinear symmetric form : B, :
QE*XQE—-K: 2B, =R"¢g"®g

Proof. The vector space of r linear maps L"(E;E) is isomorphic to the tensorial
subspace : Q" E* @ F
We define a bilinear symmetric form on L"(E;E) as follows :
¢, ¥ € L"(E; E):By (p,9) = Br (¢ @ ¢)
with: B, =®"¢*®g = ZZ...Q:I giliz...gim‘*liz““gjlheil ®...Qe;,, @l Qe
This is a bilinear form, and it is symmetric because g is symmetric. ®
Notice that if E is a complex vector space and g is hermitian we do not have
a hermitian scalar product.

7.3.3 Hodge duality

Hodge duality is a special case of the previous construct : if the tensors are
anti-symmetric then we get the determinant. However we will extend the study
to the case of hermitian maps, because it will be used later.

Remind that a vector space (E,g) on a field K is endowed with a scalar prod-
uct if g is either a non degenerate, bilinear symmetric form, or a non degenerate
hermitian form.

Scalar product of r-forms

Theorem 406 If (E,g) is a finite dimensional vector space endowed with a

scalar product, then the map :
Gr i A E*XAE" = R Gr (A1) = Yoy gaisy Mo Fn.gy det [g7 1] Etr 017
is a non degenerate hermitian form and defines a scalar product which does

not depend on the basis.
It is definite positive if g is definite positive
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In the matrix [g_l} one takes the elements g™*Jt with iy € {i1..i,},5 €

{JIJT} _ o o _ o
Gr ) = i, iy Mireiny 2y, 00077 W1 = 2, iy Mirippliizd
where the indexes are lifted and lowered with g. _
In an orthonormal basis : G,. (A, 1) = Z{n..z‘r}{jl,.jr} iy in Mgy gt
This is the application of the first theorem of the previous subsection, where

the formula for the determinant is used.
For r = 1 one gets the usual bilinear symmetric form over E* : G (A, 1) =

Ez‘j Xiﬂjgij

Theorem 407 For a vector u fized in (E,g), the map : A(u) : A, E — Ap 1 E
AMu)p = u A p has an adjoint with respect to the scalar product of forms

Gri1 (A(w) i) = Gp (u, \* (u) i) which is N (u) : AE — A1 F =
A* (u) Ho= Tyl

It suffices to compute the two quantities.

Hodge duality
g can be used to define the isomorphism F ~ E*. Similarly this scalar product
can be used to define the isomorphism A, F ~ A,,_,.E

Theorem 408 If (E,g) is a n dimensional vector space endowed with a scalar
product with the volume form wy, then the map :

x @ Ao B* — A, F defined by the condition Yu € A.E* @ s\ A p =
Gr (A, 1) wo

18 an anti-isomorphism

A direct computation gives the value of the Hodge dual %A in the basis
(ei)?zl of E*:

* (Z{il...n} )\{i1~..i7‘}eil VARAY eir)

= Z{ilninfr}{jlnjr} €(J1--Jry 81y - ln—r) )\]1"'%«/|det glett Ne.. Netn-r
With e = sign det [g] (which is always real)
For r=0:
*\ = \wg
For r=1: _ N
* (30; Mie') = Z?:l (1)t g X;+/|det gle! A ..ed AN e
For r=n-1: R
* (Z?:l A g et A LA A e”) = (=)t Xl"zmn\/|det gldz’
For r=n:
1 n) _ 1Y
* ()\e AR Ne ) = e\/m)\

The usual cross product of 2 vectors in an 3 dimensional euclidean vector
space can be defined as u x v = * (aAb) where the algebra A"F is used

The inverse of the map * is :

TN = e(=1)" ) N ok x N = e(—1)" TN,

Gq(/\v ) = anq(*)‘a 1)
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G"—q(*)‘u */1') = Gq()‘u /1’)
Contraction is an operation over AE*. It is defined, on a real vector space

NEME pENE AV pu=e(—1)PTU"D" s (XA sp) € Ap_ g E*
It is distributive over addition and not associative
r—q)n _ —(r— 2+r2
«(AV ) =€e(=1)D (1) Dn=(r=D) (A A ) = (—1)T T (A A %p2)
AV(AVE)=0
AeE  peNE:
x(AAp) = (=1)TAVxpu
* AV ) = (DT N Axp

7.3.4 Tensorial Functors

These functors will be used later in several parts.

Theorem 409 The vector spaces over a field K with their morphisms form a
category ‘U.

The vector spaces isomorphic to some vector space E form a subcategory

Vg

Theorem 410 The functor ® : 0 — U which associates :
to each vector space E its dual : D(E) = E*
to each linear map f: E — F its dual : f*: F* — E*
is contravariant : ® (fog) =D (g) oD (f)

Theorem 411 The r-tensorial power of vector spaces is a faithful covariant
functor T": 0B — WV

T (F) = @FE
fELEF): T (f)="f € L(Q"E;Q"F)
T (fog)=F"(f)oT(9) = (®"f)o(®"9g)

Theorem 412 The s-tensorial power of dual vector spaces is a faithful con-
travariant functor Ts: 0 — Y

T (F) = ®sE = @°E*
fEL(EF): % (f) =Qsf € L(®:,F*;@,E%)
Ts(fog)=T5(9) 0Ts (f) = (®s9") o (®sf")

Theorem 413 The (r,c)-tensorial product of vector spaces is a faithful bi-
functor : T2 Vp— Vg

The following functors are similarly defined:

the covariant functors T4: U — U :: Tg (E) = O"E for symmetric r tensors

the covariant functors ¥7: U +— ¥ :: T (E) = A"E for antisymmetric r con-
travariant tensors

the contravariant functors T 5: U — BV :: Ty (F) = AFE for antisymmetric
r covariant tensors
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Theorem 414 Let A be the category of algebras over the field K. The functor
T 0 — A is defined as :

TV(E)=0FE=3"_,@E

VfeL(E;F):Z(f) €ehom(QFE;®F) =L (QF;QF)

is faithful : there is a unique map ¥ (f) € L (QF;®F) such that :

Vue E,ve F:ZT(f)(u®v)=f(u)® f(v)

7.3.5 Invariant and equivariant tensors

These results are used in the part Fiber bundles.

Let E be a vector space, GL(E) the group of linear inversible endomorphisms,
G a subgroup of GL(E).

The action of g € Gon Eis: f(g): E — E and we have the dual action:
Fl9): BF = B i f () A= Ao f (g7

This action induces an action F? (g) : @ F — QT E with F! (g) = (®" f (9))®
(®@°(f(9))

Invariant tensor
A tensor Te ®LE is said to be invariant by Gif : Vge G: F} (¢9)T =T

Definition 415 The elementary invariant tensors of rank r of a finite dimen-
sional vector space E are the tensors T € ®IE with components : T:1"" =

Ji-Jr
S o(i1) go(iz)  go(ir)
o€6(r) C‘T(Sjl ' 5j2 ’ "'5jr

Theorem 416 Invariant tensor theorem (Kolar p.214): On a finite dimen-
sional vector space E, any tensor T € QLE invariant by the action of GL(E)
is zero if r # s. If r=s it is a linear combination of the elementary invariant
tensors of rank r

Theorem 417 Weyl (Kolar p.265) : The linear space of all linear maps QR™ —
R invariant by the orthogonal group O(R,m) is spanned by the elementary in-
variants tensors if k is even, and 0 if k is odd.

Equivariant map
A map: f:®F — ®F is said to be equivariant by the action of GL(E) if :

Vge G T e@iE: f(F(9)T)=F(9)f(T)
Theorem 418 (Kolar p.217) : all smooth GL(E) equivariant maps (not nec-
essarily linear) :

i) N"E — A"E are multiples of the identity

i) @"E — O"E are multiples of the symmetrizer

iii) " F — A"E are multiples of the antisymmetrizer

i) N"E — ®"E or O"E — ®Q"E are multiples of the inclusion

7.3.6 Invariant polynomials

These results are used mainly in the Chern theory (Fiber Bundles part). They
are located here because they can be useful for other applications.
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Invariant maps

Definition 419 Let E be a vector space on a field K, G a subgroup of GL(E),
famap :f : E" x E*® — K with r,s€ N

fis said to be invariant by G if :

Vg € G,V (ui)i—y , € BV (N, €E*: f ((gu1, -gur), (97 A1), . (971As)) =
f (’U,l, SUpy, )\1, )\5)

Theorem 420 Tensor evaluation theorem (Kolar p.223) Let E a finite dimen-
sional real space. A smooth map f : E” x E*> — R (not necessarily linear) is
invariant by GL(E) iff IF € Cs (R™%;R) such that :
V(ui)iy , € BV (N)j—y € B* : f (ur,up, Ary o As) = F (WA () -..) for all
]
As an application, all smooth GL(E) equivariant maps :
f:E" x E** — E are of the form :
Fur, o, Ay X)) = Sy Fa (WA () ...) ug where Fi (i (u)) ..) € Coo (R R)
f+E" x E** — E* are of the form :
Ay A) = Y51 Fa (WA () ...) Ag where F (A (u)) ...) € Coo (R R)

Polynomials on a vector space

Definition 421 A map f : V — W between two finite dimensional vector
spaces on a field K is said to be polynomial if in its coordinate expression in any
bases : fi (x1,..x;,..xm) = Y; are polynomials in the x;.

i) Then f reads : f; = fio + fix + .. + fir where fi, , called a homogeneous
component, is, for each component, a monomial of degree k in the components
s fie =2t ag? alr o + o =k

ii) let f : V — K be a homogeneous polynomial map of degree r. The
polarization of f is defined as P, such that r!P, (uq, ..., u,) is the coefficient of
t1ts. .t in f (t1u1 + tous + ... + tTur)

P, is a r linear symmetric map : P. € L" (V; K)

Conversely if P,. is a r linear symmetric map a homogeneous polynomial map
of degree r is defined with : f(u)=P,(u,u,..,u)

iii) by the universal property of the tensor product, the r linear symmetric
map P, induces a unique map : ﬁr : @'V — K such that : P, (uq,...,u,) =
P (u1 ®... Q@ uy)

iv) So if f is a polynomial map of degreer : f: V — K there is a linear map
: P:@ZESV — K given by the sum of the linear maps ﬁr.

Invariant polynomial
Let V a finite dimensional vector space on a field K, G a group with action
onV:p:G— L(E,E)
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A map: f:V — K issaid to be invariant by this action if : Vg € G,Vu €
Vif(p(g)u)=f(u)

Similarly amap f : V" — K isinvariantif: Vg € G,Yu € V : f (p(g9) u1,..p(9) u,) =
f(ur, .., uy)

A polynomial f : V — K is invariant iff each of its homogeneous components
fx is invariant

An invariant polynomial induces by polarizarion a r linear symmetric in-
variant map, and conversely a r linear, symmetric, invariant map induces an
invariant polynomial.

Theorem 422 (Kolar p.266) Let fR (m) — R a polynomial map from the vec-
tor space R (m) of square maxm real matrices to R such that : f(OM)=M for any
orthogonal matriz Oc O (R, m) . Then there is a polynomial map F:R (m) — R
such that : f(M) = F(M!M)
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8 MATRICES

8.1 Operations with matrices
8.1.1 Definitions

Definition 423 A rzc matriz over a field K is a table A of K scalars arranged
in r rows and ¢ columns, indexed as : a;; i=1...r, j=1...c (the fist index is for
row, the second is for columns).
We will use also the tensor like indexes : a%, up=row, low=column. When
necessary a matrix is denoted within brackets : A = [a;;]
When r=c we have the set of square r-matrices over K

Notation 424 K (r,c) is the set of rzc matrices over the field K.
K(r) is the set of square r-matrices over the field K

8.1.2 Basic operations

Addition and multiplication by a scalar

Theorem 425 With addition and multiplication by a scalar the set K(r,c) is a
vector space over K, with dimension rc.

A B €K (r,c): A+ B = [a;; + bij]
A€ K(rc),keK:kA=[ka]

Product of matrices

Definition 426 The product of matrices is the operation : K (c,s) X
K (¢,s) = K (r,s) :: AB = [Y_;_, airby;]

When defined the product distributes over addition and multiplication by a
scalar and is associative :

A(B+C)=AB+ AC

A(kB) =EkAB

(AB)C = A(BC)

The product is not commutative.

The identity element for multiplication is the identity matrix : I = [d;;]

Square matrices

Theorem 427 With these operations the set K(r) of square r-matrices over K
18 a ring and a unital algebra over K.
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Definition 428 The commutator of 2 matrices is : [A, B] = AB — BA.
Theorem 429 With the commutator as bracket K(r) is a Lie algebra.
Notation 430 K(r) is the group of square invertible (for the product) r-matrices.

When a matrix has an inverse, denoted A~! | it is unique and a right and
left inverse : AA™' = A"'A =1, and (AB)"' = B~1A~!

Diagonal

Definition 431 The diagonal of a squared matriz A is the set of elements :
{a11, a2, ...; apr}

A square matrix is diagonal if all its elements =0 but for the diagonal.

A diagonal matrix is commonly denoted as Diag (mq, ma,...m,) with m; =
(4573

Remark : the diagonal is also called the "main diagonal”, with reverse diag-
onal = the set of elements : {a,1,ar-12, ..., a1}

Theorem 432 The set of diagonal matrices is a commutative subalgebra of
K(r).

A diagonal matrix is invertible if there is no zero on its diagonal.

Triangular matrices

Definition 433 A triangular matriz is a square matriz A such that : a;; =0
whenever i>j . Also called upper triangular (the non zero elements are above
the diagonal). A lower triangular matriz is such that At is upper triangular (the
non zero elements are below the diagonal)

8.1.3 Transpose

Definition 434 The transpose of a matriz A = [a;;] € K (r,c) is the matric
At =[aj;] € K(c,7)

Rows and columns are permuted:

ail e Q1e ail oo Qo1
A= 1| .. | = At =

Ar1 ... Qpe Ale o Qpe

Remark : there is also the old (and rarely used nowodays) notation ‘A
For A,B € K(r,c),k,k’ e K:

(kA + k'B)' = kA* + k' B

( ) BtAt

(A14z.. Ap)" = ALAL . AY

)
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Definition 435 A square matrix A is :
symmetric if A= Al
skew-symmetric (or antisymmetric) if A = —A?
orthogonal if : A" = A~!

Notation 436 O(r,K) is the set of orthogonal matriz in K(r)

So AcO(r,K)= At =A"1 AA' = ATA =1,
Notice that O(r,K) is not an algebra: the sum of two orthogonal matrices is
generally not orthogonal.

8.1.4 Adjoint

Definition 437 The adjoint of a matriz A = [a;j] € C(r,c) is the matriz
A* = [Eji] S K(C, T)

Rows and columns are permuted and the elements are conjugated :

ail e Qe aill arl
A= .. | P AY =

Ap1  eee Qpe A1ec .- Qpe

Remark : the notation varies according to the authors
For A,B € C(r,c),k,k € K :

(kA+ k' B)* = kA* + & B*

(AB)* = B*A*

(A1 Ay Ap)" = ArAx LAY

(A*)_l _ (A—l)*

Definition 438 A square matriz A is
hermitian if A = A*
skew-hermitian if A = —A*
unitary if : A* = A1
normal if AA* = A*A

Notation 439 U(r) is the set of unitary matrices is a group denoted :

So AceU(r)= A* = A" AA* = A*A =1,
U(r) is not an algebra: the sum of two unitary is generally not unitary

Theorem 440 The real symmetric, real antisymmetric, real orthogonal, com-
plex hermitian, complex antihermitian, unitary matrices are normal.

Normal matrices have many nice properties.

Remark : R (c) is a subset of C (7). Matrices in C (r) with real elements are
matrices in R (r). So hermitian becomes symmetric, skew-hermitian becomes
skew-symmetric, unitary becomes orthogonal, normal becomes AA! = A*A. Any
theorem for C (r) can be implemented for R (r) with the proper adjustments.
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8.1.5 Trace

Definition 441 The trace of a square matric A € K (r) is the sum of its
diagonal elements

Tr(A) =35 i

It is the trace of the linear map whose matrix is A

Tr: K(r) — K is a linear map Tr € K (r)"

Tr(A) =Tr (A?)

Tr(A) =Tr(A*)

Tr(AB) =Tr(BA) = Tr(ABC) =Tr (BCA) =Tr(CAB)
Tr (A7Y) = (Tr(A)™"

Tr (PAP™Y) =Tr(A)

Tr(A)= sum of the eigenvalues of A

Tr(AF) = sum of its (cigenvalues)”

If A is symmetric and B skew-symmetric then Tr(AB)=0
Tr ([A, B]) = 0 where [A, B] = AB — BA

Definition 442 The Frobenius norm (also called the Hilbert-Schmidt norm) is
the map : K (r,c) = R:: Tr(AA*) =Tr(A*A)

Whenever A € C (r,¢) : AA* € C(r,r),A*A € C(c, ) are square matrix, so
Tr(AA*) and Tr (A*A) are well defined

Tr(AA7) = S0, (S5 aitiy) = X5y (0 @yai) = Sy S layl?

8.1.6 Permutation matrices

Definition 443 A permutation matriz is a square matriz P € K (r) which
has on each row and column all elements =0 but one =1

Vi, j : Pi; = 0 but for one unique couple (I,J): Pry =1
It implies that Vi, j: Y, Pie=> P =1

Theorem 444 The set P(K,r) of permutation matrices is a subgroup of the
orthogonal matrices O(K,r).

The right multiplication of a matrix A by a permutation matrix is a permu-
tation of the rows of A

The left multiplication of a matrix A by a permutation matrix is a permu-
tation of the columns of A

So given a permutation o € & (r) of (1,2,...r) the matrix : S(o) = P :
[Pij] = do(j); is a permutation matrix (remark : one can also take Pij = 0;0(;)
but it is less convenient) and this map : S : &(r) — P (K,r) is a group
iSOHlOI‘phiSHl : PS(aoa’) = PS(G’)PS(G'/)

The identity matrix is the only diagonal permutation matrix.

As any permutation of a set can be decomposed in the product of transposi-
tions, any permutation matrix can be decomposed in the product of elementary
permutation matrices which transposes two columns (or two rows).
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8.1.7 Determinant

Definition 445 The determinant of a square matriz A € K (r) is the quantity

det A = de@(r) e (o) A15(1)320(2)+-Ano(n) = de@(r) €(o) U5 (1)100(2)2-+-Ao(n)n

det A® = det A

det A* = det A so the determinant of a Hermitian matrix is real

det (kA) = k" det A (Beware !)

det (AB) = det (A) det (B) = det (BA)

JA~! & det A # 0 and then det A~ = (det A) ™"

The determinant of a permutation matrix is equal to the signature of the
corresponding permutation

For K = C the determinant of a matrix is equal to the product of its eigen
values

As the product of a matrix by a permutation matrix is the matrix with
permuted rows or columns, the determinant of the matrix with permuted rows
or columns is equal to the determinant of the matrix x the signature of the
permutation.

The determinant of a triangular matrix is the product of the elements of its
diagonal

Theorem 446 Sylvester’s determinant theorem : Let A € K (r,¢),B € K(¢,1), X €
GL(K,r)

then : det (X + AB) = det X det (I, + BX 'A) so with X=I:det (I + AB) =
det (I. + BA)

Computation of a determinant : Determinant is the unique map : D :
K (r) — K with the following properties :

a) For any permutation matrix P, D (P) = signature of the corresponding
permutation

b) D (AP) =D (P)D (A) = D (A) D (P) where P is a permutation matrix

Moreover D has the following linear property : D(A’)=kD(A)+D(A’) where
A’ is (for any i) the matrix

A= [Al, AQ, AT] — A = [Al, AQ, o Ai_l,B, Ai—i—luAr]

where A; is the i column of A, B is rx1 matrix and k a scalar

So for A € K (r) and A’ the matrix obtained from A by adding to the row i
a scalar multiple of another row i’ :det A = det A’.

There is the same result with columns (but one cannot mix rows and columns
in the same operation). This is the usual way to compute determinants, by
gaussian elimination : by successive applications of the previous rules one strives
to get a triangular matrix.

There are many results for the determinants of specific matrices. Many
Internet sites offer results and software for the computation.
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Definition 447 The (i,j) minor of a square matriz A=[a;;] € K (r) is the
determinant of the (r-1,r-1) matriz denoted A;; deduced from A by removing
the row i and the column j.
Theorem 448 det A = E;ﬂ:l (—I)ZJFJ Qi det Aij = E;:l (—1)“” (227 det Aij

The row i or the column j are arbitrary. It gives a systematic way to compute
a determinant by a recursive calculus.

This formula is generalized in the Laplace’s development :

For any sets of p ordered indices

I = {il, 12, Zp} C (1, 2, T) ,J = {jl,jQ, .]p} C (1, 2, T)

Let us denote [Ac]g the matrices deduced from A by removing all rows with
indexes in I, and all columns with indexes in J

Let us denote [A]I] the matrices deduced from A by keeping only the rows
with indexes in I, and the columns with indexes in J

Then : o o _ T I
det A= 53,y ()P0t (e Al ) ) (den 416 ))

The cofactor of a square matrix A=[a;;] € K (r) is the quantity (— 1) det Ayj
where det A;; is the minor.

The matrix of cofactors is the matrix : C(A) = [(—1)“” det Aij} and (cf

Matrix cook book): A=! = dciAC(A)t So

Theorem 449 The elements [Aflhj of A=1 are given by the formula : [A’l}ij =
5 (—1)" det [Aj;] where A;j is the (r-1,r-1) matriz denoted A;; deduced from
A by removing the row i and the column j.

Beware of the inverse order of indexes on the right hand side!

8.1.8 Kronecker’s product

Also called tensorial product of matrices

For A € K(m,n),B(p,q) ,C = A® B € K (mp,nq) is the matrix [C;;] =
[ai;] B built as follows : to each element [a;;] one associates one block equal to
[ai;] B

The useful relation is : (A® B) x (C ® D) = AC ® BD

Thus : (A1 ®..Q Ap) x (B1®..Bp) =A1B1 ®... 0 A,B,

If the matrices are square the Kronecker product of two symmetric matri-
ces is still symmetric, the Kronecker product of two hermitian matrices is still
hermitian.

8.2 [Eigen values

There are two ways to see a matrix : as a vector in the vector space of matrices,
and as the representation of a map in K™.

A matrix in K(r,c) can be seen as tensor in K" ® (K¢)* so a morphism
in K(r,c) is a 4th order tensor. As this is not the most convenient way to
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work, usually matrices are seen as representations of maps, either linear maps
or bilinear forms.

8.2.1 Canonical isomorphims

1. The set K™ has an obvious n-dimensional vector space structure, with canon-
ical basis ¢; = (0,0,..,0,1,0,..0)

Vectors are represented as nx1 column matrices

(K™)" has the basis ¢; = (0,0, ..,0,1,0,..0) with vectors represented as 1xn
row matrices

So the action of a form on a vector is given by : [z] € K", [w] € K™ :
@ (2) = [@] 2]

2. To any matrix A € K(r,c) is associated a linear map Ly € L (K% K")
with the obvious definition :

[y] = Alx] : (r,1) = (r,¢) (¢, 1) Beware of the dimensions!

The rank of A is the rank of L 4.

Similarly for the dual map L% € L ((K")";(K%)") : [u] = N A: (1,¢) =
(1,7) (r,c)

So:VAe (K") ,x e K: L (\) (z) = N [a*][z] = [N A[z] = Aoa(z) &
[La] = A

Warning ! The map : K(r,c)— L (K¢ K") is basis dependant. With another
basis we would have another map. And the linear map L, is represented by
another matrix in another basis. ‘

If r=c, in a change of basis ¢; = }_; P/e; the new matrix of ais : B =
P~1AP. Conversely, for A, B, P € K(r) such that : B = P~'AP the matrices
A and B are said to be similar : they represent the same linear map L 4.. Thus
they have same determinant, rank, eigen values.

3. Similarly to each square matrix A € K (r) is associated a bilinear form
B4 whose matrix is A in the canonical basis.

AeK(r)—=be L(K" K" K): Ba(z,y) = [y Alz]

and if K=C a sequilinear form B, defined by : A € C(r) — Ba €
L(C7,C75C) = Ba (w,y) = [y)* Ala]

B4 is symmetric (resp.skew symmetric, hermitian, skewhermitian) is A is
symmetric (resp.skew symmetric, hermitian, skewhermitian)

To the unitary matrix I, is associated the canonical bilinear form : By (z,y) =
S iy = [2]"[y]. The canonical basis is orthonormal. And the associated
isomorphism K" — K" is just passing from column vectors to rows vectors.
With respect to this bilinear form the map a associated to a matrix A is orthog-
onal if A is orthogonal.

If K=C, to the unitary matrix I, is associated the canonical hermitian form
: Br(z,2) =Y, Tiy; = [2]" [y] .With respect to this hermitian form the map
a associated to a matrix A is unitary if A is unitary.

Remark : the property for a matrix to be symmetric (or hermitian) is not
linked to the associated linear map, but to the associated bilinear or sesquilinear
map. It is easy to check that if a linear map is represented by a symmetric matrix
in a basis, this property is not conserved in a change of basis.

132



4. Warning ! A matrix in R (r) can be considered as a matrix in C (r) with
real elements. As a matrix A in R (r) is associated a linear map L4 € L (R";R").
As a matrix in C(r) is associated M4 € L (C";C") which is the complexified
of the map L4 in the complexified of R". L4 and M4 have same value for real
vectors, and same matrix. It works only with the classic complexification (see
complex vector spaces), and not with complex structure.

5. Definite positive matrix

Definition 450 A matriz A € R (r) is definite positive if ¥ [z] # 0 : [z]" A [z] >
0
An hermitian matriz A is definite positive if ¥V [x] # 0 : [z]" A[z] > 0

8.2.2 Eigen values

Definition 451 The eigen values )\ of a square matrix A € K (r) are the
eigen values of its associated linear map Lo € L (K"; K™)

So there is the equation : A [z] = A [z] and the vectors [z] € K" meeting this
relation are the eigen vectors of A with respect to A

Definition 452 The characteristic equation of a matric A€ K (r) is the
polynomial equation of degree r over Kin A:
det (A— X)) =0 reads : >._o NP, =0

Alz] = Xx] is a set of r linear equations with respect to x, so the eigen
values of A are such the solutions of det (4 — AL.) =0

The coefficient of degree 0 is just detA : Py = det A

If the field K is algebraically closed then this equation has always a solution.
So matrices in R (r) can have no (real) eigen value and matrices in C (r) have r
eigen values (possibly identical). And similarly the associated real linear maps
can have no (real) eigen value and complex linear maps have r eigen values
(possibly identical)

As any A € R(r) can be considered as the same matrix (with real elements)
in C(r) it has always r eigen values (possibly complex and identical) and the
corresponding eigen vectors can have complex components in C”. These eigen
values and eigen vectors are associated to the complexified M 4 of the real linear
map L4 and not to L 4.

The matrix has no zero eigen value iff the associated linear form is injective.
The associated bilinear form is non degenerate iff there is no zero eigen value,
and definite positive iff all the eigen values are >0 .

If all eigen values are real the (non ordered) sequence of signs of the eigen
values is the signature of the matrix.

Theorem 453 Hamilton-Cayley’s Theorem: Any square matriz is a solution
of its characteristic equation : Y, A'P; =0

The following are used very often:

Theorem 454 Any symmetric matriz A€ R (r) has real eigen values
Any hermitian matriz A€ C(r) has real eigen values
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8.2.3 Diagonalization

The eigen spaces E) (set of eigen vectors corresponding to the same eigen value
A) are independant. Let be dim E\ =dy so ), dy <7

The matrix A is said to be diagonalizable iff >, dy = r. If it is so K" =
@ FE) and it is possible to find a basis (ei);:1 of K" such that the linear map a
associated with A is expressed in a diagonal matrix D=Diag(A1,...A,) (several
A can be identical).

With a basis of each vector subspace (ey), together they constitute a basis
for K" and : u € E\x & Lau= \u

Matrices are not necessarily diagonalizable.

Let be my the order of multiplicity of A in the characteristic equation. The
matrix A is diagonalizable iff my = dy. Thus if there are r distincts eigen values
the matrix is diagonalizable.

Let be P the matrix whose columns are the components of the eigen vectors
(in the canonical basis), P is also the matrix of the new basis : e; = Zj Ple;
and the new matrix of Ly is: D = P"'!AP & A = PDP~!. The basis (¢;) is
not unique : the vectors e; are defined up to a scalar, and the vectors can be
permuted.

Let be A,P,Q,D,D’' € K (r),D, D’ diagonal such that : A = PDP~! =
QD'Q~! then there is a permutation matrix 7 such that : D' = #D7*; P = Qn

Theorem 455 Normal matrices admit a complex diagonalization

Proof. Let K=C. the Schur decomposition theorem states that any matrix A
can be written as : A = U*TU where U is unitary (UU* = I) and T is a
triangular matrix whose diagonal elements are the eigen values of A.

T is a diagonal matrix iff A is normal : AA*=A*A. So A can be written as :
A =U*DU iff it is normal. The diagonal elements are the eigen values of A. m

Hermitian matrices and real symmetric matrices are normal, they can be
written as :

real symmetric : A = P'DP with P orthogonal : P*P = PP! = I. The
eigen vectors are real and orthogonal for the canonical bilinear form

hermitian : A = U*DU (also called Takagi’s decomposition)

8.3 Matrix calculus

There are many theorems about matrices. Here are the most commonly used.

8.3.1 Decomposition

The decomposition of a matrix A is a way to write A as the product of matrices
with interesting properties.
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Singular values

Theorem 456 Any matrizx A € K(r,c) can be written as : A = VDU where
V,U are unitary and D is the matrix :

b [dieg(VAT, R0
O(rfc) Xc

rXc

with \; the eigen values of A*A

(as A*A is hermitian its eigen values are real, and it is easy to check that
Ai > 0)

If K=R the theorem stands and V,U are orthogonal.

Remark : the theorem is based on the study of the eigen values and vectors
of A¥A and AA*.

Definition 457 A scalar A € K is a singular value for A € K(r,c) if there
are vectors [x] € K€, [y] € K" such that :
Alz] = Ay] and A* [y] = A[z]

Jordan’s decomposition

Theorem 458 Any matriz A € K(r) can be uniquely written as : A =S+ N
where S is diagonalizable, N is nilpotent (there is k€ N : N*¥ = 0),and SN = NS
.Furthermore there is a polynomial such that : S = Zle a;j A’

Schur’s decomposition

Theorem 459 Any matriz A € K(r) can be written as : A =U*TU where U
is unitary (UU* = I) and T is a triangular matriz whose diagonal elements are
the eigen values of A.

T is a diagonal matrix iff A is normal : AA*=A*A. So A can be written as

: A=U*DU iff it is normal (see Diagonalization).

With triangular matrices

Theorem 460 Lu decomposition : Any square matriz A € K(r) can be written
: A= LU with L lower triangular and U upper triangular

Theorem 461 QR decomposition : any matriz A € R(r,c) can be written :
A = QR with Q orthogonal and R upper triangular

Theorem 462 Cholesky decomposition : any symmetric positive definite ma-
triz can be uniquely written A = TtT where T is triangular with positive diagonal
entries
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Spectral decomposition
Let be A\;,k = 1...p the eigen values of A€ C(n) with multiplicity my, A
diagonalizable with A = PDP~!
By, the matrix deduced from D by putting 1 for all diagonal terms related
to A\r and 0 for all the others and Ey = PB,P~!
Then A =>"% _, A\Ex and :
EJ2 ZEJ‘;EZ'EJ‘ = 0,275]
1 B =1
rank E;, = my,
MI—A)E,=0
Al = Z /\];1Ek
A matrix commutes with A iff it commutes with each E},
If A is normal then the E}, are hermitian

Other

Theorem 463 Any non singular real matrizx A € R (r) can be written A=CP
(or A=PC) where C is symmetric definite positive and P orthogonal

8.3.2 Block calculus

Quite often matrix calculi can be done more easily by considering sub-matrices,
called blocks.
The basic identities are :

Anp  Bug| [Ap By | _ [AnpApns + BraCopni Anp By + Bng Dy,
Crp Drq| |Chpr Dipy CrpA, + DrgClr CopBl + DDy

so we get nicer results if some of the blocks are 0.

A B

Let be M= [C D

} : A(m, m); B(m, n); C(n, m); D(n,n)

Then :

det M = det(A) det(D — CA™'B) = det(D) det(A — BD~1C)

If A=I,D=L:det(M)=det (L — BC) = det(In, — CB)

P[n,n] = D—CA~'B and Q[m, m] = A— BD~'C are respectively the Schur
Complements of A and D in M.

Q—l —Q_lBD_l

M=
-D7'CcQ™' D' (I+CQ'BD™)
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8.3.3 Complex and real matrices

Any matrix A € C (r, ¢) can be written as: A = Re A4+iIm A where Re A,Im A €
R (r,c)
For square matrices M € C(n) it can be useful to introduce :

ReM —ImM

Z (M) = [ImM Re M

} € R(2n)

It is the real representation of GL(n,C) in GL(2n;R)
and :

Z(MN)=Z(M)Z(N)

Z(M*)=Z(M)*

TrZ(M)=2ReTrM

detZ(M)=|detM|?

8.3.4 Pauli’s matrices

They are (with some differences according to authors and usages) the matrices
inC(2):

fto] o1l Jo -] [t o]
UO_O 1’01_10’02_2' 0 703_0 _13

the multiplication tables are:

003 + 0404 = 25ij-00 : ’L,j = 1,2,3 that is :
0109 = i0'3

0903 = iO’l

0301 = iUQ

oio;j 0 1 2 3
0 (s g1 g9 g3
0000 = 0,0 = 1 o1 oo 103 —i09| ;
2 g9 —iUg gp iO'l
3 g3 iUg —iUl g0
_Uin 0 1 2 3 i
0 g1 g0 i0'3 —iO’g
01005 = 1 0o o1 o9 o3
2 iO'g —02 g1 iO'O
L 3 —iUQ —03 —iO'O 01 i
_Uin 0 1 2 3 i
0 g9 —iUg g0 iUl
020,05 = 1 —103 oD —o1  —top| ;
2 ago —iO'l g9 g3
L 3 iO'l iUO —03 g2 1
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0i0; 0 1 2 3

0 g3 iO’g —iO’l g0
030,05 = 1 oD o3 100 —O01
2 —iO’l —iUO 03 —09

3 (s} g1 g9 g3

8.3.5 Matrix functions

We have to introduce some bits of analysis but it seems logical to put these
results in this section.

C (r) is a finite dimensional vector space, thus a normed vector space and a
Banach vector space (and a C* algebra).

All the noms are equivalent. The two most common are :

i) the Frobenius norm (also called the Hilbert-Schmidt norm): ||A| ¢ =
Tr(A*A) = Zij |aij|2

ii) the usual norm on L (C™;C") : [|Al|, = inf ), =1 || Aull

1ALl < [ Allrs < nllAll;

Exponential

Theorem 464 The series : exp A = Zgo An—:l converges always

exp0=1

(expA) ™ = exp(—A)

exp (A) exp (B) = exp (A + B) iff AB=BA Beware !

(exp A)" = exp (A")

(exp A)™ = exp (4")

det(exp A) = exp(T'r (A))

The map t € R — exp (tA) defines a 1-parameter group. The map is differ-
entiable and :

4 (exptA) = = (expTA) A= AexpTA

% (exptA) =0 = A

Conversely if f : Ry — C(r) is a continuous homomorphism then 3A €
C(r): f(t) =exptA

Warning ! The map ¢t € R — exp A (t) where the matrix A(t) depends on t
has no simple derivative. We do not have

4 (exp A (1)) = A'(2) exp A(t)

Theorem 465 (Taylor 1 p.19) Let A be a nzn complex matriz, [v] a nzl matriz,
then :

Vt€R: (expt [A]) [v] = 37, (exp Ajt) [w; (£)]
where : \; are the eigen values of A, [w; (t)] is a polynomial in t, valued in
C(n,1)

If A is diagonalizable then the [w; (t)] = Cte

138



Theorem 466 Integral formulation: If all the eigen value of A are in the open
disc |z| < r then exp A = — [, (zI — A)~'e*dz with C any closed curve around

the origin and included in the disc

The inverse function of exp is the logarithm : exp (log ((A))) = A. Tt is usally
an multivalued function (as for the complex numbers).

log(BAB™!) = B(log A)B~!

log(A=1) = —log A

If A has no zero or negative eigen values : log A = EOO [(s—A)~t—(s—1)"1]ds

Cartan’s decomposition : Any invertible matrix A € C(r) can be uniquely
written : A = Pexp @ with :

P=Aexp(—-Q);PP=1

Q = 5log(4' 4 Q" = @
P,Q are real if A is real

Analytic functions

Theorem 467 Let f : C — C any holomorphic function on an open disc |z| <r
then : f(z) = Yo7 anz™ and the series : f(A) = > anA™ converges for
[Al <7

With the Cauchy’s integral formula, for any closed curve C circling x and
contalned Wlthln the disc, it holds

= z)dz then : = 5L [, f(2) (2] — A)" " dz where C is

2171' C z—
any closed curve enclosmg all the elgen values of A and contained within the
disc
If |A|l < 1: E;io(—l)pAp =T+ A1

Derivative
They are useful formulas for the derivative of functions of a matrix depending
on a variable.
1. Determinant:

Theorem 468 let A = [a;;] € R(n), then dd;tA = (—=1)" det {AEZE;H =
[A]) det A

Proof. we have [A_l]ij = 45 (—1)" det [4;] where [A_l]ij is the element
of A= and det [A;] the minor. m
Beware reversed indices!

Theorem 469 If R — R(n) :: A(z) = [ai; (z)], A invertible then % =
(det A)Tr (24 (A71))
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Proof. Schur’s decomposition : A =UTU*,UU* = I, T triangular
let be : A" =U'"TU* + UT'U* +UT(U*)
the derivative of U :[ul(z)] = U* — (U*) = (z)' — (U*)' = (U')"
AATY=U'TU*UT™ 1U* +UT'U*UT~'U* + UT (U*) UT~U*
=U'U*+UT'T'U* +UT (U*)' UT~'U*
Tr(A'A=Y) = Tr(U'U*) + Tr (T'T~Y) + Tr (UT (U*)) (UT~'U¥))
Tr ((UT (U*)) (UT~U*)) =Tr (UT7U*) (UT (U*))) = Tr (U (U*)")
UU*=T=UU"+UU*) =0
Tr(A’A=Y) =Tr (T'T7Y)
© = T~1! is triangular with diagonal such that :9};t? =0 = gith =1 =
Xhmi Opti = 03t
so 0! = 1/eigen values of A

Tr(AAY) =Tr (T'T7Y) =30, i— =3 (In\) = (3, In\) (m H)\ ) =
(Indet A)' m

2. Inverse:

dkpq
djTS

Theorem 470 If K = [k,y] € R(n), is an invertible matriz, then
—kprksqg with J = K= = [jp,]

Proof. Use: KJ) =67
d d 0 0
= (35 K3) I+K3, (W 1) =0= (55 K3) A+ K024 = (55 K3) T+
o
K30
0= (W K3 ) DKL+ Kokl = (
= 5k = —KiK| m
As (C( ) is a normed algebra the derivative with respect to a matrix (and

not only with respect to its elements) is deﬁned
¢:C(r) > C(r) = p(A) = (I, + A)"" then ¥ = -4

63@ K'y) + K'yKﬁ

Matrices of SO (R, p,q)
(See also Lie groups - classical groups)
These matrices are of some importance in physics, because the Lorentz group
of Relativity is just SO(R, 3,1).
SO(R,p,q) is the group of nxn real matrices with n=p+q such that :
detM =1

At 1, 4] A = Ly, where [I,, 4] = Ipxp 0
| 7 0 —Igxq
Any matrix of SO (R, p, q) has a Cartan decomposition, so can be uniquely
written as :

A = fowpllept] with b = | = (M |y
—M!, N = —N*

axp
(or as A = [expl’] [exp p’] with similar p’,]’ matrices).
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The matrix [I] is block diagonal antisymmetric.
This theorem is new.

L, o H (cosh D — I,) H' H(sinh D)U*
Theorem 471 expp = [o Lj [ U(sinh D)H!  U(cosh D — I,)U
with Hyyq such that : H'H = I,,P = HDU" where D is a real diagonal gzq
matriz and U is a gx q real orthogonal matrix.

Proof. We assume that p > q

The demonstration is based upon the decomposition of [P]
singular values decomposition. P reads :

P =VQU! where :

Q = |:O Dq><‘1 :| ;D = diag(dk)k:L..q;dk 2 0
pPXq

pxg USING the

(p—a)xq
[V],xp:lU],x, are orthogonal
2
Thus : PPtZV[ b ]Vt;PtP:UDQUt
O(p—q)xq

The eigen values of PP* are {d3,...d2,0,..,0} and of P'P: {d},...d2} . The
decomposition is not unique.

Notice that we are free to choose the sign of dg, the choice d > 0 is just a
convenience.

So :
o[ 9 I 8ol e

with : k= |: :| PXp
and :
0 @
it~ (e [3 oD
D2m 0 0
{ } 0 0 |sm>0
O D2m
2m+1 0 D?mtl
EE e e
D2m+1 0 O
thus :
O Q O 0 D2m+1 D2m
ex =LY | 0 0 0 [4 Sio
P[Qt 0} Pt+q Eme @Cm+1)! pemtl g 0 mel (2m)!
0 0 sinhD coshD 0 0 I, 0 0
sinhD 0 0 0 0 coshD 0 0 I
with : cosh D = diag(coshdy);sinh D = diag(sinh dy)
And :

cosh D 0 sinh D
[ 0 U?

t
expp = [‘6 8] 0 I, 0 e o ]
sinh D 0 cosh D
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In order to have some unique decomposition write :
coshD 0 . sinhD| _,
expp = [ 0 I, ViV 0 v
UlsinhD 0] V! U(cosh D)U*
Thus with the block matrices V1 (q,q) and V3 (p-q,q)
1 W
V= [Vg VJ € O(R,p)
ViV =VVt=1,
{Vlvf + VoV WiVi+ VQVJ] B {val +Vivs ViV + VjV;»,] B [Iq 0

VaVi+ VAV VaVi 4+ VaVi] T Ve ViVe ViVa VIV T 0 gy

ffo coshD+1, 0 } Vi = [VW; + Vi(cosh D)V VeV + Vi(cosh D)V
0 I, VaVi + Vs (cosh D) Vi V4V{ + Vi(cosh D)V

=1I,+ Eﬁj (coshD —I,) [Vf Vzﬂ

v [P o= [ B = ] o

U [sinhD O} Vt = U(sinh D) [Vf Vﬂ

expp — I, + [“2] (coshD —I,) [V{ V{] [“2} (sinh D)U*

U(sinh D) [V VY] U(cosh D)U*

\%1

V3

H is a pxq matrix with rank q : indeed if not the matrix V would not be

Let us denote H =

regular. Moreover :

ViV =VVt=IL=VVi+Vi{Vs =1, H'H=1,
And :
[, + H(cosh D — I,) H*  H(sinh D)U*
PP = U(sinh D)H* U(cosh D)U?
The number of parameters are here just pq and as the Cartan decomposition

is a diffeomorphism the decomposition is unique.

H, D and U are related to P and p by :

P=V [10)] U' = HDU"

o A R A O i WO A
= . =
L 0 U (p+4,29) D0 (29,29) 0 U (29,p+9)

With this decomposition it is easy to compute the powers of exp(p)
) ko _ |1, + H (coshkD — I,) H* H(sinh kD)U"
ke Z: (expp)" =exp(kp) = { U(sinh kD) H* U(cosh kD)U*

Notice that : exp(kp) = exp (|:k%t kf})

so with the same singular values decomposition the matrix D’ :
(kP)" (kP) = D"? = k2D,

kP = (%V)D’Ut = (V) (|k| D) U*
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(expp)”* = exp(kp) = I, + H (coshkD — I,) H* H(sinh kD)Ut]
U(sinh kD)H? U(cosh kD)U?
In particular with k -1 :
(expp) ! = [Ip + H (cosh D) Ht — HH!* —H (sinh D) Ut} )
—U (sinh D) H? U (cosh D) U*
For the Lorentz group the decomposition reads :
H is a vector 3x1 matrix : H'H =1, D is a scalar, U=[1],

] = [M3X3 0} .M = —M? thus expl = [R (1)] where R € SO (R, 3)

0 0 0
Is+ (coshD —1)HH! (sinhD)H| [R 0
A€50B,LR): 4 =exppeapl = [ 3 ((SinhD)Ht) ( coshg } [0 J
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9 CLIFFORD ALGEBRA

Mathematical objects such as ”spinors” and spin representations are frequently
met in physics. The great variety of definitions, sometimes clever but varying
greatly and too focused on a pretense of simplicity, gives a confusing idea of this
field. In fact the unifiying concept which is the base of all these mathematical
objects is the Clifford algebra. This is a special structure, involving a vector
space, a symmetric bilinear form and a field, which is more than an algebra
and distinct from a Lie algebra. It introduces a new operation - the product of
vectors - which can be seen as disconcerting at first, but when the structure is
built in a coherent way, step by step, we feel much more comfortable with all its
uses in the other fields, such as representation theory of groups, fiber bundles
and functional analysis. So we will proceed as usual in the more general settings,
because it is no more difficult and underlines the key ideas which sustain the
structure.

9.1 Main operations in a Clifford algebra
9.1.1 Definition of the Clifford algebra

This is the most general definition of a Clifford algebra.

Definition 472 Let F be a vector space over the field K (of characteristic # 2)
endowed with a symmetric bilinear non degenerate form g (valued in the field
K). The Clifford algebra CI(F,g) and the canonical map +: F — CI(F,g) are
defined by the following universal property : for any associative algebra A over
K (with internal product x and unit e) and K-linear map f : F — A such that :
Yo,we F: f(v) x f(w)+ f(w) x f(v)=2g(v,w) xe
there exists a unique algebra morphism : ¢ : CI(F,g) — A such that f = @o1

The Clifford algebra includes the scalar K and the vectors F (so we identify
1 (u) with uw € F and ¢ (k) with k € K)

Remarks :

i) There is also the definition f (v) X f (w) + f (w) X f (v) 4+ 2g (v,w) X e =0
which sums up to take the opposite for g (careful about the signature which is
important)

ii) F can be a real or a complex vector space, but g must be symmetric,
meaning that a hermitian sesquilinear form does not work.

iii) It is common to define a Clifford algebra through a quadratic form :
any quadratic form gives a bilinear symmetric form by polarization, and as a
bilinear symmetric form is necessary for most of the applications, we can easily
jump over this step.

iv) This is an algebraic definition, which encompasses the case of infinite
dimensional vector spaces. However, as usual when working with infinite dimen-
sional vector space, additional structure over V should be required, V should be
be a Banach vector space, the form g linear and consistent with the norm, so
we would have a Hilbert space.
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A definition is not a proof of existence. Happily :

Theorem 473 There is always a Clifford algebra, isomorphic, as vector space,
to the algebra AF of antisymmetric tensors with the exterior product.

Proof. Cl(F,g)=(®T) /I(V,g) where I(V,g) is the two sided ideal generated by
elements of the form v@v — g(v,v)1
The isomorphism follows the determination of the bases (see below) m

9.1.2 Algebra structure

1. Internal product:

Definition 474 The internal product of CI(F,g) is denoted by a dot - . It is
such that : Yo,w € F:v-w+w-v=2g(v,w)

Theorem 475 With this internal product (CI(F, g),-) is a unital algebra on the
field K, with unity element the scalar 1€ K

Notice that a Clifford algebra is an algebra but is more than that because
of this fundamental relation (valid only for vectors of F, not for any element of
the Clifford algebra).

Two useful relations :

Vu,v € F:u-v-u=g(uu)v—29u,v)u€F
Proof. u-v-u=u-(u-v—2g9(u,v)) =g(u,u)v—2¢9(u,v)u =

epeqei—eiep-eq=2(Nigep — Npey)
Proof. e;-e,-e; = (—ep-e;i+2np) - €q = —€p - € - eq + 2nipeg = —ep -
(—eq - €+ 2niq) + 2nipeq

=ep-eq- e — 2Nigep + 2n;ipeq

€p-€q-€ —€-ep-eq=2(Nigep — Nip€q) M

2. Homogeneous elements:

Definition 476 The homogeneous elements of degree v of CIl(F,g) are ele-
ments which can be written as product of r vectors of F

w = uj + Uz... - Up. The homogeneous elements of degree n=dimF are called
pseudoscalars (there are also many denominations for various degrees and di-
mensions, but they are only complications)

3. Basis of CI(F,g):

Theorem 477 (Fulton p.302) The set of elements :

{l,eil e, 1 <dp <o <ip <dimF k= 1...2dimF} where (el)?:?F 18
an orthonormal basis of F, is a basis of the Clifford algebra CI(F,q) which is a
vector space over K of dimCI(F,g)=24mF
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Notice that the basis of Cl(F,g) must have the basis vector 1 to account for
the scalars.

4. Fundamental identity

Theorem 478 For an orthonormal basis (e;) : e; - e; + e; - e; = 2n;; where
nij = g (ei,ej) = 0,+£1

SO
iF£jre-ej=—ej-e
elwei::I:l

If 0 is a permutation of the ordered set of indices :

Theorem 479 {i1,...,in} : €x(iy). - €o(iy)- * Co(i,) = €(0) €iy * €iyer - €4,
Warning ! it works for orthogonal vectors, not for any vector and the indices
must be different
A bilinear symmetric form is fully defined by an orthonormal basis. They
will always be used in a Clifford algebra.

So any element of C1(F,g) can be expressed as :

2dimF 2dimF
W= 2 k=0 {iv,ooyip} Win,eig}Cin oo Ciyp = 2 k=0 Zlk Wy, €iy = -e 7 Ciy,
Notice that wy € K

5. Isomorphism with the exterior algebra:

There is the isomorphism of vector spaces (but not of algebra: the product
- does not correspond to the product A ) :

€y * iy + i, € CUTF,g) <> €5, Neyy, N ..e;, € AF

This isomorphism does not depend of the choice of the orthonormal basis

9.1.3 Involutions

1. Principal involution «

Definition 480 The principal involution in CI(F,g) denoted o : CI(F,g) —
CI(F, g) acts on homogeneous elements as : o (vy. - va.. - vy) = (=1)" (v1 - va.. - v,.)

2dimF
o ( k=0 Z{il ..... in} Wir,oig} Cin * oo 'eik)
2din]F k
=>r0 E{il,...,ik} (-1) Wiy, ig}€iy * e €
It has the properties:
aoa=1Id,
Vw,w' € ClL(F,g) : a(w-w')=a(w) - a(w)

2. Decomposition of CI(F,g)
It follows that CI(F,g) is the direct sum of the two eigen spaces with eigen
value £1 for a.
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Definition 481 The set Cly (F,g) of elements of a Clifford algebra CI(F,g)
which are invariant by the principal involution is a subalgebra and a Clifford
algebra.

Cly(F,g) ={w e Cl(F,g) : a(w) = w}

Its elements are the sum of homogeneous elements which are themselves
product of an even number of vectors.

As a vector space its basis is 1, €;, - €, - ..€iy, 11 < d2... < 2k

Theorem 482 The set Cly (F,g) of elements w of a Clifford algebra CI(F,g)
such that a (w) = —w is a vector subspace of CI(F,g)

Cly (F,g) ={w € Cl(F,g) : & (w) = —w}
It is not a subalgebra. As a vector space its basis is e;, - €;, = ..€1,,,, 11 <

12... < 192k+1
Cly-Cly C Clo,Clo -Cl C Cll, Cly-Cly C Oll, Cly - Cly C Clp so Cl(F,g)
is a Z/2 graded algebra.

3. Transposition

Definition 483 The transposition on CI(F,g) is the involution which acts on
homogeneous elements by : (vy - Va... - Up) = (Vp - Vp_1... - V7).

odim F t odim F k(k—1)
. . . y — _ 2 ) ) -
(2 S g men) = i S (20 iy

et €y

9.1.4 Scalar product on the Clifford algebra

Theorem 484 A non degenerate bilinear symmetric form g on a vector space
F can be extended in a non degenerate bilinear symmetric form G on CIl(F,g).

Consider a basis of CI(F,g) deduced from an orthonormal basis of F. Define
G by :

11 < ig.. <ig,J1 < J2.. < Jg: G(eil T €y €y, €yt €yt ..ejl) = 5klg (eil,ejl)x
..g (eik, ejk) = 5kl77i1j1 Mg g

A basis of CI(F,g) is an orthonormal basis for G. G does not depend on the
choice of the basis. It is not degenerate.

kle K:G(k,1) = —kl

u,v € F: G (u,v) = g(u,v)

w= ZKj wije; - ej,w = ZKj wize; - ej: G(w,w') = Ziq Wi Wi NiiNgj

a,u,ve Cl(F,g) : G (u,v) = (u-v') where (u-v') is the scalar component of
w- vt

The transpose is the adjoint of the left and right Clifford product in the
meaning :

G(a-u,v) =G (u,a"-v);G(u-a,v) =G (u,v-a)
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9.1.5 Volume element

Volume element

Definition 485 A wvolume element of the Clifford algebra CI(F,g) is an element
w such that w-w =1

Let F be n dimensional and (e;)’-_, an orthonormal basis of (F,g) with K=R
or C. The element : eg = €1 - e3... - e, € CI(F, g) does not depend on the choice
of the orthonormal basis. It has the properties :

co-e0=(—1)"T F1— 41

eo - eg = +1 if p-q=0,1 mod 4

e - eg = —1 if p-q=2,3 mod 4

where p,q is the signature of g if K=R. If K=C then q=0 and p=n

Thus if K=C there is always a volume element w of Cl(F,g),which does not
depend of a basis. It is defined up to sign by: w =eg if eg-eg =1, and w = ieg
if €o €y = -1

If K=R and ej - eg = 1 there is always a volume element w of CI(F,g),which
does not depend of a basis, such that w - w = 1. It is defined up to sign by:
w=c¢egifey-eg=1 I ey ey =—1Cl(F,g) can be extended to its complexified
Cl.(F,g) (see below).

So in the following we assume that such a volume element w has been defined
in C1(F,g) or Cl.(F,g) and we consider the complex case.

Decomposition of CI(F,g)

Theorem 486 The Clifford subalgebra Cly (F, g) = Clg (F, g)®Cly (F,g) where
Clf (F,g),Cly (F,g) are two isomorphic subalgebras andYw € Clg (F,g) ,w' €
Cly (Fog):w-w' =0

The vector space Cly (F,C) = CIlf (F,C) @ Cly (F,C)

Proof. The map : w — w - w is a linear map on Cl(F,g) and w - (w - w) = w
so it has +1 as eigen values.

Let be the two eigen spaces :

Clt (F,g)={weCl(F,g): w-w=w},

Cl= (F,g) ={weCl(F,g) : w-w=—w}

We have : Cl(F,g) = ClIT (F,g) ® Cl~ (F,g) as eigen spaces for different
eigen values

Cly (F,g) = Cly (F,g) N Cl* (F,g) and Cly (F,g) = Cly (F,9) N Cl~ (F,g)
are subspace of Cly (F, g)

Clo (F,g),Cl* (F,g) are subalgebras, so is Cld (F, g)

if w,w' € Cly 4,C),w-w-w =—-w-w < w-w eCly (Fg):Cly (F,g)
is a subalgebra

the only element common to the two subalgebras is 0, thus Cly (F,g) =
Ol (F,9) & Cly (F, )
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w commute with any element of Cly (F,g), and anticommute with all ele-
ments of Cly (F,g) so
If we Clf (F,g),w €Cly (Fg9):w w=ww- w =—uw

wwww=wwww=wuw=-wuww=—ww=>ww=0
Similarly : Cly (F,C) = Cl (F,C) @ Cly (F,C) (but they are not subalge-
bras) m

So any element w of CI(F,g) can be written : w = wt +w™ with w* €
CI* (F,g),w™ € CI™ (F.g)

Creation and annihiliation operators

Definition 487 With the volume element w in CI(F,g)
The creation operator is p, = % (1+ @)
The annthiliation operator is py = % (1-w)

Let be : pe = 3 (1 + ew) with € = +1

Identities :

P2 =Pe;py - =p--pp =0,pp +p- =1

For any v € F': pov = vp_,
pew=w-pe= (14w +(1—eur)

So for any w = wt +w™ € CI(F,g) :
pr-w=whp cw=w;py - wh=w,
p_-wt=0p_ -w  =w ,p_-wt =0

whpy =wH,w .py =0,wrp_ =0, w .p_ =w"
wrpr =0,w™pr =w ,wr.p_ =wr,w .p_ =0

9.2 Pin and Spin groups
9.2.1 Adjoint map

1. Inverse of an element of CI(F,g)

Theorem 488 In a Clifford algebra any element which is the product of non
null norm vectors has an inverse for -:

(uy - oo-u) ' = ((u1 G uk)t) /ﬁg (U, uy)
r=1

So the set (GCI(F,g),-) of invertible elements of Cl(F,g) is a group (but not
a vector space).

2. Adjoint map:

Definition 489 The adjoint map, denoted Ad , is the map :

Ad : GCI(F,g) x CI(F,g) — CI(F,g) :: Adyu =a (w) -u-w™*

Where GCI(F,g) is the group of invertible elements of the Clifford algebra
Cl(F.g)

149



Theorem 490 The adjoint map Ad is a (GCI(F,g),-) group automorphism
If ’LU,’LU/ S GCZ(F, g) :Ad, 0o Ady = Ady.

3. Clifford group :
The Clifford group is the set : P = {w € GCI(F,g) : Ad,, (F) C F}

Theorem 491 The map : Ad :P—O (F,g) is a surjective morphism of groups

Proof. If w € P then Vu,v € F : g (Adyu, Ad,v) = g (u,v) so Ad,, € O (F,g)
the group of orthogonal linear maps with g
Over (F,g) a reflexion of vector u with g(u,u)# 0 is the orthogonal map :

R(u):F—F:Ruzx=x— 2355,53” and z,u € F: Adyz = R(u)x

Any orthogonal linear map over a n-dimensional vector space can be written
as the product of at most 2n reflexions. Which reads : Vh € O (F, g) , Juq, ...ux €
Fk <2dimF : h=R(uj)o...R(uy) = Ady,c...0Ad,, = Ady,.. .4, = Ady,w €
P

S0 Ady.w = Ady, ... ., OAdu/l-...-ug = Ad,, o...0Ad,, oAdu/1 o ...oAdu; =
hoh

Thus the map : Ad :P—O (F, g) is a surjective homomorphism and (Ad) ™" (O (F, g))
is the subset of P comprised of homogeneous elements of CI(F,g), products of
vectors uy with g(ug,ug)#0 B

9.2.2 Pin group
1. Definition

Definition 492 The Pin group of CIl(F.g) is the set :
Pin (F,g9) = {w € ClU(F,g9),w =w; - ... - Wy, g(wg, wg) = 1} with -

If w € Pin(F,g) then :
a(w)=(-1)"w and w' = w~
Vu,v € F: g (Adyu, Ady,v) = g (u,v)

1

Theorem 493 (Pin(F,g),-) is a subgroup of the Clifford group

Proof. (w1 -.wy) ' =a ((wl... wk)t) = (—=1)* wg - wp_q ... -w1 € Pin(F,g)
YVoe F:Adyv=1uy ..Uk V- U Ug_1... " Ul
U VU = —20 + 2 (27 njjukjvkj) ur € F m

2. Morphism with O(F,g):

Theorem 494 Ad is a surjective group morphism : Ad : (Pin(F,g),) = (O (F,g),0)
and O(F,g) is isomorphic to Pin(F,g)/{+1,—1}
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Proof. It is the restriction of the map Ad :P—O (F,g) to Pin(F,g)

For any h € O (F, g) there are two elements (w, —w) of Pin(F,g) such that :
Ady,=h m

So there is an action of O(F,g) on Cl(F,g) : A : O(F,g) x Cl(F,g) —
CI(F,g) :: A(h,w) = Adsw where s € Pin(F,g): Ads = h

3. Action of Pin(F,g) on CI(F,g):
Theorem 495 (CI(F,g),Ad) is a representation of Pin(F,q):

Proof. For any s in Pin(F,g) the map Ad; is linear on C1(F,g) : Ad; (kw + k'w’) =
a(s)(kw + kK w')-s™! = ka (s)w-s ' +k a(s)w' s~ and AdsAdy =Adsy,Ady =
IdF ]

Theorem 496 (F,Ad) is a representation of Pin(F,g)

This is the restriction of the representation on CI(F,g)
(see Representation of groups).

9.2.3 Spin group

1. Definition:

Definition 497 The Spin group of CI(F,q) is the set :Spin (F,g) = {w € ClL(F,g) : w = w;
with, -

So Spin (F,g) = Pin (F,g) N Cly (F, g)
If w € Spin(F,g) then :
a(w) =w and w' = w™

Yu,v € F: g(Adyu, Ady,v) = g (u,v)

1

2. Morphism with SO(F,g):

Theorem 498 Ad is a surjective group morphism : Ad :(Spin(F,g),:) —
(SO (F,g),0) and SO(F,g) is isomorphic to Spin(F,g)/{+1,—1}

Proof. It is the restriction of the map Ad :P— SO (F, g) to Spin(F,g)

For any h € SO (F, g) there are two elements (w, —w) of Spin(F,g) such that
:Ady=h m

3. Actions over CI(F,g):

Theorem 499 There is an action of SO(F,g) on CI(F,g) :
A : SO(F,g) x Cl(F,g) — CI(F,g) = Ah,u) = w-u-w™! where w €
Spin(F,g): Ad, =h

Theorem 500 (CI(F,g),Ad) is a representation of Spin(F,g): Ad;w = s - w -

sTl=s-w-st

Proof. This is the restriction of the representation of Pin(F,g) m
Theorem 501 (F,Ad) is a representation of Spin(F,g)
This is the restriction of the representation on CI(F,g)
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9.2.4 Characterization of Spin(F,g) and Pin(F,g)

We develop here properties of the Pin(F,g), Spin(F,g) which are useful in several
other parts of the book (mainly Fiber bundles and Functional analysis). We
need results which can be found in the Part Lie groups, but it seems better
to deal with these topics here. We assume that the vector space F is finite n
dimensional.

Lie Groups
1. Lie groups

Theorem 502 The groups Pin(F,g) and Spin(F,g) are Lie groups

Proof. O(F,g) is a Lie group and Pin(F,g)=0(F,g)x {+1,-1} =

Any element of Pin(F,g) reads in an orthonormal basis of F:

s = EZ:O E{thk} S’il,,,i%eil T €4y v €, = ZZ:O Zlk S]kE]k with ka eK,

where the components S7, are not independant because the generator vectors
must have norm 1.

Any element of Spin(F,g) reads :

s = chv:O Z{il,..i%} Siy.isg€in " €y * €y, = Efcv:O Elk SiEr, with Sy, €
K,N <n/2

with the same remark.

So Pin(F,g) and Spin(F,g) are not vector spaces, but manifolds embedded
in the vector space CI(F,g) : they are Lie groups.

Pin(F,g) and Spin(F,g) are respectively a double cover, as manifold, of
O(F,g) and SO(F,g). However the latter two groups may be not connected
and in these cases Pin(F,g) and Spin(F,g) are not a double cover as Lie group.

2. Lie algebra of the group

Theorem 503 The Lie algebra ThPin(F,g) is isomorphic to the Lie algebra

o(F.g) of O(F.g)
The Lie algebra Ty Spin(F,g) is isomorphic to the Lie algebra so(F.,g) of
SO(F,g)

Proof. O(F,g) is isomorphic to Pin(F,g)/{+1,—1}. The subgroup {+1,—1}
is a normal, abelian subgroup of Pin(F,g). So the derivative of the map h :
Pin(F,g9) — O(F,g) is a morphism of Lie algebra with kernel the Lie algebra

of {+1,—1} which is 0 because the group is abelian. So h’(1) is an isomorphism
(see Lie groups). Similarly for T1.Spin(F,g) m

Component expressions of the Lie algebras

Theorem 504 The Lie algebra of Pin(F,g) is a subset of Cl(F,g).
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Proof. With the formula above, for any map s : R — Pin(F,g) : s(t) =
Y oheo D (v, in) Sivize (t) €3y - €3 - €, and its derivative reads Ls(t) =0 =
>orso D lin,in) 481 oiine (t) |t=0€i, - €4, - €5, that is an element of CI(F,g) m

Because h/(1) : ThPin(F,g) — o(F,g) is an isomorphism, for any vector
W € o(F,g) there is an element o (®) = h/(1)"'F of CI(F,g). Our objective
here is to find the expression of o (%) in the basis of CI(F,g).

Lemma 505 Yu € F : 0 (Kao) - u—u-0(R"a) = Jou

Proof. i) In the standard representation (F,j) of SO(p,q) an element h(s) of
SO(p,q) reads j(h(s)). And in the orthonormal basis of F the formula : Adsu =
s-u-s~t=h(s)ureads: Adsu=s-u-s! = j(h(s))u where u,s are expressed
in their components with respect to the basis. By derivation with respect to s
at s=1 (Ad)' |s=1 : Ty Pin(F,g) — o(F, g) reads : (Ad) |s—10 (%) =3 (W(1))F

With a basis (%), of o(F,g) ® = 37" | k%K 4 and 3 (h'(1)) ® = S0, Kk°

J, with J, = (W (1)) (%) where J, is a nxn matrix such that : [n][J,]" +

[Ja] [77] =0

ii) The derivation of the product with respect to s at s=t : Adsu =s-u-s~
gives :

(Adyu) [omebs = & -u-t7 = tou-t71

For t=1 and & = 0 (%) : (Adsu) =10 (R) =0 (R) - u—u-o(R)

iii) The relation (Ad)' |s—10 (%) = W/(1)F reads : 0 (®) - u—u-0 (%)=
Yo k*J,u and because o is linear:

> aei Ka (0 (Ka) - u—u-0(Fa) = %Zlﬂ K Jau

thatis : Vu € F: 0 (Ka) u—u-0(Ra) = Jou W

From there one can get a more explicit expression for the elements of the
Lie algebra so(F,g).

1

Theorem 506 The vector W of the Lie algebra so(F,g) can be written in CI(F,g)
as : o (®) = > ol ei-ej with [o] = 1 [J][n] where [J] is the matriz of ® in
the standard representation of so(F,g)

Proof. We have also o (7a) = Efgvzo Elk Sar, E1, where s,j, are fixed scalars
(depending on the bases).

Thus : Z;gv:o Zlk Sar, (Fr, -u—u- Er) = J, (u) and taking u =e; :

Vi=1.n: ngvzo >o5, Sar, (B -ei —ei - B ) = Jo () = Z?:l [Jall €,

I]g = {il, ...,igk} .

(E‘],c € — € - E]k) = €4y "€l Ciyy, "€ T € €4yt €yt iy

Ifl ¢ Ik : E]k € — € - E‘],c =2 (—1)l+1 eil . 61‘2 . ..ei% t €

Ifi € I,i = 4 « Er, -e; = (—I)Qk_l Nii€iy * Ciger * €4y -Cinpy € - Bp =
(1) misei, - iy - €ty

so: By, -e;—e; - Ep, =2 (—l)l Nii€iy " Cige- * Ciy - Cigy

So : sqr, =0 for k # 1 and for k=1 : I pq = {ep,eq},p < q:

Zp<q Sapq (€p " €q " €i — €~ €p - €q) = Zi<j (—28qijmiiej) = Z?:l [Jal] €

i<j D Saij = —%771'1' [Ja]z
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k= _% Z:znzl Ka Zi<j Nii [Ja]z €; €5 .
1] [Ja]t +[Ja] 7] =0 = [Ja]q = —MNiiMNjj [Ja]; so the formula is consistent if
we replace i by j J
g (?“) -T2 Zj<z Nij [Ja ] e] €;
g (?a) =3 (Zz<; Mii [Ja] €; €5 + Zg<z 77” eJ €Z> ( 1<J 77” a] e ej— Zj<i i [Ja]f e; - €
- _% (Zl<3 Mii [J“]J € ej+ ZJ<1 7711 a €; ) - _% (Ezg 7711 a E Nii [ ] i)

(Ez 7 Mii [ a] € €5 — Tr ([‘] ])) (Ez,] Nii [Ja] ) because
Jis traceless _
g (?) = _% (Ei,j MNii [J]z €; - ej)
If we represent the components of o (?) in a matrix [o] nxn :o (?) = Eij
[U]é €; e; = —% (Z” Mii [J]f e; ej)
o], = =3 ()] & o] == () ==5m ) =] n =
Theorem 507 The action of Spin(F,g) on o(F,g) is : Adso (R) =0 (57 Congnesy [ (ﬁ)])

Proof. Ado (k) = s- Zu [] eirejsTt =%
[o]; [k ()] ex - [ph ()] ¢
= 2 bR () [0 W Wer e =Y (DA ()] 0] h ()] ) ex -es
Adyo (k) = Y [f en - er = Sy (D0 (9] 0] A (5)]") ex -
5] = b ()] [o] b (s)]'
}[n]=[ ()] 1] ] b (5]
b ()] ] b ()] = D]
}[n]z[ 1) ) bl [k ()] ) = [9h ()] ] 9 ()" []

[a]; Adge; - Adgse; = >,

ij ij

Derivatives of the translation and adjoint map
1. Translations:

The translations on Pin(F,g) are : s,t € Pin(F,g) : Lt =s-t,Rst =1t s

The derivatives with respect to t are : Lt (&) = s - &, RLt (&) = & - s with
& € Ty Pin(F, g)

With: & =L, (Do (R)=R,(1)o(R)=t-o(®)=0(K)-t

2. Adjoint map :

As a Lie group the adjoint map is the derivative of s-x-s~! with respect to
x at x=1:

Ad : Ty Pin(F,g) — L (Ty Pin(F, g); Ty Pin(F, g)) = Ads = (s 287 |p=1 =
Li(s™1) o Ry (1) = R (s) o L{(1)

Adyo (R)=s5-0(®) s =Adso (F)

3. Using : (Adyu) |s—i&s = &u-t ' —t-u-t™ V&t tand & = L, (1) 0 (R) =
t-o(R)

(Adyu) |smit -0 (R) = Ady (0 (R) - u—u-0(R))
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On the other hand (F, jh) is a representation of Spin(F,g) so (jh (s)) |s=t =
jh(t) o jh' (1)Lt
(G () |s=e Lt (1) ® = jh(t) o jh' ()R

9.3 Classification of Clifford algebras

Clifford algebras are very rich structures, so it is not too surprising that they
all look alike : there are not too possible many Clifford algebras. Thus the idea
of classifying the Clifford algebras and, as usual, this starts with morphisms
of Clifford algebras, meaning maps between Clifford algebras which preserve all
the defining features of these structures. The second step is to look after simpler
sets, which can be viewed as ”workable” proxy for Clifford algebras. This leads,
always along the same path, to the representation theory of Clifford algebra.
It looks like, but is not totally identical, to the usual representation theory of
algebras and groups.

9.3.1 Morphisms of Clifford algebras

Definition

Definition 508 A Clifford algebra morphism between the Clifford alge-
bras Cl(Fy,g1),Cl(Fs,g2) on the same field K is an algebra morphism F :
Cl(F1,g1) — Cl(F, g2)

Which means that :

Yw,w' € F1,Vk, k' € K : Fkw+kw') = kF(w) + F¥F(Ww'),F (1) =
1,F(w-w')=F(w) F(w)

It entails that :

Fu-v+v-u)=F(u)F (v)+F (v)-F (u) =2g2 (F (u), F (v)) = F (291 (u,v)) =
291 (u7 U)

so F must preserve the scalar product.

Categories

Theorem 509 Clifford algebras on a field K and their morphisms constitute a
category Clg.

The product of Clifford algebras morphisms is a Clifford algebra morphism.

Vector spaces (V,g) on the same field K endowed with a symmetric bilin-
ear form g, and linear maps f which preserve this form, constitute a category,
denoted Up

f € hommB ((Flvgl)v(F2792)) <~ f € L(Vla‘/Q) ,Vu,v €Fy: 92 (f (u)vf(v)) =
91 (uv U)

We define the functor : T€I: Yp +— €l which associates :

to each object (F,g) of YUp its Clifford algebra CI(F,g) : TC€I:(F,g) —
Cl(F,g)
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to each morphism of vector spaces a morphism of Clifford algebras :

T :f € homy, ((F1,01), (F2,92)) = F € homer, ((F1,91), (F2, g2))

F:Cl(F1,q1) — Cl(Fy,g2) is defined as follows :

VE kK € K,Yu,v € Fy : F(k) =k, F(u) = f(u),F (ku+k'v) = kf (u) +
K@), P (o) = f () f (o)

and as a consequence :

Fu-vtv-u)=f(u)-f0)+f(0) f(u)=292(f(u),f () =291 (u,v) =
F (291 (u,v))

Theorem 510 Linear maps f € L(Fi; Fy) preserving the scalar product can be
extended to morphisms F over Clifford algebras such that the diagram commutes

(F1,91) g a (F1,91)
1
1f I F
i

(F2,92) 4 a (F2,g2)

Theorem 511 TC€l:Yp — Clg is a functor from the category of vector spaces
over K endowed with a symmetric bilinear form, to the category of Clifford
algebras over K.

Fundamental isomorphisms

As usual an isomorphism is a morphism which is also a bijective map. Two
Clifford algebras which are linked by an isomorphism are said to be isomor-
phic. An automorphism of Clifford algebra is a Clifford isomorphism on the
same Clifford algebra. The only Clifford automorphisms of finite dimensional
Clifford algebras are the changes of orthonormal basis, with matrix A such that

L [A) [) [A] =[] -

Theorem 512 All Clifford algebras CI(F,q) where F is a complex n dimensional
vector space are isomorphic.

Theorem 513 All Clifford algebras CI(F,g) where F is a real n dimensional
vector space and g have the same signature, are isomorphic.

Notation 514 CI(C,n) is the common structure of Clifford algebras over a n
dimensional complex vector space

Cl(R,p,q) is the common structure of Clifford algebras over a real vector
space endowed with a bilinear symmetric form of signature (+ p, - q).
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The common structure of CI(C,n) is the Clifford algebra (C",g) over C
endowed with the canonical bilinear form : g (u,v) = Y7 (u;)?,u; € C

Cly (C,n) ~Cl(C,n —1)

The common structure of CI (R, p,q) is the Clifford algebra (R", g) over R
with p+q=n endowed with the canonical bilinear form :

g(u0) =30 (w)’ =0 (w) w €R

Warning ! The algebras Cl(R,p,q) and Cl(R,q,p) are not isomorphic if p # ¢
. However CI(R,0,n) ~ CI(R,n,0)

Pin and Spin groups are subsets of the Clifford algebras so, as such, are
involved in the previous morphisms. However in their cases it is more logical to
focus on their group structure, and consider group morphisms (see below).

9.3.2 Representation of a Clifford algebra

The previous theorems gives to the endeavour of classification a tautological
flavour. So if we want to go further we have to give up a bit on the require-
ments for the morphism. This leads to the idea of representation, which is
different and quite extensive. The representation of a Clifford algebra is a more
subtle topic than it seems. To make this topic clearer we distinguish two kinds
of representations, related but different, the algebraic representation and the
geometric representation.

Definitions
1. Algebraic representations:

Definition 515 An algebraic representation of a Clifford algebra CI(F,q) over
a field K is a couple (A,p) of an algebra (A, o) on the field K and a map :
p: ClL(F,g) = A which is an algebra morphism :

VX,Y € Cl(F,g),k, k' € K :

p (kX +K'Y) =kp(X) + K'p(Y),

p(X-Y)=p(X)op(Y),p(l) =14

(with o as internal operation in A, and A is required to be unital with unity
element I)

(CI(F,g), ) where T is any automorphism is an algebraic representation.

When CI(F,g) is finite dimensional the algebra is usually a set of matrices,
or of couple of matrices, as it will be seen in the next subsection.

If CI(F,g) is a real Clifford algebra and A a complex algebra with a real
structure : A = Agr @ iAR , this is a real representation where elements X€ Ag
and iX€ iAg are deemed different.

If CI(F,g) is a complex algebra A must be complex, possibly through a
complex structure on A (usually by complexification : A — Ac = A B iA).

Notice that if there is an algebra A isomorphic, as algebra, to C1(F,g), there
is not always the possibility to define a Clifford algebra structure on A (take
the square matrices) and so a Clifford algebra morphism is more than a simple
algebra morphism.

157



2. Geometric representation:

Definition 516 A geometric representation of a Clifford algebra CI(F,g) over
a field K is a couple (V,p) of a vector space V on the field K and a map :
p:ClL(F,g) —» L(V;V) which is an algebra morphism :

VX,Y € ClI(F,g),k, k' € K:p (kX +KY)=kp(X)+Kp(Y),

p(X-Y)=p(X)op(Y),p(1)=Idv

Notice that the internal operation in L(V;V) is the composition of maps,
and L(V;V) is always unital.

A geometric representation is a special algebraic representation, where a
vector space V has been specified. When the algebra A is a set of mxm matrices,
then the corresponding ”standard geometric representation” is just V = K™
and matrices act on the left on columns mx1 matrices. If CI(F,g), V are finite
dimensional then practically the geometric representation is a representation on
an algebra of matrices, and for all purposes this is an algebraic representation.
However the distinction is necessary for two reasons :

i) some of the irreducible algebraic representations of Clifford algebras are
on sets of couples of matrices, possibly on another field K’, for which there is
no clear geometric interpretation.

ii) from the strict point of view of the representation theory, the ”true na-
ture” of the space vector V does not matter, and can be taken as K™, this is
the standard representation. But quite often, and notably in physics, we want
to add some properties to V (such that a scalar product) and then the choice
of V matters.

Definition 517 An algebraic representation (A, p) of a Clifford algebra CI(F,g)
over a field K is faithful if p is bijective.

Definition 518 If (A,p) is an algebraic representation (A,p) of a Clifford
algebra CI(F,g) over a field K, a subalgebra A’ of A is invariant if Yw €
Cl(F,g),Yae A :p(w)ae A

Definition 519 An algebraic representation (A, p) of a Clifford algebra CI(F,g)
over a field K is irreducible if there is no subalgebra A’ of A which is invariant

by p

Equivalence of representations
1. Composition of representation and morphisms :
The algebras A on the same field and their morphisms constitute a category.
So composition of algebras morphisms are morphisms. Clifford algebras mor-
phisms are algebras morphisms. So composition of Clifford algebras morphisms
and algebras morphisms are still algebras morphisms.
Whenever there is an automorphism of Clifford algebra 7 on CI(F,g), and
a morphism of algebra p: A — A’ | for any given representation (A, p), then
(A,por)or (A, o p) is still a representation of the Clifford algebra CI(F,g).
But we need to know if this is still ”the same” representation of C1(F,g).
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2. First it seems logical to say that a change of orthonormal basis in the
Clifford algebra still gives the same representation. All automorphisms on a
Clifford algebra CI(F,g) are induced by a change of orthonormal basis in F, so :

Definition 520 If (A,p) is an algebraic representation of a Clifford algebra
Cl(F,g), T an automorphism of Clifford algebra on CI(F,g), then (A, poT) is an
equivalent algebraic representation of CIl(F,g)

So the representations (CI(F, g),7) of CI(F,g) on itself are equivalent.

3. Algebraic representations :

Definition 521 Two algebraic representations (A1, p1), (Az, p2) of a Clifford
algebra CI(F,g) are said to be equivalent if there is a bijective algebra morphism
¢: A — Ay such that : ¢ o p1 = po

For a geometric representation a morphism such that : ¢ : L(Vi; V) —
L (Vi; V2) is not very informative. This leads to:

4. Geometric representation:

Definition 522 An interwiner between two geometric representations (Va, p1), (Va, p2)
of a Clifford algebra CI(F,g) is a linear map ¢ : Vi — Vi such that Yw €

CI(F,g): 0 p1 (w) = po (w) 0 ¢ € L (Vi3 Va)

Definition 523 Two geometric representations of a Clifford algebra CI(F,g)
are said to be equivalent if there is a bijective interwiner.

In two equivalent geometric representations (V7,p1), (Va, p2) the vector
spaces must have the same dimension. Conversely two Banach vector spaces
with the same dimension (possibly infinite) on the same field are isomorphic so
(V1, p1) give the equivalent representation (Va, p2) by : p2 (w) = ¢op; (w)op~?

If (V, p) is a geometric representation of Cl(F,g), p and automorphism of V,
then (V,p2) is an equivalent representation with ps (w) = ¢ o p1 (w) o ¢~ 1.
Conjugation : Conj,p(w) = po p(w) o p~! is a morphism on L(V;V) so
(L(V;V),Conj,p) is an algebraic representation equivalent to (L(V; V), p).

The generators of a representation

The key point in a representation of a Clifford algebra CI(F,g) is the repre-
sentation of an orthonormal basis (e;) of F, which can be seen as the generators
of the algebra itself.

1. Operations on p (Cl (F, g))

If F is n dimensional, with orthonormal basis (e;)"_, , denote : v; = p(e;) ,i =
l.n,vo=p(1).

p is injective (said faithful) iff all the ~; are distincts.

As consequences of the morphism :
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odim odim F

p (Zk:o Z{il,...,ik} Wlin,in} Cin 7o eik) — Zek=0 Z{il,n.,ik} Weir,.yig} Yiz - Yig

Vorw € F: p(v) p(w) + p (w) p(v) = 29 (6,w) T

Yivs + 5% = 2057

If ue CI(F,g) is invertible then p (u) is invertible and p (u™!) = p (w) ™=
p(=u/g(u,w) = =p(u) /g (u,u)

—Mii%i =i

The images p (Pin(F,g)), p(Spin(F,g)) are subgroups of the group of in-
vertible elements of A, and p is a group morphism.

2. so(F,g) Lie algebra :

An element 7 of the Lie algebra so(F,g) and the corresponding matrices [J]
in its standard representation (F, j) is represepted by o (®) = 3 > (] [D)j e
ej in CU(F,g) and by : p(x) = 3 >, ([J] []); %y in A

(V, p) is usually not a Lie algebra representation of the Lie algebra so(F,g).

3. Generators :

The image p (CI (F, g)) is a subalgebra of A, generated by the set (p (e;)):;
and the internal operations of A : linear combination on K and product (denoted
without symbol). So one can consider the restriction of p to this set, on which it
is surjective (but not necessarily injective if all the generators are not distinct).

Whenever there is an automorphism of Clifford algebra 7 on CI(F,g), and
a morphism of algebra p: A — A’ | for any given representation (A, p), then
(A,poT)or (A o p)isstill an equivalent representation of the Clifford algebra
Cl(F,g), but the generators will not be the same.

For example :

if (A,p) is an algebraic representation, a change of orthonormal basis in F
with matrix M is an automorphism 7 of Clifford algebra. It gives the equivalent
representation (A, po7) with new generators : v, = Z?Zl M;dj. A must be
such that : [M]" [n] [M] = [n].

If (V,p) is a geometric representation then the map : ' : L(V;V) —
L (V*;V*) is a morphism and (V*, p?) is still an equivalent geometric repre-
sentation with [v/] = [yi]" .

If (V,p) is a geometric representation on a finite dimensional vector space,
then a change of basis in V, with matrix M,is an automorphism g and (V, p o p)
is still an equivalent geometric representation with generators [y/] = [M] [v;] [M] "

But if A is a complex algebra with a real structure, conjugation is an anti-
linear map, so cannot define a morphism.

Usually the problem is to find a set of generators which have also some nice
properties, such being symmetric or hermitian. So the problem is to find a rep-
resentation equivalent to a given representation (A, p) such that the generators
have the required properties. This problem has not always a solution.

4. Conversely, given an algebra A on the field K, one can define an algebraic

representation (A,p) of C1(F,g) if we have a set of generators (v;);_ _,, through
the identities :
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p(ei) =vi,p (1) =70 and p (ke; + k'e;) = kyi + k'vj, p (ei - 5) = v

The generators v; picked in A must meet some conditions (1) :

i) they must be invertible

i) Vi, j vy + 757 = 2ni%

The condition —n;;y; = 7; ! is a consequence of the previous

The choice of the n+1 elements (7;),_, _,, is not unique.

If, starting from a given algebra A of matrices, one looks for a set of gen-
erators which meet the conditions (1), but have also some nice properties such
being symmetric or hermitian, there is no general guarantee that it can be done.
However for the most usual representations one can choose symmetric or her-
mitian matrices as shown below. But then the representation is fixed by the
choice of the generators.

5. All irreducible representations of Clifford algebras are on sets of rxr
matrices with = 2. So a practical way to solve the problem is to start with
2x2 matrices and extend the scope by Kronecker product :

Pick four 2x2 matrices E; such that : E;E; + E;E; = 2n;;12, Ey = I (the
Dirac matrices or likes are usually adequate)

Compute : F; = E; ® E;

Then : Fiijl = EZ‘Ek ® EjEl

With some good choices of combination by recursion one gets the right ;

The Kronecker product preserves the symmetry and the hermicity, so if one
starts with E; having these properties the v; will have it.

A classic representation
1. A Clifford algebra CI(F,g) has a geometric representation on the algebra

AF* of linear forms on F

Consider the maps with ue V :

AMu): ApF* 5 A F* 2 A(u)p=uAp

w i N F* = A F* iy, (u) = p(u)

The map : AF* — AF* :: p(u) = A (u) — 4, is such that :

5 () 0 5(v) + 7(0) 0 7 (u) = 29 (u,v) Id

thus there is a map : p: CI(F,g) — AF* such that : p-2=p and (AF™*, p)
is a geometric representation of CI(F,g). It is reducible.

2. If F is an even dimensional real vector space, this construct can be
extended to a complex representation.

Assume that there is a complex structure F; on V with Je L(V;V) : J? =
—Id

Define the hermitian scalar product on Fy : (u,v) =

On the complex algebra AF; define the map : p(u )
u € Fy

(AF7,p-1) is a complex representation of CI(F, g) and a complex represen-
taion of the complexified Clc(F, g)

g (u,v) +ig (u, J (v))
= —z( (u) — iy,) for
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9.3.3 Classification of Clifford algebras

All finite dimensional Clifford algebras, which have common structures, have
faithful irreducible algebraic representations. There are 2 cases according to the
field K over which F is defined.

Complex algebras

Theorem 524 The unique faithful irreducible algebraic representation of the
complex Clifford algebra CI(C,n) is over a group of matrices of complex numbers

The algebra A depends on n :

If n=2m : A = C(2™) : the square matrices 2™ x 2™ (we get the dimension
22™ as vector space)

If n=2m+1: A = C(2™) ® C(2™) ~ C(2™) x C(2™) : couples (A,B) of
square matrices 2™ x 2™ (the vector space has the dimension 22™*1). A and B
are two independant matrices.

The representation is faithful so there is a bijective correspondance between
elements of the Clifford algebra and matrices.

The internal operations on A are the addition, multiplication by a complex
scalar and product of matrices. When there is a couple of matrices each op-
eration is performed independantly on each component (as in the product of a
vector space):

v ([4], [B]), (4], [B]) € A,k € C

(4], [B]) + (4], [B']) = (1] + [4], [B] + [B])

k ([A],[B]) = (K [A], k[B])

The map p is an isomorphism of algebras : Vw,w’ € CI(C,n),z,2' € C:

p(w) = [A] or p(w) = ([A], [B])

p(zw+ 2'w') = zp (w)+2'p (W) = z[A]+2' [A] or = (2 [A] + 2/ [A],, 2 [B] + 2’ [B'])

plw-w') = p(w) - p(w) = [4][B] or = (4] [4'],B][B")

In particular :

Cl1(C,0) ~ C; CI(C,1) ~ Cd C;CI(C,2) ~ C (4)

Real Clifford algebras

Theorem 525 The unique faithful irreducible algebraic representation of the
Clifford algebra CI(R,p,q) is over an algebra of matrices

(Husemoller p.161) The matrices algebras are over a field K’ (C,R) or the
division ring H of quaternions with the following rules :
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[(p — ¢) mod 8 Matrices (p — ¢q) mod8 Matrices
0 R (2™) 0 R (2™)
1 R(2™) @R (2™) -1 C(2™)
2 R (2™) 2 H (271
3 C(2m) -3 HQ" Yo H (2"
1 H (2m) -4 H (2 1)
5 HQ2mYeH (2! -5 C(2m)
6 H (2m1) -6 R (2™)
i 7 Cc(@2m) -7 R(2™) &R (2™)

On H matrices are defined similarly as over a field, with the non commuta-
tivity of product.

Remark : the division ring of quaternions can be built as Cl (R, 0, 3)

H® H,R &R : take couples of matrices as above.

The representation is faithful so there is a bijective correspondance between
elements of the Clifford algebra and of matrices. The dimension of the matrices
in the table must be adjusted to n=2m or 2m+1 so that dimg A = 2"

The internal operations on A are performed as above when A is a direct
product of group of matrices.

p is a real isomorphism, meaning that p (kw) = kp (w) only if k € R even if
the matrices are complex.

There are the following isomorphisms of algebras :

CI(R,0) ~R;CI(R,1,0) R® R; CI(R,0,1) ~C

Cl(R,3,1)~R(4),CI(R,1,3) ~ H (2)

9.3.4 Classification of Pin and Spin groups

Spin groups are important as they give non standard representations of the
orthogonal groups SO(n) and SO(p,q). See more in the Lie groups part.

Pin and Spin are subset of the respective Clifford algebras, so the previous
algebras morphisms entail group morphisms with the invertible elements of the
algebras. Moreover, groups of matrices are well known and themselves classified.
So what matters here is the group morphism with these ”classical groups”. The
respective classical groups involved are the orthogonal groups O(K,p,q) for Pin
and the special orthogonal groups SO(K,p,q) for Spin. A key point is that to
one element of O(K,p,q) or SO(K,p,q) correspond two elements of Pin or Spin.
This topic is addressed through the formalism of ”cover” of a manifold (see
Differential geometry) and the results about the representations of the Pin and
Spin groups are presented in the Lie group part .

Complex case

Theorem 526 All Pin(F,g) groups over complex vector spaces of same dimen-
sion are group isomorphic. The same for the Spin(F,q) groups.
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Notation 527 Pin (C,n) is the common group structure of Pin(Cl(C,n))
Spin (C,n) is the common group structure of Spin(Cl(C,n))

Each of the previous isomorphisms induces an isomorphism of groups:

Warning ! it does not extend to the multiplication by a scalar or a sum !

These groups are matrices groups (linear group of matrices).

Spin (C,n) is simply connected and is the universal double cover of SO(C,n):
SO(C, n)=Spin(C,n)/(xI)

Real Case

Theorem 528 All Pin(F,g) groups over real vector spaces of same dimension
endowed with bilinear symmetric form of same signature are group isomorphic.
The same for the Spin(F,g) groups.

Notation 529 Pin (R,p,q) is the common group structure of Pin(Cl (R, p,q))
Spin (R, p, q) is the common group structure of Spin(Cl (R, p, q))

Each of the previous isomorphisms induces an isomorphism of groups.

These groups are matrices groups (linear group of matrices) and Lie groups

a)Ifporq=0:

Pin(R,0,n), Pin(R,n,0) are not isomorphic, they are not connected.

Spin(R,n)=Spin(R,0,n) and Spin(R,n,0) are isomorphic and are the unique
double cover of SO(R,n)

For n>2 Spin(R,n) is simply connected and is the universal cover of SO(R,n)

b) If p,q are >0 :

Pin(R,p,q),Pin(R,q,p) are not isomorphic if p # ¢

Pin(R,p,q) is not connected, it maps to O(R,p,q) but the map is not surjec-
tive

Spin(R,p,q) and Spin(R,q,p) are isomorphic

If n>2 Spin(R,p,q) is a double cover of SO (R,p,q), the connected component
of the identity of the group SO(R,p,q).

9.3.5 Complexification of a Clifford algebra

It is possible to extend any real vector space F to a complex vector space F,. and
g can be extended by defining g.(iu,v)=g.(u,iv)=ig(u,v), which gives a complex
Clifford algebra CI(Fg, g.).

On the other hand the Clifford algebra can be complexified by extension :
Cl(G,g) > Cl.(F,g)=CIl(F,g9) @ C

The two procedures give the same result : CI(F,,g.) = Cl. (F,g)

In this process Cl(p,q) = Cl(p+ ¢,C) = Cl.(p, q)

The group Spin. (F, g) is the subgroup of Cl. (F, g) comprised of elements :

S = zs where z is a module 1 complex scalar, and s€ Spin(F, g). It is a subgroup
of the group Spin (F¢, g) -
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Part 111
PART 3 : ANALYSIS

Analysis is a very large area of mathematics. It adds to the structures and
operations of algebra the concepts of ” proximity” and ”limit”. Its key ingredient
is topology, a way to introduce these concepts in a very general but rigorous
manner, to which is dedicated the first section. It is mainly a long, but by far
not exhaustive, list of definitions and results which are necessary for a basic
understanding of the rest of the book. The second section is dedicated to the
theory of measure, which is the basic tool for integrals, with a minimum survey
of probability theory. The third and fourth sections are dedicated to analysis on
sets endowed with a vector space structure, mainly Banach spaces and algebras,
which lead to Hilbert spaces and the spectral theory. The review is more detailed
on these latter difficult and important topics.

10 GENERAL TOPOLOGY

Topology can be understood with two different, related, meanings. Initially it
has been an extension of geometry, starting with Euler, Listing and pursued
by Poincaré, to study ”qualitative” properties of objects without referring to a
vector space structure. Today this is understood as algebraic topology, of which
some basic elements are presented below.

The second meaning, called ”general topology”, is the mathematical way
to define ”proximity” and ”limit”, and is the main object of this section. It
has been developped in the beginning of the XX° century by Cantor, as an
extension of the set theory, and developped with metrics over a set by Fréchet,
Hausdorff and many others. General topology is still often introduced through
metric spaces. But, when the basic tools such as open, compact,... have been
understood, they are often easier to use, with a much larger scope. So we start
with these general concepts. Metric spaces bring additional properties. Here
also it has been usual to focus on definite positive metrics, but many results
still hold with semi-metrics which are common.

This is a vast area, so there are many definitions, depending on the authors
and the topic studied. We give only the most usual, which can be useful, and
often a prerequisite, in advanced mathematics. We follow mainly Wilansky,
Gamelin and Schwartz (tome 1). The reader can also usefully consult the tables
of theorems in Wilansky.
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10.1 Topological space

In this subsection topological concepts are introduced without any metric. They
all come from the definition of a special collection of subsets, the open subsets.

10.1.1 Topology
Open subsets

Definition 530 A topological space is a set E, endowed with a collection
Q C 28 of subsets called open subsets such that :

EFeQoeQ

VI:O; € Q,UielOi cQ

VI, cardl < oo :0; € Q,NicO; € Q

The key points are that every (even infinite) union of open sets is open, and
every finite intersection of open sets is open.

The power set 2F is the set of subsets of E, so Q C 2F. Quite often the open
sets are not defined by a family of sets, meaning a map : I — 2

Example : in R the open sets are generated by the open intervals Ja,b[ (a
and b excluded).

Topology

The topology on E is just the collection 2 of its open subsets, and a topolog-
ical space will be denoted (F, Q) . Different collections define different topologies
(but they can be equivalent : see below). There are many different topologies on
the same set : there is always Qy = {@, E} and Q. = 2 (called the discrete
topology).

When Q; C Q2 the topology defined by €; is said to be ”thinner” (or
stronger) then 2, and Q3 ”coarser” (or weaker) than ;. The issue is usually
to find the "right” topology, meaning a collection of open subsets which is not
too large, but large enough to bring interesting properties.

Closed subsets

Definition 531 A subset A of a topological space (E, ) is closed if A° is open.
So :

Theorem 532 In a topological space :
I, FE are closed,
any intersection of closed subsets is closed,
any finite union of closed subsets is closed.

A topology can be similarly defined by a collection of closed subsets.
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Relative topology

Definition 533 If X is a subset of the topological space (E,) the relative
topology (or induced topology) in X inherited from E is defined by taking as
open subsets of X : Qx ={0ONX,0 € Q}. Then (X,Qx) is a topological space,
and the subsets of Qx are said to be relatively open in X.

But they are not necessarily open in E : indeed X can be any subset and one
cannot know if O N X is open or not in E.

10.1.2 Neighborhood

Topology is the natural way to define what is ”close” to a point.

1. Neighborhood:

Definition 534 A neighborhood of a point z in a topological space (E,Q) is
a subset n(x) of E which contains an open subset containing x: 30 € Q : O C
n(z),z € O

Indeed a neighborhood is just a convenient, and abbreviated, way to say :
”a subset which contains on open subset which contains x”.

Notation 535 n(z) is a neighborhood of a point x of the topological space (E,Y)

Definition 536 A point z of a subset X in a topological space (E,Q) is isolated
in X if there is a neighborhood n(z) of = such that n(x) N X = {x}

2. Interior, exterior:

Definition 537 A point z is an interior point of a subset X of the topological

space (E,QY) if X is a neighborhood of x. The interior X of X is the set of its
interior points, or equivalently,the largest open subset contained in X (the union

of all open sets contained in X) . The exterior (X°) of X is the interior of its
complement, or equivalently,the largest open subset which does not intersect X
(the union of all open sets which do not intersect X)

o
Notation 538 X is the interior of the set X

Theorem 539 X is an open subset : X C X and X = X iff X is open.

3. Closure:
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Definition 540 A point x is adherent to a subset X of the topological space
(EQ) if each of its neighborhoods meets X. The closure X of X is the set of
the points which are adherent to X or, equivalently, the smallest closed subset
which contains X (the intersection of all closed subsets which contains X)

Notation 541 X is the closure of the subset X
Theorem 542 X is a closed subset : X T X and X = X iff X is closed.

Definition 543 A subset X of the topological space (E, Q) is dense in E if its
closure is E: X = E

SVweQunNX #0
4. Border:

Definition 544 A point x is a boundary point of a subset X of the topological
space (E,Q) if each of its neighborhoods meets both X and X¢.The border 0X
of X is the set of its boundary points.

Theorem 545 0X is a closed subset

Notation 546 0X is the border (or boundary) of the set X

Another common notation is X =0X

5. The relation between interior, border, exterior and closure is summed up
in the following theorem:

Theorem 547 If X is a subset of a topological space (E,Q)) then :
X =XUoxX = ((Xc)>

10.1.3 Base of a topology

A topology is not necessarily defined by a family of subsets. The base of a
topology is just a way to define a topology through a family of subsets, and it
gives the possibility to precise the thinness of the topology by the cardinality of
the family.
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Base of a topology

Definition 548 A base of a topological space (E,Q) is a family (B;);c; of
subsets of E such that : VO € Q,3J CI:0 = U;c;B;

Theorem 549 (Gamelin p.70) A family (B;),.; of subsets of E is a base of the
topological space (E,Q) iff Ve e E,Jie€l:x € B; andVi,j€Il:x € B,NB; =
Jdkel:xe By, B, CB;NDB;

Theorem 550 (Gamelin p.70) A family (B;);c; of open subsets of Q is a base
of the topological space (E,Q) iff Vo € E,V¥n (x) neighborhood of x, Ji € I : x €
B;,B; C n(x)

Countable spaces

The word ”countable” in the following can lead to some misunderstanding.
It does not refer to the number of elements of the topological space but to the
cardinality of a base used to define the open subsets. It is clear that a topology
is stronger if it has more open subsets, but too many opens make difficult to
deal with them. Usually the "right size” is a countable base.

1. Basic definitions:

Definition 551 A topological space is

first countable if each of its points has a neighborhood with a countable
base.

second countable if it has a countable base.

Second countable=-First countable
In a second countable topological space there is a family (B,),, oy of subsets
which gives, by union and finite intersection, all the open subsets of ().

2. Open cover:
The ”countable” property appears quite often through the use of open covers,
where it is useful to restrict their size.

Definition 552 An open cover of a topological space (E, ) is a family

(Oi)icr,0i C Q of open subsets whose union is E. A subcover is a subfamily
of an open cover which is still an open cover. A refinement of an open cover
is a family (F; )jeJ of subsets of E whose union is E and such that each member
is contained in one of the subset of the cover : Vj e J,diel: F; T O;

Theorem 553 Lindelof (Gamelin p.71) If a topological space is second count-
able then every open cover has a countable open subcover.

3. Another useful property of second countable spaces is that it is often
possible to extend results obtained on a subset of E. The procedure uses dense
subspaces.
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Definition 554 A topological space (E, ) is separable if there is a countable
subset of E which is dense in E.

Theorem 555 (Gamelin p.71) A second countable topological space is separable

10.1.4 Separation

It is useful to have not too many open subsets, but it is also necessary to have not
too few in order to be able to ”distinguish” points. They are different definitions
of this concept. By far the most common is the "Hausdorff” property.

Definitions
They are often labeled by a T from the german ” Trennung” =separation.

Definition 556 (Gamelin p.73) A topological space (E,Q) is

Hausdorff (or T2) if for any pair x,y of distinct points of E there are open
subsets 0,0’ such that x € O,y € O',0N0O' =Y

regular if for any pair of a closed subset X and a point y ¢ X there are
open subsets 0,0’ such that X C O,y € O',0N0" =@

normal if for any pair of closed disjoint subsets X, Y X NY = & there are
open subsets 0,0’ such that X c O,Y c O',0N0O' =g

T1 if a point is a closed set.

T3 if it is T1 and regular

T4 if it is T1 and normal

The definitions for regular and normal can vary in the litterature (but Haus-
dorff is standard). See Wilansky p.46 for more.

Theorems
1. Relations between the definitions

Theorem 557 (Gamelin p.73) T4 = T3 = T2 = TI

Theorem 558 (Gamelin p.7/) A topological space (E,Q) is normal iff for any
closed subset X and open set O containing X there is an open subset O’ such
that O’ C O and X C O’

Theorem 559 (Thill p.84) A topological space is reqular iff it is homeomorphic
to a subspace of a compact Hausdorff space

2. Separation implies the possibility to define continuous characteristic
maps. Here the main thorems:

Theorem 560 Urysohn (Gamelin p.75): If X,Y are disjoint subsets of a nor-
mal topological space (E,Q) there is a continuous function f : E — [0,1] C R
such that f(z)=0 on X and f(x)=1 on Y.
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Theorem 561 Tietze (Gamelin p.76): If F is a closed subset of a normal topo-
logical space (E,Q) ¢ : F — R bounded continuous, then there is ® : E — R
bounded continuous such that ® = ¢ over F.

Remarks :

1) ”separable” is a concept which is not related to separation (see base of a
topology).

2) it could seem strange to consider non Hausdorff space. In fact usually this
is the converse which happens : one wishes to consider as "equal” two different
objects which share basic properties (for instance functions which are almost
everywhere equal) : thus one looks for a topology that does not distinguish
these objects. Another classic solution is to build a quotient space through an
equivalence relation.

10.1.5 Compact

Compact is a topological mean to say that a set is not "too large”. The other
useful concept is locally compact, which means that "bounded” subsets are
compact.

Definitions

Definition 562 A topological space (E,Q) is :

compact if for any open cover there is a finite open subcover.

countably compact if for any countable open cover there is a finite open
subcover.

locally compact if each point has a compact neighborhood

compactly generated if a subset X of E is closed in E iff X N K is closed
for any compact K in E. We have the equivalent for open subsets.

In a second countable space an open cover has a countable subcover (Lindelof
theorem). Here it is finite.

Definition 563 A subset X of topological space (E, ) is :
compact in E if for any open cover of X there is a finite subcover of X
relatively compact if its closure is compact

Definition 564 A Baire space is a topological space where the intersection of
any sequence of dense subsets is dense

Theorems
Compact = countably compact
Compact = locally compact
Compact, locally compact, first countable spaces are compactly generated.
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Theorem 565 (Gamelin p.83) Any compact topological space is locally com-
pact. Any discrete set is locally compact. Any non empty open subset of R™ is
locally compact.

Theorem 566 (Gamelin p.79) Any finite union of compact subsets is compact.

Theorem 567 (Gamelin p.79) A closed subset of a compact topological space
18 compact.

Theorem 568 (Wilansky p.81) A topological space (E,Q) is compact iff for
any family (X;),c; of subsets for wich Nier X; = @ there is a finite subfamily J
for which Nicy X; = @

Theorem 569 (Wilansky p.82) The image of a compact subset by a continuous
map is compact

Theorem 570 (Gamelin p.80) If X is a compact subset of a Hausdorff topo-
logical space (E,Q) :

- X is closed

-Vy ¢ X there are open subsets 0,0’ such that : y € 0, X C O',0N0"' =&

Theorem 571 (Wilansky p.83) A compact Hausdorff space is normal and reg-
ular.

Theorem 572 (Gamelin p.85) A locally compact Hausdor(f space is reqular

Theorem 573 (Wilansky p.180) A locally compact, regular topological space is
a Baire space

Compactification
(Gamelin p.84)

This is a general method to build a compact space from a locally compact
Hausdorff topological space (F,Q). Define F=EU{oco} where oo is any point
(not in E). There is a unique topology for F such that F is compact and the
topology inherited in E from F coincides with the topology of E. The open
subsets in F are either open subsets of E or O such that co € O and E\O is
compact in E.

10.1.6 Paracompact spaces

The most important property of paracompact spaces is that they admit a par-
tition of unity, with which it is possible to extend local constructions to global
constructions over E. This is a mandatory tool in differential geometry.
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Definitions

Definition 574 A family (X;),c; of subsets of a topological space (E,Q) is :
locally finite if every point has a neighborhood which intersects only finitely
many elements of the family.
o-locally finite if it is the union of countably many locally finite families.

Definition 575 A topological space (E,Q) is paracompact if any open cover
of E has a refinement which is locally finite.

Theorems

Theorem 576 (Wilansky p.191) The union of a locally finite family of closed
sets is closed

Theorem 577 (Bourbaki) Every compact space is paracompact. Every closed
subspace of a paracompact space is paracompact.

Theorem 578 (Bourbaki) Fvery paracompact space is normal

Warning ! an infinite dimensional Banach space may not be paracompact

Existence of a partition of unity

Theorem 579 (Nakahara p.206) For any paracompact Hausdorff topological
space (E,$Q) and open cover (O;);c;, there is a family (f;),c; of continuous
functions f; : E — [0,1] C R such that :

-Vj e J,3ieI: support(f;) C O;

-V € E,In(z),3K C Jycard(K) < oo :Vy en(z):Vje J\K : f;(y) =
0,2 er [ily) =1

10.1.7 Connected space
Connectedness is related to the concepts of ”broken into several parts”. This is

a global property, which is involved in many theorems about unicity of a result.

Definitions

Definition 580 (Schwartz I p.87) A topological space (E,QY) is connected if
it does not admit a partition into two subsets (other than E and &) which are
both closed or both open, or equivalently if there are no subspace (other than E
and @) which are both closed and open. A subset X of a topological space (E, Q)
1s connected if it is connected in the induced topology.
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So if X is not connected (say disconnected) in E if there are two subspaces of
E, both open or closed in E, such that X = (X NA)U(X NB),ANBNX =&.

Definition 581 A topological space (E,Q) is locally connected if for each
point x and each open subset O which contains x, there is a connected open
subset O’ such that x € O',0' C O .

Definition 582 The connected component C(z) of a point x of E is the
union of all the connected subsets which contains .

It is the largest connected subset of E which contains x. So z ~ y if C' (z) =
C (y) is a relation of equivalence which defines a partition of E. The classes of
equivalence of this relation are the connected components of E. They are disjoint,
connected subsets of E and their union is E. Notice that the components are
not necessarily open or closed. If E is connected it has only one component.

Theorems

Theorem 583 The only connected subsets of R are the intervals [a,b] ,|a, b], [a, b], |a, b]
(usually denoted |a,b|) a and b can be +oo

Theorem 584 (Gamelin p.86) The union of disjointed connected subsets is
connected

Theorem 585 (Gamelin p.86) The image of a connected subset by a continuous
map is connected

Theorem 586 (Wilansky p.70) If X is connected in E, then its closure X is
connected in E

Theorem 587 (Schwartz I p.91) If X is a connected subset of a topological

space (E,Q) , Y a subset of E such that X N Y # @ and X N (?)c # & then
XNoY £9

Theorem 588 (Gamelin p.88) Each connected component of a topological space

is closed. Fach connected component of a locally connected space is both open
and closed.

10.1.8 Path connectedness

Path connectedness is a stronger form of connectedness.
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Definitions

Definition 589 A path on a topological space E is a continuous map : ¢: J —
E from a connected subset J of R to E. The codomain C={c(t),t € J} of cis a
subset of E, which is a curve.

The same curve can be described using different paths, called parametri-
sation. Take f : J7 — J where J’ is another interval of R and f is any bijective
continuous map, then : ¢/ =co f :J — FE is another path with image C.

A path from a point x of E to a point y of E is a path such that z € C,y € C

Definition 590 Two points x,y of a topological space (E,€)) are path-connected
(or arc-connected) if there is a path from x to y.
A subset X of E is path-connected if any pair of its points are path-connected.
The path-connected component of a point x of E is the set of the points
of E which are path-connected to x.

x ~ y if x and y are path-connected is a relation of equivalence which defines
a partition of E. The classes of equivalence of this relation are the path-connected
components of E.

Definition 591 A topological space (E,) is locally path-connected if for
any point x and neighborhood n(x) of x there is a neighborhood n’(z) included in
n(x) which is path-connected.

Theorems

Theorem 592 (Schwartz I p.91) if X is a subset of a topological space (E, ),
any path from a € X to b € (X°) meets 0X

Theorem 593 (Gamelin p.90) If a subset X of a topological space (E,Q) is
path connected then it is connected.

Theorem 594 (Gamelin p.90) Each connected component of a topological space
(E, Q) is the union of path-connected components of E.

Theorem 595 (Schwartz I p.97) A path-connected topological space is locally
path-connected. A connected, locally path-connected topological space, is path-
connected. The connected components of a locally path-connected topological
space are both open and closed, and are path connected.
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10.1.9 Limit of a sequence

Definitions

Definition 596 A point z€ E is an accumulation point (or cluster) of the
sequence (Tn),cy 0 the topological space (E,SY) if for any neighborhood n(x)
and any N there is p>N such that x, € n(z)

A neighborhood of x contains infinitely many x,,

Definition 597 A point v€ E is a limit of the sequence (x,), oy in the topo-
logical space (E,QY) if for any neighborhood n(z) of x there is N such that
Vn > N : x, € n(x). Then (x,),.y converges to x and this property is
denoted x = lim,,_ o0 Ty, .

There is a neighborhood of x which contains all the x,, for n>N

Definition 598 A sequence (xr,),cy in the topological space (E, Q) is conver-
gent if it admits at least one limit.

So a limit is an accumulation point, but the converse is not aways true. And
a limit is not necessarily unique.

Theorems

Theorem 599 (Wilansky p.47) The limit of a convergent sequence in a Haus-
dorff topological space (E,Q) is unique. Conversely if the limit of any convergent
sequence in a topological space (E, Q) is unique then (E,Q) is Hausdorff.

Theorem 600 (Wilansky p.27) The limit (s) of a convergent sequence (n ), cy

in the subset X of a topological space (E, Q) belong to the closure of X : limy, o0 @y, €
X . Conversely if the topological space (E, Q) is first-countable then any point
adherent to a subset X of E is the limit of a sequence in X.

As a consequence :

Theorem 601 A subset X of the topological space (E,Q) is closed if the limit
of any convergent sequence in X belongs to X

This is the usual way to prove that a subset is closed. Notice that the
condition is sufficient and not necessary if E is not first countable.

Theorem 602 Weierstrass-Bolzano (Schwartz I p.75): In a compact topologi-
cal space every sequence has a accumulation point.

Theorem 603 (Schwartz I p.77) A sequence in a compact topological space
converges to a iff a is its unique accumulation point.
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10.1.10 Product topology

Definition

Theorem 604 (Gamelin p.100) If (E;,$%;);c; is a family of topological spaces,
the product topology on E = [| E; is defined by the collection of open sets :

i€l
If I is finite : Q= [
i€l
If Iis infinite : Q = [[w; , w; C E; such that3J finiteC [ :i € J:w; CQ;
i€l

So the open sets of E are the product of a finite number of open sets, and
the other components are any subsets.

The projections are the maps : w; : E — E;

The product topology is the smallest € for which the projections are con-
tinuous maps

Theorems

Theorem 605 (Gamelin p.100-103) If (E;);c; is a family of topological spaces
(E;,Q) and E = [ E; their product endowed with the product topology, then:
iel

i) E is Hausdorff iff the (E;, ;) are Hausdorff

it) E is connected iff the (E;, ;) are connected

iii) E is compact iff the (E;,Q;) are compact (Tychonoff’s theorem,)

i) If I is finite, then E is regqular iff the (E;,$;) are reqular

v) If I is finite, then E is normal iff the (E;, ;) are normal

vi) If I is finite, then a sequence in E is convergent iff each of its component
1§ convergent

vit) If I is finite and the (E;, ;) are secound countable then E is secound
countable

Theorem 606 (Wilansky p.101) An uncountable product of non discrete space
cannot be first countable.

Remark : the topology defined by taking only products of open subsets in
all E; (called the box topology) gives too many open sets if I is infinite and the
previous results are no longer true.

10.1.11 Quotient topology

Quotient spaces are very common. so it is very useful to understand how it
works. An equivalence relation on a space E is just a partition of E, and the
quotient set E’=E/~ the set of of its classes of equivalence (so each element is
itself a subset). The key point is that E’ is not necessarily Hausdorff, and it
happens only if the classes of equivalence are closed subsets of E.
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Definition

Definition 607 (Gamelin p.105) Let (E,Q) be a topological space, ~ and an
equivalence relation on E, m : E — E’' the projection on the quotient set
E’=E/~. The quotient topology on E’is defined by taking as open sets £ in
E:Q={0CE :771(0) € Q}

So 7 is continuous and this is the largest (meaning the largest Q') topology
for which 7 is continuous.

Theorems
The property iv) is used quite often.

Theorem 608 (Gamelin p.107) The quotient set E’ of a topological space (E,QY)
endowed with the quotient topology is :

i) connected if E is connected

i) path-connected if E is path-connected

iii) compact if E is compact

iv) Hausdorff iff E is Hausdorff and each equivalence class is closed in E

Theorem 609 (Gamelin p.105) Let (E,$) be a topological space, E’=E/~ the
quotient set endowed with the quotient topology, m: E — E’ the projection, F a
topological space

i) a map ¢ : E' = F is continuous iff ¢ o is continuous

it) If a continuous map f : E — F s such that f is constant on each
equivalence class, then there is a continuous map : ¢ : E' — F such that
f=gor

Amap f: E — F is called a quotient map if F is endowed with the quotient
topology (Wilansky p.103).

Let f : E — F be a continuous map between compact, Hausdorff, topological
spaces EJF. Then a ~ b < f(a) = f (b) is an equivalence relation over E and
E/~ is homeomorphic to F.

Remark : the quotient topology is the final topology with respect to the
projection (see below).

10.2 Maps on topological spaces
10.2.1 Support of a function

Definition 610 The support of the function f : E — K from a topological
space (E,Q) to a field K is the subset of E : Supp(f)={xz € E : f(x) #0} or
equivalently the complement of the largest open set where f(z) is zero.

Notation 611 Supp(f) is the support of the function f. This is a closed subset
of the domain of f

Warning ! f(x) can be zero in the support, it is necessarily zero outside the
support.
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10.2.2 Continuous map

Definitions

Definition 612 A map f : E — F between two topological spaces (E, Q) , (F,§) :

i) converges to b € F when x converges to a € E if for any open O’ in F
such thatb € O there is an open O in E such thata € O andVx € O : f (z) € O/

ii).is continuous in ac E if for any open O’ in F such that f (a) € O’
there is an open O in E such that a € O andVx € O : f (z) € O’

iii) is continuous over a subset X of E if it is continuous in any point
of X

f converges to a is denoted : f(x) — b when z — a or equivalently :
lim,_, f(2) =0

if f is continuous in a, it converges towards b=f(a), and conversely if f con-

verges towards b then one can define by continuity f in a by f(a)=Db.

Notation 613 Cy (E; F) is the set of continuous maps from E to F

Continuity is completed by some definitions which are useful :

Definition 614 A map f : X — F from a closed subset X of a topological
space E to a topological space F is semi-continuous in a€ 0X if, for any open
O’ in F such that f(a) € O' , there is an open O in E such that a € O and
VeeONX: f(x)ed

Which is, in the language of topology, the usual f— b when x— a4

Definition 615 A map f: E — C from a topological space (E,Q) to C van-
ishes at infinity if : Ve > 0,3K compact :Vr € K : |f(z)] <e

Which is, in the language of topology, the usual f— 0 when x— oo

Properties of continuous maps
1. Category

Theorem 616 The composition of continuous maps is a continuous map
if f:E—F ,g:F — G then go f is continuous.
Theorem 617 The topological spaces and continuous maps constitute a cate-

gory

2. Continuity and convergence of sequences:

179



Theorem 618 If the map f: E — F between two topological spaces is contin-
uous in a, then for any sequence (xy), oy n E which converges to a : f(x,) —
7(a)

The converse is true only if E is first countable. Then fis continuous in a
iff for any sequence (xy,),cy 0 E which converges to a : f(xn) — f(a).

3. Fundamental property of continuous maps:

Theorem 619 The map f : E — F between two topological spaces is contin-
uous over E if the preimage of any open subset of F is an open subset of E :
VO' e U f~1(0) eQ

4. Other properties of continuous maps :

Theorem 620 If the map f : E — F between two topological spaces (E,Q) , (F,Q")
is continuous over E then :

i) if XC E is compact in E, then f(X) is a compact in F

it) if XC E is connected in E, then f(X) is connected in F

iii) if XC E is path-connected in E, then f(X) is path-connected in F

iv) if F is separable, then f(E) is separable

v) if Y is open in F, then f~1(Y) is open in E

vi) if Y is closed in F, then f=1(Y) is closed in E

vii) if X is dense in E and f surjective, then f(X) is dense in F

viti) the graph of f={(x, f(z)),z € E} is closed in ExF

Theorem 621 If f € Cy(E;R) and F is a non empty, compact topological
space, then f has a maximum and a minimum.

Theorem 622 (Wilansky p.57) If f,g € Co (E; F) E,F Hausdorff topological
spaces and f(x)=g(z) for any x in a dense subset X of E, then f=g in E.

Theorem 623 (Gamelin p.100) If (E;),c; is a family of topological spaces
(Ei, Q) and E = ] E; their product endowed with the product topology, then:
iel
i) The projections : m; : E — E; are continuous
it) If I is a topological space, a map ¢ : E — F is continuous iff Vi € I, w0
18 continuous

Theorem 624 (Wilansky p.53) A map f : E — F between two topological
spaces E,F' is continuous iff VX C E : f (7) C f(X)

Theorem 625 (Wilansky p.57) The characteristic function of a subset which
1s both open and closed is continuous
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Algebraic topological spaces
Whenever there is some algebraic structure on a set E, and a topology on
E, the two structures are said to be consistent is the operations defined over
E in the algebraic structure are continuous. So we have topological groups,
topological vector spaces,...which themselves define Categories.
Example : a group (G, ) is a topological group if: - : Gx G = G, G — G ::

¢! are continuous

10.2.3 Topologies defined by maps
Compact-open topology

Definition 626 (Husemoller p.4) The compact-open topology on the set
Co(E; F) of all continuous maps between two topological spaces (E,Q) and
(F,QY) is defined by the base of open subsets : {¢: ¢ € Co(E; F),p(K) C O'}
where K is a compact subset of E and O’ an open subset of F.

Weak, final topology

This is the implementation in topology of a usual mathematical trick : to
pull back or to push forward a structure from a space to another. These two
procedures are inverse from each other. They are common in functional analysis.

1. Weak topology:

Definition 627 Let E be a set, ® a family (p;),c; of maps : p; : E — F; where
(F;, %) is a topological space. The weak topology on E with respect to ® is
defined by the collection of open subsets in E : Q = U;er {(pi_l (wi),w; € QZ}

So the topology on (F}),; is ”pulled-back” on E.

2. Final topology:

Definition 628 Let F be a set, ® a family (vi);c; of maps : ; : B — F
where (F;,Q;) is a topological space. The final topology on F with respect to
® is defined the collection of open subsets in F : Q' = Ujer {pi (w;),w; € Qi }

So the topology on (E;),.; is ”pushed-forward” on F.

3. Continuity:

In both cases, this is the coarsest topology for which all the maps ¢; are
continuous.

They have the universal property :

Weak topology : given a topological space G, a map g : G — F is continuous
iff all the maps @; o g are continuous (Thill p.251)

Final topology : given a topological space G, a map ¢ : F' — G is continuous
iff all the maps g o @; are continuous.

4. Convergence:
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Theorem 629 (Thill p.251) If E is endowed by the weak topology induced by
the family (@;);c; of maps : @; : E — F; , a sequence (xy,),cy i E converges
toz iff Viel: fi(zy) = f(2)

5. Hausdorff property

Theorem 630 (Wilansky p.94) The weak topology is Hausdorff iff ® is sepa-
rating over E.

Which means Vx#£ y,3i € I : ¢; (z) # @i (y)

6. Metrizability:

Theorem 631 (Wilansky p.94) The weak topology is semi-metrizable if  is a
sequence of maps to semi-metrizable spaces. The weak topology is metrizable iff
D is a sequence of maps to metrizable spaces which is separating over E

10.2.4 Homeomorphism

Definition 632 A homeomorphism is a bijective and continuous map f :
E — F between two topological spaces E,F such that its inverse f~1 is continu-
ous.

Definition 633 A local homeomorphism is a map f : E — F between two
topological spaces E,F such that for each a € E there is a neighborhood n(a)
and a neighborhood n(b) of b=f(a) and the restriction of f : n(a) = n(b) is a
homemomorphism.

The homeomorphisms are the isomorphisms of the category of topological
spaces.

Definition 634 Two topological spaces are homeomorphic if there is an home-
omorphism between them.

Homeomorphic spaces share the same topological properties. Equivalently a
topological property is a property which is preserved by homeomorphism. Any
property than can be expressed in terms of open and closed sets is topological.
Examples : if E and F are homeomorphic, E is connected iff F is connected, E
is compact iff F is compact, E is Hausdorfl iff F is Hausdorff,...

Warning ! this is true for a global homeomorphism, not a local homeomor-
phism

Definition 635 The topologies defined by the collections of open subsets €, €Y
on the same set E are equivalent if there is an homeomorphism between (E, )

and (E,Y).

So, for all topological purposes, it is equivalent to take (E, ) or (E, ')
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Theorem 636 (Wilansky p.83) If f € Cy (E; F) is one to one, E compact, F
Hausdorff then f is a homeomorphism of E and f(E)

Theorem 637 (Wilansky p.68) Any two non empty convex open sets of R™
are homeomorphic

10.2.5 Open and closed maps

It would be handy if the image of an open set by a map would be an open set,
but this is the contrary which happens with a continuous map. This leads to
the following definitions :

Definition 638 A map f: E — F between two topological spaces is :
an open map, if the image of an open subset is open
a closed map, if the image of a closed subset is closed

The two properties are distinct : a map can be open and not closed (and
vice versa).
Every homeomorphism is open and closed.

Theorem 639 (Wilansky p.58) A bijective map is open iff its inverse is con-
tinuous.

Theorem 640 The composition of two open maps is open; the composition of
two closed maps is closed.

Theorem 641 (Schwartz II p.190) A local homeomorphism is an open map.

Theorem 642 A map f: E — F between two topological spaces is :

open iff VX C E: f(X) C (f(X))
closed iff VX C E: f(X) C f(X)

Theorem 643 (Wilansky p.103) Any continuous open surjective map f : E —
F is a quotient map. Any continuous closed surjective map f : E — F is a
quotient map.

meaning that F has the quotient topology. They are the closest thing to a
homeomorphism.

Theorem 644 (Thill p.253) If f : E — F is a continuous closed map from a
compact space E to a Hausdorff space, if f is injective f is an embedding, if is
bijective fis a homeomorphism.
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10.2.6 Proper maps

This is the same purpose as above : remedy to the defect of continuous maps
that the image of a compact space is compact.

Definition 645 A map f: E — F between two topological spaces is a proper
map (also called a compact map) is the preimage of a compact subset of F is a
compact subset of E.

Theorem 646 A continuous map f € Cy (E; F) is proper if it is a closed map
and the pre-image of every point in F is compact.

Theorem 647 Closed map lemma: Every continuous map f € Co (E; F) from
a compact space E to a Hausdorff space F is closed and proper.

Theorem 648 A continuous function between locally compact Hausdorff spaces
which is proper is also closed.

Theorem 649 A topological space is compact iff the maps from that space to a
single point are proper.

Theorem 650 If f € Cy (E; F) is a proper continuous map and F is a com-
pactly generated Hausdorff space, then fis closed.

this includes Hausdorff spaces which are either first-countable or locally com-
pact

10.3 Metric and Semi-metric spaces

The existence of a metric on a set is an easy way to define a topology and,
indeed, this is still the way it is taught usually. Anyway a metric brings more
properties

10.3.1 Metric and Semi-metric spaces

Semi-metric, Metric

Definition 651 A semi-metric (or pseudometric) on a set E is a map : d :
E x E — R which is symmetric, positive and such that :
d(z,x)=0, Va,y,z € E: d(z,2) < d(x,y) +d(y,2)

Definition 652 A metric on a set E is a definite positive semi-metric : d (z,y) =
Oexr=y

Examples :
i) on a real vector space a bilinear definite positive form defines a metric :

d(z,y) =g(r—y,z—y)
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ii) a real affine space whose underlying vector space is endowed with a bilin-
ear definite positive form :

d(A,B)zg(@,E,)

ili) on any set there is the discrete metric : d(x,y)=0 if x=y, d(x,y)=1
otherwise

Definition 653 If the set E is endowed with a semi-metric d:
a Ball is the set B (a,r) ={x € E :d(a,z) <r} withr > 0
the diameter of a subset X of is diam = sup,, ,cy d(z,y)
the distance between a subset X and a point a is : ¢ (a, X) = inf d(z, a)zex
the distance between 2 subsets X,Y is : 0(A, B) = inf d(z,¥)zex yey

Definition 654 If the set E is endowed with a semi-metric d, a subset X of E
bounded if 3R CR :Vz,y € X : d(z,y) < R < diam(X) < oo
totally bounded if Vr > 0 there is a finite number of balls of radius r which
cover X.

totally bounded = bounded

Topology on a semi-metric space
One of the key differences between semi metric and metric spaces is that a
semi metric space is usually not Hausdorff.

1. Topology :

Theorem 655 A semi-metric on a set E induces a topology whose base are the
open balls : B(a,r) ={x € E:d(a,z) <r} with >0

The open subsets of E are generated by the balls, through union and finite
intersection.

Definition 656 A semi-metric space (E,d) is a set E endowed with the topol-
ogy denoted (E,d) defined by its semi-metric. It is a metric space if d is a
metric.

2. Neighborhood:

Theorem 657 A neighborhood of the point x of a semi-metric space (E,d) is
any subset of E that contains an open ball B(z,r).

Theorem 658 (Wilansky p.19) If X is a subset of the semi-metric space (E,d),
then ze X iff § (x,X)=0

3. Equivalent topology: the same topology can be induced by different
metrics, and conversely different metrics can induce the same topology.

185



Theorem 659 (Gamelin p.27) The topology defined on a set E by two semi-
metrics d,d’ are equivalent iff the identity map (E,d) — (E,d') is an homeo-
morphism

Theorem 660 A semi-metric d induces in any subset X of E an equivalent
topology defined by the restriction of d to X.

Example : If d is a semi metric, min (d, 1) is a semi metric equivalent to d.

4. Base of the topology
Theorem 661 (Gamelin p.72) A metric space is first countable

Theorem 662 (Gamelin p.24, Wilansky p.76 ) A metric or semi-metric space
s separable iff it is second countable.

Theorem 663 (Gamelin p.23) A subset of a separable metric space is separable
Theorem 664 (Gamelin p.23) A totally bounded metric space is separable

Theorem 665 (Gamelin p.25) A compact metric space is separable and second
countable

Theorem 666 (Wilansky p.128) A totally bounded semi-metric space is second
countable and so is separable

Theorem 667 (Kobayashi I p.268) A connected, locally compact, metric space
18 second countable and separable

4. Separability:

Theorem 668 (Gamelin p.74) A metric space is a T4 topological space, so it
18 a normal, reqular, T1 and Hausdorff topological space

Theorem 669 (Wilansky p.62) A semi-metric space is normal and regular

5. Compactness

Theorem 670 (Wilansky p.83) A compact subset of a semi-metric space is
bounded

Theorem 671 (Wilansky p.127) A countably compact semi-metric space is to-
tally bounded

Theorem 672 (Gamelin p.20) In a metric space E, the following properties
are equivalent for any subset X of E :
i) X is compact
it) X is closed and totally bounded
iii) every sequence in X has an accumulation point (Weierstrass-Bolzano)
iv) every sequence in X has a convergent subsequence
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Warning ! in a metric space a subset closed and bounded is not necessarily
compact

Theorem 673 Heine-Borel: A subset X of R™ is closed and bounded iff it is
compact

Theorem 674 (Gamelin p.28) A metric space (E,d) is compact iff every con-
tinuous function f: E — R is bounded

6. Paracompactness:

Theorem 675 (Wilansky p.193) A semi-metric space has a o—locally finite
base for its topology.

Theorem 676 (Bourbaki, Lang p.34) A metric space is paracompact

6. Convergence of a sequence

Theorem 677 A sequence (x,),,cy in a semi-metric space (E,d) converges to
the limit z iff Ve > 0,AN e N:Vn > N : d(z,,x) <€

Theorem 678 (Schwartz I p.77) In a metric space a sequence is convergent iff
it has a unique point of accumulation

The limit is unique if d is a metric.

7.Product of semi-metric spaces:

There are different ways to define a metric on the product of a finite number
of metric spaces F = Fy X Fy X ... X E,

The most usual ones for = (x1, ..., 2, ) are : the euclidean metric : d(x,y) =
(Z?:l d; (x, yl)z) and the max metric : d(x,y) = maxd; (z;,y;)

With these metrics (E,d) is endowed with the product topology (cf.above).

Semi-metrizable and metrizable spaces
1. Definitions:

Definition 679 A topological space (E,Q) is said to be semi-metrizable if
there is a semi-metric d on E such that the topologies (E,Q), (E,d) are equiv-
alent. A topological space (E, ) is said to be metrizable if there is a metric d
on E such that the topologies (E,Q),(E,d) are equivalent.

2. Conditions for semi-metrizability:

Theorem 680 Nagata-Smirnov( Wilansky p.198) A topological space is semi-
metrizable iff it is reqular and has a o—locally finite base.
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Theorem 681 Urysohn (Wilansky p.185): A second countable regular topolog-
ical space is semi-metrizable

Theorem 682 (Wilansky p.186) A separable topological space is semi-metrizable
iff it is second countable and regular.

Theorem 683 (Schwartz III p.428) A compact or locally compact topological
space is semi-metrizable.

Theorem 684 (Schwartz I1I p.427) A topological space (E, Q) is semi-metrizable

iff -
Va € E,Vn (a),3f € Co(E;RY) : f(a) > 0,2 € n(a): f(z) =0

3. Conditions for metrizability:

Theorem 685 (Wilansky p.186) A second countable T3 topological space is
metrizable

Theorem 686 (Wilansky p.187) A compact Hausdorff space is metrizable iff
it is second-countable

Theorem 687 Urysohn (Wilansky p.187) :A topological space is separable and
metrizable iff it is T3 and second-countable.

Theorem 688 Nagata-Smirnov: A topological space is metrizable iff it is reg-
ular, Hausdorff and has a o-locally finite base.

A o-locally finite base is a base which is a union of countably many locally
finite collections of open sets.

Pseudo-metric spaces

Some sets (such that the Fréchet spaces) are endowed with a family of semi-
metrics, which have some specific properties. In particular they can be Haus-
dorff.

1. Definition:

Definition 689 A pseudo-metric space is a set endowed with a family (d;)
such that each d; is a semi-metric on E and
VJCI,dkel:VjeJ:dy>d;

icl

2. Topology:

Theorem 690 (Schwartz III p.426) On a pseudo-metric space (E,(d;);c;), the
collection Q of open sets

0eNeVeeO,3r>0,3iel: B;(x,r) CO where Bi(a,r) ={zx € E:
di(a,z) <r}

is the base for a topology.
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Theorem 691 (Schwartz I1I p.427) A pseudometric space (E, (d;)
dorff iff Ve £y € E,Ji €I :d;(z,y) >0

ieI) is Haus-

3. Continuity:

Theorem 692 (Schwartz III p.440) A map f: E = F from a topological
space (E,Q) to a pseudo-metric space ( ZEI) is continuous at a€ E if :
Ve >0,3w e E:Veew,Vie l:d;(f (), ())

Theorem 693 Ascoli (Schwartz III p.450) A family (fr),cx of maps : fi :
E — F from a topological space (E,Q) to a pseudo-metric space (F, (di)iel)
18 equicontinuous at a€ E if : Ve > 0,3w € Q : Vo € w,Vi € I,Vk € K :
di (fr (%), f (a)) <€

Then the closure I of (fx)pex 0 FE (with the topology of simple conver-
gence) is still equicontinuous at a.All maps in F are continuous at a, the limit
of every convergent sequence of maps in I is continuous at a.

If a sequence (f")nGN of continuous maps on E, is equicontinuous and con-
verges to a continuous map f on a dense subset of E, then it converges to fin E
and uniformly on any compact of E.

4. Pseudo-metrizable topological space:

Definition 694 A topological space (E, Q) is pseudo-metrizable if it is homeo-
morphic to a space endowed with a family of pseudometrics

Theorem 695 (Schwartz III p.433) A pseudo-metric space (E, (d;)
that the set I is countable is metrizable.

(er) such

10.3.2 Maps on a semi-metric space

Continuity

Theorem 696 A map f : E — F between semi-metric space (E,d),(F,d’) is
continuous in a € E iff Ve > 0,39 > 0:Vd (z,a) < n,d" (f(z), f(a)) <€

Theorem 697 On a semi-metric space (E,d) the map d : E x E — R is con-
tinuous

Uniform continuity

Definition 698 A map f : E — F between the semi-metric spaces (E,d),(F,d’)
is uniformly continuous if Ve > 0,3In > 0:Va,y € E : d(z,y) <n,d (f(z), fly)) <
€
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Theorem 699 (Wilansky p.59) A map f uniformly continuous is continuous
(but the converse is not true)

Theorem 700 (Wilansky p.219) A subset X of a semi-metric space is bounded
iff any uniformly continuous real function on X is bounded

Theorem 701 (Gamelin p.26, Schwartz III p.429) A continuous map f : E —
F between the semi-metric spaces E,F where E is compact if uniformly contin-
uous

Theorem 702 (Gamelin p.27) On a semi-metric space (E,d), Ya € E the map
d(a,.): E — R is uniformly continuous

Uniform convergence of sequence of maps

Definition 703 The sequence of maps : fn : E — F where (F,d) is a semi-
metric space converges uniformly to f : E — F if :
Ve >0,INeN:Vez e E;Vn> N :d(fn (z), f(2)) <e

Convergence uniform = convergence but the converse is not true

Theorem 704 (Wilansky p.55) If the sequence of maps : fn, : E — F ,where
E is a topological space and F is a semi-metric space, converges uniformly
to f then :

i) if the maps [, are continuous at a, then f is continuous at a.

it) If the maps f,, are continuous in E, then f is continuous in E

Lipschitz map

Definition 705 A map f : E — F between the semi-metric spaces (E,d),(F,d’)
is

i) a globally Lipschitz (or Holder continuous) map of order a>0 if

Ik >0:Ve,y e B:d(f(x), fy) < k(d(z,y)"

it) a locally Lipschitz map of order a>0 if

Vz € E,3n(z), 3k > 0:Vy € n(z) : d'(f(x), f(y)) < k(d(z,y))"

iii) a contraction if

Jk,0<k<1:Va,ye E:d(f(z), fly) <kd(z,y)

iv) an isometry if

Va,y € E:d(f(x), f(y) = d(z,y)

Embedding of a subset
It is a way to say that a subset contains enough information so that a function
can be continuously extended from it.
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Definition 706 (Wilansky p.155) A subset X of a topological set E is said to
be C-embedded in F if every continuous real function on X can be extended to
a real continuous function on E.

Theorem 707 (Wilansky p.156) Every closed subset of a mormal topological
space E is C-embedded.

Theorem 708 (Schwartz 2 p.443) Let E be a metric space, X a closed sub-
set of E, f : X — R a continuous map on X, then there is a map F :
E — R continuous on E, such that : Yo € X : F(z) = f(z),sup,ep F () =

sup,ex f (v),infeep F (v) = infyex f (y)

10.3.3 Completeness

Completeness is an important property for infinite dimensional vector spaces as
it is the only way to assure some fundamental results (such that the inversion
of maps) through the fixed point theorem.

Cauchy sequence

Definition 709 A sequence (v,), oy i1 a semi-metric space (E,d) is a Cauchy
sequence if :
Ve >0,IN e N:Vn,m > N :d(zp,zm) <&

Any convergent sequence is a Cauchy sequence. But the converse is not
always true.

Similarly a sequence of maps f,, : E — F where (F,d) is a semi-metric space,
is a Cauchy sequence of maps if :

Ve >0,AN e N:Vz € E,Vn,m > N :d(f, (x), fm (2)) <€

Theorem 710 (Wilansky p.171) A Cauchy sequence which has a convergent
subsequence is convergent

Theorem 711 (Gamelin p.22) Every sequence in a totally bounded metric space
has a Cauchy subsequence

Definition of complete semi-metric space

Definition 712 A semi-metric space (E,d) is complete if any Cauchy se-
quence converges.

Examples of complete metric spaces:

- Any finite dimensional vector space endowed with a metric

- The set of continuous, bounded real or complex valued functions over a
metric space

- The set of linear continuous maps from a normed vector space E to a
normed complete vector space F
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Properties of complete semi-metric spaces

Theorem 713 (Wilansky p.169) A semi-metric space is compact iff it is com-
plete and totally bounded

Theorem 714 (Wilansky p.171) A closed subset of a complete metric space is
complete. Conversely a complete subset of a metric space is closed. (untrue for
semi-metric spaces)

Theorem 715 (Wilansky p.172) The countable product of complete spaces is
complete

Theorem 716 (Schwartz I p.96) Every compact metric space is complete (the
converse is not true)

Theorem 717 (Gamelin p.10) If (fn),cy is a Cauchy sequence of maps fp :
E — F in a complete matric space F, then there is a map : f : E — F such
that f, converges uniformly to f on E.

Theorem 718 FEvery increasing sequence on R with an upper bound converges
FEvery decreasing sequence on R with a lower bound converges

Baire spaces

Theorem 719 (Wilansky p.178) A complete semi metric space is a Baire space

Theorem 720 (Doob, p.4) If f: X — F is a uniformly continuous map on a
dense subset X of a metric space E to a complete metric space F, then f has a
unique uniformly continuous extension to E.

Theorem 721 Baire Category (Gamelin p.11): If (X,),cy is a family of dense
open subsets of the complete metric space (E,d), then N2, X,, is dense in E.

Theorem 722 A metric space (E,d) is complete iff every decreasing sequence
of non-empty closed subsets of E, with diameters tending to 0, has a non-empty
intersection.

Fixed point

Theorem 723 Contraction mapping theorem (Schwartz [ p.101): If f : E — E
is a contraction over a complete metric space then it has a unique fized point
a:Fa€E: f(a)=a

Furthermore if f : E x T — E is continuous with respect tot € T, a
topological space, and

N >k>0:Vo,ye E,t €T d(f(z,t), f(y,t) < kd(x,y)

then there is a unique fized point a(t) and a : T — E is continuous
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The point a can be found by iteration starting from any point b : b, =
f(by) = a = limy,_o0 by, and we have the estimate : d (by,a) < kk—_nld (b, f ().
So, if f is not a contraction, but if one of its iterated is a contraction, the theorem
still holds.

This theorem is fundamental, for instance it is the key to prove the existence
of solutions for differential equations, and it is one common way to compute
solutions.

Theorem 724 Brower: In R™ , n>1 any continuous map f : B(0,1) —
B(0,1) (closed balls) has a fixed point.

With the generalization : every continuous function from a convex compact
subset K of a Banach space to K itself has a fixed point

Completion
Completeness is not a topological property : it is not preserved by homeo-
morphism. A topological space homeomorphic to a separable complete metric
space is called a Polish space.
But a metric space which is not complete can be completed : it is enlarged
so that, with the same metric, any Cauchy sequence converges.

Definition 725 (Wilansky p.174) A completion of a semi-metric space (E,d)
18 a pair (E, z) of a complete semi-metric space E and an isometry 1 from E to
a dense subset of E

A completion of a metric space (E,d) is a pair (E, z) of a complete metric
space E and an isometry 1 from E to a dense subset of E

Theorem 726 (Wilansky p.175) A semi-metric space has a completion. A
metric space has a completion, unique up to an isometry.

The completion of a metric space (E, z) has the universal property that for
any complete space (F,d’) and uniformly continuous map f : E — F then there
is a unique uniformly continuous function f’ from E to F, which extends f.

The set of real number R is the completion of the set of rational numbers
Q. So R™,C™ are complete metric spaces for any fixed n, but not Q.

If the completion procedure is applied to a normed vector space, the result
is a Banach space containing the original space as a dense subspace, and if it is
applied to an inner product space, the result is a Hilbert space containing the
original space as a dense subspace.

10.4 Algebraic topology

Algebraic topology deals with the shape of objects, where two objects are
deemed to have the same shape if one can pass from one to the other by a contin-
uous deformation (so it is purely topological, without metric). The tools which
have been developped for this purpose have found many other useful applica-
tion in other fields. They highlight some fundamental properties of topological
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spaces (topological invariants) so, whenever we look for some mathematical ob-
jects which ”look alike” in some way, they give a quick way to restrict the scope
of the search. For instance two manifolds which are not homotopic cannot be
homeomorphic.

We will limit the scope at a short view of homotopy and covering spaces,
with an addition for the Hopf-Rinow theorem. The main concept is that of
simply connected spaces.

10.4.1 Homotopy

The basic idea of homotopy theory is that the kind of curves which can be
drawn on a set, notably of loops, is in someway a characteristic of the set itself.
It is studied by defining a group structure on loops which can be deformed
continuously.

Homotopic paths
This construct is generalized below, but it is very common and useful to
understand the concept.
1. A curve can be continuously deformed. Two curves are homotopic if they
coincide in a continuous transformation. The precise definition is the following:

Definition 727 Let (E,Q) be a topological space, P the set P(a,b) of continuous
maps f € Cy ([0,1];E): f(0)=a,f(1) =D

The paths f1, f2 € P (a,b) are homotopic if IF € Cy([0,1] x [0,1]; E) such
that :

Vs € [0,1]: F(s,0) = f1(s), F(s,1) = fa(s),

vt e [0,1]: F(0,¢) = a, F(1,£) = b

2. fi1 ~ f2 is an equivalence relation. It does not depend on the parameter :

Vo € Co ([0,1]5[0,1]),(0) =0, (1) =1:fi~ fo= fiop~ faop

The quotient space P(a,b)/~ is denoted [P (a,b)] and the classes of equiva-
lences [f].

3. Example : all the paths with same end points (a,b) in a convex subset of
R"™ are homotopic.

The key point is that not any curve can be similarly transformed in each
other. In R? curves which goes through a tore or envelop it are not homotopic.

Fundamental group

1. The set [P (a,b)] is endowed with the operation - :

If a,b,c € E,f € P(a,b),g € P (b,c) define the product f - g :P (a,b) x
P (b,c) = P(a,c) by :

0<s<1/2<:f-g(s) = f(29),

1/2<s<1:f-g(s)=g(2s—1)
This product is associative.
Define the inverse : (f) ' (s)=f(1—s) = (f) "o f e P(a,a)
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This product is defined over [P (a,b)] : If f1 ~ fa ,g91 ~ g2 then f1 - g1 ~
forge (1)~ (f2)

2. For homotopic loops:

Definition 728 A loop is a path which begins and ends at the same point called
the base point.

The product of two loops with same base point is well defined, as is the
inverse, and the identy element (denoted [0]) is the constant loop f (t) = a. So
the set of loops with same base point is a group with -. (it is not commutative).

Definition 729 The fundamental group at a point a, denoted m (E,a), of
a topological space E, is the set of homotopic loops with base point a, endowed
with the product of loops.

! (Eua) = ([P (ava)] ) )

3. Fundamental groups at different points are Isomorphic:
Let a,be FE such that there is a path f from a to b. Then :

form(Boa) = m (B,0) = fa (b)) = [f]- 0] - [

is a group isomorphism. So :

Theorem 730 The fundamental groups m (E,a) whose base point a belong to
the same path-connected component of E are isomorphic.

Definition 731 The fundamental group of a path-connected topological space
E, denoted 71 (E) , is the common group structure of its fundamental groups
1 (Ev CL)

4. The fundamental group is a pure topological concept:

Theorem 732 The fundamental groups of homeomorphic topological spaces are
isomorphic.

And this is a way to check the homeomorphism of topological spaces.
One of the consequences is the following :

Theorem 733 (Gamelin p.123) If E,F are two topological spaces, f : E —
F a homeomorphism such that f(a) = b, then there is an isomorphism F :
Ust (E,CL) — T (Fvb)
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Simply-connectedness
If w1 (E) ~ [0] the group is said trivial : every loop can be continuously
deformed to coincide with the point a.

Definition 734 A path-connected topological group E is simply connected if
its fundamental group is trivial : m (E) ~ [0]

Roughly speaking a space is simply connected if there is no "hole” in it.

Definition 735 A topological space E is locally simply connected if any
point has a neighborhood which is simply connected

Theorem 736 (Gamelin p.121) The product of two simply connected spaces is
simply connected

Theorem 737 A convex subset of R™ is simply connected. The sphere S™ (in
R™ 1) is simply connected for n>1 (the circle is not).

Homotopy of maps
Homotopy can be generalized from paths to maps as follows:

Definition 738 Two continuous maps f,g € Co (E; F) between the topological
spaces E,F are homotopic if there is a continuous map : F : Ex[0,1] = F such
that : Yo € E: F (2,0) = f (x),F (x,1) = g (x)

Homotopy of maps is an equivalence relation, which is compatible with the
composition of maps.

Homotopy of spaces
1. Definition:

Definition 739 Two topological spaces E,F are homotopic if there are maps
f:E —= F,g: F — E, such that f o g is homotopic to the identity on E and
go [ is homotopic to the identity on F.

Homeomorphic spaces are homotopic, but the converse is not always true.
Two spaces are homotopic if they can be transformed in each other by a
continuous transformation : by bending, shrinking and expending.

Theorem 740 If two topological spaces E,F are homotopic then if E is path-
connected, F is path connected and their fundamental group are isomorphic.
Thus if E is simply connected, F is simply connected

The topologic spaces which are homotopic, with homotopic maps as mor-
phisms, constitute a category.

2. Contractible spaces:
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Definition 741 A topological space is contractible if it is homotopic to a point
The sphere is not contractible.

Theorem 742 (Gamelin p.140) A contractible space is simply connected.

3. Retraction of spaces:

More generally, a map f € Cy (E; X) between a topological space E and its
subset X, is a continuous retract if Vo € X : f (z) = z and then X is a retraction
of E. E isretractible into X if there is a continuous retract (called a deformation
retract) which is homotopic to the identity map on E.

If the subset X of the topological space E, is a continuous retraction of E
and is simply connected, then E is simply connected.

Extension

Definition 743 Two continuous maps f,g € Co (E; F) between the topological
spaces E,F are homotopic relative to the subset X C E if there is a continuous
map : F: Ex[0,1] = F such that : Yx € E: F (2,0) = f (z), F (z,1) = g (x)
andVt € 0,1,z € X : F(x,t) = f () =g (v)

One gets back the homotopy of paths with E=[0,1], X = {a,b}.

This leads to the extension to homotopy of higher orders, by considering
the homotopy of maps between n-cube [0,1]" in R” and a topological space E,
with the fixed subset the boundary 9 [0,1]" (all of its points such at least one
t; = 0 or 1). The homotopy groups of order 7, (E,a) are defined by proceeding
as above. They are abelian for r>1.

10.4.2 Covering spaces

A 7fibered manifold” (see the Fibebundle part) is basically a pair of manifolds
(M,E) where E is projected on M. Covering spaces can be seen as a generalization
of this concept to topological spaces.

Definitions
1. The definition varies according to the authors. This is the most general.

Definition 744 Let (E,Q),(M,0©) two topological spaces and a continuous
surjective map : w: E — M

An open subset U of M is evenly covered by E if :

7Y (U) is the disjoint union of open subsets of E : 71 (U) = U;e10;;0; €
Q;Vi,jEIiOiﬁOjZQ

and 7 is an homeomorphism on each O; — w (0;)

197



The O; are called the sheets. If U is connected they are the connected
components of 71 (U)

Definition 745 FE (M, 7) is a covering space if any point of M has a neigh-
borhood which is evenly covered by FE

E is the total space , 7 the covering map, M the base space, 7! ()
the fiber over z € M

Example : M=R, E = S; the unit circle, 7 : S; — M :: 7 ((cost,sint)) =t

7 is a local homeomorphism : each x in M has a neigborhood which is
homeomorphic to a neighborhood n (77! (x)) . Thus E and M share all local
topological properties : if M is locally connected so is E.

2. Order of a covering;:

If M is connected every x in M has a neighborhood n(x) such that 71 (n (z))
is homeomorphic to n(x)xV where V is a discrete space (Munkres). The cardi-
nality of V is called the degree r of the cover : E is a double-cover of M if
r=2. From the topological point of view E is r ”copies” of M piled over M. This
is in stark contrast with a fiber bundle E which is locally the ”product” of M
and a manifold V : so we can see a covering space a a fiber bundle with typical
fiber a discrete space V (but of course the maps cannot be differentiable).

3. Isomorphims of fundamental groups:

Theorem 746 Munkres: In a covering space E (M, ), if M is connected and
the order is r>1 then there is an isomorphism between the fundamental groups
cwim (B a) = m (M, 7 (a))

Fiber preserving maps

Definition 747 A map : f : E1 — Es between two covering spaces Ey (M, 1) , Eo (M, m2)
is fiber preserving if : myo f =m

E1 — f — E2

1 \ / 2
E

If f is an homeomorphisme then the covers are said equivalent.

Lifting property
1. Lift of a curve

Theorem 748 (Munkres) If v : [0,1] — M is a path then there exists a unique
path T : [0,1] = E such that toT' =~
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The path T is called the lift of ~.
If x and y are two points in E connected by a path, then that path furnishes
a bijection between the fiber over x and the fiber over y via the lifting property.

2. Lift of a map

If o : N — M is a continuous map in a simply connected topological space N,
fix y€ N,a € 771 (¢ (a)) in E, then there is a unique continuous map ® : N — F
such that p =70 ® .

Universal cover

Definition 749 A covering space E (M, 7) is a universal cover if E is con-
nected and simply connected

If M is simply connected and E connected then 7 is bijective

The meaning is the following : let E7(M,r’) another covering space of M
such that E’ is connected. Then there is amap : f: F — E’ such that # = 7o f

A universal cover is unique : if we fix a point x in M, there is a unique f such
that 7 (a) =z, 7' (¢/) =z, 1 =70 f

10.4.3 Geodesics

This is a generalization of the topic studied on manifolds.

1. Let (E,d) be a metric space. A path on E is a continuous injective map
from an interval [a,b] C R to E. If [a, b] is bounded then the set Cy ([a, b]; E) is
a compact connected subset. The curve generated by p € Cy ([a, b] ; E) , denoted
pla,b], is a connected, compact subset of E.

2. The length of a curve p [a, b is defined as: £ (p) =sup > ,_, d(p (tx+1)), p(tr))
for any increasing sequence (t,,),, oy in [a,b]

The curve is said to be rectifiable if ¢ (p) < cc.

3. The length is inchanged by any change of parameter p — p = po ¢ where
@ is order preserving.

The path is said to be at constant speed v if there is a real scalar v such
that : Vt, ¢’ € [a,b] : £ (p[t,t']) = vt —¢|

If the curve is rectifiable it is always possible to choose a path at constant
speed 1 by 1 (1) = £ (p(1))

4. A geodesic on E is a curve such that there is a path pe Cy (I; E), with
I some interval of R , such that :

Vit el:d(p(t),pE)) =1t -1t

5. A subset X is said geodesically convex if there is a geodesic which joins
any pair of its points.

6. Define over E the new metric §, called internally metric, by :

0: EXE —=R:d(z,y) =inf.l(c),p € Co([0,1]; E) : p(0) = z,p(l) =
y, L (c) < o0

0 > d and (E,d) is said to be an internally metric space if d=¢

A geodesically convex set is internally metric
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A riemanian manifold is an internal metric space (with pe C1([0,1]; E))
If (E,d), (F,d) are metric spaces and D is defined on ExF as

D ((z1,51), (22, 92)) = \/d (21,22)" + d (y1.92)°

then (E x F, D) is internally metric space iff E and F are internally metric
spaces

A curve is a geodesic iff its projections are geodesic

7. The main result is the following:

Theorem 750 Hopf-Rinow : If (E,d) is an internally metric, complete, locally
compact space then:

- every closed bounded subset is compact

- E is geodesically convex

Furthermore if, in the neighborhood of any point, any close curve is homo-
topic to a point (it is semi-locally simply connected) then every close curve is
homotopic either to a point or a geodesic

It has been proven (Atkin) that the theorem is false for an infinite dimen-
sional vector space (which is not, by the way, locally compact).
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11 MEASURE

A measure is roughly the generalization of the concepts of ” volume” or ”surface”
for a topological space. There are several ways to introduce measures :

- the first, which is the most general and easiest to understand, relies on set
functions So roughly a measure on a set E is a map p : S — R where S is a
set of subsets of E (a o—algebra). We do not need a topology and the theory,
based upon the ZFC model of sets, is quite straightforward. From a measure
we can define integral [ fu, which are linear functional on the set C(E;R).

- the "Bourbaki way” goes the other way around, and is based upon Radon
measures. It requires a topology, and, from my point of view, is more convoluted.

So the will follow the first way. Definitions and results can be found in Doob
and Schwartz (tome 2).

11.1 Measurable spaces

11.1.1 Limit of sequence of subsets

(Doob p.8)

Definition 751 A sequence (An), oy of subsets in E is :

monotone increasing if : A, T Ap4q
monotone decreasing if : A1 C A,

Definition 752 The superior limit of a sequence (A,)
the subset :
limsup A, = N2, U2, A,

nen Of subsets in E is

It is the set of point in A,, for an infinite number of n

Definition 753 The inferior limit of a sequence (An), oy of subsets in E is
the subset :
liminf A,, = U, N5y A,

It is the set of point in A, for all but a finite number of n
Theorem 754 Every sequence (Ay),cy of subsets in E has a superior and an
inferior limit and :

liminf A,, C limsup 4,,

Definition 755 A sequence (Ay),cy of subsets in E converges if its superior
and inferior limit are equal and then its limit is:
lim,_ o0 Ay = limsup A,, = liminf A,

Theorem 756 A monotone increasing sequence of subsets converges to their
union

Theorem 757 A monotone decreasing sequence of subsets converges to their
intersection
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Theorem 758 If B, is a subsequence of a sequence (Ay),, oy then B, converges
iff (An),en converges

Theorem 759 If (A,,), oy converges to A, then (A5,), oy converges to A°

Theorem 760 If(Ay), oy, (Bn),cn converges respectively to A, B, then (A, U By), cy , (An N By)
converges respectively to AUB,ANB

neN

Theorem 761 (A,), .y converges to A iff the sequence of indicator functions
(14, )pen converges to 14

Extension of R
1. The compactification of R leads to define :
R+ = {’f' S ]R,’f' > 0},@4_ :R+U{OO},R:RU{+OO7_OO}
R is compact .

2. Limit superior and limit inferior of a sequence:

Definition 762 If (x,,), oy is a sequence of real scalar on R
the limit superior is : limsup (z,,) = limy, 00 SUP,>.,, (Tp)
the limit inferior is liminf (x,) = lim, o infy>, (zp)

Theorem 763 liminf (z,) < limsup (z,) and are equal if the sequence con-
verges (possibly at infinity).

Warning ! this is different from the least upper bound :sup A = min{m €
E :Vx € E:m >z} and the greatest lower bound inf A = max{m € E : Vz €
E:m <z}

11.1.2 Measurable spaces

1. o—algebras

Definition 764 A collection S of subsets of E is an algebra if :
@es
If A€ S then A€ S so Fe S
S is closed under finite union and finite intersection

Definition 765 A o—algebra is an algebra which contains the limit of any
monotone sequence of its elements.

The smallest c—algebra is S={@, E'}, the largest is S = 2F
2. Measurable space:

Definition 766 A measurable space (E,S) is a set E endowed with a c—algebra
S. Every subset which belongs to S is said to be measurable.

202



3. o—algebras generated by a collection of sets:

Take any collection S of subsets of E, it is always possible to enlarge S in
order to get a c—algebra.

The smallest of the o—algebras which include S will be denoted o (S).

If (S;);—, is a finite collection of subsets of 2¥ then o (51 x Sa.. x S,,) =
o (o (S1) x 0 (S2) X ...c (Sp))

If (E;,S;) i=1..n are measurable spaces, then (Ey x By x ...E,,S) with S =
o (S1 x S2 x ... x S,) is a measurable space

Warning ! o (51 x S2 X ... x S,,) 1is by far larger than S7 x Sy x ... x S,,. If
E; = E3 = R S encompasses not only "rectangles” but almost any area in R?

4. Notice that in all these definitions there is no reference to a topology. How-
ever usually a c—algebra is defined with respect to a given topology, meaning
a collection of open subsets.

Definition 767 A topological space (E,Q) has a unique o—algebra o (), called
its Borel algebra, which is generated either by the open or the closed subsets.

So a topological space can always be made a measurable space.

11.1.3 Measurable functions

A measurable function is different from an integrable function. They are really
different concepts. Almost every map is measurable.

Defintion
Theorem 768 If (F,S’) a measurable space, f a map: f : E — F then the
collection of subsets (f~1(A"), A" € §') is a o -algebra in E denoted o (f)

Definition 769 A map f : E — F between the measurable spaces (E, S) , (F,S’)
is measurable if o (f) C S

Definition 770 A Baire map is a measurable map f : E — F between topo-
logical spaces endowed with their Borel algebras.

Theorem 771 FEvery continuous map is a Baire map.

Properties
(Doob p.56)

Theorem 772 The composed f o g of measurable maps is a measurable map.

The category of measurable spaces as for objects measurable spaces and for
morphisms measurable maps
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Theorem 773 If (fn),cn is a sequence of measurable maps f, : E — F,with
(E,S),(F,S") measurable spaces, such that Yz € E,3lim, o0 frn () = f(2),

then f is measurable

Theorem 774 If (fn),cy is a sequence of measurable functions : fn, : £ — R
then the functions : limsup f, = inf;s;sup,,-; fp;liminf, f = sup;.,inf f,
are measurable

Theorem 775 If for i=1..n: f; : E — F; with (E,S),(F;,S!) measurables
spaces then the map: f = (f1, fo,..fn) : E = F1 X Fy... X F,, is measurable iff
each f; is measurable.

Theorem 776 If the map f : Ey X Es — F, between measurable spaces is
measurable, then for each x1 fized the map : fr, 1 x1 X Fa = F i1 fp, (x2) =
f(z1,22) is measurable

11.2 Measured spaces

A measure is a function acting on subsets : p : S — R with some minimum
properties.

11.2.1 Definition of a measure

Definition 777 A function on a c—algebra on a set E: pp: S — R is said :

I-subadditive if : p(Uicr As) < > 2,cp w(Ai) for any family (As);c;, Ai €S
of subsets in S
I-additive if : p(UierAi) = > ,cp i (As) for any family (Ai),c;,Ai € S of

disjointed subsets in S:Vi,j€el: A, NA; =0
finitely subadditive if it is I-subadditive for any finite family
finitely additive if it is I-additive for any finite family
countably subadditive if it is I-subadditive for any countable family
countably additive if it is I-additive for any countable family

Definition 778 A measure on the measurable space (E,S) is a map p: S —
Ry which is countably additive. Then (E, S, u) is a measured space.

So a measure has the properties :

VA€ S:0<pu(A) <oo

p(@) =0

For any countable disjointed family (A;),.; of subsets in S : pu(Ujer As) =
> icr 1 (Ai) (possibly both infinite)

Notice that here a measure - without additional name - is always positive,
but can take infinite value. It is necessary to introduce infinite value because
the value of a measure on the whole of E is often infinite (think to the Lebesgue
measure).

Definition 779 A Borel measure is a measure on a topological space with its
Borel algebra.
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Definition 780 A signed-measure on the measurable space (E,S) is a map
w8 — R which is countably additive. Then (E,S,u) is a signed measured
space.

So a signed measure can take negative value. Notice that a signed measure
can take the values o0.

An outer measure on a set E is a map: A : 22 — R which is countably
subadditive, monotone increasing and such that A (&) =0

So the key differences with a measure is that : there is no c—algebra and A
is only countably subadditive (and not additive)

Finite measures

Definition 781 A measure on E is finite if p(E) < oo so it takes only finite
positive values : p: S — Ry

A finite signed measure is a signed measure that takes only finite values :
pw:S—R

Definition 782 A locally finite measure is a Borel measure which is finite
on any compact.

A finite measure is locally finite but the converse is not true.

Definition 783 A measure on E is o—finite if E is the countable union of
subsets of finite measure. Accordingly a set is said to be o—finite if it is the
countable union of subsets of finite measure.

Regular measure

Definition 784 A Borel measure u on a topological space E is
inner regular if it is locally finite and p(A) = supg p (K) where K is a
compact K C A.
outer regular if ;1 (A) = info u (O) where O is an open subset A C O.
regular if it is both inner and outer regular.

Theorem 785 (Thill p.25/) An inner regular measure p on a Hausdorff space
such that p(E) =1 is regular.

Theorem 786 (Neeb p.43) On a locally compact topological space, where every
open subset is the countable union of compact subsets, every locally finite Borel
measure s inner reqular.
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11.2.2 Radon measures

Radon measures are a class of measures which have some basic useful properties
and are often met in Functional Analysis.

Definition 787 A Radon measure is a Borel, locally finite, reqular,signed
measure on a topological Hausdorff locally compact space

So : if (E,Q) is a topological Hausdorff locally compact space with its Borel
algebra S, a Radon measure p has the following properties :

it is locally finite : u (K) < oo for any compact K of E

it is regular :

VXeS: uX)=inf(p(Y),XCY,Y €Q)

(VX eV (Xeld)&(u(X)<oo): u(X)=sup(u(K),KC X, K compact)

The Lebesgue measure on R" is a Radon measure.

Remark : There are other definitions : this one is the easiest to understand
and use.

One useful theorem:

Theorem 788 (Schwartz III p.452) Let (E,Q) a topological Hausdorff locally
compact space, (O;);c; and open cover of E, (j1;);c; a family of Radon measures
defined on each O;. If on each non empty intersection O; N O; we have pu; = fi;
then there is a unique measure p defined on the whole of E such that u = u; on
each O;.

11.2.3 Lebesgue measure

(Doob p.47)

So far measures have been reviewed through their properties. The Lebesgue
measure is the basic example of a measure on the set of real numbers, and
from there is used to compute integrals of functions. Notice that the Lebesgue
measure is not, by far, the unique measure that can be defined on R, but it has
remarquable properties listed below.

Lebesgue measure on R

Definition 789 The Lebesgue measure on R denoted dx is the only com-
plete, locally compact, translation invariant, positive Borel measure, such that
dz (Ja,b]) = b — a for any interval in R.It is reqular and o—finite.

It is built as follows.

1. R is a metric space, thus a measurable space with its Borel algebra S

Let F': R — R be an increasing right continuous function, define F' (c0) =
lim, o0 F' (2), F (—00) = limg— oo F (2)

2. For any semi closed interval ]a,b] define the set function :

A(la, b)) = F(b) — F(a)

206



then A has a unique extension as a complete measure on (R, S) finite on
compact subsets

3. Conversely if 1 is a measure on (R, .S) finite on compact subsets there is
an increasing right continuous function F, defined up to a constant, such that :
1 (Ja,b]) = F(b) - F(a)

4. If F(x) = x the measure is the Lebesgue measure, also called the
Lebesgue-Stieljes measure, and denoted dx. It is the usual measure on R.

5. If v is a probability then F is the distribution function.

Lebesgue measure on R"
The construct can be extended to R™ :
1. for functions F' : R” — R define the operators
Dj (]CL, b]F) (Il, T2,y Lj—1,Tj41, In)
= F(.Il, X2, - Lj—1, b, Tjt1, In) — F(.Il, L2y .. Lj—1,0, L5411, In)
2. Choose F such that it is right continuous in each variable and :

Vaj < bj : HDJ (]a’jvbj]F) > 0
j=1

3. The measure of an hypercube is then defined as the difference of F between
its faces.

Theorem 790 The Lebesgue measure on R™ is the tensorial product dx = dz1®
... ® dx,, of the Lebesgue measure on each component xj.

So with the Lebesgue measure the measure of any subset of R™ which is
defined as disjointed union of hypercubes can be computed. Up to a multiplica-
tive constant the Lebesgue measure is ”the volume” enclosed in an open subset
of R™ To go further and compute the Lebesgue measure of any set on R™ the
integral on manifolds is used.

11.2.4 Properties of measures

A measure is order preserving on subsets

Theorem 791 (Doob p.18) A measure p on a measurable space (E,S) is :
i) countably subadditive:
p(Uier Ai) < 3°,cr 1 (Ag) for any countable family (A;)
in S
it) order preserving :
A BeSSACB= u(A) <pu(B)
n(@) =0

ier»Ai € 8 of subsets

Extension of a finite additive function on an algebra:

Theorem 792 Hahn-Kolmogorov (Doob p.40) There is a unique extension of
a finitely-additive function py @ So — Ry on an algebra Sy on a set E into a
measure on (E,0(Sp)) .
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Value of a measure on a sequence of subsets

Theorem 793 Cantelli (Doob p.26) For a sequence (A,)
of the measured space (E,S,u) :

i) pu (liminf A,) < liminf 4 (A,,) < limsup p (4,)

i) if >, p(Ap) < oo then p(limsup A,) =0

iii) if p is finite then limsup p (A,) < p (limsup 4,,)

nen Of subsets A, € S

Theorem 794 (Doob p.18) For a map p : S — Ry on a measurable space
(E,S), the following conditions are equivalent :

i) 1 is a finite measure

i) For any disjoint sequence (Apn),cyy i S ¢ pb (UnenAn) = D, en i (An)

i) For any increasing sequence (Ay,), cy i S withlim A, = A : lim p (4,,) =
1 (A)

i) For any decreasing sequence (Ay,),, o in S withlim A, = & : lim p (A4,,) =
0

Tensorial product of measures

Theorem 795 (Doob p.48) If (E;,Si, 1), are measured spaces and p; are

n
o—finite measures then there is a unique measure i on (E,S) : E=[] E;,S=0 (51 x Sa.. X Sy)
i=1

o (0 (S1) x 0 (S2) X ..o (Syn)) such that : V(A;);_,, A € Si : p <‘]:_I[1AZ—) =

u is the tensorial product of the measures p = 1 ® ps... ® p, (also
denoted as a product g = pq1 X fo... X fin)

Sequence of measures

Definition 796 A sequence of measures or signed measures (fin),cn on the
measurable space (E,S) converges to a limit p if VA € S, 3 (A) = lim p,, (A) .

Theorem 797 Vitali-Hahn-Saks (Doob p.30) The limit p of a convergent se-
quence of measures (fin), oy 0n the measurable space (E,S) is a measure if each
of the wy, is finite or if the sequence is increasing.

The limit 1 of a convergent sequence of signed measures (fin),cy 0N the
measurable space (E,S) is a signed measure if each of the ., is finite..
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Pull-back, push forward of a measure

Definition 798 Let (E1,S51), (F2,S2) be measurable spaces, F : E; — F3 a
measurable map such that F~' is measurable.
the push forward (or image) by F of the measure u1 on Ej is the measure
on (Ea,S2) denoted Fopy defined by : VAg € Sy : Fypq (A2) = 1 (F_1 (AQ))
the pull back by F of the measure us on Es is the measure on (F1,S71)
denoted F*uy defined by : VA1 € S1: F*us (A1) = pa (F (A7)

Definition 799 (Doob p.60) If f1,...fn. : E — F are measurable maps from
the measured space (E, S, p) into the measurable space (F,S’) and f is the map
f:E— F": f=/(f,f2,.fn) then fup is called the joint measure. The i
marginal distribution is defined as VA" € S : p; (A)) = p (f7 (771 (4)))
where m; : F™ — F' is the i projection.

11.2.5 Almost eveywhere property

Definition 800 A null set of a measured space (E, S, ) is a set A€ S : p(A) =
0. A property which is satisfied everywhere in E but in a null set is said to be
u— everywhere satisfied (or almost everywhere satisfied).

Definition 801 The support of a Borel measure u, denoted Supp(u), is the
complement of the union of all the null open subsets The support of a measure
s a closed subset.

Completion of a measure
It can happen that A is a null set and that 3B C A,B ¢ S so B is not
measurable.

Definition 802 A measure is said to be complete if any subset of a null set
s null.

Theorem 803 (Doob p.37) There is always a unique extension of the o—algebra
S of a measured space such that the measure is complete (and identical for any

subset of S).

Notice that the tensorial product of complete measures is not necessarily
complete

Applications to maps

Theorem 804 (Doob p.57) If the maps f,g: E — F from the complete mea-
sured space (E, S, ) to the measurable space (F,S’) are almost eveywhere equal,
then if f is measurable then g is measurable.

209



Theorem 805 Egoroff (Doob p.69) If the sequence (fn),, ey of measurable maps
fn: E— F from the finite measured space (E, S, p) to the metric space (F,d)
is almost everywhere convergent in E to f, then Ve > 0,3A. € S, u(E\A:) < ¢
such that (fn),cy is uniformly convergent in A. .

Theorem 806 Lusin (Doob p.69) For every measurable map f : E — F from
a complete metric space (E, S, u) endowed with a finite mesure p to a metric
space F, then Ve > 0 there is a compact A , u(E\A:) < €, Ac such that f is
continuous in A, .

11.2.6 Decomposition of signed measures

Signed measures can be decomposed in a positive and a negative measure. More-
over they can be related to a measure (specially the Lebesgue measure) through
a procedure similar to the differentiation.

Decomposition of a signed measure

Theorem 807 Jordan decomposition (Doob p.145): If (E,S,pu) is a signed
measure space,

define : VA € S: py (A) = supgcqpu(B);p— (A) = —infpca p(B)

then :

i) py, p— are positive measures on (E,S) such that p = py — p—

i) pg 1s finite if pu < oo,

iii) p— is finite if p > —oo

i) 1] = py + p— is a positive measure on (E,S) called the total variation
of the measure

v) If there are measures \1, \a such that = A1 — Aa then py < A, pu— < Ao

vi) (Hahn decomposition) There are subsets Ei, E_ unique up to a null
subset, such that :

E:E+UE_;E+0E_ =9

VAES iy (A) = p(ANEL) i (A) = p(ANE)

The decomposition is not unique.

Complex measure

Theorem 808 If u,v are signed measure on (E,S), then u+ iv is a measure
valued in C, called a complex measure.

Conversely any complex measure can be uniquely decomposed as p+iv where
W, v are real signed measures.

Definition 809 A signed or complex measure p is said to be finite if |u| is
finite.
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Absolute continuity of a measure

Definition 810 If A is a positive measure on the measurable space (E,S), p a
signed measure on (E,S):

i) v is absolutely continuous relative to X if p (or equivalently |p|) van-
ishes on null sets of \.

it) 1 is singular relative to X if there is a null set A for X such that |u| (A°) =
0

iii) if u s absolutely continuous (resp.singular) then pi,u_ are absolutely
continuous (resp.singular)

Thus with A = dx the Lebesgue measure, a singular measure can take non
zero value for finite sets of points in R. And an absolutely continuous measure
is the product of a function and the Lebesgue measure.

Theorem 811 (Doob p.147) A signed measure p on the measurable space (E,S)
is absolutely continuous relative to the finite measure A on (E,S) iff :

limy 4y (A) =0

Theorem 812 Vitali-Hahn-Saks (Doob p.147) If the sequence (pin),, ey of mea-
sures on (E,S), absolutely continuous relative to a finite measure \, converges
to u then p is a measure and it is also absolutely continuous relative to A

Theorem 813 Lebesgue decomposition (Doob p.148) A signed measure i on a
measured space (E,S,X) can be uniquely decomposed as : | = p. + (s where
Le @5 a signed measure absolutely continuous relative to A and ps is a signed
measure singular relative to A

Radon-Nikodym derivative

Theorem 814 Radon-Nicodym (Doob p.150) For every finite signed measure
on the finite measured space (E, S, \), there is an integrable function f : E — R
uniquely defined up to null \ subsets, such that for the absolute continuous
component . of : pe (A) = fA fA. Fora scalar ¢ such that e > ¢ (resp.pe <
cA) then f > ¢ (resp.f< ¢) almost everywhere

f is the Radon-Nikodym derivative (or density) of . with respect to A
There is a useful extension if £ =R :

Theorem 815 (Doob p.159) Let A\, be locally finite measures on R, \ com-
plete, a closed interval I containing x, then

Ve eR:p(x) =lims,, % exists and is an integrable function on R almost
A everywhere finite

VX eS8 :p. (X)= fX @A where p. is the absolutely continuous component
of p relative to A

¢ is denoted : ¢ () = % ()
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11.2.7 Kolmogorov extension of a measure

These concepts are used in stochastic processes. The Kolmogorov extension can
be seen as the tensorial product of an infinite number of measures.

Let (E,S,u) a measured space and I any set. E is theset of maps: w:1 — E
. The purpose is to define a measure on the set E’.

Any finite subset J of I of cardinality n can be written J = {j1, j2,..Jn}

Define forw : I — E themap: wy : J — E" s wy = (w (1), w (J2),..w (jn)) €
E’n.

For each n there is a o—algebra : S, = ¢ (S™) and for each A, € S, the
condition wy € A,, defines a subset of ET : all maps @ € E such that w; € A,.
If, for a given J, A, varies in .S,, one gets an algebra X ;. The union of all these
algebras is an algebra Yg in E but usually not a oc—algebra. Each of its subsets
can be expressed as the combination of X7 , with J finite.

However it is possible to get a measure on E! : this is the Kolmogorov
extension.

Theorem 816 Kolmogorov (Doob p.61) If E is a complete metric space with
its Borel algebra, A : X9 — R4 a function countably additive on each X ;, then
A has an extension in a measure p on o (3o) .

Equivalently :

If for any finite subset J of n elements of I there is a finite measure @y on
(E™,S™) such that :

Vs € & (n), g = pigyy ¢ it is symmetric

VK C I,card(K) = p < oo,VA; € S : py(A1 x As.. x Ap) ui (EP) =
wiuk (A1 X Ag.. x A, X EP)

then there is a c—algebra ¥, and a measure y such that :

175 (Al X Ag.. X An) = /L(Al X Ag.. X An)

Thus if there are marginal measures py, meeting reasonnable requirements,
(EI, PN u) is a measured space.

11.3 Integral

Measures act on subsets. Integrals act on functions. Here integral are integral of
real functions defined on a measured space. We will see later integral of r-forms
on r-dimensional manifolds, which are a different breed.

11.3.1 Definition

Definition 817 A step function on a measurable space (E,S) is a map :
[+ E — Ry defined by a disjunct family (Ai,yi);c; where A; € S,y; € Ry:
Vee E: f(x)=>,vyila, (z)

The integral of a step function on a measured space (E,S,u) is : [, fp =

> ik (Aq)
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Definition 818 The integral of a measurable positive function f : E — R, on
a measured space (E,S,u) is :
fE fu=sup fE g for all step functions g such that g < f

Any measurable function f : E — R can always be written as: f = f, — f_
with fy, f_ : E — R, measurable such that they do not take oo values on the
same set.

The integral of a measurable function f : E — R on a measured space
(E,S,u) is :

fEfM: fEf+M—fEf—N

Definition 819 A function f : E — R is integrable if | [, fu| < oo and [, fu
is the integral of f over E with respect to u

Notice that the integral can be defined for functions which take infinite
values.

A function f : E — C is integrable iff its real part and its imaginary part
are integrable and [, fu = [ (Re f)p+i [, (Im f)p

Warning ! @ is a real measure, and this is totally different from the integral
of a function over a complex variable

The integral of a function on a measurable subset A of E is : [ A=
fE f X 1A/1*

The Lebesgue integral denoted [ fdz is the integral with ;¢ = the Lebesgue
measure dx on R.

Any Riemann integrable function is Lebesgue integrable, and the integrals
are equal. But the converse is not true. A function is Rieman integrable iff it is
continuous but for a set of Lebesgue null measure.

11.3.2 Properties of the integral

The spaces of integrable functions are studied in the Functional analysis part.

Theorem 820 The set of real (resp.complex) integrable functions on a mea-
sured space (E,S,u) is a real (resp.complex) vector space and the integral is a
linear map.

if f,g are integrable functions f : E — C, a,b constant scalars then af+bg is
integrable and [, (af +bg)p=a [, fu+b [ gn

Theorem 821 If is an integrable function f : E — C on a measured space
(E,S,u) then : X(A) = [, fu is a measure on (E,S).
If f >0 and g is measurable then [, g\ = [ gfn

Theorem 822 Fubini (Doob p.85) If (E1, S1, p1) , (Ea, S2, p2) are o— finite mea-
sured spaces, f : E1xEs — Ry an integrable function on (E1 X Ea,0 (S1 X S2), 1 ® u2)
then :

i) for almost all x1 € Ey, the function f(x1,.) : B2 — Ry is o integrable
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it) Y1 € Eq, the function f{ml}sz fuz : By = Ry is py integrable
i) fEle2 T ® po = fEl M1 (f{zl}XE2 sz) = fE2 12 (fElX{m} fﬂl)

Theorem 823 (Jensen’s inequality) (Doob p.87)
Let : [a,b] C R, : [a,b] = R an integrable convex function, semi continuous
n a,b,
(E, S, u) a finite measured space, f an integrable function f : E — [a,],
then ¢ ([ f1) < [ (o f)u

The result holds if f i are not integrable but are lower bounded

Theorem 824 If f is a function f: E — C on a measured space (E,S,u) :
i) If > 0 almost everywhere and fE furu=0 then f=0 almost everywhere
i) If f is integrable then |f| < oo almost everywhere

i) if f2 0,2 0 [ fu> en({]f] > c})

i) If f is measurable, ¢ : Ry — Ry monotone increasing, ¢ € Ry then

Jelflen= [ ps.0(e) fu=¢(c) p({Ifl = c})

Theorem 825 (Lieb p.26) Let v be a Borel measure on Ry such that Vt >0 :
¢ (t) = v ([0,1)) < oo,

(E,S,u) a o—finite measured space, f : E — Ry integrable, then :

Jeo(f @) p(@) =[5~ n({f (@) > t})v(t)

Wp>0eN: [, (f (1) (@) = p [ L (F () > ) v (1)

f@) = [ 1 sayda

Theorem 826 Beppo-Levi (Doob p.75) If (fn),cy is an increasing sequence of
measurable functions f, : E — Ry on a measured space (E,S,u),which converges

to f then : lim, o fE fapt = fE fu

Theorem 827 Fatou (Doob p.82) If (fn),cy is a sequence of measurable func-
tions fn : E — Ry on a measured space (E,S,u)

and f = liminf f,, then fE fu < liminf (fE fnu)

If the functions f, f, are integrable and fE fru=1limy, fE fnpt

then limy, o0 [ |f — fulpp =10

Theorem 828 Dominated convergence Lebesgue”s theorem (Doob p.83) If (fn),cn

is a sequence of measurable functions f, : E — Ry on a measured space
(E,S,u) if there is an integrable function g on (E,S,u) such that Vx € E,Vn :
|fn (2)] < g (x), and fr, — f almost everywhere then : limy, o0 [ fopr = [ f1e

11.3.3 Pull back and push forward of a Radon measure

This is the principle behind the change of variable in an integral.

Definition 829 If i is a Radon measure on a topological space E endowed
with its Borel o—algebra, a Radon integral is the integral {(p) = [u for
an integrable function : ¢ : E — R. £ is a linear functional on the functions
C (E ;E)
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The set of linear functional on a vector space (of functions) is a vector space
which can be endowed with a norm (see Functional Analysis).

Definition 830 Let F1, E> be two sets, K a field and a map : F : By — F»
The pull back of a function s : B2 — K is the map : F* : C (E2; K) —
C(Ey;K):: Frpy =pooF
The push forward of a function v, : By — K is the map Fy : C (E1; K) —
C(EyK):: Fopr = Fopr

Theorem 831 (Schwartz III p.535) Let (E1,S1),(E2,S2) be two topological
Hausdorff locally compact spaces with their Borel algebra,a continuous map F :
El — EQ .

i) let 1 be a Radon measure in E1, £ (p1) = fEl w1 be the Radon integral

If Fis a compact (proper) map, then there is a Radon measure on Eo, called
the push forward of p and denoted Fip, such that :

w2 €C (Eg, R) is Fip integrable iff F*po is u integrable and

Ful (p2) = [g, w2 (Fip) = L(F p2) = [ (F*p2) p

it) let p be a Radon measure in Eo, £ (p2) = sz wapt be the Radon integral,

If F is an open map, then there is a Radon measure on Ey, called the pull
back of 1 and denoted F* i such that :

p1€C (El, R) is F*p integrable zﬁ Fopris p integmble and

Fl(p1) = [, o1 (F*p) = L(Fupr) = [, (Fip2)

Moreover

i) the maps Fi, F* when defined, are linear on measures and functionals

i) The support of the measures are such that : Supp (Fi.l) C F (Supp(¢)), Supp (F*{) C

F=1 (Supp(¢))

iii) The norms of the functionals :||Fl|| = ||| < oo, || F*£]| = ||4]| < o0

i) Fyp, F* o are positive iff u is positive

v) If (Es,S3) is also a topological Hausdorff locally compact space and G :
FEy — E3, then, when defined :

(FoG) p=G*"(Fp)

If Fis an homeomorphism then the push forward and the pull back are inverse
operators :

(F) p=Fup, (F) u=Fp

Remark : the theorem still holds if F, Fs are the countable union of compact
subsets, F' is measurable and p is a positive finite measure. Notice that there
are conditions attached to the map F.

Change of variable in a multiple integral

An application of this theorem is the change of variable in multiple integrals
(in anticipation of the next part). The Lebesgue measure dx on R™ can be seen
as the tensorial product of the measures dz¥,k = 1...n which reads : dr =
dz' ® ... ® dz™ or more simply : dx = da'..dz™ so that the integral fU fdx
of f (3:1, a:") over a subset U is by Fubini’s theorem computed by taking
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the successive integral over the variables z',...2".Using the definition of the
Lebesgue measure we have the following theorem.

Theorem 832 (Schwartz IV p.71) Let U,V be two open subsets of R", F : U —
V a diffeomorphism, x coordinates in U, y coordinates in V, y* = F* (wl, x")
then :

w2 € C(V;R) is Lebesque integrable iff F*po is Lebesque integrable and

Jy o2 (W) dy = [y 2 (F (2)) |det [F' (2)]] dz

1 € C(U;R) is Lebesgue integrable iff Fip1 is Lebesgue integrable and

S 1 () de = [y 1 (7 () [det [ ()" dy

So :

F.dx = dy = |det [F’ (z)]| dz

Frdy = dz = ’det [F' (y)]_l‘ dy

This formula is the basis for any change of variable in a multiple integral.
We use dz, dy to denote the Lebesgue measure for clarity but there is only one
measure on R™ which applies to different real scalar variables. For instance in R?
when we go from cartesian coordinates (the usual x,y,z) to spherical coordinates
s x =rcosfcosp;y = rsinfcosp; z = rsin ¢ the new variables are real scalars
(r,0,¢) subject to the Lebesgue measure which reads drdfdy and
Jy w(@,y, z)dedydz = fV(TﬁW) @ (r cos 6 cos @, sin b cos , 7 sin @) 12 cos ¢| drdfdy
Remark : the presence of the absolute value in the formula is due to the fact
that the Lebesgue measure is positive : the measure of a set must stay positive
when we use one variable or another.

11.4 Probability

Probability is a full branch of mathematics, which relies on measure theory, thus
its place here.

Definition 833 A probability space is a measured space (E, S, P) endowed
with a measure P called a probability such that P(E)=1.

So all the results above can be fully extended to a probability space, and we
have many additional definitions and results. The presentation is limited to the
basic concepts.

11.4.1 Definitions

Some adjustments in vocabulary are common in probability :

1. An element of a c—algebra S is called an "event” : basically it represents
the potential occurence of some phenomena. Notice that an event is usually not
a single point in €2, but a subset. A subset of S or a subalgebra of S can be seen
as the ”simultaneous” realization of events.

2. A measurable map X : Q — F with F usually a discrete space or a
metric space endowed with its Borel algebra, is called a "random variable”
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(or "stochastic variable”). So the events w occur in 2 and the value X(w) is in
F.

3. two random variables X,Y are ”equal almost surely” if P ({w : X (w) #Y (w)}) =
0 so they are equal almost everywhere

4. If X is a real valued random variable :

its distribution function is the map : F': R — [0, 1] defined as :

F(z)=P(weN: X (w) <z

Its expected value is E (X) = [, X P this is its "average” value

its moment of order r is : [, (X — E(X))" P the moment of order 2 is
the variance

the Jensen’s inequality reads : for 1 < p: (E (|X]))’ < E(|]X|")

and for X valued in [a,b], any function ¢ : [a,b] — R integrable convex, semi
continuous in a,b : ¢ (E (X)) < E(po X)

5. If Q=R then, according to Radon-Nikodym, there is a density function
defined as the derivative relative to the Lebesgue measure :

p(z) = limy_,, % = limp, hy—0, m (F(x+ h1) — F(z — ha)) where I
is an interval containing I, h1,he > 0

and the absolutly continuous component of P is such that : P.(w) =

J_p(x)de

11.4.2 Independant sets

Independant events

Definition 834 The events A1, Aa,...A,, € S of a probability space (Q0,5,P) are
independant if :

P(ByNBy,..NB,)=P(B)P(Bs)..P(B,) where for any i : B; = A; or
B; = AS

A family (A;)
pendant

i1 of events are independant if any finite subfamily is inde-

Definition 835 Two o—algebra S1,S2 are independant if any pair of subsets
(A1, Ag) € 51 X Sy are independant.

If a collection of o —algebras (S;)’"_; are independant then o (S; x S;), 0 (Sk x S;)
are independant for i,j,k,1 distincts

Conditional probability

Definition 836 On a probability space (,S,P), if A € S,P(A) # 0 then
P(B|A) = P;B(Q?) defines a new probability on (E,S) called conditional prob-
ability (given A).Two events are independant iff P (B|A) = P (B)
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Independant random variables

Definition 837 Let (0,5,P) a probability space, (F,S’) a measurable space, a
family of random variables (X;);c;,X; : E — F are independant if for any
finite JC I the o—algebras (o (X)) are independant (remind that o (X;) =

jeJ
X;H(8Y)
Equivalently :
V(4));e . Aj €S, P (Njes X1 (A7) = TI P (X (4)))

jEJ
usually denoted : P ((Xj € Aj)je]) =J[P(X; € 4)
jET

The 0-1 law
The basic application of the theorems on sequence of sets give the following
theorem:

Theorem 838 the 0-1 law: Let in the probability space (Q2,S,P):

(Un)pey an increasing sequence of o—algebras of measurable subsets,

(Vi )nen @ decreasing sequence of o—algebras of measurable subsets with Vi C
o (UnENUn)

If, for each n, U,,V, are independant, then NyenV, contains only null sub-
sets and their complements

Applications :

a) let the sequence of independant random variables (X,,)
Un =0 (Xl, Xn) 5 Vn =0 (XnJrl, )

the series ) X, converges either almost everywhere or almost nowhere

the random variables limsup < (37 | X,,),liminf L (30 | X,,,) are al-
most everywhere constant (possibly infinite). Thus :

nen s Xn € R take

Theorem 839 On a probability space (Q,S,P) for every sequence of indepen-
dant random real variables (Xy,), oy , the series = (30 | Xp,) converges almost
everywhere to a constant or almost nowhere

b) let (A,) a sequence of Borel subsets in R

P (limsup (X, € 4,)) = 0 or 1 . This the probability that X,, € A, in-
finitely often

P (liminf (X,, € A,)) = 0 or 1. This is the probability that X,, € AS only
finitely often

11.4.3 Conditional expectation of random variables

The conditional probability is a measure acting on subsets. Similarly the con-
ditional expectation of a random variable is the integral of a random variable
using a conditional probablity.
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Let (2,S,P) be a probability space and s a sub o—algebra of S. Thus the
subsets in s are S measurable sets. The restriction P, of P to s is a finite measure
on ).

Definition 840 On a probability space (2,S,P), the conditional expectation
of a random wvariable X : Q — F given a sub o—algebra sC S is a random
variable Y : Q — F denoted E(X]|s) meeting the two requirements:

i) Y is s measurable and Ps integrable

iW)Vwes: [ YP,=[_ XP

Thus X defined on (€,S,P) is replaced by Y defined on (£2,s,Ps) with the
condition that X,Y have the same expectation value on their common domain,
which is s.

Y is not unique : any other function which is equal to Y almost everywhere

but on P null subsets of s meets the same requirements.
With s=A it gives back the previous definition of P(B|A)=E(15|A)

Theorem 841 (Doob p.183) If s is a sub o—algebra of S on a probability space
(Q,S,P), we have the following relations for the conditional expectations of ran-
dom variables X,Z:Q0 — F
i) If X=7 almost everywhere then E(X|s)=E(Z|s) almost everywhere
ii) If a,b are real constants and X,Z are real random variables : E(aX+bZ|s)=aE(X|s)+bE(Z]s)
i) fF=R:X <Z= E(X|s) < E(Z|s) and E(X|s) < E(|X]|s)
) if X is a constant function : E(X|s) = X
v) If S'C S then E (E (X]S")|S) = E(E(X|9)|S") = E(X]S")

Theorem 842 Bepo-Levi (Doob p.183) If s is a sub c—algebra of S on a prob-
ability space (Q,5,P) and (X,),cy an increasing sequence of positive random
variables with integrable limit, then : lim E (X,|s) = E (lim X,|s)

Theorem 843 Fatou (Doob p.184) If s is a sub o—algebra of S on a probability
space (Q,5,P) and (X,),, oy is a sequence of positive integrable random variables
with X=lim inf X,, integrable then :

E (X|s) < liminf F (X,|s) almost everywhere

lim F (| X — X,||s) = 0 almost everywhere

Theorem 844 Lebesgue (Doob p.184) If s is a sub o—algebra of S on a prob-
ability space (Q,8,P) and (X,),cy @ sequence of real random wvariables such
that there is an integrable function g : with Vn,Vx € E : | X, (x)] < g(z) . If
X, = X almost everywhere then : lim E (X,|s) = F (lim X,,|s)

Theorem 845 Jensen (Doob p.184) [a,b] C R, ¢ : [a,b] — R is an integrable
convez function, semi continuous in a,b,

X is a real random variable with range in [a,b] on a probability space (,5,P),s
is a sub o—algebra of S

then ¢ (E (Xs)) < E (2 (X) |s)

219



11.4.4 Stochastic process

The problem

In a determinist process a variable X depending on time t is often known by
some differential equation : ‘il—)t( = F(X,t) with the implication that the value
of X at t depends on t and some initial value of X at t=0. But quite often in
physics one meets random variables X depending on a time parameter. Thus
there is no determinist rule for X(t) : even if X(0) is known the value of X(t) is
still a random variable, with the complication that the probability law of X at
a time t can depend on the value taken by X at a previous time t’.

Consider the simple case of coin tossing. For one shot the set of events is

Q = {H,T} (for "head” and "tail”) with HNT = g, HUT = E,P(H) =
P(T) =1/2 and the variable is X = 0, 1. For n shots the set of events must be
extended :Q, = {HHT...T, ...} and the value of the realization of the shot n is
: X, € {0,1}. Thus one can consider the family (X]D);:1 which is some kind
of random variable, but the set of events depend on n, and the probability law
depends on n, and could also depends on the occurences of the X, if the shots
are not independant.

Definition 846 A stochastic process is a random wvariable X = (Xi),cp
on a probability space (2, S, P) such that ¥Vt € T, X; is a random variable on a
probability space (4, Sy, P;) valued in a measurable space (F,S’) with X; ' (F) =
92

i) T is any set ,which can be uncountable, but is well ordered so for any
finite subspace J of T we can write : J = {j1,j2,..,Jn}

ii) so far no relation is assumed between the spaces (€2, S¢, Pt);crp

i) X, '"(F) =B, = P, (X; € F) =1

If T is infinite, given each element, there is no obvious reason why there
should be a stochastic process, and how to build E,S,P.

The measurable space (E,S)
The first step is to build a measurable space (E,S):

1. E = ][] E; which always exists and is the set of all maps ¢ : T — Uier E}
teT
such that Vt : ¢ (¢t) € E,

2. Let us consider the subsets of E of the type : Ay = [[ A; where A; € S;
teT
and all but a finite number ¢ € J of which are equal to E; (they are called

cylinders). For a given J and varying (A;),. ; in Sy we get a o—algebra denoted
S . It can be shown that the union of all these algebras for all finite J generates
a o—algebra S

3. We can do the same with F : define A’; = [] A} where A} € S and all but
teT
a finite number ¢t € J of which are equal to F. The preimage of such A’; by X is

such that X, ' (4}) € S;andfort € J: X; ' (F) = E;s0 X' (A})) = A; € S;.
And the o—algebra generated by the S’; has a preimage in S. S is the smallest
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o—algebra for which all the (X;),., are simultaneouly measurable (meaning
that the map X is measurable).

4. The next step, finding P, is less obvious. There are many constructs based
upon relations between the (E, S¢, P;), we will see some of them later. There
are 2 general results.

The Kolmogov extension
This is one implementation of the extension presented above.

Theorem 847 If all the Q4 and F are complete metric spaces with their Borel
algebras, and if for any finite subset J there are marginal probabilities Py defined
on (£2,57) such that :

Vs € & (n), Py = Py the marginal probabilities Py do not depend on the
order of J

VJ,K C I,card(J) =n,card(K) =p < oo,VA; € 5" :

Py (X1 (A1) x X1 (Ag) . x X1 (An))

= Pjok (X, (A1) x X' (A2) .. x X1 (An) x EP)

then there is a o—algebra S on 2, a probability P such that :

Py (X1 (A1) x X1 (Ag) . x X1 (Ay))

=P (X; ' (A1) x X1 (Ag) . x X1 (Ay))

These conditions are reasonable, notably in physics : if for any finite J, there
is a stochastic process (X;),. ; then one can assume that the previous conditions
are met and say that there is a stochastic process (X;),., with some probability
P, usually not fully explicited, from which all the marginal probability P; are
deduced.

Conditional expectations
The second method involves conditional expectation of random variables.

Theorem 848 Let J a finite subset of T. Consider Sy C S,Q; = [[Q; and
jeI
the map X;= (le,ij, X]n) Q5 — FJ
If, for any J, there is a probability Py on (Q;,Sy) and a conditional ex-
pectation Yy = E (X ;|Sy) then there is a probability on (Q,S) such that :
VWESJSIWYJPJZIWXP

This result if often presented (Tulcéa) with 7= N and
P; =P (X, =x,|X1 =x1,..Xn—1 = T,—1) which are the transition proba-
bilities.

11.4.5 Martingales

Martingales are classes of stochastic processes. They precise the relation be-
tween the probability spaces (¢, St, P),cr
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Definition 849 Let (Q,S) a measurable space, I an ordered set, and a map
I — S where S; is a o—subalgebra of S such that : S; T S; whenever i<j. Then
(Q, S, (Si)ier > P) is a filtered probability space.

If (Xi);c; is a family of random variables X; : Q — F such that each X; is
measurable in (Q, S;) it is said to be adaptated and (2,5, (S;) (Xi) P)

is a filtered stochastic process.

i€l el

Definition 850 A filtered stochastic process is a Markov process if :
Vi<j,ACF:P(X;e€A|S;)=P(X; € AlX,) almost everywhere

So the probability at the step j depends only of the state X; meaning the
last one

Definition 851 A filtered stochastic process is a martingale if Vi < j : X; =
E (X,|S;) almost everywhere

That means that the future is totally conditionned by the past.
Then the function : I — F :: E(X;) is constant almost everywhere
If I =N the condition X,, = F (X,,+1|Sy) is sufficient

A useful application of the theory is the following :

Theorem 852 Kolomogorov: Let (X,,) a sequence of independant real random
variables on (Q,S,P) with the same distribution law, then if X is integrable :

Tty o (Z;Ll Xp) /n=E(X1)
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12 BANACH SPACES

The combination of an algebraic structure and a topologic one on the same gives
rise to newproperties. Topological groups are studied in the part ”Lie groups”.
Here we study the other major algebraic structure : vector spaces, which include
algebras.

A key feature of vector spaces is that all n-dimensional vector spaces are
agebraically isomorphs and homeomorphs : all the topologies are equivalent and
metrizable. Thus most of their properties stem from their algebraic structure.
The situation is totally different for the infinite dimensional vector spaces. And
the most useful of them are the complete normed vector spaces, called Banach
spaces which are the spaces inhabited by many functions. Among them we have
the Banach algebras and the Hilbert spaces.

On the topological and Banach vector spaces we follow Schwartz (t II).

12.1 Topological vector spaces

Topological vector spaces are the simplest of combinations : a vector space over
a field K, endowed with a topological structure defined by a collection of open
sets.

12.1.1 Definitions

Definition 853 A topological vector space is a vector space endowed with
a topology such that the operations (linear combination of vectors and scalars)
are continuous.

Theorem 854 (Wilansky p.273, 278) A topological vector space is regular and
connected

Finite dimensional vector spaces

Theorem 855 Fvery Hausdorff n-dimensional topological vector space over a
field K is isomorphic (algebraically) and homeomorphic (topologically) to K™.

So on a finite dimensional Haussdorff topological space all the topologies are
equivalent to the topology defined by a norm (see below) and are metrizable. In
the following all n-dimensional vector spaces will be endowed with their unique
normed topology if not stated otherwise. Conversely we have the fundamental
theorem:

Theorem 856 A Hausdorff topological vector space is finite-dimensional if and
only if it is locally compact.

And we have a less obvious result :

Theorem 857 (Schwartz II p.97) If there is an homeomorphism between open
sets of two finite dimensional vector spaces E,F on the same field, then dimE=dimF
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Vector subspace

Theorem 858 A wvector subspace F inherits a topological structure from the
vector space E thus F is itself a topological vector space.

Theorem 859 A finite dimensional vector subspace F is always closed in a
topological vector space E.

Proof. A finite dimensional vector space is defined by a finite number of linear
equations, which constitute a continuous map and F is the inverse image of 0.
]

If F is infinite dimensional it can be open or closed, or neither of the both.

Theorem 860 If F is a vector subspace of E, then the quotient space E/F is
Hausdorff iff F is closed in E. In particular E is Hausdor{f iff the subset {0} is
closed.

This is the application of the general theorem on quotient topology.

Thus if E is not Hausdorff E can be replaced by the set E/F where F is the
closure of {0} . For instance functions which are almost everywhere equal are
taken as equal in the quotient space and the latter becomes Hausdorff.

Theorem 861 (Wilansky p.274) The closure of a vector subspace is still a vec-
tor subspace.

Bounded vector space
Without any metric it is still possible to define some kind of "bounded sub-
sets”. The definition is consistent with the usual one when there is a semi-norm.

Definition 862 A subset X of a topological vector space over a field K is
bounded if for any n(0) neighborhood of 0 there is k € K such that X C kn(0)

Product of topological vector spaces

Theorem 863 The product of topological vector spaces, endowed with its vector
space structure and the product topology, is a topological vector space. It is still
true with any (possibly infinite) product of topological vector spaces.

This is the direct result of the general theorem on the product topology.
Example : the space of real functions : f: R — R can be seen as R¥ and is
a topological vector space
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Direct sum
The direct sum @;c;FE; (finite or infinite) of vector subspaces of a vector
space E is algebraically isomorphic to their product E = [ E:. Endowed with
i€l
the product topology Eisa topological vector space, and the projections 7; :
E — E; are continuous. So the direct sum E is a topological vector space
homeomorphic to E.

This, obvious, result is useful because it is possible to part a vector space
without any reference to a basis. A usual case if of a topological space which
splits. Algebraically F = F; @ F5 and it is isomorphic to (E1,0) x (0, E2) C
E x E.0is closed in E

Let f : X — F be a continuous map (not necessarily linear) from a topolog-
ical space X to E.

F:X > ExE:F(x)=(f(x),f(z)) is continuous, so are m; o F' = f; :
X > E; and f=f1+ fo

12.1.2 Linear maps on topological vector spaces

The key point is that, in an infinite dimensional vector space, there are linear
maps which are not continuous. So it is necessary to distinguish continuous
linear maps, and this holds also for the dual space.

Continuous linear maps

Theorem 864 A linear map f € L(E;F) is continuous if the vector spaces
E,F are on the same field and finite dimensional.

A multilinear map f € L"(En, Ea, ..Ey; F) is continuous if the vector spaces
(E;i)i_,,F are on the same field and finite dimensional.

Theorem 865 A linear map f € L(E; F) is continuous on the topological vec-
tor spaces E,F iff it is continuous at 0 in E.

Theorem 866 A multilinear map f € L"(E1, Ea,..E.; F) is continuous if it is
continuous at (0,..,0) in F1 X By X ..E,..

Theorem 867 The kernel of a linear map f € L(E;F) between topological
vector space is either closed or dense in E. It is closed if f is continuous.

Notation 868 L(E;F) is the set of continuous linear map between topological
vector spaces E,F on the same field

GL(E; F) 1is the set of continuous invertible linear map, with continuous
inverse, between topological vector spaces E,F on the same field

L7 (Ey, Es, ...E,.; F) is the set of continuous r-linear maps in L" (Ey, Ea, ...E,; F)

Warning ! The inverse of an invertible continuous map is not necessarily
continuous.
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Compact maps

Compact maps (also called proper maps) are defined for any topological space,
with the meaning that it maps compact sets to compact sets. However, because
compact sets are quite rare on infinite dimensional vector spaces, the definition
is extended as follows.

Definition 869 (Schwartz 2 p.58) A linear map f € L (E; F) between topolog-
ical vector spaces E,F is said to be compact if the closure f(X) in F of the
image of a bounded subset X of E is compact in F.

So compact maps ”shrink” a set.
Theorem 870 (Schwartz 2.p.59) A compact map is continuous.

Theorem 871 (Schwartz 2.p.59) A continuous linear map f € L(E;F) be-
tween topological vector spaces E,F such that f(E) is finite dimensional is com-
pact.

Theorem 872 (Schwartz 2.p.59) The set of compact maps is a subspace of
L(E;F) . Itis a two-sided ideal of the algebra L(E;E)

Thus the identity map in £ (F; E) is compact iff E is finite dimensional.

Theorem 873 Riesz (Schwartz 2.p.66) : If X # 0 is an eigen value of the
compact linear endomorphism f on a topological vector spaceE, then the vector
subspace Ey of corresponding eigen vectors is finite dimensional.

Dual vector space
As a consequence a linear form : w : F — K is not necessarily continuous.

Definition 874 The vector space of continuous linear form on a topological
vector space E is called its topological dual

Notation 875 E’is the topological dual of a topological vector space E

So E*=L(FE;K)and E' = L(E;K)

The topological dual E’ is included in the algebraic dual E*, and they are
identical iff E is finite dimensional.

The topological bidual (E’)" may be or not isomorphic to E if E is infinite
dimensional.

Definition 876 The map: 1: E — (E') :: 1 (u) (w) = w (u) between E and is
topological bidual (E') is linear and injective.

If it is also surjective then E is said to be reflexive and (E') is isomorphic
to E.

The map 1 is called the evaluation map is met quite often in this kind of
problems.
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Theorem 877 The transpose of a linear continuous map : f € L (E; F) is the
continuous linear map : f* € L(F';E') :Vw e F': f' (w) =wo f

Proof. The transpose of a linear map f € L (E;F)is: ft € L(F*;E*) : Vw €
F*: fl(w)=wo f

If { is continuous by restriction of F* to F’ : Vw € F' : f/(w) = wo fisa
continuous map m

Theorem 878 Hahn-Banach (Bratelli 1 p.66) If K is a closed convex subset of
a real locally convex topological Hausdorff vector space E, and p ¢ K then there
is a continuous affine map : f: E — R such that f(p)>1 andVz € K : f (z) <1

This is one of the numerous versions of this theorem.

12.1.3 Tensor algebra

Tensor, tensor products and tensor algebras have been defined without any
topology involved. All the definitions and results in the Algebra part can be fully
translated by taking continuous linear maps (instead of simply linear maps).
Let be E,F vector spaces over a field K. Obviously the map2: ExXF — EQF
is continuous. So the universal property of the tensorial product can be restated
: for every topological space S and continuous bilinear map f : £ x F' — §
there is a unique continuous linear map : f E®F — S such that f = f 01
Covariant tensors must be defined in the topological dual E’. However the
isomorphism between L(E;E) and E ® E* holds only if E is finite dimensional
so, in general, L(E; F) is not isomorphic to E ® E’.

12.1.4 Affine topological space

Definition 879 A topological affine space E is an affine space E with an

underlying topological vector space such that the map : - : E X E —
continuous.

So the open subsets in an affine topological space E can be deduced by
translation from the collection of open subsets at any given point of E.

An affine subspace is closed in E iff its underlying vector subspace is closed
in E. So:

Theorem 880 A finite dimensional affine subspace is closed.

Convexity plays an important role for topological affine spaces. In many
ways convex subsets behave like compact subsets.

Definition 881 A topological affine space (E, ) is locally convex if there is
a base of the topology comprised of convex subsets.
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Such a base is a family C of open absolutely convex subsets w containing a
point O :

Voe C,M,New\peK A+ |u<1:\M+uNew

and such that every neighborhood of O contains a element kw for some
ke K,weC

A locally convex space has a family of pseudo-norms and conversely (see
below).

Theorem 882 (Berge p.262) The closure of a convexr subset of a topological
affine space is convex. The interior of a convexr subset of a topological affine
space s COnver.

Theorem 883 Schauder (Berge p.271) If f is a continuous map f:C — C where
C is a non empty compact convex subset of a locally convex affine topological
space, then there isa € C: f(a) =a

Theorem 884 An affine map f is continuous iff its underlying linear map 7
18 continuous.

Theorem 885 Hahn-Banach theorem (Schwartz) : For every non empty con-
vex subsets X,Y of a topological affine space E over R, X open subset, such that
XNY =g, then there is a closed hyperplane H which does not meet X or Y.

A hyperplane H in an affine space is defined by an affine scalar equation
f(x)=0. If f : E — K is continuous then H is closed and f € E'.
So the theorem can be restated :

Theorem 886 For every non empty convex subsets X,Y of a topological affine
space (E,E) over C, X open subset, such that X NY = @ | there is a linear

map ? € ﬁ’ , c€ R such that for any Oc E: Vx € X,y €Y : Re?(()—%) <

c<Re?(O_g;)

12.2 Normed vector spaces
12.2.1 Norm on a vector space

A topological vector space can be endowed with a metric, and thus becomes a
metric space. But an ordinary metric does not reflect the algebraic properties,
so what is useful is a norm.

Definition 887 A semi-norm on a vector space E over the field K (which is

either R or C) is a function :|||| : E — Ry such that :
Yu,v € E k€ K :
[|ull > 0;
lku|| = |k| ||u|| where |k| is either the absolute value or the module of k

[lu+ ol < flull + [Jv]]
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Definition 888 A wvector space endowed with a semi norm is a semi-normed
vector space

Theorem 889 A semi-norm is a continuous convexr map.

Definition 890 A norm on a vector space E is a semi-norm such that : ||u|| =
0=u=0

Definition 891 If E is endowed with a norm |||| it is a normed vector space

(&, [11)

The usual norms are :

i) |lul] = v/g(u,u) where g is a definite positive symmetric (or hermitian)
form

il) |lu|| = max; |u;| where u; are the components relative to a basis

iii) |||l = |k| is a norm on K with its vector space structure.

iv) On C™ we have the norms :

1 X1, = > k=1 c lzx|” for p>0€ N

1X11%, = Sabcs, . J2

with the fixed scalars : (cx)p_;,cx >0 €R

The inequalities of Holder-Minkovski give :

Vp> 1| X+ Y, <X, + Y],

and if p<oc then | X + Y|, = | X, + V], = Ja € C: ¥ = aX

12.2.2 Topology on a semi-normed vector space

A semi-norm defines a semi-metric by : d (u,v) = ||Ju — v|| but the converse is
not true. There are vector spaces which are metrizable but not normable (see
Fréchet spaces). So every result and definition for semi-metric spaces hold for
semi-normed vector space.

Theorem 892 A semi-norm (resp.norm) defines by restriction a semi-norm
(resp.norm) on every vector subspace.

Theorem 893 On a vector space E two semi-norms ||||,, |||, are equivalent
if they define the same topology. It is necessary and sufficient that : 3k, k' > 0:
Vu € E: lully < Elully < [lully <& ull,

Proof. The condition is necessary. If By (0,r) is a ball centered at 0, open for
the topology 1, and if the topology are equivalent then there is ball By (0,72) C
By (0,7) so |lully < re = |Jull; <7 = kry. And similarly for a ball By (0,r).
The condition is sufficient. Every ball By (0, r) contains a ball B; (0, ) and
vice versa. ®
The theorem is still true for norms.

Theorem 894 On a finite dimensional vector space all the norms are equiva-
lent.
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Theorem 895 The product E=[] E; of a finite number of semi-normed vector
i€l

spaces on a field K is still a semi-normed vector space with one of the equivalent

semi-norm :

Iz = max ||| 5,
1/
e = (Cier i) " 1<p<oo

The product of an infinite number of normed vector spaces is not a normable
vector space.

Theorem 896 (Wilansky p.268) Fvery first countable topological vector space
is semi-metrizable

Theorem 897 A topological vector space is normable iff it is Hausdorff and
has a convex bounded neighborhood of 0.

Theorem 898 (Schwartz I p.72) A subset of a finite dimensional vector space
s compact iff it is bounded and closed.

Warning ! This is false in an infinite dimensional normed vector space.

Theorem 899 (Wilansky p.276) If a semi-normed vector space has a totally
bounded neighborhood of 0 it has a dense finite dimensional vector subspace.

Theorem 900 (Wilansky p.271) A normed vector space is locally compact iff
it is finite dimensional
12.2.3 Linear maps

The key point is that a norm can be assigned to every continuous linear map.

Continuous linear maps

Theorem 901 If EF are semi-normed vector spaces on the same field, an
fe L(E;F) then the following are equivalent:

i) [ is continuous

i) I > 0:vu e B f (w)lp < kllulg

ii1) f is uniformly continuous and globally Lipschitz of order 1

So it is equivalently said that f is bounded.

Theorem 902 FEvery linear map f€ L (E;F) from a finite dimensional vec-
tor space E to a normed vector space F, both on the same field, is uniformly
continuous and Lipschitz of order 1

If E,F are semi-normed vector spaces on the same field f is said to be
"bounded below” if : 3k > 0:Vu € E: || f (u)|lp > k|Jul g
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Space of linear maps

Theorem 903 The space L(E;F) of continuous linear maps on the semi-normed

vector spaces E,F on the same field is a semi-normed vector space with the semi-

f(u)
norm : HfHL(E;F) = SUP|jy |20 % = SUD|jy|| =1 If ()l 7

Theorem 904 The semi-norm ||[| (g5 has the following properties :
)Y€ B [1F @l < 1] gpom lullp
i) If E=F ||Id||, =1
ii1) (Schwartz I p.107) In the composition of linear continuous maps : || f o g|| <

[alyirgl
w) If f € L(E; E) then its iterated f* € L(E; E) and || f™|| = || f]|"

Dual

Theorem 905 The topological dual E’ of the semi-normed vector spaces E is

a semi-normed vector space with the semi-norm : || f| 5 = supjy) 0 ‘Hfu(IT)I

SUDP ||y ,=1 |f (u)] ’

This semi-norm defines a topology on E’ called the strong topology.

Theorem 906 Banach lemna (Taylor 1 p.484): A linear form w € F* on a a
vector subspace F of a semi-normed vector space E on a field K, such that on
Nu € F |w(u)] < ||u|| can be extended in a map @ € E' such that Vu € E :
@ (w)] < [lull

The extension is not necessarily unique. It is continuous. Similarly :

Theorem 907 Hahn-Banach (Wilansky p.269): A linear form w € F' continuous
on a vector subspace F of a semi-normed vector space E on a field K can be ex-
tended in a continuous map @ € E' such that ||@| g = ||| @

Definition 908 In a semi normed vector space E a tangent functional at
u€FE isalformwelE :w(u)=|w||ul

Using the Hahan-Banach theorem one can show that there are always non
unique tangent functionals.

Multilinear maps

Theorem 909 If (E;)._,,F are semi-normed vector spaces on the same field,
and fe L" (E1, Ea,..Ep F)  then the following are equivalent:
i) [ is continuous

i) Ik >0:V(wi)i_y € E:|f(ur,.,ur)|p < kl:[l llwill g,

231



Warning ! a multilinear map is never uniformly continuous.

Theorem 910 If (E;);_,,F are semi-normed vector spaces on the same field,
the wvector space of continuous r linear maps fe L" (Eq, Es,..E.; F) is a semi-
normed vector space on the same field with the norm :

I (s sur)ll o
uily

Theorem 911 | f||,. = SUD|lu, 20 TarToi T = SWPlusl, =1 I f (w1, up)|| o

So: V(wi)i_q € E:|f(ur,,ur)lp < 1 flor l:[l il g,

Theorem 912 (Schwartz I p.119) If E,F are semi-normed spaces,the map :
L(E.F)x E— F:o(f,u)=f(u) is bilinear continuous with norm 1

Theorem 913 (Schwartz I p.119) If E,F,G are normed vector spaces then the
composition of maps : L(E;F) x L(F;G) = L(E;G) = o(f,g) = go f is
bilinear, continuous and its norm is 1

12.2.4 Family of semi-norms

A family of semi-metrics on a topological space can be useful because its topol-
ogy can be Haussdorff (which ususally is not a semi-metric). Similarly on vector
spaces :

Definition 914 A pseudo-normed space is a vector space endowed with a
family (p;);c; of semi-norms such that for any finite subfamily J : 3k € I : Vj €
J:pj < pr

Theorem 915 (Schwartz III p.435) A pseudo-normed space (E,(pi);c; ) is a
topological space with the base of open balls :

B (u) = NjesB; (u,r;) with B; (u,r;) ={v € E : pj (u—v) <r;} ,for every
finite subset J of I and familiy (’r’j)je],’l”j >0

It works because all the balls B; (u,r;) are convex subsets, and the open
balls B (u) are convex subsets.

The functions p; must satisfy the usual conditions of semi-norms.

Theorem 916 The topology defined above is Hausdorff iff Vu #0 € E,Jie I :
pi (u) >0

Theorem 917 A countable family of seminorms on a vector space defines a
semi-metric on F

It is defined by :d (z,y) = >0, %%. If E is Hausdorff then this
pseudo-metric is a metric.

However usualy a pseudo-normed space is not normable.
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Theorem 918 (Schwartz I1I p.436) A linear map between pseudo-normed spaces
18 continuous if it is continuous at 0. It is then uniformly continuous and Lip-
schitz.

Theorem 919 A topological vector space is locally convex iff its topology can
be defined by a family of semi-norms.

12.2.5 Weak topology

Weak topology is defined for general topological spaces. The idea is to use a
collection of maps ¢; : £ — F where F is a topological spaces to pull back a
topology on E such that every ¢; is continuous.

This idea can be implemented for a topological vector space and its dual. It
is commonly used when the vector space has already an initial topology, usually
defined from a semi-norm. Then another topology can be defined, which is
weaker than the initial topology and this is useful when the normed topology
imposes too strict conditions. This is easily done by using families of semi-norms
as above. For finite dimensional vector space the weak and the ”strong” (usual)
topologies are equivalent.

Weak-topology

Definition 920 The weak-topology on a topological vector space E is the
topology defined by the family of semi-norms on E: (pw) Yu € E:py(u) =
| (u)]

wek’

It sums up to take as collection of maps the continuous (as defined by the
initial topology on E) linear forms on E.

Theorem 921 The weak topology is Hausdorff

Proof. Tt is Hausdorff if E’ is separating : if Vu # v € E,Jw € F' : @ (u) #
w (v) and this is a consequence of the Hahn-Banach theorem m

Theorem 922 A sequence (un),,cy in a topological space E converges weakly
towif:Vw € E' : w (uy) = w (u) .

convergence (with the initial topology in E) = weak convergence (with the
weak topology in E)

So the criterium for convergence is weaker, and this is one of the main reasons
for using this topology.

Theorem 923 If E is a semi-normed vector space, then the weak-topology on
E is equivalent to the topology of the semi-norm :

[ully = supjz) =1 | (u)]

The weak norm |jul,, and the initial norm |lu|| are not equivalent if E is
infinite dimensional (Wilansky p.270).
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Theorem 924 (Banach-Alaoglu): if E is a normed vector space, then the closed
unit ball E is compact with respect to the weak topology iff E is reflexive.

This the application of the same theorem for the *

bidual.

weak topology to the

*weak-topology
The *weak-topology on the topological dual E’ of a topological vector space
E is the topology defined by the family of semi-norms on E’: (p,) :Vw €
E": py (@) = |@ (u)]
It sums up to take as collection of maps the evaluation maps given by vectors
of E.

ueE

Theorem 925 The *weak topology is Hausdorff

Theorem 926 (Wilansky p.274) With the *weak-topology E’ is o—compact,
normal

Theorem 927 (Thill p.252) A sequence (), cy 0 a the topological dual E’
of a topological space E converges weakly to u if : Vu € E : w, (u) = @ (u).

convergence (with the initial topology in E’) = weak convergence (with the
weak topology in E’)
So this is the topology of pointwise convergence (Thill p.252)

Theorem 928 If E is a semi-normed vector space, then the weak-topology on
E’ is equivalent to the topology of the semi-norm :

[l = supjy) =1 [ (u)]

The weak norm ||w||y;, and the initial norm ||@|| 5 are not equivalent if E is
infinite dimensional.

Theorem 929 Banach-Alaoglu (Wilansky p.271): If E is a semi-normed vector
space, then the closed unit ball in its topological dual E’ is a compact Hausdorff
subset with respect to the *-weak topology.

Remark : in both cases one can complicate the definitions by taking only a
subset of E’ (or E), or extend E’ to the algebraic dual E*. See Bratelli (1 p.162)
and Thill.

12.2.6 Fréchet space

Fréchet spaces have a somewhat complicated definition. However they are very
useful, as they share many (but not all) properties of the Banach spaces which
are the work-horses of analysis on vector spaces.

Definition 930 A Fréchet space is a Hausdorff, complete, topological vector
space, endowed with a countable family (py) of semi-norms. So it is locally
convex and metric.

neN
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The metric is : d(z,y) =Y .0, %%

And because it is Hausdorfl : Vu 20 € E,In € N: p, (u) >0
Theorem 931 A closed vector subspace of a Fréchet space is a Fréchet space.

Theorem 932 (Taylor 1 p.482) A quotient of a Fréchet space by a closed sub-
space is a Fréchet space.

Theorem 933 The direct sum of a finite number of Fréchet spaces is a Fréchet
space.

Theorem 934 (Taylor 1 p.481) A sequence (un), oy converges in a Fréchet
space (E, (pn)neN) iffYm eN:py (Up —u) 2 pse0 0

Linear functions on Fréchet spaces

Theorem 935 (Taylor 1 p.491) For every linear map fe L (E;F) between
Fréchet vector spaces :

i) (open mapping theorem) If f is continuous and surjective then any neigh-
borhood of 0 in E is mapped onto a neighborhood of 0 in F (f is open)

ii) If f is continuous and bijective then f~‘is continuous

iii) (closed graph theorem) if the graph of f = {(u, f(u)),u € E} is closed in
ExF then fis continuous.

Theorem 936 (Taylor I p.297) For any bilinear map : B: Ex F — C on two
complex Fréchet spaces (E, (pn)neN) , (F, (qn)neN) which is separately continu-
ous on each variable, there are C € R, (k,1) € N*: V (u,v) € ExF : |B (u,v)| <
Cpr (u) qi (v)

Theorem 937 (Zuily p.59) If a sequence (fm),,cn of continuous maps be-
tween two Fréchet spaces (E,pn),(F,qn) s such that : Yu € E,Jv € F :
Jm (W), oo =V, then there is a map : f € L(E;F) such that fp, (u),, . —
f(u) and for any compact K in E, any n€ N : limy, 00 SUP,e i @n (frm (w) — f (w))
0. If (um) ey 5 a sequence in E which converges to u then (fm (um)),en cON-

verges to f(u).

This theorem is important, because it gives a simple rule for the convergence
of sequence of linear maps. It holds in Banach spaces (which are Fréchet spaces).

The space L(E;F) of continuous linear maps between Fréchet spaces E, F
is usually not a Fréchet space. The topological dual of a Fréchet space is not
necessarily a Fréchet space. However we have the following theorems.

Theorem 938 Let (E1,Q1), (E2,Qs) two Fréchet spaces with their open sub-
sets, If Ey is dense in Ey, then E{ C Ej
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Proof. E} C Ej because by restriction any linear map on E; is linear on Es
take A € E{,a € Fy so a € By
A continuous on By at a = Ve >0:3w; € O :Vu e wy : [A(u) —A(a)| <e
take any u in @i, u € Es, Ey second countable, thus first countable =
F(vp),vn € Ea: v > u
So any neighborhood of u contains at least two points w,w’ in Es
So there are w#w’€ wy N Fy
Es is Hausdorff = 3wy, wh € Qs 1 w € wa, v’ € wh,ws Nwh = &
So there is wy € Qs : wy C wy
and A is continuous at a for £y m

12.2.7 Affine spaces

All the previous material extends to affine spaces.

Definition 939 An affine space (E, ﬁ) 1s semi-normed if its underlying vector

space B is normed. The semi-norm defines uniquely a semi-metric : d (A, B) =

|22

Theorem 940 The closure and the interior of a convex subset of a semi-
normed affine space are convez.

Theorem 941 Every ball B(A,r) of a semi-normed affine space is conver.

Theorem 942 A map f : E — F walued in,an affine normed space F is
bounded if for a point O€ F' : sup,cg || f(x) — Ol < oo. This property does
not depend on the choice of O.

Theorem 943 (Schwartz I p.173) A hyperplane of a normed affine space E is
either closed or dense in E. It is closed if it is defined by a continuous affine
map.

12.3 Banach spaces

For many applications a complete topological space is required, thanks to the
fixed point theorem. So for vector spaces there are Fréchet spaces and Banach
spaces. The latter is the structure of choice, whenever it is available, because it
is easy to use and brings several useful tools such as series, analytic functions
and one parameter group of linear maps. Moreover all classic calculations on
series, usually done with scalars, can readily be adaptated to Banach vector
spaces.

Banach spaces are named after the Polish mathematician Stefan Banach who
introduced them in 1920-1922 along with Hans Hahn and Eduard Helly
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12.3.1 Banach Spaces

Definitions

Definition 944 A Banach vector space is a complete normed vector space
over a topologically complete field K

usually K= R or C

Definition 945 A Banach affine space is a complete normed affine space
over a topologically complete field K

Usually a ”Banach space” is a Banach vector space.

Any finite dimensional vector space is complete. So it is a Banach space
when it is endowed with any norm.

A normed vector space can be completed. If the completion procedure is
applied to a normed vector space, the result is a Banach space containing the
original space as a dense subspace, and if it is applied to an inner product space,
the result is a Hilbert space containing the original space as a dense subspace.
So for all practical purposes the completed space can replace the initial one.

Subspaces
The basic applications of general theorems gives:

Theorem 946 A closed vector subspace of a Banach vector space is a Banach
vector space

Theorem 947 Any finite dimensional vector subspace of a Banach vector space
is a Banach vector space

Theorem 948 If F is a closed vector subspace of the Banach space E then E/F
is still a Banach vector space

It can be given (Taylor I p.473) the norm :||ul| p,p = limyepv—o lu — v| g

Series on a Banach vector space

Series must be defined on sets endowed with an addition, so many important
results are on Banach spaces. Of course they hold for series defined on R or C.
First we define three criteria for convergence.

1. Absolutely convergence

Definition 949 A series ) . un on a semi-normed vector space E is abso-
lutely convergent if the series ), ||un|| converges.
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Theorem 950 (Schwartz I p.123) If the series .
absolutely convergent then :

i) D pen Un converges in E

it) HZnEN Un” < 2 nen lluall

i) If ¢ : N = N is any bijection, the series )y Uyp(n) 5 also absolutely
convergent and im )\ Uy = Hm Y un

nen Un on a Banach E s

2. Commutative convergence:

Definition 951 A series ), ; u; on a topological vector space E, where I is a
countable set, is commutatively convergent if there is uc E such that :for
every bijective map ¢ on I : lim ] uge. ) =u

Then on a Banach : absolute convergence = commutative convergence
Conversely :

Theorem 952 (Neeb p.21) A series on a Banach commutatively convergent is
absolutely convergent.

Commutative convergence enables to define quantities such as >_._; u; for

any set.

icl

3. Summable family:

Definition 953 (Neeb p.21) A family (u;),c; of vectors on a semi-normed
vector space E is said to be summable with sum u if :

Ve > 0,3J C I,card(J) < oo : VK C J: H(ZzeKul) —xH < € then one
writes : w =), 5 U; .

Theorem 954 (Neeb p.25) If a family (u;);c; of vectors in the Banach E is
summable, then only countably many u; are non zero

So for a countable set I, E Banach
summability < commutative convergence<-absolute convergence = conver-
gence in the usual meaning, but the converse is not true.

4. Tmage of a series by a continuous linear map:

Theorem 955 (Schwartz I p.128) For every continuous map L € L (E;F)
between normed vector spaces : if the series ) . un on E is convergent then
the series0 >, cn L (un) on Fis convergent and >, L (un) = L (3, cntn) -

If E,F are Banach, then the theorem holds for absolutely convergent (resp.
commutatively convergent) and :

2onen 1L (un) [ < IILI2 0 en llunll
5. Image of 2 series by a continuous bilinear map:
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Theorem 956 (Schwartz I p.129) For every continuous bilinear map B €
L2 (E,F;G) between the Banach spaces E,F,G, if the series Y icrwi on E,
Eje] v; on F, for I,J countable sets, are both absolutely convergent, then the
series on G : 3 sep B (ui, v;) is absolutly convergent and y_; iy ep B (ui, v;) =

B (Zie] Ui, ZjGJ ”j)

Theorem 957 Abel criterium (Schwartz I p.134) For every continuous bilinear
map B € L? (E, F; Q) between the Banach spaces E,F,G on the field K, if :

the sequence (un),, oy on E converges to 0 and is such that the series E;o:o llupr1 — upll
converges,

the sequence (vy), oy on F is such that 3k € K : Vm,n : HZZ:m vpl| < k

)

Theorem 958 then the series: ), -y B (un,vn) converges to S, and

151 < 181 (S5 lupsn = wl) (520 w0
120 B ()| | < B (S5 g = ) (5D,

=2y

The last theorem covers all the most common criteria for convergence of
series.

12.3.2 Continuous linear maps

It is common to say ”operator” for a ”continuous linear map” on a Banach
vector space.

Properties of continuous linear maps on Banach spaces

Theorem 959 For every linear map fe L (E; F) between Banach vector spaces

i) open mapping theorem (Taylor 1 p.490): If f is continuous and surjective
then any neighborhood of 0 in E is mapped onto a neighborhood of 0 in F (f is
open,)

ii) closed graph theorem (Taylor 1 p.491): if the graph of f = {(u, f(u)),u € E}
is closed in ExF then fis continuous.

ii1) (Wilansky p.276) if f is continuous and injective then it is a homeomor-
phism

i) (Taylor 1 p.490) If f is continuous and bijective then f~lis continuous

v) (Schwartz I p.131) If f,g are continuous, f invertible and ||g|| < Hf71||71

then f+g is invertible and H(f + g)_lH < m

Theorem 960 (Rudin) For every linear map fe L (E; F') between Banach vec-
tor spaces and sequence (Un),cy M E:
i) If f is continuous then for every sequence (un),cy in E @ un — u =

f(un) = f(u)
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ii) Conversely if for every sequence (un), oy i E which converges to 0:
f (up) = v then v=0 and f is continuous.

Theorem 961 (Wilansky p.273) If (wn),cy i a sequence in the topological
dual E’ of a Banach space such that Vu € E the set {w,, (u),n € N} is bounded,
then the set {||wy|| ,n € N} is bounded

Theorem 962 (Schwartz I p.109) If f € L(Eo; F) is a continuous linear map
from a dense subspace Eqy of a normed vector space to a Banach vector space I,
then there is a unique continuous map f : E — F which extends f, f € L(E; F)

and ||| = 1171
If F is a vector subspace, the annihiliator F'T of Fistheset: {w € E' :Vu € F: w (u) = 0}

Theorem 963 Closed range theorem (Taylor 1 p.491): For every linear map
fe L(E;F) between Banach vector spaces : ker f* = f(E)T. Moreover if f(E)
is closed in F then ft(F') is closed in E” and f'(F’) = (ker f)T

Properties of the set of linear continuous maps

Theorem 964 (Schwartz I p.115) The set of continuous linear maps L(E;F)
between a normed vector space and a Banach vector space F on the same field
is a Banach vector space

Theorem 965 (Schwartz I p.117) The set of continuous multilinear maps L (Ey, Es, ..E,;F)
between normed vector spaces (E;);_; and a Banach vector space F on the same
field is a Banach vector space

Theorem 966 if E,F are Banach : L(E;F) is Banach

Theorem 967 The topological dual E’ of a Banach vector space is a Banach
vector space

A Banach vector space may be not reflexive : the bidual (E’)’ is not neces-
sarily isomorphic to E.

Theorem 968 (Schwartz Il p.81) The sets of invertible continuous linear maps
GL(E;F),GL(F;E) between the Banach vector spaces E,F are open subsets in
L(E;F),L(F:E), thus they are normed vector spaces but not complete. The map
S : GL(E;F) — GL(F;E) == S(f) = f~1 is an homeomorphism (bijective,
continuous as its inverse).

Then we have : ||f o /7| = [1d]l = 1 < A | /=] < ISIP I =
IS =1 71 = 1/11]
Theorem 969 The set GL(E;E) of invertible endomorphisms on a Banach vec-

tor space is a topological group with compose operation and the metric associated
to the norm, open subset in L(E; E).
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Notice that an ”invertible map f in GL(E;F)” means that f~! must also be
a continuous map, and for this it is sufficient that f is continuous and bijective .

Theorem 970 (Neeb p.141) If X is a compact topological space, endowed with
a Radon measure u, E,F are Banach vector spaces, then:

i) for every continuous map : f € Co (X; E) there is a unique vector U in E
such that :

VA e E: =[x A( w(z) and we write : U = fX x) p(x)

it) for every contmuous map L e L(E;F) (fX ) = fX

Spectrum of a map

A scalar A if an eigen value for the endomorphism fe L(E; E) if there is a vector
u such that f(u)=Au, so f — Al cannot be inversible. On infinite dimensional
topological vector space the definition is enlarged as follows.

Definition 971 For every linear continuous endomorphism f on a topological
vector space E on a field K,

i) the spectrum Sp (f) of f is the subset of the scalars A € K such that
(f — Mdg) has no inverse in L(E; E).

i) the resolvent set p (f) of f is the complement of the spectrum

iii) the map: R: K — L (E;E) = R(\) = (Md — f)"" is called the resol-
vent of f.

If A is an eigen value of f, it belongs to the spectrum, but the converse is no
true. If f € GL(E; E) then 0¢ Sp(f).

This definition can be extended to any algebra, and more properties are
seen in the next section (Normed algebras). However t the spectrum has some
specificities on Banach vector spaces.

Theorem 972 The spectrum of a continuous endomorphism f on a complex
Banach vector space E is a non empty compact subset of C bounded by || f]|

Proof. It is a consequence of general theorems on Banach algebras : L(E;E) is
a Banach algebra, so the spectrum is a non empty compact, and is bounded by
the spectral radius, which is < ||f] =

Theorem 973 (Schwartz 2 p.69) The set of eigen values of a compact endo-
morphism on a Banach space is either finite, or countable in a sequence conver-
gent to 0 (which is or not an eigen value).

Theorem 974 (Taylor 1 p.493) If f is a continuous endomorphism on a com-
plex Banach space:

(Al > Il = X € p(f). In particular if || f]| < 1 then Id-f is invertible and
Yoot =Ud— )7

If Xo € p(f) then : R(A) = R(Xo) Yoprg R(A0)" (A= Xo)"

]f A1, Ao € P (f) then : R ()\1) R ()\2) ()\1 )\2) R ()\1) oR ()\2)
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Compact maps

Theorem 975 (Schwartz 2 p.60) If f is a continuous compact map fe L (E; F)
between a reflexive Banach vector space E and a topological vector space f, then
the closure in F f(B(0,1)) of the image by f of the unit ball B(0,1) in E is
compact in F.

Theorem 976 (Taylor 1 p.496) The transpose of a compact map is compact.

Theorem 977 (Schwartz 2 p.63) If (fn),cn 15 a sequence of linear continuous
maps of finite rank between Banach vector spaces, which converges to f, then f
18 a compact map.

Theorem 978 (Taylor 1 p.495)The set of compact maps between Banach vec-
tor spaces is a closed vector subspace of the space of continuous linear maps
L(E;F).

Theorem 979 (Taylor 1 p.499) The spectrum Sp(f) of a compact endomor-
phism fe L(E; E) on a complex Banach space has only 0 as point of accumula-
tion, and all A # 0 € Sp(f) are eigen values of f.

Fredholm operators
Fredholm operators are ”proxy” for isomorphisms. Their main feature is the
index.

Definition 980 (Taylor p.508) A continuous linear map f € L (E; F) between
Banach wvector spaces E,F is said to be a Fredholm operator if ker f and
F/f(E) are finite dimensional. Equivalentely if there exists g € L (F; E) such
that : Idg —go f and Idp — f o g are continuous and compact. The index of f
is : Indez(f)=dimker f — dim F/ f (E) = dimker f — dimker f*

Theorem 981 (Taylor p.508) The set Fred(E;F) of Fredholm operators is an
open vector subspace of L(E; F). The map : Index:Fred(E;F)— 7 is constant
on each connected component of Fred(E;F).

Theorem 982 (Taylor p.508) The compose of two Fredholm operators is Fred-
holm : If fe Fred(E;F),g € Fred(F;G) then go f € Fred(E;G) and In-
dex(gf )=Index(f) + Index(g). If f is Fredholm and g compact then f+g is Fred-
holm and Index(f+g)=Index(f)

Theorem 983 (Taylor p.508) The transpose f* of a Fredholm operator f is Fred-
holm and Index(f') = —Index (f)
12.3.3 Analytic maps on Banach spaces

With the vector space structure of £(E;E) one can define any linear combination
of maps. But in a Banach space one can go further and define ”functions” of
an endomorphism.
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Exponential of a linear map

Theorem 984 The exponential of a continuous linear endomorphism f €
L (E; E) on a Banach space E is the continuous linear map : exp f = > %f"
where ™ is the n iterated of f

Proof. Vu € F, the series > - f™ (u) converges absolutely :

Sonco m I @) < 0o 2 1 Il = 20— & I llull < (exo L£1]) lul

we have an inceasing bounded sequence on R which converges.

and HZZO:O %f" (u)H < (exp || f]]) |lu]| so exp is continuous with |exp f|| <
exp | fl| m

A simple computation as above brings (Neeb p.170):

If fog=gof=exp(f+g)=(expf)o(expg)

exp(—f) = (exp f)~!

exp(f*) = (exp f)*

gEGL(E;E) :exp(g-tofog)=g 'o(expf)og

If E,F are finite dimensional : det(exp f) = exp(Trace (f))

If E is finite dimensional the inverse log of exp is defined as :

(log f) (u) = [°_[(s — /)~ = (s — 1)7] (u) ds if f has no eigen value < 0

Then : log(go fog™')=go(logf)og™'

log(f~1) = —log f

Holomorphic groups
The exponential can be generalized.

Theorem 985 If f is a continuous linear endomorphism f € L(FE;E) on a
complex Banach space E then the map : expzf =Y %Tf" € L(E;E) and
defines the holomorphic group : U : C — L(E;E) :: U(z) = expzf with
U(z2)oU(21) =U (21 +22),U(0) =1Id

U is holomorphic on C and 4 (exp zf) |.=1, = f oexp 2o f

Proof. i) The previous demonstration can be generalized in a complex Banach
space for 300 0 7

Then, for any continuous endomorphism f we have a map : expzf =
S Ef" e L(EE)

ii) expzf (u) = exp f (2u), z1f, z2f commutes so : exp(z1f) o exp(z2f) =
exp(z1 + 22)f

i) L(U(2) = 1) = f = 02y Z = f = fo (Sol St - 1d) =
fo(expzf — Id)

12U =1 = | < Il (expzf — 1d)]|

lima o |2 (U() = 1) — £ < limao 7] l(exp 2 — Td)]| = 0

Thus U is holomorphic at z=0 with %h:o =f

V) (U (z+h)~U() — foU(z) = LU (h) ~D)oU(z) ~ foUl(z) =
(F W) —1) - f)oU(2)

|5 (U (z+h)=U(2)) = foU )| < (U MR —1) = ]IV ()]l
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lims a0 [ (U (= 4+ ) = U (2)) = o U ()] < limnso | (5 (U (1) = Dy = 1)} U 2] =

So U is holomorphic on C and < (exptf) |.—¢, = foexpzof ®

For every endomorphism f € £ (F;FE) on a complex or real Banach space
E then the map : exptf : R — L (E;FE) defines a one parameter group and
U(t)=exptf is smooth and < (exptf) 1=, = f oexptof

Map defined through a holomorphic map
The previous procedure can be generalized. This is an appication of the
spectral theory (see the dedicated section).

Theorem 986 (Taylor 1 p.492) Let ¢ : Q — C be a holomorphic map on a
bounded region, with smooth border, of C

and f € L(E;E) a continuous endomorphism on the complex Banach E.

i) If Q contains the spectrum of f, the following map is a continuous endo-
morphism on E:

® () (f) = 55 Jog e V) (A = f)~"dX € L (E; E)

ii) If o (A\) = 1 then @ (p) (f) =1d

iii) 1f o (\) = X then @ (¢) (f) = f

w) If p1,02 are both holomorphic on Q, then : ® (1) (f) o @ (p2) (f) =
® (1 x @2) (f)

12.3.4 One parameter group

The main purpose is the study of the differential equation dd—[tj = SU (t) where
U(t),S e L(E;E).S is the infinitesimal generator of U. If S is continuous then
the general solution is U (¢) = exp ¢S but as it is not often the case we have to
distinguish norm and weak topologies. On this topic we follow Bratelli (I p.161).
See also Spectral theory on the same topic for unitary groups on Hilbert spaces.

Definition

Definition 987 A one parameter group of operators on a Banach vector
space E is a map : U :R — L(E; E) such that :
U)=I1d,U(s+t)=U(s)oU (1)

the family U(t) has the structure of an abelian group, isomorphic to R.

Definition 988 A one parameter semi-group of operators on a Banach
vector space E is a map : U : Ry — L(E; E) such that :
U)=I1d,U(s+t)=U(s)oU (1)

the family U(t) has the structure of a monoid (or semi-group)

So we denote T=R or R

Notice that U(t) (the value at t) must be continuous. The continuity condi-
tions below do not involve U(t) but the map U : T — L (E; E) .
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Norm topology

Definition 989 (Bratelli p.161) A one parameter (semi) group U of continuous
operators on E is said to be uniformly continuous if one of the equivalent
conditions is met:

i) Timo U (1) — Id] = 0

i) 3S € L(E;E) :limy—o || 2 (U{#) —1) = S|| =0

iii) 3S € L(E;E): U(t) =300, 58" = exptS

S is the infinitesimal generator of U and one writes % = SU(t)

A uniformly continuous one parameter semi group U can be extended to
T=R such that ||U(t)|| < exp (|t ||IS]])

If these conditions are met the problem is solved. And conversely a one
parameter (semi) group of continuous operators is uniformly continuous iff its
generator is continuous.

Weak topology

Definition 990 (Bratelli p.164) A one parameter (semi) group U of continu-
ous operators on the banach vector space E on the field K is said to be weakly
continuous if Voo € E' the map ¢ : T X E — K 12 ¢ (t,u) = w (U(t)u) is
such that :

VieT: ¢z (t,.): E— K is continuous

Yu € E: ¢ (u): T — K is continuous

So one can say that U is continuous in the weak topology on E.

Similarly a one parameter group U on E’ : U : R — L(E’; E’) is continuous
in the *weak topology if Yu € F the map ¢, : T x E' — K =2 ¢, (t, @) =
U(t) (w) (u) is such that :

VteT: ¢, (t,.): E' - K is continuous

Voo € E' : ¢y (., w) : T — K is continuous

Theorem 991 (Bratelli p.164-165) If a one parameter (semi) group U of op-
erators on E is weakly continuous then :

)Yu e E:y : T — E 1y, (t) =U(t)u is continuous in the norm of E

it) AM > 1,38 > infio 1 In[|U ()] : |U (t)|| < M exp Bt

iti) for any complex borelian measure pu on T such that [ e’ |p (t)| < oo the
map :

Uo:E—E:U,(u)= [, U(t)(u)p(t) belongs to L (E; E)

The main difference with the uniformly continuous case is that the infinites-
imal generator does not need to be defined over the whole of E.

Theorem 992 (Bratelli p.165-166) A map S € L(D(S); E) with domain D(S)C
E is the infinitesimal generator of the weakly continuous one parameter (semi)
group U on a Banach E if :
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Vu e D(S),Jv € E:Vw € E' : w (v) = limy_, 1@ (U(t) — Id) u)

then :

i)Vue E:T — E::U(t)u is continuous in the norm of E

it) D(S) is dense in E in the weak topology

iii) Vu € D(S): SoU (t)u="U (t) o Su

iii) if ReA > B then the range of Md—S)"" = E and Yu € D(S) :
I(Ald = S)ull = M~ (Re A — B) |u]

iv) the resolvent (\Id — S) ™" is given by the Laplace transform : YA : Re X >
BNYu€ E:(N\d—S)  u= [ MU(t)udt

Notice that £U(t)u = Su only if ue D (S). The parameters 3, M refer to
the previous theorem.

The following theorem gives a characterization of the linear endomorphisms
S defined on a subset D(S) of a Banach space which can be an infintesimal
generator.

Theorem 993 Hille-Yoshida (Bratelli p.171): Let S € L(D(S); E), D(S) C E,
E Banach vector space, then the following conditions are equivalent :

i) S is the infinitesimal generator of a weakly continuous semi group U in E
and U(t) is a contraction

it) D(S) is dense in E and S closed in D(S) (in the weak topology) and

Vu € D(S),Ya > 0: ||(Id — aS)ul| > ||u|| and for some a > 0 : the range of
(Id—aS) ' =E

If so then Uis defined by : Yu € D(S) : U(t)u = lim._,o exp (tS’ (Id — 55)71)

lim,, oo (I — %tS) " w where the exponential is defined by power series erpan-
sion. The limits exist in compacts in the weak topology uniformly for t, and if u
is in the norm closure of D(S) the limits exist in norm.

12.4 Normed algebras

Algebras are vector spaces with an internal operation. Their main algebraic
properties are seen in the Algebra part. To add a topology the most natural
way is to add a norm and one has a normed algebra and, if it is complete, a
Banach algebra. Several options are common : assumptions about the norm
and the internal operation on one hand, the addition of an involution (copied
from the adjoint of matrices) on the other hand, and both lead to distinguish
several classes of normed algebras, notably C*-algebras.

Normed algebras are met frequently in mathematics : square matrices with
the Schmidt norm, space of linear endomorphisms, spaces of functions. Their
interest in physics come from quantum mechanics : a system is represented as
a set of observables, which are linear operators on a Hilbert space, and states,
which are functionals on the observables. So the axiomatisation of quantum
mechanics has lead to give the center place to C*-algebras (see Bratelli for more
on the subject).
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In this section we review the fundamental properties of normed algebras,
their representation is seen in the Spectral theory section. We use essentially
the comprehensive study of M.Thill. We strive to address as many subjects
as possible, while staying simple and practical. Much more can be found in
M.Thill’s study. Bratelli gives an in depth review of the dynamical aspects,
more centered on the C*algebras and one parameter groups.

12.4.1 Algebraic structure

This is a reminder of definitions from the Algebra part.

1. Algebra:

An algebra A is a vector space on a field K (it will be C, if K=R the adjust-
ments are obvious) endowed with an internal operation (denoted as multiplica-
tion XY with inverse X ~!) which is associative, distributive over addition and
compatible with scalar multiplication. We assume that it is unital, with unity
element denoted 1.

An algebra is commutative if XY=YX for every element.

2. Commutant:

The commutant, denoted S’, of a subset S of an algebra A is the set of
all elements in A which commute with all the elements of S for the internal
operation. This is a subalgebra, containing I. The second commutant, denoted
S”, is the commutant of S’.

3. Projection and reflexion:

An element X of A is a projection if XX = X, a reflexion if X = X!,
nilpotent if X - X =0

4. Star algebra:

Inspired from the ”adjoint” operation on matrix. A *algebra is endowed with
an involution such that : (X +Y)" = X* +Y* (X -Y) " =Y* - X*;(\X)" =
AX5 (X)) =X

Then the adjoint of an element X is X*

An element X of a *-algebra is : normal if XX*=X*X_ self-adjoint (or
hermitian) if X=X*, anti self-adjoint (or antihermitian) if X=-X*, unitary if
XX*=X*X=I

The subset of self-adjoint elements in A is a real vector space, real form of
the vector space A.

12.4.2 Topological structures

An algebra has the structure of a vector space, so we distinguish in the obvious
way : topological algebra, normed algebra, Banach algebra. Further we can
distinguish an algebra and a *algebra. For the sake of simplicity we will make
use only of :

- normed algebra, normed *-algebra

- Banach algebra, Banach *-algebra, C*-algebra
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Topological algebra

Definition 994 A topological algebra is a topological vector space such that
the internal operation is continuous.

Normed algebras

Definition 995 A normed algebra is a normed vector space endowed with
the structure of a topological algebra with the topology induced by the norm |||,
with the additional properties that : | XY || < [|X|| 1Y, ||| = 1.

Notice that each element in A must have a finite norm.

There is always an equivalent norm such that || I|| =1

A normed algebra is a rich structure, so much so that if we go further we
fall in known territories :

Theorem 996 Gel’fand-Mazur (Thill p.40) A normed algebra which is also a
division ring (each element has an inverse) is isomorphic to C

Definition 997 A normed *-algebra is a normed algebra and a *algebra such

that the involution is continuous. We will require also that : VX € A : | X*|| =
2 *

IX1| and [[ X" = [ X*X]|

It implies ||I]| =1
(so a normed *algebra is a pre C*-algebra in Thill’s nomenclature)

Theorem 998 (Thill p.120) In a normed *-algebra, if the involution * is con-
tinuous, then the map X — X*X is continuous in 0

Theorem 999 (Thill p.120) If the sequence (Xyn), oy in a normed *-algebra
converges to 0, then the sequence (X)), oy is bounded

Banach algebra

Definition 1000 A Banach algebra is a normed algebra which is complete
with the norm topology.

It is always possible to complete a normed algebra to make it a Banach
algebra.

Theorem 1001 (Thill p.12) A Banach algebra is isomorphic and homeomor-
phic to the space of continuous endomorphisms on a Banach space.

Take A as vector space and the maps : p: A = L(A;A) = p(X)Y = XY
this is the left regular representation of A on itself.
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Definition 1002 A Banach *-algebra is a Banach algebra which is endowed
with a continuous involution such that | XY || < |IX|[IY], I 1] = 1.

Definition 1003 A C*-algebra is a Banach *-algebra with a continuous in-
volution * such that | X*|| = || X|| and | X|* = | X*X||

The results for series seen in Banach vector space still hold, but the internal
product opens additional possibilities. The main theorem is the following;:

Theorem 1004 Mertens (Thill p.53): If the series in a Banach algebra, Y-, .y Xn
is absolutely convergent, ., . Yy is convergent, then the series (called the Cauchy

product) Y o Zn = D nen (ZZ:O XY k) converges and ., . Zn = (ZneN Xn) (ZneN Yn)

12.4.3 Examples

1. Banach vector space

Theorem 1005 On a Banach vector space the set L(E; E) is a Banach algebra
with composition of maps as internal product. If E is a Hilbert space L(E; E) is
a C*-algebra

2. Spaces of functions:

(see the Functional analysis part for more)

Are commutative C*-algebra with pointwise multiplication and the norm :
L1l = max /]

i) The set Cy (F;C) of bounded functions

ii) if E Hausdorff, the set Cop, (F; C) of bounded continuous functions

ili) if E Hausdorff, locally compact, the set Cy, (E; C) of continuous functions
vanishing at infinity.

If is E Hausdorff, locally compact, the set Cy. (E;C) of continuous functions
with compact support with the norm : || f|| = max|f]| is a normed *-algebra
which is dense in Cy, (E;C)

3. Matrices:

Theorem 1006 The set C(r) of square complex matrices is a finite dimen-
sional C*-algebra with the norm || M|| = +Tr (MM*)

12.4.4 Morphisms

The morphisms are maps between sets endowed with the same structures and
preserving this structure.

Definition 1007 An algebra morphism between the topological algebras A,B
is a continuous linear map f € L (A; B) such that f (XY) = f(X)-f(Y),f(Ia) =
Ip

Definition 1008 A *-algebra morphism between the topological *-algebras
A,B is an algebra morphism f such that f (X)" = f (X*)
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As usual a morphism which is bijective and whose inverse map is also a
morphism is called an isomorphism.

When the algebras are normed, a map which preserves the norm is an isom-
etry. It is necessarily continuous.

A *-algebra isomorphism between C*-algebras is necessarily an isometry,
and will be called a C*-algebra isomorphism.

Theorem 1009 (Thill p.119,120) A map [ : A — E from a normed *-algebra
A to a normed vector space F is o—contractive if || f (X)| < ry (X). Then it is
continuous.

Theorem 1010 (Thill p.48) A map f € L(A; B) between a Banach *-algebra
A, and a normed *-algebra B, such that : {(XY)=f(X)-f(Y),f(I)=1 and
f(X)" = f(X*) is continuous, and a *-algebra morphism

Theorem 1011 (Thill p.46) A *morphism f from a C*-algebra A to a normed
*_algebra B :

i) s contractive (|| f] < 1)

i) f(A) is a C*-algebra

iii) A/ ker f is a C*-algebra

) if f is injective, it is an isometry

v) f factors in a C*-algebra isomorphism A/ ker f — f (A)

12.4.5 Spectrum

The spectrum of an element of an algebra is an extension of the eigen values of
an endomorphism. This is the key tool in the study of normed algebras.

Invertible elements
?Invertible” will always mean ”invertible for the internal operation”.

Theorem 1012 The set G(A) of invertible elements of a topological algebra is
a topological group

Theorem 1013 (Thill p.38, 49) In a Banach algebra A, the set G(A) of in-
vertible elements is an open subset and the map X — X ' is continuous.

If the sequence (Xp),,cy in G(A) converges to X, then the sequence (X, )
converges to X1 iff it is bounded.

The border OG (A) is the set of elements X such that there are sequences
(Yo)nen s (Zn)pen i A such that :

Yol =112l =1, XY, - 0,Z,X — 0

neN

Spectrum
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Definition 1014 For every element X of an algebra A on a field K:

i) the spectrum Sp (X) of X is the subset of the scalars A € K such that
(f — Mdg) has no inverse in A.

i) the resolvent set p (f) of X is the complement of the spectrum

iii) the map: R: K — A R(\) = (\d— X)™" is called the resolvent of
X.

As we have assumed that K=C the spectrum is in C.

Warning ! the spectrum is relative to an algebra A, and the inverse must be
in the algebra :

i) is A is a normed algebra then we must have H(X — )~ H < 00

ii) When one considers the spectrum in a subalgebra and when necessary we
will denote Spa (X).

Spectral radius
The interest of the spectral radius is that, in a Banach algebra : max (||, A € Sp(X)) =
rx (X) (Spectral radius formula)

Definition 1015 The spectral radius of an element X of a normed algebra

s the real scalar:
ra (X) = inf | X" = limyeo | X7/

Theorem 1016 (Thill p.35, 40, 41)
A (X) < |1 X
k>1:ry (XF) = (ra (X)"
DY (XY) =TX (YX)
IFXY=YX :
A (XY) <ra(X)ra (V) ira (X 4+Y) Sy (X)) (V)5 (X =Y) < ra(X) =7 (V)]

Theorem 1017 (Thill p.36) For every element X of a Banach algebra the se-
ries f(z) = Yoo 02" X™ converges absolutely for |z| < 1/r\(X) and it con-
verges nowhere for |z| > 1/rx (X). The radius of convergence is 1/ry (X)

Theorem 1018 (Thill p.60) For p > ry(X), the Cayley transform of X
FOX) = (X — ) (X + ui[)_l of every self adjoint element of a Banach
*_algebra is unitary

Structure of the spectrum

Theorem 1019 (Thill p.40) In a normed algebra the spectrum is never empty.

Theorem 1020 (Thill p.39, 98) In a Banach algebra :

- the spectrum is a mnon empty compact in C, bounded by ry (X) < || X]| :
max (A, A € Sp(X)) = r3 (X)

- the spectrum of a reflexion X is Sp(X)=(-1,+1)
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Theorem 1021 (Thill p.34) In a *-algebra :
Sp(X*)=5p(X)
for every normal element X : ry (X) = || X||

Theorem 1022 (Thill p.41) In a Banach *-algebra: ry (X) =7y (X*),Sp(X*) =

Sp(X)

Theorem 1023 (Thill p.60) In a C*-algebra the spectrum of an unitary ele-
ment is contained in the unit circle

Theorem 1024 (Thill p.33) For every element : (Sp(XY))\0 = (Sp(Y X))\0

Theorem 1025 (Thill p.73) In a Banach algebra if XY=YX then : Sp(XY) C
Sp(X)Sp (Y);Sp (X +Y) C {Sp(X) +Sp(Y)}

Theorem 1026 (Thill p.32, 50, 51) For every normed algebra, B subalgebra of
A, X€eB

Spa(X) E Spp (X)

(Silov) if B is complete or has no interior : dSpp (X) C 0Spa (X)

Theorem 1027 (Thill p.32, 48) If f : A — B is an algebra morphism then :
Sps(f(X)) C Spa(X)
A (f (X)) < (X)

Theorem 1028 (Rational Spectral Mapping theorem) (Thill p.31) For every
element X in an algebra A, the rational map :

Q:A—>A=zQX)=][[(X-aD) [ (X =BI)"" where all ay # B

e £59(X) '“ |
is such that : Sp(Q(X))=Q(Sp(X))

Ptak function

Definition 1029 On a normed *-algebra A the Ptdk function is : r4 : A —

Ry i1y (X) = /7y (X*X)

Theorem 1030 (Thill p.43, 44,120) The Ptik function has the following prop-
erties :

o (X) < VXX

o (X*) = 1o (X)

o (X*X) =ro (X)?

If X is hermitian : v (X) = rs (X)

If X is normal : r, (X) = || X|| and in a Banach *-algebra: ry (X) > rs (X)

the map r, is continuous at 0 and bounded in a neighborhood of 0

252



Hermitian algebra
For any eement : Sp(X*)=Sp(X) so for a self-adjoint X : Sp(X)=Sp(X) but
it does not imply that each element of the spectrum is real.

Definition 1031 A *-algebra is said to be hermitian if all its self-adjoints
elements have a real spectrum

Theorem 1032 (Thill p.57) A closed *-algebra of a hermitian algebra is her-
mitian. A C*-algebra is hermitian.

Theorem 1033 (Thill p.56, 88) For a Banach *-algebra A the following con-
ditions are equivalent :

i) A is hermitian

i)VX € A: X =X*i¢ Sp(X)

i) VX € A:ry (X) <ry (X)

W) VX € A: XX* = X*X = 1y (X) = 14 (X)

VX €A: XX =X*X =1y (X) < || XX

vi) VX € A : unitary = Sp(X) is contained in the unit circle

vig) Shirali-Ford: VX € A: X*X >0

12.4.6 Order on a *-algebra

If self adjoint elements have a real spectrum we can define a partial ordering on
the self-adjoint elements of an algebra endowed with an involution.

Positive elements

Definition 1034 On a *-algebra the set of positive elements denoted AT is the
set of self-adjoint elements with positive spectrum

AT={X>0}={XeA: X =X*Sp(X)C[0,00[}
AT is a cone in A

Theorem 1035 (Thill p.85) If f : A — B is a *morphism : X € AT =
f(X)eBt

Square root

We say that Y is a square root for X if Y2=X. There are no solution or
usually at least two solutions (depending of A). In some conditions it is possible
to distinguish one of the solution (as the square root of a real scalar) and it is
denoted X1/2.

Theorem 1036 (Thill p.55) In a Banach algebra every element X such that
Sp(X) )0, 00| has a unique square root such that Sp(X'/?) C]0, ool.

Theorem 1037 (Thill p.62) In a Banach *-algebra every invertible positive
element X has a unique positive square root which is also invertible.

253



Theorem 1038 (Thill p.100,101) In a C*-algebra every positive element X
has a unique positive square root. Conversely if there is Y such that X=Y? or
X=Y*Y then X is positive.

Theorem 1039 (Thill p.51) The square root X1/2 of X, when it exists, belongs
to the closed subalgebra generated by X. If X=X* then (Xl/Q) = (Xl/z)*

C*-algebra
A C*-algebra is hermitian, so all self-adjoint elements have a real spectrum
and their set is well ordered by :
X>2Y & X-Y >0& X —Y have a spectrum in Ry

Theorem 1040 (Thill p.88) A" is a convex and closed cone
For every X : X*X >0

Theorem 1041 (Thill p.100,102) In a C*algebra the absolute value of every
element X is | X| = (X*X)l/2 At lies in the closed *-subalgebra generated by X.
And we have : ||| X[]| = [ X]|, |X] < [Y] = [ X]| < [[Y]

If fis an *-homomorphism between C*-algebras : f (|1 X|) = |f (X)]

Theorem 1042 (Thill p.102) In a C*algebra, for every self-adjoint element X
we have :
XTI <X <X L= X[ <X <+ X[, 0<X <Y = [ X]| <[]V

Theorem 1043 (Thill p.100,103) In a C*-algebra every self-adjoint element
has a unique decomposition : X = X4 — X_ such that X1, X_ >0, X, X_ =
X7X+ - O

It is given by : X} =1 (| X|+X), X_ =3 (| X| - X)

Theorem 1044 (Thill p.95) In a C*-algebra every invertible element X has a
unique polar decomposition : X=UP with P=|X|,UU* =1

12.4.7 Linear functionals

Linear functionals play a specific role. They can be used to build representations
of the algebra on itself. In Quantum Mechanics they define the "mixed states”.

Definitions

Definition 1045 A linear functional on a topological algebra A is an element
of its algebraic dual A’
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Definition 1046 In a *-algebra A a linear functional o is :

i) hermitian if VX € A: ¢ (X*) = ¢ (X)

i) positive if VX € A: o (X*X) >0

The variation of a positive linear functional is :

v(p) = infxea {7 e (O <99 (X7X)}.

If it is finite then | (X)]> < v () ¢ (X*X)

iii) weakly continuous if for every self-adjoint element X the map Y €
A= o(Y*XY) is continuous

i) a quasi-state if it is positive, weakly continuous, and v (p) < 1.The set
of states will be denoted QS(A)

iv) a state if it is a quasi-state and v (@) = 1. The set of states will be denoted
S(A).

v) a pure state if it is an extreme point of S(A). The set of pure states is
denoted PS(A).

Theorem 1047 (Thill p.139,140) QS(A) is the closed convex hull of PS(A)U0,
and a compact Hausdorff space in the *weak topology.

Definition 1048 In a *-algebra a positive linear functional o is subordinate
to a positive linear fonctional o1 if YA > 0 : Apa — @1 is a positive linear fonc-
tional. A positive linear functional ¢ is indecomposable if any other positive
linear functional subordinate to ¢ is a multiple of ¢

Theorems on linear functionals

Theorem 1049 (Thill p.142, 144, 145) The variation of a positive linear func-
tional ¢ on a normed *-algebra is finite and given by v (p) = ¢ (I). A posi-
tive linear functional on a Banach *-algebra is continuous and on a C*-algebra
v () = lloll-

Theorem 1050 (Thill p.139) A quasi-state on a normed *-algebra is c— contractive
and hermitian

Theorem 1051 (Thill p.141,151) A state p on a normed *-algebra is contin-
uous and VX € AL : o (X) >0VX € A: /o (X*X) <r, (X).

Theorem 1052 (Thill p.145) On a C*-algebra a state is a continuous linear
functional such that ||¢|| = ¢ (I) =1 . Thenit is hermitian and v () = ||¢||

Theorem 1053 (Thill p.189) On a normed *-algebra, a state is pure iff it is
indecomposable

Theorem 1054 (Thill p.158,173) On a Banach *-algebra A a state (resp a
pure state) on a closed *-subalgebra can be extended to a state (resp. a pure
state) if A is hermitian
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Theorem 1055 (Thill p.146) If E is a locally compact Hausdorff topological
space, for every state v in C, (E;C) there is a unique inner regular Borel prob-
ability measure P on E such that : Vf € C, (E;C) : o (f) = [, [P

Theorem 1056 If ¢ is a positive linear functional on a *-algebra A, then
(X,Y) = ¢ (Y*X) defines a sesquilinear form on A, called a Hilbert form.

Multiplicative linear functionals

Definition 1057 A multiplicative linear functional on a topological alge-
bra is an element of the algebraic dual A’ : ¢ € L(A;C) such that ¢ (XY) =

(X)) (Y) and o #0
=e)=1

Notation 1058 A (A) is the set of multiplicative linear functionals on an al-
gebra A.

It is also sometimes denoted A.

Definition 1059 For X fized in an algebra A, the Gel’fand transform of X
isthemap : X : A(A) = C:: X (¢) = ¢ (X) and the map " : A — C (A (A);C)
is the Gel’fand transformation.

The Gel’fand transformation is a morphism of algebras.

Using the Gel'fand transformation A (A) C A’ can be endowed with the
*weak topology, called Gel’'fand topology. With this topology A (A) is compact
Hausdorff and A (4A) TA(A)UO0

Theorem 1060 (Thill p.68) For every topological algebra A, and X € A :
X (A(4)) cSp(X)
Theorem 1061 (Thill p.67, 68, 75) In a Banach algebra A:

i) a multiplicative linear functional is continuous with norm ||| <1

i) the Gel’fand transformation is a contractive morphism in Co, (A (A);C)
iii) A (A) is compact Hausdorff in the Gel’fand topology

Theorem 1062 (Thill p.70, 71) In a commutative Banach algebra A:

i) for every element X € A: X (A(A)) = Sp(X)

it) (Wiener) An element X of A is not invertible iff Jp € A(A) : X (p) =0
Theorem 1063 (Thill p.72) The set of multiplicative linear functional is not
empty : A(A) £ o

Theorem 1064 Gel’fand - Naimark (Thill p.77) The Gel’fand transformation
is a C*-algebra isomorphism between A and Co, (A (A);C), the set of continu-
ous, vanishing at infinity, functions on A (A).

Theorem 1065 (Thill p.79) For any Hausdorff, locally compact topological
space, A (Coy (E;C)) is homeomorphic to E.

The homeomorphism is : § : E — A (Cy, (E;C)) :: 8, (f) = f (x)
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12.5 Hilbert Spaces
12.5.1 Hilbert spaces

Definition

Definition 1066 A complex Hilbert space is a complex Banach vector space
whose morm is induced by a positive definite hermitian form. A real Hilbert
space is a real Banach vector space whose norm is induced by a positive definite
symmetric form

As a real hermitian form is a symmetric form we will consider only complex
Hilbert space, all results can be easily adjusted to the real case.
The hermitian form g will be considered as antilinear in the first variable,

| y) =9(y,z)
z,ay + bz) = ag(x,y) + bg(x, z)

9(z,

( —
g(cw:ery, z) = ag(z,z) + bg(y, 2)
(

9(z,

g(w,x) >
x) = 0 =z=0
g is continuous. It induces a norm on H :||z|| = \/g(z, x)

Definition 1067 A pre-Hilbert space is a complex normed vector space whose
norm is induced by a positive definite hermitian form

A normed space can always be ”completed” to become a complete space.

Theorem 1068 (Schwartz 2 p.9) If E is a separable complex vector space en-
dowed with a definite positive sesquilinear form g, then its completion is a Hilbert
space with a sesquilinear form which is the extension of g.

But it is not always possible to deduce a sesquilinear form from a norm.
Let E be a vector space on the field K with a semi-norm |||| . This semi norm
is induced by :
- a sequilinear form iff K=C and g (z,y) = } (||x Tyl — e —yl? +i (||:E +iyl)? — ||z - zy|\2)>
is a sequilinear form (not necessarily definite positive).
- a symmetric bilinear forms iff K=R and g (z,y) = % (||33 +yl® = Jlz)® - HyHQ)
is a symmetric bilinear form (not necessarily definite positive).
And the form g is necessarily unique for a given norm.
Similarly not any norm can lead to a Hilbert space : in R™ it is possible only
with the euclidian norm.

Theorem 1069 (Schwartz 2 p.21) Every closed vector subspace of a Hilbert
space is a Hilbert space

Warning! a vector subspace is not necessarily closed if H is infinite dimen-
sional
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Projection

Theorem 1070 (Neeb p.227) For any vectors x,y in a Hilbert space H, the
map : Ppy : H — H :: Py (u) = g(y,u)x is a continuous operator with the
properties :

Py =Py,

VXY e L(H;H): Pxgyy=XP,Y*

Theorem 1071 (Schwartz 2 p.11) For every closed convex non empty subset
F of a Hilbert space (H,g):

i)Vue HVYveF:Reg(u—v,u—v)<0

ii) for any ue H there is a unique v€ F such that : ||u — v|| = minger ||u — w||

iii) the map 7 : H — F :: p (u) = v ,called the projection on F, is
continuous.

Theorem 1072 (Schwartz 2 p.13) For every closed convex family (Fy,),, oy sub-
sets of a Hilbert space (H,g), such that their intersection F is non empty, and
every vector u € H, the sequence (vn), oy of the projections of u on each I,
converges to the projection v of u on F and ||u — v,|| — [Ju — v

Theorem 1073 (Schwartz 2 p.15) For every closed convex family (F,,),, oy sub-
sets of a Hilbert space (H,g), with union F, and every vector uw € H, the sequence
(Vn),en of the projections of u on each F,, converges to the projection v of u on
the closure of F and ||[u — vy|| — ||lu — vl .

Theorem 1074 (Schwartz 2 p.18) For every closed vector subspace F of a
Hilbert space (H,g) there is a unique projection mp : H — F € L(F;H) .
If F # {0} then ||nr| =1

fueF:np(u)=u

Orthogonal complement
2 vectors u,v are orthogonal if g(u,v)=0

Definition 1075 The orthogonal complement F+ of a vector subspace F of
a Hilbert space H is the set of all vectors which are orthogonal to vectors of F.

Theorem 1076 (Schwartz 2 p.17) The orthogonal complement F+ of a vector
subspace F of a Hilbert space H is a closed vector subspace of H, which is also a
Hilbert space and we have : H =F @ F- F-- =F

Theorem 1077 (Schwartz 2 p.19) For every finite family (F;),.; of closed vec-
tor subspaces of a Hilbert space H :(U; F;)* = N Fi-5 (N Fy)t = (U FF)
Theorem 1078 (Schwartz 2 p.16) A vector subspace F of a Hilbert space H is
dense in H iff its orthogonal complement is 0

If S is a subset of H then the orthogonal complement of S is the orthogonal
complement of the linear span of S (intersection of all the vector subspaces
containing S). It is a closed vector subspace, which is also a Hilbert space.
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Quotient space

Theorem 1079 (Schwartz 2 p.21) For every closed vector subspace F of a
Hilbert space the quotient space H/F is a Hilbert space and the projection wp :
FY — H/F is a Hilbert space isomorphism.

Hilbert sum of Hilbert spaces

Theorem 1080 (Neeb p.23, Schwartz 2 p.34) The Hilbert sum, denoted H =
©ierH; of a family (H;, gi);c; of Hilbert spaces is the subset of families (u;),c;
u; € Hy suchthat : Y, gi (us, ui) < oo. For every family (u;);c; € H , Y, cp i
is summable and H has the structure of a Hilbert space with the scalar product :
g (u,v) = 3. gi (ui,vi) . The vector subspace generated by the H; is dense in
H.

The sums are understood as :
(wi);er € H &Y C 1 card(J) < ooy, gi(ui,u;) < oo
and :

Ju:Ve >0,VJ CI:card(J) < oo,q/zigJHuiHili <eVK:JCKcCI:

e = > e wil| < €
which implies that for any family of H only countably many w; are non zero.
So this is significantly different from the usual case.
The vector subspace generated by the H; comprises any family (u;),.; such
that only finitely many u; are non zero.

Definition 1081 For a complete field K (=R, C) and any set I, the set ¢* (I)
is the set of families (x;);c; over K such that :
(suchl Dicy |:vi|2) < oo for any countable subset J of I. ¢ (I) is a Hilbert

space with the sesquilinear form : (x,y) = > . ; Tiy;

Theorem 1082 (Schwartz 2 p.87) 2 (I),¢*(I') are isomorphic iff I and I’
have the same cardinality.

12.5.2 Hilbertian basis

; of vectors of a Hilbert space (H,g) is or-

Definition 1083 A family (e;);c

thormal is Vi, j € I : g(e;, e;)

Theorem 1084 (Schwartz 2 p.42) For any orthonormal family the map : > (1) =
H::y=Y".ze; is an isomorphism of vector space from €* (I) to the closure L
of the linear span L of (e;);c; and

Perceval inequality : Yo € H: ), ;g (ei,2)]> < |||?
Perceval equality —:Nx € L:Y . lg (es,2)]* = ||z||?, Yicrglenz)e; =1
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Definition 1085 A Hilbertian basis of H is an orthonormal family (e;);c;
such that the linear span of the family is dense in H. Equivalently if the only
vector orthogonal to the family is 0.

Ve eH: 3 cr9(enx)ei=2,3 119 (ei,$)|2 = ||510H2

Va,y € H: ) icrg(ei)g (einy) = g(2,y)

V (2:);e; € €% (I) (which means (supjcl dicy
subset J of I) then : >, ; xie; = x € H and (x;),; is the unique family such
that D, yiei = .

The quantities g (e;, z) are the Fourier coefficients.

Conversely a family (e;),.; of vectors of H is a Hilbert basis iff :

Vo€ H: Y e lg (e o)l =

Warning ! As vector space, a Hilbert space has bases, for which only a finite
number of components are non zero. In a Hilbert basis there can be countably

non zero components. So the two kinds of bases are not equivalent if H is infinite
dimensional.

|xz|2) < oo for any countable

Theorem 1086 (Schwartz 2 p.44) A Hilbert space has always a Hilbertian ba-
sis. All the Hilbertian bases of a Hilbert space have the same cardinality.

Theorem 1087 A Hilbert space is separable iff it has a Hilbert basis which is
at most countable.

Theorem 1088 (Lang p.37) For every non empty closed disjoint subsets X,Y
of a separable Hilbert space H there is a smooth function f : H — [0,1] such
that f(z)=0 on X and f(x)=1 on Y.

Ehrardt-Schmidt procedure :
It is the extension of the Graham Schmidt procecure to Hilbert spaces. Let
(un)ﬁ[:l be independant vectors in a Hilbert space H. Define :
vr =uy/ [lua
wo = ug — g (ug,v1)v1 and ve = wa/ ||wal|
Wp = Up — Ef;i 9 (up; vg) vg and vy = wp/ [lwy||

then the vectors (un)f:’:l are orthonormal.

Conjugate:

The conjugate of a vector can be defined if we have a real structure on the
complex Hilbert space H, meaning an anti-linear map :0 : H — H such that
0% = Idy. Then the conjugate of u is o (u).

The simplest way to define a real structure is by choosing a Hilbertian basis
which is stated as real, then the conjugate w of u = > .., wie; € H is u =
>icr Tiei.

So we must keep in mind that conjugation is always with respect to some
map, and practically to some Hermitian basis.
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12.5.3 Operators

Linear endomorphisms on a Hilbert space are commonly called operators (in
physics notably).

Theorem 1089 The set of continuous linear maps L(H;H’) between Hilbert
spaces on the field K is a Banach vector space on the field K.

Theorem 1090 (Schwartz 2 p.20) Any continuous linear map f € L (F;Q)
from the subspace F' of a separable pre-Hilbert space E, to a complete topological
vector space G can be extended to a continuous linear map f € L(E;G). If G

is a normed space then H w = .
v lime, = 1)
The conjugate f (with respect to a real structure on H) of a linear endomor-

phism over a Hilbert space H is defined as : f: H — H :: f (u) = f ()

Dual
One of the most important feature of Hilbert spaces is that there is an anti-
isomorphism with the dual.

Theorem 1091 (Riesz) Let (H,g) be a complex Hilbert space with hermitian
form g, H’ its topological dual. There is a continuous anti-isomorphism T :
H' — H such that :

VAXe H Vue H:g(t(\),u) =A(u)

(H’,g*) is a Hilbert space with the hermitian form : g* (A, u) = g (7 () , 7 (X))
and 17 (1) = Nl 7=

(W) g = llully
Theorem 1092 (Schwartz 2 p.27) A Hilbert space is reflexive : (H') = H

So :

for any w € H' there is a unique 7(w) € H such that : Yu € H :
g (7 (@) ,u) = w (u) and conversely for any u € H there is a unique 7 (u) € H’
such that : Vv € H : g (u,v) =771 (u) (v)

7 (2w) = Zw, 77! (zu) = Zu

These relations are usually written in physics with the bra-ket notation :

a vector u € H is written |u > (ket)

a form w € H' is written < w| (bra)

the inner product of two vectors u,v is written (u|v)

the action of the form w on a vector u is written : < w||u > so < w| can
be identified with 7 (@) € H such that :

(1 (w) |u) =< w||lu >

As a consequence :

Theorem 1093 For every continuous sesquilinear map B : H x H — C in the
Hilbert space H, there is a unique continuous endomorphism A € L (H; H) such
that B (u,v) = g (Au,v)
Proof. Keep u fixed in H. The map : B, : H - K :: B, (v) = B (u,v) is
continuous linear, so I\, € H' : B (u,v) = A, (v)

Define: A: H— H::A(u)=7(\,) € H: B(u,v) =g(Au,v) m
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Adjoint of a linear map

Theorem 1094 (Schwartz 2 p.44) For every continuous linear maps fin L(H;H’)
between the Hilbert spaces (H,g),(H’,g’) on the field K there is a map f* in
L(H’;H) called the adjoint of f such that :

Vue Hyove H : g(u, f*v) = ¢'(fu,v)

The map *:L(H;H’)—L(H’;H) is antilinear, bijective, continuous, isometric
and [** = f,(fog) =g o f*

If f is invertible, then f* is invertible and (ffl)* = (7"

There is a relation between transpose and adjoint : f* (v) = f* (7)

feLH;HY: f(H)" = (H), f~(0)" = f(H

Theorem 1095 (Schwartz 2 p.47) [ is injective iff f*(H) is dense in H’, f(H)
is dense in H’ iff f* is injective

Compact operators

A continuous linear map f € L (E; F) between Banach spaces E,F is compact
if the the closure f (X) of the image of a bounded subset X of E is compact in
F.

Theorem 1096 (Schwartz 2 p.63) A continuous linear map fe L (E;H) be-
tween a Banach space E and a Hilbert space H is compact iff it is the limit of a
sequence (fn),cn of finite rank continuous maps in L (E; H)

Theorem 1097 (Schwartz 2 p.64) The adjoint of a compact map between Hilbert
spaces is compact.

Hilbert sum of endomorphisms

Theorem 1098 (Thill p.124) For a family of Hilbert space (H;),.;, a family of
operators (X;);c; + Xy € L(Hi; H;) Jif sup;e; || Xill g, < oo there is a continuous
operator on @er H; with norm : ||®ier Hil| = sup,e; | Xill g, , called the Hilbert
sum of the operators, defined by : (Bic1X;) (Bicru;) = Bier X; (u;)

Topologies on L£(H;H)
On the space L(H;H) of continuous endomorphisms of a Hilbert space H, we
have topologies :
i) Strong operator topology, induced by the semi-norms : v € H : p, (X) =
[ X ull
ii) Weak operator topology, weak topology induced by the functionals :
LHH)— C:u,v € H:pyyp(X) =g (u, X0)

iii) o —strong topology, induced by the semi-norms : py (X) = 1/>_,.cn | Xun|? U =

2
(un)nEN : ZneN llun|™ < oo
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iv) o—weak topology, weak topology induced by the functionals :
‘C(H?H)_> C:puv (X) = ZnENg (unaXUn) UV ZnGN HunH2 < OovzneN ||UnH2 <

Weak operator topology < Strong operator topology < Norm topology

o—weak toplogy < o—strong toplogy < Norm topology

Weak operator topology < o—weak toplogy

Strong operator topology < o—strong toplogy

The o—weak topology is the *weak topology induced by the trace class
operators.

12.5.4 C*-algebra of continuous endomorphisms

With the map * which associates to each endomorphism its adjoint, the space
L(H;H) of endomorphisms on a Hilbert space over a field K is a C*-algebra over
K.

So all the previous results can be fully implemented, with some simplifica-
tions and extensions.

General properties
All these results are the applications of theorems about C*-algebras.
For every endomorphism f € L(H; H) on a Hilbert space on the field K :
f* o f is hermitian, and positive

exp f =exp f

exp f* = (exp f)*

The absolute value of fis : |f| = (F*£)" and |||I£]ll = IfI.If] < lg| =
111 < llgl

The set of unitary endomorphism f in a Hilbert space : f € L(H;H) :
f* = f~1is a closed subgroup of GL(H;H).

Warning ! we must have both : f inversible and f* = f~'. f*o f = Id is
not sufficient.

The set of invertible operators is an open subset and the map f — f~! is
continuous.

Every invertible element f has a unique polar decomposition : f=UP with
P=|f|, UU* =1

Theorem 1099 Trotter Formula (Neeb p.172) If f,g are continuous operators
g

X N
in a Hilbert space over the field K, then : Vk € K : ek(f+9) — lim, oo (e e n)"

Theorem 1100 (Schwartz 2 p.50) If K=C : % || f|| < sup|jy <1 19 (u, fu)] < [ f]|

Hermitian maps

Definition 1101 f € L(H;H) is self adjoint (or hermitian) if f=f* then
Vu,v € H,: g (u, fv) = g(fu,v)
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A1l = supyuy<1 |9 (u, fu)l

Definition 1102 A symmetric map on a Hilbert space (H,g) is a linear map
fe L(D(f); H) , where D(f) is a vector subspace of H, such thatVu,v € D (f),:

g(uva) zg(fu,v)

Theorem 1103 (Hellinger—Toeplitz theorem) A symmetric map fe L(H; H)
on a Hilbert space H is continuous and self adjoint.

The key condition is here that f is defined over the whole of H.

Theorem 1104 (Thill p.104) For a continuous endomorphism [ on a Hilbert
space H the following conditions are equivalent :

i) [ is hermitian positive : > 0

i) Vu € H : (u, fu) >0

Spectrum

Theorem 1105 The spectrum of an endomorphism f on a Hilbert space H is a
non empty compact in C, bounded by rx (f) < || f]]

Sp(f*) = Sp(f)

If f is self-adjoint then its eigen values A are real and — || f|| < X < || f]|

The spectrum of an unitary element is contained in the unit circle

Theorem 1106 Riesz (Schwartz 2 p.68) The set of eigen values of a compact
normal endomorphism f on a Hilbert space H on the field K is either finite,
or countable in a sequence convergent to 0 (which is or not an eigen value).
It is contained in a disc of radius || f| . If X is eigen value for f, then X is
eigen value for f*. If K=C, or if K=R and f is symmetric, then at least one
eigen value equal to ||f||. For each eigen value X\ , except possibly for 0, the
eigen space Hy is finite dimensional. The eigen spaces are orthonormal for
distinct eigen values. H is the direct Hilbert sum of the Hy thus f can be written
u=>Yyux— fu=>, My and f*: ffu=>3, duy

Conversely if (Hx)\cp is a family of closed, finite dimensional, orthogonal
vector subspaces, with direct Hilbert sum H, then the operator u = ), ux —
fu =73, Auy is normal and compact

Hilbert-Schmidt operator
This is the way to extend the definition of trace operator to Hilbert spaces.

Theorem 1107 (Neeb p.228) For every endomorphism feL(H;H) of a Hilbert
space H, and Hilbert basis (e;),c; of H, the quantity || f|| ys = /> icr 9 (feis feq)
does not depend of the choice of the basis. If || f|| yg < oo then f is said to be a
Hilbert-Schmaidt operator.

Notation 1108 HS(H) is the set of Hilbert-Schmidt operators on the Hilbert
space H.
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Theorem 1109 (Neeb p.229) Hilbert Schmidt operators are compact

Theorem 1110 (Neeb p.228) For every Hilbert-Schmidt operators f,he HS(H)
on a Hilbert space H:

171 < 1 Flrs = 1L

(fyh) = > icr9(ei, froh(e;)) does not depend of the basis, converges and
gwes to HS(H) a structure of a Hilbert space such that || f|| ;5 = /{f, f)

(fsh) = (h*, )

If fre L(H;H), f2, fs € HS (H) then : fiofa, fiofs € HS (H), | f1 0 f2llgs
1l f2ll s - (fr o fas f3) = (f2, f1 f3)

Trace

Definition 1111 (Neeb p.230) A Hilbert-Schmidt endomorphism X on a Hilbert
space H is trace class if
1 X1l =sup {[{(X,Y)],Y € HS(H), Y] <1} < o0

Notation 1112 T(H) is the set of trace class operators on th Hilbert space H

Theorem 1113 (Neeb p.251) || X || is a norm on T(H) and T(H)C HS(H) is
a Banach vector space with || X||

Theorem 1114 (Neeb p.230) The trace class operator X on a Hilbert space H
has the following properties:

1Xllgs < Xl = X7

If X e L(H;H),Y € T(H) then : XYe T (H),|| XY || < I XY |l+

If XY €e HS(H) then XY € T (H)

Theorem 1115 (Taylor 1 p.502) A continuous endomorphism X on a Hilbert

space s trace class iff it is compact and the set of eigen values of (X*X)l/2 s
summable.

Theorem 1116 (Neeb p.231) For any trace class operator X on a Hilbert space
H and any Hilbertian basis (e;);c; of H, the sum ;g (ei, Xe;) converges
absolutely and : Y, ;g (ei, Xe;) = Tr(X) is the trace of X. It has the following
properties:

i) ITr(X)] < Xl

it) Tr(X) does not depend on the choice of a basis, and is a linear continuous
functional on T(H)

iii) For X, Y € HS(H) : Tr(XY)=Tr(Y X),(X,Y) =Tr(XY")

iv) For Xe T(H) the map : L(H;H) — C :: Tr(YX) is continuous, and
Tr(XY)=Tr(YX).

0) VX € L(HH) s | XIlp < X, jer 19 (e Xe)

vi) The space of continuous, finite rank, endomorphims on H is dense in

T(H)

For H finite dimensional the trace coincides with the usual operator.
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Irreducible operators

Definition 1117 A continuous linear endomorphism on a Hilbert space H is
irreducible if the only invariant closed subspaces are 0 and H. A set of operators
is invariant if each of its operators is invariant.

Theorem 1118 (Lang p.521) For an irreducible set S of continuous linear en-
domorphism on a Hilbert space H. If f is a self-adjoint endomorphism commuting
with all elements of S, then f=kId for some scalar k.

Theorem 1119 (Lang p.521) For an irreducible set S of continuous linear en-
domorphism on a Hilbert space H. If f is a normal endomorphism commuting,as
its adjoint f*, with all elements of S, then f=kId for some scalar k.

Ergodic theorem

In mechanics a system is ergodic if the set of all its invariant states (in the
configuration space) has either a null measure or is equal to the whole of the
configuration space. Then it can be proven the the system converges to a state
which does not depend on the initial state and is equal to the averadge of possible
states. As the dynamic of such systems is usually represented as one parameter
group of operators on Hilbert spaces, the topic has received a great attention.

Theorem 1120 Alaoglu-Birkhoff (Bratelli 1 p.378) Let 3 be a set of linear
continuous endomorphisms on a Hilbert space H, such that : YU € U :|U]| <
1,VU,,Us € L:Uy 0o Us € 8 and V the subspace of vectors invariant by all U:
V={ue HVU e { :Uu=u}.

Then the orthogonal projection my : H — V belongs to the closure of the
convex hull of 4.

Theorem 1121 For every unitary operator U on a Hilbert space H : Yu €
H :lim,_ %—1—1 EZ:O UPu = Pu where P is the orthogonal projection on the
subspaceV of invariant vectorsu € V : Uu =u

Proof. Take il = the algebra generated by U in L(H; H) =

12.5.5 Unbounded operators

In physics it is necessary to work with linear maps which are not bounded, so
not continuous, on the whole of the Hilbert space. The most common kinds
of unbounded operators are operators defined on a dense subset and closed
operators.

General definitions
An unbounded operator is a linear map X € L (D (X); H) where D(X) is a
vector subspace of H.
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Definition 1122 The extension of a linear map Ye L(D(Y); H), where H is a
Hilbert space and D(X) a vector subspace of H is a linear map X € L (D (X); H)
where D(Y') C D (X) and X=Y on D(Y)

It is usally denoted ¥ C X

Definition 1123 The spectrum of a linear map X € L(D(X); H), where H is
a Hilbert space and D(X) a vector subspace of H is the set of scalar A € C such
that A\I — X is injective and surjective on D(X) and has a bounded left-inverse

X is said to be regular out of its spectrum

Definition 1124 The adjoint of a linear map Xe€ L(D(X); H), where H is a
Hilbert space and D(X) a vector subspace of H is a map X*¢ L(D (X*);H)
such that : Yu € D(X),v € D(X*) : g(Xu,v) = g (u, X*v)

The adjoint does not necessarily exist or be unique.
Definition 1125 X is self-adjoint if X=X7*, it is normal if XX*=X*X
Theorem 1126 (von Neumann) X*X and XX* are self-adjoint

Definition 1127 A symmetric map on a Hilbert space (H,g) is a linear map
Xe L(D(X);H) , where D(X) is a vector subspace of H, such that Yu,v €
D(X),: g(u,Xv) = g(Xu,v)

If X is symmetric, then X C X* and X can be extended on D(X*) but the
extension is not necessarily unique.

Definition 1128 A symmetric operator which has a unique extension which is
self adjoint is said to be essentially self-adjoint.

Theorem 1129 (Hellinger—Toeplitz theorem) (Taylor 1 p.512) A symmetric
map fe L(H; H) on a Hilbert space H is continuous and self adjoint.

The key condition is here that X is defined over the whole of H.

Definition 1130 Two linear operators X € L(D(X);H),Y € L(D(Y); H)
on the Hilbert space H commute if :

i) D(X) is invariant by Y : YD(X) C D(X)

i) YX C XY

The set of maps in L(H;H) commuting with X is still called the commutant
of X and denoted X’
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Densely defined linear maps

Definition 1131 A densely defined operator is a linear map X defined on a
dense subspace D(X) of a Hilbert space

Theorem 1132 (Thill p.238, 242) A densely defined operator X has an adjoint
X* which is a closed map.

If X is self-adjoint then it is closed, X* is symmetric and has no symmetric
extension.

Theorem 1133 (Thill p.238, 242) If X,Y are densely defined operator then :
i) XCY=Y*"CX*
it) if XY is continuous on a dense domain then Y*X* is continuous on a

dense domain and Y*X* C (XY)*

Theorem 1134 (Thill p.240,241) The spectrum of a self-adjoint,densely de-
fined operator is a closed, locally compact subset of R.

Theorem 1135 (Thill p.240, 246) The Cayley transformY = (X —il) (X +4iI)”"
of the densely defined operator X is an unitary operator and 1 is not an eigen
value. If A € Sp(X) then (A —i) (A +14)"" € Sp(Y). Furthermore the commu-
tants are such that Y’=X". If X is self-adjoint then : X =i (I +Y) (1 -Y)~%
Two self adjoint densely defined operators commute iff their Cayley transform
commutes.

If X is closed and densely defined, then X*X is self adjoint and I+X*X has
a bounded inverse.

Closed linear maps

Definition 1136 A linear map X € L(D(X); H), where H is a Hilbert space
and D(X) a vector subspace of H is closed if its graph is closed in HxH.

Definition 1137 A linear map X € L(D(X); H) is closable if X has a closed
extension denoted X. Not all operators are closable.

Theorem 1138 A densely defined operator X is closable iff X* is densely de-
fined. In this case X =X** and (X) = X*

Theorem 1139 A linear map X € L(D(X); H) where D(X) is a vector sub-
space of an Hilbert space H, is closed if for every sequence (uy),u, € D(X)
which converges in H to u, such that Xu, — v € H then : uw € D(X) and
v=Xu

Theorem 1140 (closed graph theorem) (Taylor 1 p.511) Any closed linear op-
erator defined on the whole space H is bounded thus continuous.
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Theorem 1141 The kernel of a closed linear map X € L(D(X); H) is a closed
subspace of H

Theorem 1142 If the map X is closed and injective, then its inverse X 1 is
also closed;

Theorem 1143 If the map X is closed then X — Al is closed where X is a scalar
and I is the identity function;

Theorem 1144 An operator X is closed and densely defined if and only if X**
=X
12.5.6 Von Neumann algebra

Definition

Definition 1145 A von Neumann algebra W denoted W*-algebra is a *-
subalgebra of L(H;H) for a Hilbert space H, such that W=W"

Theorem 1146 For every Hilbert space, L(H;H), its commutant L(H;H)’, CI
are W*-algebras.

Theorem 1147 (Thill p.203) A C*-subalgebra A of L(H;H) is a W*-algebra
if A7=A

Theorem 1148 (Thill p.204) If W is a von Neumann algebra then W’ is a von
Neumann algebra

Theorem 1149 Sakai (Bratelli 1 p.76) A C*-algebra is isomorphic to a von
Neumann algebra iff it is the dual of a Banach space.

Properties

Theorem 1150 (Thill p.206) For Hilbert space H and any subset S of L(H;H)
the smallest W*-algebra which contains S is W(S)=(SUS*)”. IfVX,Y € S :
X* e S, XY =YX then W(S) is commutative.

Theorem 1151 von Neumann density theorem (Bratelli 1 p.74) If B is a *sub-
algebra of L(H;H) for a Hilbert space H, such that the orthogonal projection on
the closure of the linear span Span{Xu,X € B,u € H} is H, then B is dense in
B77

Theorem 1152 (Bratelli 1 p.76) A state ¢ of a von Neumann algebra W in
L(H;H) is normal iff there is positive, trace class operator p in L(H;H) such
that : Tr(p) =1,VX e W : p(X) =Tr (pX).

p is called a density operator.
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Theorem 1153 (Neeb p.152) Every von Neumann algebra A is equal to the bi-
commutant P” of the set P of projections belonging to A : P = {p cA:p=p>= p*}

Theorem 1154 (Thill p.207) A von Neuman algebra is the closure of the linear
span of its projections.

12.5.7 Reproducing Kernel

All vector spaces on the same field, of the same dimension, and endowed with
a definite positive form g are isometric. So they are characterized by g. We
have something similar for infinite dimensional Hilbert spaces of functions over
a topological space E. In a Hilbert basis the scalar product g (e;, e;) can be in
some way linked to the values of g (e; () , e; (y)) for x,y in E. With a reproducing
kernel it is then possible to build other Hilbert spaces of functions over E.

Definitions

Definition 1155 For any set E and field K=R,C, a function N : ExX E — K
s a definite positive kernel of F if :

i) it is definite positive : for any finite set (x1, ..., x,) the matriz [N (x5, x;)], ., C
K (n) is semi definite positive : [X]" [N (z;,2;)] [X] > 0 with [X] = [2],,,; -

ii) it is either symmetric (if K=R) : N (z,y)" = N(y,x) = N(x,y),or
hermitian (if K=C): N (z,y)" = N(y,z) = N(z,y)

Then [N (z,9)[” < |N (2,2)] [N (3, )

A Hilbert space defines a reproducing kernel:

Let (H,g) be Hilbert space (H,g), on a field K, of functions f : F — K on a
topological space E. If the evaluation maps: x € E:2: H - K =2 (f) = f(x)
are continuous, then € H’, and there is N, € H such that :

VeeE,feH:3N, € H:g(Ny, f)=2(f)=f ()

The corresponding function : N : Ex E — K :: N (z,y) = N, (z) is called
the reproducing kernel of H.

Conversely reproducing kernel defines a Hilbert space:

Theorem 1156 (Neeb p.55) If N : E x E — K is a positive definite kernel of
FE then :

i) Hy = Span{N (x,.),x € E} carries a unique positive definite hermitian
form g such that :

Ve,y € E: g (Ng,Ny) =N (z,y)

it) the completion H of Hy with injection : v: Hy — H carries a Hilbert space
structure H consistent with this scalar product, and whose reproducing kernel is
N.

ii1) this Hilbert space is unique

Theorem 1157 (Neeb p.55) A function N : E x E — K is positive definite iff
it is the reducing kernel of some Hilbert space H C C (F; K)
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5. Examples (Neeb p.59)

i) Let (H,g) be a Hilbert space, E any set, fe C (E;H) then : N (z,y) =
g(f(x),f(y)) is a positive definite kernel

i) If P is a positive definite kernel of E, f€ C' (F; H) ,then Q(z,y) = f(x)P(z,y)f(y)
is a positive definite kernel of E

iii) If P is a positive definite kernel of E, fe C (F; E) ,then Q(z,y) = P(f (z), f (v))
is a positive definite kernel of F

iv) Let (H,g) be a Hilbert space, take N(x,y)=g(x,y) then Hy = H’

v) Fock space : let H be a complex Hilbert space. Then N : H x H — C =
N (u,v) = expg(u,v) is a positive definite kernel of H. The corresponding
Hilbert space is the symmetric Fock space §(H).

Properties

Theorem 1158 (Neeb p.55) If N : E x E — K is the reproducing kernel of
the Hilbert space H, then :

i) N is definite positive

it) Hy = Span {N (z,.),x € E} is dense in H

i) For any orthonormal basis (e;);c; of H : N(z,y)=)",c; 9(ei (x), e (y))

(remember that the vectors of H are functions)

Theorem 1159 (Neeb p.57) The set N(E) of positive definite kernels of a topo-
logical space E is a convex cone in K¥ which is closed under pointwise conver-
gence and pointwise multiplication :

VP,Q € N(E),)N € R, : P+ Q € N(E),\P € N(E),(PQ)(z,y) =
P(z,y)Q(x,y) € N (E)
If K=C :Pe N (E) = ImP € N (E),|P| € N (E)

Theorem 1160 (Neeb p.57) Let (T, S, ) a measured space, (Pt),cp a family
of positive definite kernels of E, such that Vx,y € E the maps : t — P; (z,y)
are measurable and the maps : t — P; (x,x) are integrable, then : P (x,y) =
S P (z,y) pu(t) is a positive definite kernel of E.

Theorem 1161 (Neeb p.59) If the series : f(z) =Y.~ anz" over K is con-
vergent for |z| < r, if P is a positive definite kernel of E and Vx,y € E :
|P(z,y)| <r then : f(P)(z,y)=>rganP(z,y)" is a positive definite kernel
of E.

Theorem 1162 (Neeb p.60) For any positive definite kernel P of E, there are :
a Hilbert space H, a map : f: E — H such that f(E) spans a dense subset of H.
Then Q(z,y) = g(f (z), f (v)) is the corresponding reproducing kernel. The set
(E,H.,f) is called a triple realization of P. For any other triple (E,H’,f’) there is
a unique isometry : @ : H — H' such that f’=po f
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Tensor product of Hilbert spaces

The definition of the tensorial product of two vector spaces on the same field
extends to Hilbert spaces.

Theorem 1163 (Neeb p.87) If (€;),c; is a Hilbert basis of H and (f;) ;¢ is a
Hilbert basis of F then E(i,j)eliei ® f; is a Hilbert basis of H® F
The scalar product is defined as : (u1 ® vi,us ® v2) = g (u1,u2) gr (v1,v2)
The reproducing Kernelis : Nggr (u1 @ v1,us ® v2) = gy (u1,us2) gr (v1,v2)
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13 SPECTRAL THEORY

The C*-algebras have been modelled on the set of continuous linear maps on a
Hilbert space, so it is natural to look for representations of C*algebras on Hilbert
spaces. In quantum physics most of the work is done through ”representations
of observables” : one starts with a set of observables, with an algebra structure,
and look for a representation on a Hilbert space.

In many ways this topic looks like the representation of Lie groups. One of
the most useful outcome of this endeavour is the spectral theory which enables
to resume the action of an operator as an integral with measures which are
projections on eigen spaces.

On this subject we follow mainly Thill. See also Bratelli.

13.1 Representation of an algebra
13.1.1 General Properties

Representations

Definition 1164 A linear representation of an algebra (A,-) over the field K
is a pair (H,p) of a vector space H over the field K and the algebra morphism
p:A— L(H;H) :

VXY € A kK € K :

p (kX +KY)=kp(X)+kp(Y)
pP(X-Y)=p(X)op(Y)
p()=Id=if X € G(A): p(X) ' =p(X)

Definition 1165 A linear representation of a *-algebra (A,-) over the field K
is a linear representation (H,p) of A, such that H is endowed with an involution
and : VX € A: p(X*) =p(X)"

In the following we will consider representation (H,p) of a Banach
*-.algebra A on a Hilbert space (H,g).

Definition 1166 A Hilbertian representation of a Banach *-algebra A is a lin-
ear representation (H,p) of A, where H is a Hilbert space, and p is a continuous
*-morphism p: A — L (H; H).

So: Yu e HHX € A:g(p(X)u,v) =g (u,p(X*)v) with the adjoint X* of
X.

The adjoint map p (X)* is well defined if p (X) is continuous on H or at least
on a dense subset of H

p € L(A; L (H; H)) and we have the norm : |[p[| = supyx =1 [0 (X)|l £z, <
00
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Properties of a representation

1.Usual definitions of representation theory for any linear representation (H, p)
of A:

i) the representation is faithful if p is injective

ii) a vector subspace F of H is invariant if Vu € F,VX € A: p(X)u e F

iii) (H, p) is irreducible if there is no other invariant vector space than 0,H.

iv) If (Hg,pr)pe; is a family of Hilbertian representations of A, then and
VX € A, |lpr (X)]| < oo the Hilbert sum of representations (@;H;, ®;p;) is de-
fined with : (@ip;) (X) (Biui) = @i (ps (X) u;) and norm [[@;ps|| = supye; ||pill

v) An operator f € L (Hy; Hz) is an interwiner between two representations
(Hg, pr) oy 2 if :

VX eA: fop(X)=p2(X)of

vi) Two representations are equivalent if there is an interwiner which an
isomorphism

vii) A representation (H, p) is contractive if ||p|| <1

viii) A representation (H,p) of the algebra A is isometric if VX € A :
10 iy = IX L

2. Special definitions :

Definition 1167 The commutant p' of the linear representation (H,p) of a
algebra A is the set {m € L(H;H):VX € A:mop(X)=p(X)on}

Definition 1168 A vector u € H is cyclic for the linear representation (H, p)
of a algebra A if the set {p (X)u,X € A} is dense in H. (H,p) is said cyclic if
there is a cyclic vector u. and is denoted (H, p,u.)

Definition 1169 Two linear representations (Hi,p1),(Hz, p2) of the algebra
A are spatially equivalent if there is a unitary interwiner U : U o p1 (X) =
p2 (X)U

General theorems

Theorem 1170 (Thill p.125) If the vector subspace FC H is invariant in the
linear representation (H,p) of A, then the orthogonal complement F+ s also
invariant and (F, p) is a subrepresentation

(Thill p.125 A closed vector subspace FC H is invariant in the linear repre-
sentation (H,p) of Aiff VX € A:wpop(X)=p(X)onp where np: H - F
the projection on F

Theorem 1171 If (H, p) is a linear representation of A, then for every unitary
map U € L(H; H), (H,UpU*) is an equivalent representation.

Theorem 1172 (Thill p.122) Every linear representation of a Banach *-algebra
with isometric involution on a pre Hilbert space is contractive

274



Theorem 1173 (Thill p.122) Every linear representation of a C*algebra on a
pre Hilbert space is contractive

Theorem 1174 (Thill p.122) Every faithful linear representation of a C *al-
gebra on a Hilbert space is isometric

Theorem 1175 If (H, p) is a linear representation of a *-algebra then the com-
mutant p' is a W*-algebra.

Theorem 1176 (Thill p.123) For every linear representation (H, p) of a C*algebra
A: A/ ker p, p (A) are C*-algebras and the representation factors to : A/ ker p —

p(A)

Theorem 1177 (Thill p.127) For every linear representation (H,p) of a Ba-
nach *-algebra, and any non null vector ue€ H, the closure of the linear span of
F={p(X)u,X € A} is invariant and (F, p,u) is cyclic

Theorem 1178 (Thill p.129) If (Hy, p1,u1), (Ha, p2,us) are two cyclic linear
representations of Banach *-algebra A and if VX € A : ¢1(p1 (X)ui,u1) =
92 (p2 (X) ug, uz) then the representations are equivalent and there is a unitary
operator U: U o py (X)oU* = pa(X)

Theorem 1179 (Thill p.136) For every linear representation (H, p) of a C*algebra
A and vector u in H such that: ||ul]| = 1 ,the map :p : A — C =z p(X) =
g (p(X)u,u) is a state

13.1.2 Representation GNS

A Lie group can be represented on its Lie algebra through the adjoint represen-
tation. Similarly an algebra has a linear representation on itself. Roughly p (X)
is the translation operator p (X)Y = XY. A Hilbert space structure on A is
required..

Theorem 1180 (Thill p.139, 1/1) For any linear positive functional ¢, a Ba-
nach *-algebra has a Hilbertian representation, called GNS (for Gel’fand, Naimark,
Segal) and denoted (H,, p,) , which is continuous and contractive.

The construct is the following:

i) Any linear positive functional ¢ on A define the sesquilinear form : (X,Y) =
¢ (Y*X) called a Hilbert form

ii) It can be null for non null X, Y. Let J={X € A: VY € A: (X,Y) =0} . It
is a left ideal of A and we can pass to the quotient A/J: Define the equivalence
relation : X ~Y & X —Y € J. A class x in A/J is comprised of elements of
the kind : X + J

iii) Define on A/J the sesquilinear form : (z,y),,; = (X,Y),. So A/J
becomes a pre Hilbert space which can be completed to get a Hilbert space H,.

iv) For each x in A/J define the operator on A/J : T(x)y=xy .If T is bounded
it can be extended to the Hilbert space H, and we get a representation of A.
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v) There is a vector u, € H, such that : VX € A: ¢ (X) = (z,uy),v(p) =
(U, Up) . u, can be taken as the class of equivalence of 1.

If ¢ is a state then the representation is cyclic with cyclic vector u, such
that ¢ (X) = (T (X) g, ) , 0 () = (g, 1) = 1

Conversely:

Theorem 1181 (Thill p.140) If (H, p,u,) is a cyclic linear representation rep-
resentation of the Banach *-algebra A, then each cyclic vector u. of norm 1
defines a state p (X) = g (p(X)ue,u.) such that the associated representation
(Hy, pe, uy) is equivalent to (H, p) and p, = UopoU* for an unitary operator.
The cyclic vectors are related by U : u, = Uu,

So each cyclic representation of A on a Hilbert space can be labelled by
the equivalent GNS representation, meaning labelled by a state. Up to equiva-
lence the GNS representation (H,, p,) associated to a state ¢ is defined by the
condition :

p (X) = (pp (X) up, up)

Any other cyclic representation (H, p, u.) such that : ¢ (X) = (p (X) uc, u.)
is equivalent to (Hy, p,)

13.1.3 Universal representation

The universal representation is similar to the sum of finite dimensional rep-
resentations of a compact Lie group : it contains all the classes of equivalent
representations. As any representation is sum of cyclic representations, and that
any cyclic representation is equivalent to a GNS representation, we get all the
representations with the sum of GNS representations.

Theorem 1182 (Thill p.152) The universal representation of the Banach
*-algebra A is the sum ((®pesa)Hp; Bpes(a)py) = (Hu, pu) where (Hy, py) is
the GNS representation (H,, p,) associated to the state ¢ and S(A) is the set
of states on A. It is a o—contractive Hilbertian representation and ||p, (X)|| <
p(X) where p is the semi-norm : p(X) = sup,eg(a) (¢ (X*X))l/2 .

This semi-norm is well defined as : VX € A,p € S(A) : p(X) <p(X) <
ro (X) < || X and is required to sum the GNS representations.

1. The subset rad(A) of A such that p(X)=0 is a two-sided ideal, * stable
and closed, called the radical.

2. The quotient set A /rad(A) with the norm p(X) is a pre C*-algebra whose
completion is a C*-algebra denoted C*(A) called the envelopping C*algebra of
A.Themap: j: A — C*(A)is a *-algebra morphism, continuous and j(C*(A))
is dense in C*(A).

To a representation (H, p.) of C*(A) one associates a unique representation
(H,p) of Aby: p=p.oj.

3. A is said semi-simple if rad(A)=0. Then A with the norm p is a pre-
C*-algebra whose completion if C*(A).

If A has a faithful representation then A is semi-simple.

276



Theorem 1183 (Gelfand-Naimark) (Thill p.159) if A is a C*-algebra : ||py (X)| =
p(X) =7, (X)

The universal representation is a C* isomorphism between A and the set
L(H; H) of a Hilbert space, thus C*(A) can be assimilated to A

5. If A is commutative and the set of its multiplicative linear functionals
A (A) # @, then C*(A) is isomorphic as a C*-algebra to the set Cp, (A (A);C)

of continuous functions vanishing at infinity.

13.1.4 Irreducible representations

Theorem 1184 (Thill p.169) For every Hilbertian representation (H,p) of a
Banach *-algebra the following are equivalent :

i) (H,p) is irreducible

it) any non null vector is cyclic

iii) the commutant p' of p is the set zI,z € C

Theorem 1185 (Thill p.166) If the Hilbertian representation (H,p) of a Ba-
nach *-algebra A is irreducible then, for any vectors u,v of H such that VX €
A:glp(X)u,u)=g(p(X)v,v) : Jz€Clz|=1:v=2z2u

Theorem 1186 (Thill p.171) For every Hilbertian representation (H,p) of a
Banach *-algebra the following are equivalent :

i) ¢ is a pure state

it) @ is indecomposable

iti) (Hy, py) is irreducble

Thus the pure states label the irreducible representations of A up to equiv-
alence

Theorem 1187 (Thill p.166) A Hilbertian representation of a commutative
algebra is irreducible iff it is unidimensional

13.2 Spectral theory

Spectral theory is a general method to replace a linear map on an infinite di-
mensional vector space by an integral. It is based on the following idea. Let
Xe L(E; E) be a diagonalizable operator on a finite dimensional vector space.
On each of its eigen space E) it acts by u — Au thus X can be written as :
X =3, Amy where 7y is the projection on E) (which can be uniquely defined
if we have a bilinear symmetric form). If E is infinite dimensional then we can
hope to replace > by an integral. For an operator on a Hilbert space the same
idea involves the spectrum of X and an integral. The interest lies in the fact
that many properties of X can be studied through the spectrum, meaning a set
of complex numbers. Several steps are necessary to address the subject.
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13.2.1 Spectral measure

Definition 1188 A spectral measure defined on a mesurable space (E,S) and
acting on a Hilbert space (H,g) is a map P : S — L (H; H) such that:

i)VweS: P(w)=P(w) =P (w)’ : P(w) is a projection

ii) P(E)=I

iii) Yu € H the map : w — g(P(w)u,u) = |P(w)ul® € Ry is a finite
measure on (E,S).

Thus if g(u,u)=1 || P (@) u||” is a probability
For u,v in H we define a bounded complex measure by :
(Pu,v) (@) = 1 22:1 i*g (P (@) (u+ i), (u+i*v)) = (Pu,v) (@) = (P (@) v, u)
The support of P is the complement in E of the largest open subset on which
P=0

Theorem 1189 (Thill p.184, 191) A spectral measure P has the following prop-
erties :

i) P is finitely additive : for any finite disjointed family (w;)
JiwiNw; = : P(Ujw;) =), P(w;)

it) V1,9 € S w1 Nwy =@ : P(wy) o P(ws2) =0

iii) Vowi1,w09 € S : P(w1) o P (w2) = P (w1 Nwa)

iv) Ywy,wq € S: P(wy) o P(ws2) = P (wsz) o P (w1)

v) If the sequence (wy),cy i S is disjointed or increasing then Yu € H :
P (Unenwn)u =3, en P (@n) u

vi) Span (P (w))_cg i a commutative C*-subalgebra of L(H,H)

icr @i € S,VZ#

Warning ! P is not a measure on (E,S), P(w) € L(H; H)

A property is said to hold P almost everywhere in E if Yu € H if holds
almost everywhere in E for g (P (@) u,u)

Image of a spectral measure : let (F,S’) another Borel measurable space,
and ¢ : E — F a mesurable map, then P defines a spectral measure on (F,S’)

by : ¢*P(w') = P (¢~ (=)

Examples
(Neeb p.145)

1. Let (E,S,u) be a measured space. Then the set L? (E, S, u, C) is a Hilbert
space. The map :

w €S : P(w)y = Xy where x4 is the characteristic function of w , is a
spectral measure on L2 (E, S, u, C)

2. Let H = @;c1H; be a Hilbert sum, define P (J) as the orthogonal pro-
jection on the closure : (®;csH;). This is a spectral measure

3. If we have a family (P;),.; of spectral measures on some space (E,S), each
valued in £ (H;; H;) , then :

P(w)u =73 ,c; P (@)u; is a spectral measure on H=®;cr H;.
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13.2.2 Spectral integral

For a measured space (E, S, 1), a bounded function f € Cy (F;C) , a Hilbert
space Hand amap P: S — L(H;H),foreachw e S : f (w)P(w) € L(H; H)
so we can consider an integral [, f (w) P (w) pu which will be some linear map
on H. The definition of the integral of a function with a real valued measure is
given in the Measure section. Here we have to extend the concept to a measure
valued in £ (H; H), proceeding along a similar line.

Definition

Theorem 1190 If P is a spectral measure on the space (E,S), acting on the
Hilbert space (H,g), a complex valued measurable bounded function on E is P-
integrable if there is X € L (H; H) such that :

Vu,v € H: g(Xu,v) = [, f(w)g(P(w)u,v)

If so X is unique and called the spectral integral of f: X = fP fP

The contruct is the following (Thill p.185).

1. A step function is given by a finite set I, a partition (cw;),.; of E such that
w; € S, and a family of complex scalars (a;);c; € € (I) by :f =3, o, vile,,
where 1, is the characteristic function of w;

The set Cp (E;C) of complex valued measurable bounded functions in E,
endowed with the norm: ||f|| = sup|f]| is a commutative C*-algebra with the
involution : f* = f.

The set Cs (E; C) of complex valued step functions on (E,S) is a C*-subalgebra
of Cy (E;C)

2. For h € Cs (E; C) define the integral ps (k) = [, h(w) P (@) = Y_,c; aih (w;) P (w;) €
L(H;H)

H with the map ps : Cs (E;C) — L (H; H) defines a representation (H, p)
of Cs (E;C)

We have : Yu € H : g (([ph(w) P(w)) u,u) = [, h(w)g (P (w)u,u)

3. We say that f € C, (E;C) is P integrable (in norm) if there is X €
L(H;H)

¥h € Cs (B5C) : | X = [ h(@) P (@) ooy < I = Pl (e

We say that f € Cy, (E;C) is P integrable (weakly) if there is Y € £ (H; H)

such that : Vu € H : g(Yu,u) = [ f (@) g (P (@) u, u)

4. { P integrable (in norm) = f P integrable (weakly) and there is a unique
X=Y=p(f)=[gfP€L(HH)

5. conversely f P integrable (weakly) = f P integrable (in norm)

Remark : the norm on a C*-algebra of functions is necessarily equivalent to
2 || fIl = sup,eg | f (x)| (see Functional analysis). So the theorem holds for any
C*-algebra of functions on E.

Properties of the spectral integral
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Theorem 1191 (Thill p.188) For every P integrable function f:

i) |[([g fP) ully = \/fE 1129 (P (=) u,u)
i1) fE fP=0<& f=0 P almost everywhere
i11) fE fP>0«% f >0 P almost everywhere

Notice that the two last results are inusual.

Theorem 1192 (Thill p.188) For a spectral measure P on the space (E,S),
acting on the hilbert space (H,g), H and the map : py : Cp (E;C) — L(H; H) ::
po (f) = [ [P is a representation of the C*-algebra Cy, (E;C). py (Cy (E;C)) =
Span (P (w)) ,cg 15 the C*-subalgebra of L(H,H) generated by P and the com-
mutants : p' = Span (P (w));es.
Every projection in py (Cp (E;C)) is of the form : P(s) for some s € S.

Theorem 1193 Monotone convergence theorem (Thill p.190) If P is a spectral
measure P on the space (E,S), acting on the hilbert space (H,g), (fn),cn an
increasing bounded sequence of real valued mesurable functions on E, bounded P
almost everywhere, then f = lim f,, € C, (E;R) and [ fP =lim [ f,P , [ fP
is self adjoint and Yu € H : g (( [ fP) u,u) =lim [, f, (@) g (P (@) u, u)

Theorem 1194 Dominated convergence theorem (Thill p.190) If P is a spectral
measure P on the space (E,S), acting on the hilbert space (H,g),(fn),cn @ norm
bounded sequence of functions in Cy (E;C) which converges pointwise to f,then

: VuEH:(ffP)u:lim(ffnP)u

Theorem 1195 Image of a spectral measure (Thill p.192) : If P is a spectral
measure P on the space (E,S), acting on the hilbert space (H,qg),(F,S’) another
Borel measurable space, and ¢ : E — F a mesurable map then : Vh € Cy (F;C) :

thga*P = fE (hoyp)P
13.2.3 Spectral resolution
The purpose is now, conversely, starting from an operator X, find f and a spectral

measure P such that X= [}, f (w) P (w)

Exitence

Definition 1196 A resolution of identity is a spectral measure on a mea-
surable Hausdorff space (E,S) acting on a Hilbert space (H,g) such that for any
ue H, glu,u)=1: g(P(w)u,u) is inner regular.

Theorem 1197 (Thill p.197) For any continuous normal operator X on a
Hilbert space H there is a unique resolution of identity : P : Sp(X) — L(H; H)
called the spectral resolution of X such that : X = fSp(X) 2P where Sp(X) is
the spectrum of X
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X normal : X*¥*X=XX*
so the function f is here the identity map : Id : Sp(X) — Sp (X)
We have a sometimes more convenient formulation of this theorem

Theorem 1198 (Taylor 2 p.72) Let X be a self adjoint operator on a sepa-
rable Hilbert space H, then there is a Borel measure u on R | a unitary map
W:L? (R, u,C) — H, a real valued function a € L* (R, u,R) such that :

Vo € L2 (R, 1, C) : W I1XWo (z) = a(x) ¢ (z)

Theorem 1199 (Taylor 2 p.79) If Ax,k = 1..n are commuting, self adjoint
continuous operators on a Hilbert space H, there are a measured space (E,u), a
unitary map : W:L? (E,u,C) — H, functions ay € L*° (E, u,R) such that :

Vf € L? (E7 ch) : W_lAkW (f) (JJ) = Qg (‘T) f (JJ)

Commutative algebras
For any algebra (see multiplicative linear functionals in Normed algebras) :
A (A) € L(A;C) is the set of multiplicative linear functionals on A
X :A(A) = C: X (p) = ¢ (X) is the Gel'fand transform of X

Theorem 1200 Representation of a commutative *-algebra (Thill p.201) For
every Hilbertian representation (H,p) of a commutative *-algebra A, there is a
unique resolution of identity P sur Sp(p) acting on H such that : VX € A :

p(X) = Jgpix) Xlspcx) P and Sup(P)=Sp(p)

Theorem 1201 Representation of a commutative Banach *-algebra (Neeb p.152)
For any Banach commutative *-algebra A :

i) If P is a spectral measure on A (A) then p(X) =P ()?) defines a spectral

measure on A
ii) If (H,p) is a non degenerate Hilbertian representation of A, then there is

a unique spectral measure P on A (A) such that p(X) =P ()?)

Theorem 1202 (Thill p.194) For every Hilbert space H, commutative C*-
subalgebra A of L(H;H), there is a unique resolution of identity P : A(A) —
L(H; H) such that : VX € A: X = fA(A)XP

Properties of the spectral resolution

Theorem 1203 If P is the spectral resolution of X :
i) Support of P = all of Sp(X)
it) Commutants : X’=Span (P (Z));ESp(X)

Theorem 1204 Figen-values (Thill p.198) If P is the spectral resolution of the
continuous normal operator on a Hilbert space H, A € Sp(X) is an eigen value
of X iff P({\}) #0 . Then the range of P(\) is the eigen space relative to A

So the eigne values of X are the isolated points of its spectrum.
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13.2.4 Extension to unbounded operators

(see Hilbert spaces for definitions)

Spectral integral

Theorem 1205 (Thill p.233) If P is a spectral measure on the space (E,S),
acting on the Hilbert space (H,g), for each complex valued measurable func-
tion f on (E,S) there is a linear map X=[ fP called the spectral integral
of f, deﬁned on a subspace D(X) of H such that : YVu € D(X) : g(Xu,u) =

S f( P (w)u,u)and D([ fP) = {uerE lg(u, fu)P| <oo} is dense
in H

Comments:

1) the conditions on f are very weak : almost any function is integrable

2) the difference with the previous spectral integral is that [ fP is neither
necessarily defined over the whole of H, nor continuous

The consruct is the following (Thill p.233)

i) For each complex valued measurable function f on (E,S) D(f):{u €H: [,|g(u, fu)P|* < oo}

is dense in H

ii) one says that f is weakly integrable if :3X € L(D(X);H):D(X)=D({)
and Vu € H : g (Xu,u) = [, f( P (w) u,u)

one says that f is pointwise mtegrable if :3X € L(D(X);H) : D(X)=D({)
and

Vhe Cy (B;C) Vue H: ||(X — [, hP)u|” = \/fEl\f (@)[|* g (P (@) u, u)

iii) f is weakly integrable = f is pointwise integrable and X is unique.

For any complex valued measurable function f on (E,S) there exists a unique
X=Up (f) such that X = [}, fP pointwise

f is pointwise integrable = f is weakly integrable

Properties of the spectral integral

Theorem 1206 (Thill p.236, 237, 240) If P is a spectral measure on the space
(E,S), acting on the Hilbert space (H,g), and f,fi, f2 are complex valued measur-
able functions on (E,S) :

0 € D) (fo (@) P @)l = VI 11 (P (@) u,u)
i) D (| fi] + | f2) (fEf1P+fEf2 )
((fEfl ) (fE f2) )) D (fi0 f2) N D(f2)

which reads with the meaning of extension of operators (see Hilbert spaces)
Jp AP+ [ foP C [, (fi+ f2) P

(e fiP)o ([g(f2) P) C [ (fif2) P
iii) (fE fP)* = fE fP so if fis a measurable real valued function on E then
fE [P is self-adjoint
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fE fP is a closed map
(s fP) o (JpfP) =[5 fP) o (JFP)" = [y |FF P

Theorem 1207 Image of a spectral measure (Thill p.236) : If P is a spectral
measure on the space (E,S), acting on the Hilbert space (H,g), (F,S’) a Borel
measurable space, and ¢ : E — F a mesurable map then for any compler valued
measurable functions on (F,S°) : [, f¢*P = [, (fo¢)P

Spectral resolution
It is the converse of the previous result.

Theorem 1208 (Spectral theorem for unbounded operators) (Thill p.243) For
every densely defined, linear, self-adjoint operator X in the Hilbert space H, there
is a unique resolution of identity P : Sp(X) — L(H; H) called the spectral
resolution of X, such that : X = fSP(X) AP where Sp(X) is the spectrum of X.

(the function f is real valued and equal to the identity)
We have a sometimes more convenient formulation of this theorem

Theorem 1209 (Taylor 2 p.79) Let X be a self adjoint operator, defined on
a dense subset D(X) of a separable Hilbert space H, then there is a measured
space (E,u), a unitary map W:L* (E,u,C) — H, a real valued function a €
L? (E, u,R) such that :

Vo € L2 (E,1,C) : W IXWo (z) = a(z) p (z)

Wy e D(X) iff p € L* (E, u,C)

If f is a bounded measurable function on E, then : W=1f (X)W (z) =
f(a(z)) ¢ (x) defines a bounded operator f(X) on L? (E, u,C)

With f(z) = €*(®) we get the get the strongly continuous one parameter
group X! = U(t) with generator iX.

Theorem 1210 (Thill p.243) The spectral resolution has the following proper-
ties:

i) Support of P = all of Sp(X)

it) Commutants : X’=Span (P (/\))/)\esp(x)

Theorem 1211 (Thill p.246) If P is the spectral resolution of a densely self
adjoint operator on the Hilbert space H, f : Sp(X) — C a Borel measurable
function, then [, fP is well defined on D ([, fP) and denoted f(X)

13.2.5 Application to one parameter unitary groups

One parameters groups are seen in the Banach Spaces subsection. Here we
address some frequently used results, notably in quantum physics.
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Theorem 1212 (Thill p.247) A map : U : R — L (H; H) such that :
i) U(t) is unitary
i) U(t+s)=U(t)U(s)=U(s)U(t)
defines a one parameter unitary group on a Hilbert space H.
IfVYu € H the map : R — H = U(t)u is continuous then U is differentiable,
and there is an infinitesimal generator S € L (D(S), H) such that : Yu € D (S) :
—2 47 (t)]i—ou = Su which reads U (t) = exp (itS)

We have a sometime more convenient formulation of this theorem :

Theorem 1213 (Taylor 2 p.76) Let H be a Hilbert space and U a map U : R —
L (H; H) which defines an uniformly continuous one parameter group, having a
cyclic vector v, then there exists a positive Borel measure p on R and a unitary
map : W : L? (R, u, C) — H such that : Yo € L? (R, 1, C) : WU (t) W (x) =
eitm(p (JJ)
The measure 1 = C (t) dt where ¢ (£) = (v, U (t) v) is a tempered distribution.
Conversely :

Theorem 1214 (Thill p.247) For every self adjoint operator S defined on a
dense domain D(X) ofa Hilbert space H, the map : U:R — L(H;H) = U(t) =
exp (—itS) fSp —itA) P (\) defines a one parameter unitary group on H
with infinitesimal genemtor S. U is differentiable and —1 LU (s)|—yu = SU(t)u

So U is the solution to the problem : —-LU(s)|,—, = SU(t) with the initial

value solution U(0)=S
Remark : U(t) is the Fourier transform of S
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Part IV
PART 4 : DIFFERENTIAL
GEOMETRY

Differential geometry is the extension of elementary geometry and deals with
manifolds. Nowodays it is customary to address many issues of differential
geometry with the fiber bundle formalism. However a more traditional approach
is sometimes useful, and enables to start working with the main concepts without
the hurdle of getting acquainted with a new theory. So we will deal with fiber
bundles later, after the review of Lie groups.

Many concepts and theorems about manifolds can be seen as extensions
from the study of derivatives in affine normed spaces. So we will start with a
comprehensive review of derivatives in this context.
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14 DERIVATIVE

In this section we will address the general theory of derivative of a map (non
necessarily linear) between affine normed spaces. It leads to some classic results
about extremum and implicit functions. We will also introduce holomorphic
functions.

We will follow mainly Schwartz (t I).

14.1 Differentiable maps
14.1.1 Definitions

In elementary analysis the derivative of a function f(x) in a point a is introduced
as f'(z)|s=0 = limp—o 3 (f(a+ h) — f(a)). This idea can be generalized once
we have normed linear spaces. As the derivative is taken at a point, the right
structure is an affine space (of course a vector space is an affine space and the
results can be fully implemented in this case) .

Differentiable at a point

Definition 1215 A map f : Q — F defined on an open subset 2 of the normed
affine space (E, ﬁ) and valued in the normed affine space (F, ?) , both on the

same field K, is differentiable at a € Q if there is a linear, continuous map

LeLl (B, ?) such that :
3> 0,Vhe E, ﬁHE <riath €Q: flatB)—f(a)= LT +e(h) Hﬁ

where € (h) € F is such that limp e (h) =0
L is called the derivative of f in a.

|-

Speaking plair&r : f can be a@roximated by an affine map in the neighbor-
hood of a: f(a+ h) =~ f(a)+ Lh

Theorem 1216 If the derivative exists, it is unique and f is continuous in a.

This derivative is often called Fréchet’s derivative. If we take E=F=R we
get back the usual definition of a derivative.

Notice that f(a + 7) — f(a) € F and that no assumption is made about
the dimension of E,F or the field K, but E and F must be on the same field
(because a linear map must be between vector spaces on the same field). This
remark will be important when K=C.

Remark :the domain 2 must be open. If Q is a closed subset and a€ 92 then

% [e]
we must have a + h € Q and L may not be defined over Bt E=[a,b] C R one
can define right derivative at a and left derivative at b because L is a scalar.
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Theorem 1217 (Schwartz II p.83) A map f : Q — F defined on an open

subset 2 of the normed affine space (E, ﬁ) and valued in the normed affine

space (F, ?) =11 (Fi,?i), both on the same field K, is differentiable at
i=1

a € Q iff each of its components fr, : E — Fy, is differentiable at a and its

derivative f’(a) is the linear map in L (f, 11 ?1) defined by f}. (a).
i=1
Continuously differentiable in an open subset

Definition 1218 A map f : Q — F defined on an open subset Q of the normed
affine space (E, E) and valued in the normed affine space (F, ?) both on the
same field K, is differentiable in Q if it is differentiable at each point of Q. Then
the map : fr:Q — L (E, ?) is the derivative map or more simply derivative,

of fin Q.If {7 is continuous f is said to be continuously differentiable or of
class 1 (or Cy).
Notation 1219 f’ is the derivative of f: f1:Q — L (E, ?)
fr(a) = f1(x) |z=a 1s the value of the derivative in a . So f’(a)e L (ﬁ,?)
Cy (4 F) is the set of continuously differentiable maps f : Q@ — F.

If E,F are vector spaces then C; (2; F') is a vector space and the map which
associates to each map f :  — F its derivative is a linear map on the space
Ol (Q, F) .

Theorem 1220 (Schwartz IT p.87) If the map f : Q@ — F defined on an open
subset 2 of the normed affine space (E, ﬁ) and valued in the normed affine
space (F, ?) both on the same field K, is continuously differentiable in € then
the map ) X ESFo f(2) is continuous.

Differentiable along a vector

Definition 1221 A map f : Q — F defined on an open subset Q2 of the normed
affine space (E, ﬁ) and valued in the normed affine space (F, ?) on the same

field K, is differentiable at a € Q) along the vector U e ﬁ if there is T e ?
such that : lim._ (% (f(a+ ) — f(a)) = V. U s the derivative of f in a
with respect to the vector

Notation 1222 D, f (a) € 7 is the derivative of f in a with respect to the
vector
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Definition 1223 A map f : Q — F defined on an open subset Q of the normed
affine space (E, B) and valued in the normed affine space (F, ?) on the same

field K, is Gateaux differentiable at a € Q if there is L€ L (E, ?) such
that ¥U € B : lim, g (1 (fla+ zﬁ) — f(a))) = L.

Theorem 1224 If f is differentiable at a, then it is Gateaux differentiable
and Do f = f'(a)W.

But the converse is not true : there are maps which are Gateaux differen-

tiable and not even continuous ! But if Ve > 0,3r > 0,V € E: |||, <7 :
o (2) — ¥|| < e then f is differentiable in a.

Partial derivatives

Definition 1225 A map f : Q — F defined on an open subset Q2 of the normed
affine space (E,E) = ]I (EZ,EZ) and valued in the normed affine space

i=1
(F, ?) , all on the same field K, has a partial derivative at a=(a1,.a,) €
with respect to the variable k if the map: fr : Qp = 7 (Q) = F =2 f (z) =
f(a1,...ap—1, Tk, Qkt1, ..ar), where Ty is the canonical projection my : E — Ey,
is differentiable at a

Notation 1226 % (a) = f;, (a) denotes the value of the partial derivative at
a with respect to the variable xy,. aa_xjk (a) e L (Ek; ?)

Definition 1227 If f has a partial derivative with respect to the variable
at each point a € Q,and if the map : ar — g—i (a) is continuous, then fis said

to be continuously differentiable with respect to the variable xy in

Notice that a partial derivative does not necessarily refers to a basis.
If f is differentiable at a then it has a partial derivative with respect to each
of its variable and :

f@) (T, W) = 30, [, (a) ()

But the converse is not true. We have the following :

Theorem 1228 (Schwartz II p.118) A map f : Q@ — F defined on an open
subset ) of the normed affine space (E, ﬁ) =11 (Ez,ﬁz) and valued in the
i=1

normed affine space (F, ?) , all on the same field K, which is continuously dif-

ferentiable in 0 with respect to each of its variable is continuously differentiable

mn Q
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So f continuously differentiable in 2 < f has continuous partial derivatives
in

but f has partial derivatives in a = f is differentiable in a

Notice that the E; and F can be infinite dimensional. We just need a finite
product of normed vector spaces.

Coordinates expressions
Let f be amap f: Q — F defined on an open subset {2 of the normed affine

space (E , ﬁ) and valued in the normed affine space (F , ?) on the same field

1. If E is a m dimensional affine space, it can be seen as the product of n
one dimensional affine spaces and, with a basis (?1):11 of B we have :

The value of f’(a) along the basis vector €; is D=, f(a) = f'(a) (¢4 € ¥

The partial derivative with respect to z; is : g—i (a) and : D, f(a) =
75 (a) (T3)

The value of f’(a) along the vector U = %21 u; € is Do f(a) = f'(a) (W) =
St uiDe, fla) = 30 wigh (a) (€) € .

2. If F is a n dimensional affine space, with a basis (?1) we have :
i=1

f(x) = X% fx (x) where fj (x) are the coordinates of f(x) in a frame

(0.(F9)._)
i=1
Fi(a) =0, £ (a) f i where f] (a) € K
3. If E is m dimensional and F n dimensional, the map {’(a) is represented

by a matrix J with n rows and m columns, each column being the matrix of a
partial derivative, called the jacobian of f:

. on on
8 . 1 o LTm
(] = J = {ﬁ] n= |
O Ofn Dfn.
oxq . Oxm

If E=F the determinant of J is the determinant of the linear map f’(a), thus
it does not depend on the basis.
14.1.2 Properties of the derivative

Derivative of linear maps

Theorem 1229 A continuous affine map f : Q — F defined on an open subset
Q of the normed affine space (E,E) and valued in the normed affine space

(F, ?) , both on the same field K, is continuously differentiable in Q) and f’ is
the linear map 7 el (B, ?) associated to f.
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So if f=constant then f’=0
Theorem 1230 (Schwartz II p.86) A continuous r multilinear map f € L" (ﬁl, ...BT; ?)

T
defined on the normed vector space [] ET and valued in the normed vector space
i=1

? ,all on the same field K, is continuously differentiable and its derivative at
U= (Uy,.., ) is :
f/ (7) (717 (X3} 77‘) = Zzzl f (717 oy 7i—17 71’7 7i-l—l-'a 7r)

Chain rule

Theorem 1231 (Schwartz I p.93) Let (E, ﬁ) , (F, ?) , (G, 8) be affine normed
spaces on the same field K, Q) an open subset of E,

If the map f : Q — F is differentiable at ac E, and the map : g: F — G is
differentiable at b=f(a), then the map go f : Q — G is differentiable at a and :

(92) (@) =g B)of (@) e £ (E:C

Let us write : y = f(z),z = g(y). Then ¢’ (b) is the differential of g with
respect to y, computed in b=f(a), and f’(a) is the differential of f with respect
to x, computed in x=a.

If the spaces are finite dimensional then the jacobian of gof is the product
of the jacobians.

Special case : let E an affine normed space and f € L (E; F) continuously
differentiable. Consider the iterate F}, = (f)" = (fofo..f) = F,_10f. By
recursion : F! (a) = (f’ (a))" the n iterate of the linear map f’(a)

Derivatives on the spaces of linear maps
The definition of derivative holds for any normed vector spaces, in particular
for spaces of linear maps.

1. Derivative of the compose of linear maps:

Theorem 1232 If E is a normed vector space, then the set L(E; E) of con-
tinuous endomorphisms is a normed vector space and the composition : M :
L(E;E)x L(E;E)— L(E;E):: M(f,g) = fogis a bilinear, continuous map
M € L% (L(E;E); L(E;E)) thus it is differentiable and the derivative of M at
(f.9) is: M'(f,9)(0f,69) =d0fog+ fodg

This is the application of the previous theorem.
2. Derivative of the inverse of a linear map:

Theorem 1233 (Schwartz II p.181) Let E,F be Banach vector spaces, U the
subset of invertible elements of L(E;F), U™t the subset of invertible elements of
L(F;E), then :
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i) U,U"L are open subsets
ii) the map S : U — U~L 22 S(f) = £ is a Coo—diffeomorphism (bijective,
continuously differentiable at any order as its inverse). Its derivative at f is :

§feUCL(EF):(S(f) Of)=—fto(5f)of

3. As a consequence:

Theorem 1234 The set GL (E; E) of continuous automorphisms of a Banach
vector space E is an open subset of L (E; E).

i) the composition law : M : L(E; E)XL(E;E) — L(E;E) :: M(f,9) = fog
is differentiable and

M'(f,g)(6f,09) =6fog+ fody

i) the map : S : GL (E; E) — GL (E; E) is differentiable and (3(f))' (6f) =
—f7todfof!

Diffeomorphism

Definition 1235 A map [ : Q — Q' between open subsets of the affine normed
spaces on the same field K, is a diffeomorphism if f is bijective, continuously
differentiable in Q, and f~* is continuously differentiable in Q.

Definition 1236 A map f: Q — Q' between open subsets of the affine normed
spaces on the same field K, is a local diffeomorphism if for any a € Q) there
are a neighborhood n(a) of a and n(b) of b=f(a) such that f is a diffeomorphism
from n(a) to n(b)

A diffeomorphism is a homeomorphism, thus if E,F are finite dimensional
we have necessarily dimE=dimF. Then the jacobian of f~! is the inverse of the
jacobian of f and det (f7(a)) # 0.

Theorem 1237 (Schwartz IT p.96) If f : Q — Q' between open subsets of the
affine normed spaces on the same field K, is a diffeomorphism then Ya € Q,b =

fla): (f @)™ = ("o

Theorem 1238 (Schwartz II p.190) If the map f : @ — F from the open
subset ) of the Banach affine space (E, E) to the Banach affine space (F, ?)
is continuously differentiable in Q) then :

i) if for ac Q the derivative f'(a) is invertible in L (E,?) then there A
open in B, B open in F, a € A,b= f(a) € B, such that f is a diffeormorphism
from A to B and (f' (a)) "' = (f’l)/ (b)

ii) If for any a € Q f’(a) is invertible in L (E,?) then f is an open map
and a local diffeomorphism in ).

iii) If f is injective and for any a € Q f’(a) is invertible then f is a diffeo-
morphism from Q to f(Q)
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Theorem 1239 (Schwartz II p.192) If the map f : Q — F from the open
subset ) of the Banach affine space (E, ﬁ) to the normed affine space (F, ?)

is continuously differentiable in Q and Va € Q f’(xz) is invertible then f is a local
homeomorphism on . As a consequence f is an open map and f () is open.

Immersion, submersion

Definition 1240 A continuously differentiable map f : Q@ — F between an
open subset of the affine normed space E to the affine normed space F, both on
the same field K, is an immersion at a € Q if f’(a) is injective.

Definition 1241 A continuously differentiable map f : Q@ — F between an
open subset of the affine normed space E to the affine normed space F, both on
the same field K, is a submersion at a € Q if f’(a) is surjective.

A submersion (resp.immersion) on ) is a submersion (resp.immersion) at
every point of €2

Theorem 1242 (Schwartz II p.193) If f : Q@ — F between an open subset of
the affine Banach E to the affine Banach F is a submersion at a € Q) then the
image of a neighborhood of a is a neighborhood of f(a). If f is a submersion on
Q then it is an open map.

Theorem 1243 (Lang p.18) If the continuously differentiable map f : Q — F
between an open subset of E to F, both Banach vector spaces on the same field
K, is such that f’(p) is an isomorphism, continuous as its inverse, from E to
a closed subspace Fy of F and F = Fy @ Fs, then there is a neighborhood n(p)
such that w1 o f is a diffeomorphism from n(p) to an open subset of Fy, with m
the projection of F to Fj.

Theorem 1244 (Lang p.19) If the continuously differentiable map f: Q — F
between an open subset of E = Fy ® Es to F, both Banach vector spaces on
the same field K, is such that the partial derivative O, f (p) is an isomorphism,
continuous as its inverse, from E; to F, then there is a neighborhood n(p) where
f = fom with m1 the projection of E to Ej.

Theorem 1245 (Lang p.19) If the continuously differentiable map f : Q — F
between an open subset of E to F, both Banach vector spaces on the same field
K, is such that f’(p) is surjective and E = Ey @ ker f'(p), then there is a
neighborhood n(p) where f = f om with 1 the projection of E to Ej.

Rank of a map

The derivative is a linear map, so it has a rank = dimf’(a) (B)

Definition 1246 The rank of a differentiable map s the rank of its derivative.
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dim f/(a)ﬁ < min (dim ﬁ, dim ?)

If E,F are finite dimensional the rank of f in a is the rank of the jacobian.

Theorem 1247 Constant rank (Schwartz II p.196) Let f be a continuously dif-
ferentiable map f : Q — F between an open subset of the affine normed space

(E, ﬁ) to the affine normed space (F, ?) , both finite dimensional on the same

field K. Then:

i) If f has rank r at a€ Q, there is a neighborhood n(a) such that f has rank
>rin n(a)

it) if fis an immersion or a submersion at a€ Q then f has a constant rank
in a neighborhood n(a)

ii1) if f has constant rank r in Q0 then there are a bases in E and ? such
that f can be expressed as :
F(x1,....,xm) = (z1,., 2, 0,...0)

Derivative of a map defined by a sequence

Theorem 1248 (Schwartz II p.122) If the sequence (fn),cn of differentiable
(resp.continuously differentiable) maps : fn, : @ — F from an open subset Q
of the normed affine space E, to the normed affine space F, both on the same
field K, converges to f and if for each a € §) there is a neighborhood where the
sequence f! converges uniformly to g, then f is differentiable (resp.continuously

differentiable) in Q0 and f’=g
We have also the slightly different theorem :

Theorem 1249 (Schwartz II p.122) If the sequence (fn),cn of differentiable
(resp.continuously differentiable) maps : f, : @ — F from an open connected
subset Q0 of the normed affine space E, to the Banach affine space F, both on the
same field K, converges to f(a) at least at a point b€ Q , and if for each a € Q
there is a neighborhood where the sequence f! converges uniformly to g, then
fn converges locally uniformly to f in Q, f is differentiable (resp.continuously

differentiable) in Q and f’=g

Theorem 1250 Logarithmic derivative (Schwartz Il p.130) If the sequence (fn),cn
of continuously differentiable maps : f, : @ — C on an open connected subset
Q of the normed affine space E are never null on Q, and for each a € Q) there
is a neighborhood where the sequence (f (a)/fn (a)) converges uniformly to g,
if there is b € Q such that a (fy (b)), ey converges to a non zero limit, then
(fn)nen converges to a function f which is continuously differentiable over Q ,

never null and g=f’/f

Remark : f’/f is called the logarithmic derivative
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Derivative of a function defined by an integral

Theorem 1251 (Schwartz IV p.107) Let E be an affine normed space, p a
Radon measure on a topological space T, fe C (E x T; F) with F a banach vector
space. 1If f(.,t) is x differentiable for almost every t, if for almost every a in
T % (a,t) is p—measurable and there is a neighborhood n(a) in E such that
H% (a:,t)H < k(t) in n(a) where k(t)> 0 is integrable on T, then the map :
u(x) = [, f(x,t)p(t) is differentiable in E and its derivative is : % (a) =

T % (x,t) p (t). If f(.,t) is continuously x differentiable then u is continuously

differentiable.

Theorem 1252 (Schwartz IV p.109) Let E be an affine normed space, p a
Radon measure on a topological space T, f a continuous map from ExT in a
Banach vector space F. If f has a continuous partial derivative with respect to x,
if for almost every a in T there is a compact neighborhood K(a) in E such that
the support of % (z,t) is in K(a) then the function : u(x) = [, f(x,t) p(t) is

continuously differentiable in E and its derivative is : % (a) = [, 6—£ (x,t) p ().

Gradient
If f e Ci(K) then fr(a) € E the topological dual of E.If E is finite
dimensional and there is, either a bilinear symmetric or an hermitian form g,

non degenerate on FE, then there is an isomorphism between ﬁ and E’. To
f’(a) we can associate a vector, called gradient and denoted grad,f such that :

VU € E ()W = g(gradaf, ). If f is continuously differentiable then the
map : grad:Q) — E defines a vector field on E.

14.2 Higher order derivatives
14.2.1 Definitions

Definition
If f is continuously differentiable, its derivative [’ : Q@ — L (ﬁ,ﬁ) can be

differentiable and its derivative is f”=(f)’.

Theorem 1253 (Schwartz II p.136) If the map f : Q — F from the open
subset ) of the normed affine space (E, B) to the normed affine space (F, ?)
1s continuously differentiable in Q and its derivative map [’ is differentiable in
a € ) then f”(a) is a continuous symmetric bilinear map in L2(E; F)

We have the map f': Q — L (E, B) and its derivative in a { (a)=(f"(x))|s=a
is a continuous linear map :f”’(a): E — L (E, ?) . Such a map is equivalent

to a continuous bilinear map in ﬁz(ﬁ; ?) Indeed : W,V € E f(a)(W) €
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E(E,?) & (f(a)(W)) (V) = B(U, V) € F. So we usually consider the
map 7(a) as a bilinear map valued in ? This bilinear map is symmetric :

f (@) (W, V) = f(a) (T, )

This definition can be extended by recursion to the derivative of order r.

Definition 1254 The map f : Q — F from the open subset Q of the normed
affine space (E, B) to the normed affine space (F, ?) is T continuousy dif-

ferentiable in Q) if it is continuously differentiable and its derivative map f’
is -1 differentiable in Q . Then its v order derwative f7) (a) in a€ Q is a

continuous symmetric r linear map in L" (E, ).
If f is r-continuously differentiable, whatever r, it is said to be smooth

Notation 1255 C, (Q; F) is the set of continuously r-differentiable maps f :
Q— F.

Coo (25 F) is the set of smooth maps f : Q — F

£ is the r order derivative of f: ) : Q — L5((E) ,?)
[ is the 2 order derivative of f: f7: Q2 — L3((F) ,?)
Vi F

£ (a) is the value at a of the r order derivative of f : ) (a) € LL((E)";

)

Partial derivatives

Definition 1256 A map f : Q — F defined on an open subset Q0 of the normed
affine space (E,E) = ]I (EZ,EZ) and valued in the normed affine space
i=1

(F, ?), all on the same field K, has a partial derivative of order 2 in

Q with respect to the variables xy = 7 (x),z; = 7 (x) where m, : E — Ey is
the canonical projection,if f has a partial derivative with respect to the variable
xr in Q and the map fg’% has a partial derivative with respect to the variable
xZj.

The partial derivatives must be understood as follows :

1. Let E=FE; X Es and Q =y x Q5 . We consider the map f: Q2 — F as
a two variables map f(z1,z2).

For the first derivative we proceed as above. Let us fix 1 = a1 so we have
amap : f(a1,x2) : Qo = F for Qy = {x9 € E2: (a1,22) € Q}. Its partial
derivative with respect to x2 at ap is the map f;, (a1,a2) € £ ( 2;

Now allow 21 = a; to move in E; (but keep as fixed). So we have now a map

DSy (T1,a2) c Q1 — L (ﬁg,?) for Q1 = {x1 € Ey : (x1,a2) € Q}. Its partial
derivative with respect to x1 is a map : 74,4, (a1, a2) : Bl — L (Eg; ?) that
we assimilate to a map f” 4, (a1,a2) € L2 (El, ﬁg; ?)
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If f is 2 times differentiable in (a1, a2) the result does not depend on the
order for the derivations : f7 4,4, (a1,02) = f” 4,2, (a1,a2)

We can proceed also to f” 4, (a1,62) , [ zoas (a1, a2) so we have 3 distinct
partial derivatives with respect to all the combinations of variables.

2. The partial derivatives are symmetric bilinear maps which act on different
vector spaces:

[ 212s (a1, 02) € L2 (ﬁl, 32;?>
[z (a1,02) € L2 (ﬁl, BU?)
I 2as (a1, 02) € L2 (32, 32;?)

A vector in ﬁ = ﬁl X BQ can be written as : U = (71, 72)

The action of the first derivative map (a1, ag) is just : f'(a1,a2) (01, U2) =
fa, (a1, ax) Wy + fa,(an, a2) W

The action of the second derivative map f” (a1, az2) is now on the two vectors
U= (U1, Us), V= (T1, V2)

(a1, a2) (W, W), (T, V2))

= aim (ala aQ) (71, 71)_|'f”1112 (alv a2) (71, 72)"’]0”96211 (ala aQ) (727 71)"’

P s (a1, 02) (W, Vo)

Notation 1257 fgﬁfl)% = % = D, . i, s the r order partial derivative
Qe iy
map : Q— L7 (Bil, --Eu; ?) with respect to x;, ,...x;,

fgﬁfl)% (a) = % (a) = D;, .4, (a) is the value of the partial deriva-
ip - OTip

tive map at ac )

Condition for r-differentiability
The theorem for differentiabillity is extended as follows:

Theorem 1258 (Schwartz II p.142) A map f : Q@ — F defined on an open

subset ) of the normed affine space (E, ﬁ) =11 (Ez,ﬁz) and valued in the
i=1

normed affine space (F, ?) , all on the same field K, is continuously r differ-

entiable in ) iff it has continuous partial derivatives of order r with respect to
every combination of r variables.in Q.

Coordinates expression
If E is m dimensional and F n dimensional, the map féfl)% (a) forr > 1

is no longer represented by a matrix. This is a r covariant and 1 contravariant
tensor in ®, E* ® F.
. . S\ M 1 ;
With a basis (e"),_, of E* and (Fi)icy = 2 imi 2 T € @ @
e @ fj and T} |

4, 1s symmetric in all the lower indices.
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14.2.2 Properties of higher derivatives

Polynomial

Theorem 1259 If f is a continuous affine map f : E — F with associated
linear map 7 el (B, ?) then f1is smooth and f’:?, fO)=0,r>1

A polynomial P of degree p in n variables over the field K, defined in an
open subset Q C K™ is smooth. f() =0ifp <r

Theorem 1260 (Schwartz II p.164) A map [ : Q — K from an open connected
subset in K™ has a r order derivative f(") = 0 in Q iff it is a polynomial of order
<T.

Leibniz’s formula

Theorem 1261 (Schwartz II p.144) Let E, Ey, E5, F be normed vector spaces,
Q an open subset of E, B a continuous bilinear map in L>(E1, Ey; F),Uy, Uy r-
continuously differentiable maps Uy, : Q — Ej maps, then the map : B (U1, Us) :
Q — F:: B(Uy(z),Us (x)) is r-continuously differentiable in Q .

If E is n-dimensional,.with the notation above it reads :

D;, ;. B(U1,Us) = ZJ;(ilmm B (DU, D, ...io0aUz)

the sum is extended to all combinations J of indices in I=(4;...7,)

This is a generalization of the rule for the product of real functions : (fg)' =

f'g+ 19

Differential operator
(see Functional analysis for more)

1. Let E a n-dimensional normed affine space with open subset 2, F' a
normed vector space, a differential operator of order m< r is a map :

P:C (G F) = Cr (G F) = P(f) =221 y1y<m arD1f

the sum is taken over any I set of m indices in (1,2,...n), the coefficients are
scalar functions ay : Q — K

Example : laplacian : P(f) =>_" %

Linear operators are linear maps on the vector space C,. (; F')

2. If the coefficients are constant scalars differential operators can be com-
posed: (PoQ)(f)= P (Q(f)) as long as the resulting maps are differentiable,
and the composition is commutative : (P o Q) (f) = (Q o P) (f)

Taylor’s formulas
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Theorem 1262 (Schwartz II p.155) If f is a r-1 continuously differentiable
map : f:Q — ? from an open Q of an affine space E to a mormed vector
space F' | both on the same field K, and has a derivative f) in ac Q, then for
h € E such that the segment [a,a + h] C Q:
i). fla+h)=f(a)+ iy Hf®(a)h + L F0) (a+ 6h) b with 6 € [0,1]
ii) f (a+ h) = [ (@)+ 55y /(@ +ke () 8] withe (h) € F (), -
0
iti) If Vo €la, a+h[: 3fT (2),||f") (z)|| < M then : Hf (a+h) =0 o 5 f® (a) h’“H <
M|l
with the notation : f*) (a) h* = £ (a) (h,...h) k times
If B is m dimensional, in a basis : 3, _, & f®) (a)hF =3 —L1 (i)m ( g )am f(a)h{t. .S
) : k=0 k! - (a1...0m) Ox1 1 -''m

arl...am! Oxm

where the sum is extended to all combinations of integers such that > ;" ae <7

Chain rule
The formula only when f,g are real functions f,g: Q C R — R is :

(90 ) (a) = ¥4, stird™ (f (@) (F (@)™ .. (£ (a)" where I, =
(il,..ir) i1t + .. ti=1
ﬁ
to be understood as : f®) € £P (R;R)

Convex functions

Theorem 1263 (Berge p.209) A 2 times differentiable function f:C — R on
a convex subset of R™ is convex iff Va € C : f” (a) is a positive bilinear map.

14.3 Extremum of a function
14.3.1 Definitions

E set, Q subset of E, f:Q2 - R
f has a maximum in ac Q ifVzr € Q: f(x) < f(a)
f has a minimum in ac Q if Ve € Q: f(x) > f(a)
f has an extremum in a€ (Q if it has either a maximum of a minimum in a
The extremum is local if it is an extremum in a neighborhood of a. It is
global if it an extremum in the whole of €2

14.3.2 General theorems

Continuous functions

Theorem 1264 A continuous real valued function f:C' — R on a compact sub-
set C of a topological space E has both a global mazimum and a global minimum.

298



Proof. f(Q) is compact in R, thus bounded and closed, so it has both an
upper bound and a lower bound, and on R this entails that is has a greatest
lower bound and a least upper bound, which must belong to f (2) because it is
closed. m

Remark: if f is continuous and C connected then f(C) is connected, thus is
an interval |a,b| with a,b possibly infinite. But it is possible that a or b are not
met by f.

Convex functions

There are many theorems about extrema of functions involving convexity
properties. This is the basis of linear programming. See for example Berge for
a comprehensive review of the problem.

Theorem 1265 If f : C' — R is a stricly convex function defined on a convex
subset of a real affine space E, then a maximum of f is an extreme point of C.

Proof. C.f stricly convex : VM, P € C,t € [0,1]:f (tM + (1 —t) P) < tf(M) +
(1-1)f(P)

If a is not an extreme point of C : IM, P € C,t €]0,1:{tM+(1 —t) P =a =
fla) <tf(M)+(1—1t)f(P)

If fis a maximum : VM, P : f (a) > f (M), f (a) > f(P)

t €01 tf (a) > tf (M), (1= 1) f (@) = (1—1) F (P) = f(a) = tf(M) +
(1-0)f(P) m

This theorem shows that for many functions the extrema do not lie in the
interior of the domain but at its border. So this limits seriously the interest
of the following theorems, based upon differentiability, which assume that the
domain is an open subset.

Another classic theorem (which has many versions) :

Theorem 1266 Minimaz (Berge p.220) If f is a continuous functions :f : Q x
Q' — R where Q,Q are conver compact subsets of RP,R%,and f is concave
in © and conver in y, then 3(a,b) € Q x Q' : f(a,b) = maxyeq f(z,b) =
mingeq’ f(a,y)

14.3.3 Differentiable functions

Theorem 1267 If a function 2 — R differentiable in the open subset Q) of a
normed affine space, has a local extremum in a€ Q then f’(a)=0.

The proof is immediate with the Taylor’s formula.

The converse is not true. It is common to say that f is stationary (or that
a is a critical point) in a if f’(a)=0, but this does not entail that f has an
extremum in a (but if {’(a)#0 it is not an extremum). The condition open on
) is mandatory.

With the Taylor’s formula the result can be precised :
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Theorem 1268 If a function f2 — R ,r differentiable in the open subset Q) of
a normed affine space, has a local extremum in a€ Q and f®) (a) = 0,1 < p <
s <1 f) (a) #0, then :

if a is a local mazimum, then s is even and Yh € E. f& (@)™ <0

if a is a local minimum, then s is even and Yh € E : f) (a) h™ >0

The condition is necessary, not sufficient. If s is odd then a cannot be an
extremum.

14.3.4 Maximum under constraints

They are the problems, common in engneering, to find the extremum of a map
belonging to some set defined through relations, which may be or not strict.

Extremum with strict constraints

Theorem 1269 (Schwartz II p.285) Let 2 be an open subset of a real affine
normed space, f,L1,Lo,...L,, real differentiable functions in Q, A the subset
A={reQ:Ly(x) =0,k=1..m} . If ac A is a local extremum of fin A and
the maps L), (a) € E’ are linearly independant, then here is a unique family of
scalars (M), such that : f'(a) =31 ML} (a)

if Q is a convex set and the map f(z)+ > po; MLy (x) are concave then the
condition is sufficient.

The Ag are the Lagrange multipliers. In physics they can be interpreted
as forces, and in economics as prices.

Notice that E can be of infinite dimensional. This theorem can be restated
as follows :

Theorem 1270 Let Q be an open subset Q0 of a real affine normed space E,
f:Q—=R,L:Q — F real differentiable functions in Q, F a m dimensional real
vector space, A the set A={x € Q:L(z)=0}. If ac A is a local extremum of
fin A and if the map L' (a) is surjective, then : IN € F* such that : f'(a) =
Ao L' (a)

Kuhn and Tucker theorem

Theorem 1271 (Berge p.236) Let Q2 be an open subset of R™, f, L1, La,...Ly,
real differentiable functions in 2, A the subset A = {x € Q: Ly () <0,k =1..m}

!/

. If ac A is a local extremum of fin A and the maps L) (a) € are linearly

independant, then here is a family of scalars (\i)y—, such that :
]{ZZJ...]).' Lk (a) = O, /\kLk (CL) =0
k=p+1..m: Ly (a) <0,\; >0
F(@) + 0, ML (a) = 0
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If f is linear and L are affine functions this is the linear programming problem

Problem : find ac R™ extremum of [C]*[z] with [A][z] < [B],[A] mxn
matrix, [B] mx1 matrix, [z] >0

An extremum point is necessarily on the border, and there are many com-
puter programs for solving the problem (simplex method).

14.4 Implicit maps

One classical problem in mathematics is to solve the equation f(x,y)=0 : find x
with respect to y. If there is a function g such that f(x,g(x))=0 then y=g(x) is
called the implicit function defined by f(x,y)=0. The fixed point theorem in a
Banach space is a key ingredient to resolve the problem. These theorems are the
basis of many other results in Differential Geometry and funcitonal Analysis.
One important feature of the theorems below is that they apply on infinite
dimensional vector spaces (when they are Banach).

In a neighborhood of a solution
The first theorems apply when a specific solution of the equation f(a,b)=c is
known.

Theorem 1272 (Schwartz II p.176) Let E be a topological space, (F, ?) an

affine Banach space, (G, 8) an affine normed space, ) an open in EzF, f a
continuous map f: Q — G, (a,b) € E x F,c € G such that c=f(a,b)

if V(x,y) € Q f has a partial derivative map f1, (z,y) € L (?,8) and
(z,y) = f,, (x,y) is continuous in

if Q = f, (a,b) is invertible in L (?, 8)

then there are neighborhoods n(a) C E,n(b) C F of a,b such that for any x €

n(a) there is a unique y = g(x) € n (b) such that f(r,y)=c and g is continuous
in n(a).

Theorem 1273 (Schwartz I p.180) Let (E, E) , (F, ?) , (G,a) be affine

normed spaces, Q@ an open in ExF, f a continuous map fQ — G, (a,b) € E X
F,c € G such that c=f(a,b), and the neighborhoods n(a) C E,n(b) C F of a,b,
if there is a map g:n(a)—n(b) continuous at a and such that Vx € n(a) :

f(z, g(x)) = ¢
if f is differentiable at (a,b) and f1, (a,b) invertible
1

then g is differentiable at a, and its derivative is : g’ (a) = — (f} (a,b)) o
(f2 (a;0))

Implicit map theorem
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Theorem 1274 (Schwartz I p.185) Let (E, E) , (F, ?) , (G,a) be affine
normed spaces, ) an open in ExF, f) — G a continuously differentiable map
mn €,

i) If there are A open in E, B open in F such that AzBC Q and g: A — B
such that f(z,g(x))=c in A,

if Ve € A : fy(x,9(x)) is invertible in L (?,8) then g is continuously
differentiable in A

if fis r-continuously differentiable then g is r-continuously differentiable

ii) If there are (a,b) € E x F,c € G such that c=f(a,b), F is complete
and f, (a,b) is invertible in L (?,8) , then there are neighborhoods n(a) C
A,n(b) C B of a,b such that n(a)zn(b)C Q and for any = € n(a) there is a
unique y = g(x) € n(b) such that f(x,y)=c. g is continuously differentiable

in n(a) and its derivative is :g' (x) = —(f] (x,y))_l o (fi(x,y)). If f is r-
continuously differentiable then g is r-continuously differentiable

14.5 Holomorphic maps

In algebra we have imposed for any linear map f € L(E;F) that E and F
shall be vector spaces over the same field K. Indeed this is the condition for the
definition of linearity f (ku) = kf (u) to be consistent. Everything that has been
said previously (when K was not explicitly R) stands for complex vector spaces.
But differentiable maps over complex affine spaces have surprising properties.

14.5.1 Differentiability

Definitions
1. Let E,F be two complexr normed affine spaces with underlying vector spaces
,? , € an open subset in E.
i) If f is differentiable in a€ E then f is said to be C-differentiable, and

f’(a) is a C-linear map € £ (ﬁ, ?) SO :

Vi € E: fra)it =ifrla)d
ii) If there is a R-linear map L: E — ? such that :
dr > 0,Yh € B, HE)HE <r:fla+ ﬁ) — f(a) = L7 +e(h) HﬁHF where

e(h) e F is such that limp0e (h) =0

then f is said to be R~differentiable in a. So the only difference is that L
is R-linear.

A R-linear map is such that f(utv)=f(u)+£f(v), f(kv)=kf(v) for any real
scalar k

iii) If E is a real affine space, and F a complex affine space, one can-
not (without additional structure on E such as complexification) speak of C-
differentiability of a map f : F — F but it is still fully legitimate to speak
of R-differentiability. This is a way to introduce derivatives for maps with real
domain valued in a complex codomain.
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2. A C-differentiable map is R-differentiable, but a R-differentiable map is
C-differentiable iff VI € E : f(a) G0) =if'(a) (W)

3. Example : take a real structure on a complex vector space E This
is an antilinear map o : — B Apply the criterium for differentiability :
o (7 + 7) —o(d)=0 (7) so the derivative ¢’ would be o but this map is

R-linear and not C-linear. It is the same for the maps : Re: ﬁ — ﬁ =Red =
%(74—0(7)) andlm: E » E = Im@ = %(7—0(7)) Thus it is not
legitimate to use the chain rule to C-differentiate a map such that f (Re 7) .

4. The extension to differentiable and continuously differentiable maps over
an open subset are obvious.

Definition 1275 A holomorphic map is a map f : Q@ — F .continuously
differentiable in 2, where Q) is an open subset of E, and E,F are complex normed
affine spaces.

Cauchy-Riemann equations

Theorem 1276 Let f be a map : f: Q2 — F , where Q) is an open subset of E,
and (E, B),(F, ?) are complex normed affine spaces. For any real structure

on E, f can be written as a map f(a:,y) on the product Er X tEg of two real
affine spaces. fis holomorphic iff f, = if.

Proof. 1) Complex affine spaces can be considered as real affine spaces (see
Affine spaces) by using a real structure on the underlying complex vector space.
Then a point in E is identified by a couple of points in two real affine spaces.
Indeed it sums up to distinguish the real and the imaginary part of the coordi-
nates. The operation is always possible but the real structures are not unique.
With real structures on E and F, f can be written as a map :

f(Rez+ilmz) =P (Rez,Imz) +iQ (Rez,Imz)

f:Qr xiQr = Fr X iFg : f(z,y) = P (x,y) +1Q (z,y)

where Qg x il is the embedding of 2 in Eg X iER, P,Q are maps valued
in FR

2) If f is holomorphic in Q then at any point ac € the derivative f’(a) is
a linear map between two complex vector spaces endowed with real structures.

So for any vector ue E it can be written : £'(a)u= P, (a) (Re u)—l—ﬁy (a) (Imu)+
i (@m (a) (Reu) + @y (a) (Tm u)) where P, (a), ﬁu (a), Qs (a), @y (a) are real lin-
ear maps between the real kernels Fg, Fr which satifsfy the identities : ﬁy (a) =
—Qq (a); Qy (a) = Py (a) (see Complex vector spaces in the Algebra part).
On the other hand ’(a)u reads :
fl(@)u = f(za,ya) (Rew,Imu) = fi(2a,ya) Reutf, (Ta,ya) Imu = Py (24, ya) Reu+
P;(xa, Yo) Imu + 4 (Q;(xa, ya) Reu + Q;(xa, Yo) Im u)
Pé(xaa Ya) = _Q;(Iav Ya); Q;(xav Ya) = Pm/(IGJ Ya)

303



Which reads : f, = P, +iQ.; f, = P, +iQ!, = —Q, +iP, = if!

3) Conversely if there are partial derivatives P/, Py, Q’,,Q; continuous on
Qr X iQg then the map (P, Q) is R-differentiable. It will be C-differentiable if
f'(a)id =if’ (a) U and that is just the Cauchy-Rieman equations. The result
stands for a given real structure, but we have seen that there is always such a
structure, thus if C-differentiable for a real structure it will be C-differentiable
in any real structure. m

The equations f, = if; are the Cauchy-Rieman equations.

Remarks :
i) The partial derivatives depend on the choice of a real structure o. If one
starts with a basis (e;),; the simplest way is to define o (¢;) = e;, 0 (ie;) = —ie;

so Eg is generated by (e;),.; with real components. In a frame of reference

(O, (e, iej)jel) the coordinates are expressed by two real set of scalars (z;,y;).
Thus the Cauchy-Rieman equations reads ; % = ing It is how they are usually
written but we have proven that the equations hold for E infinite dimensional.

il) We could have thought to use f (z) = f (x 4 iy) and the chain rule but

the maps : z — Rez,z — Im z are not differentiable.

iii) If Fzﬁ Banach then the condition f has continuous R-partial derivatives
can be replaced by || f H2 locally integrable.

Differential
The notations are the same as above, E and F are assumed to be complex
Banach affine spaces, endowed with real structures.

Take a fixed origin O’ for a frame in F. freads : f(z+iy) = O' + P (x,y)+
Za (z,y) with (?, 8) : Br X iEp — ?R X ’L'?R

1. As an affine Banach space, E is a manifold,and the open subset € is still
a manifold, modelled on FE. A frame of reference (O, (?1) ic I) of E gives a map
on E, and a holonomic basis on the tangent space, which is Fr x Egr , and a

1-form (dz, dy) which for any vector (7, V) € Eg x ﬁR gives the componants
in the basis : (da,dy) (7, 7) = (u/, vk)j ver

2. (?, a) can be considered as a 0-forms defined on a manifold and valued

in a fixed vector space. They are R-differentiable, so one can define the exterior
derivatives :

(d?, da) - (?;dx + Pl dy, @' de + a;dy) €A (Q’; Fr x ?R)

and the 1-form valued in ? :
w=dP +id( € A, (Q';?)

w = (?;daz + ?;dy) +1i (6;6117 + a;dy) = (?; + za;) dr+ (?; + zaéj) dy

3. f is holomorphic iff 5; = —?;; a; = ?; that is iff

w= (P, —iP,) dot(Py+iP,) dy= (Pl —iP,) doti (~i P} + PL) dy =
(?; - i?;) (d + idy)
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4. From (dx,dy) one can define the 1-forms valued in 7.

dz = dx +1dy, dz = dx — idy
thus : do = § (dz 4 dz) ,dy = 5 (dz — dz)
w then can be written :

?x—l-zaz) (dz + dz)+ (? —I—za)
(Pr+iQ, 1P, - @) s ez
It is customary to denote :
Lo+ P Pl P17,
3 -0,+13,0.-0, 13
and /2 = B, +1GL. f1 = PL+ G
SO : w:%((?;—l—za’z)( (? +26) )

(dz — dz)

o =

(’ 1? +za +8)%

3 (f1(dz) + fz(dz))

and f is holomorphic iff ?’E + zaz = 0 that is 1nterpreted as fi=0:

Theorem 1277 A map is continuously C-differentiable iff it does not depend

explicitly on the conjugates z”.

If so the differential of f reads : df=f"(z)dz

5. If all this is legitimate it is clear that dz, dz are not differential or deriva-

tives. As 2L

Ba7 > azj they are ad hoc notations and cannot be deduced from the
chain rule on f(z)=f(x+iy). My personal experience is that they are far less con-
venient than it seems. Anyway the important result is that a differential, that
can be denoted df={"(z)dz, can be defined if f is continuously C-differentiable.

Derivatives of higher order

Theorem 1278 A holomorphic map f:Q — F from an open subset of an affine
normed space to an affine normed space F has C-derivatives of any order.

If f exists then f(") exists Vr. So this is in stark contrast with maps in real
affine spaces. The proof is done by differentiating the Cauchy-Rieman equations

Extremums

A non constant holomorphic map cannot have an extremum.

Theorem 1279 (Schwartz III p.302, 307, 314) If 2 — F is a holomorphic
map on the open ) of the normed affine space E, valued in the normed affine

space F, then:
i) || f|| has no strict local mazimum in

it) If Q is bounded in E, f continuous on the closure of 2, then:

supseq [1f (2)| =sup__o If ()l = sup,eq || (2)]

ii) If E is finite dimensional || f|| has a mazimum on 0 (Q).

w) if Q is connected and f3a € Q: f(a) =0, Vn : £ (a) = 0 then f=0in
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v) if Q is connected and f is constant in an open in ) then fis constant in

Q

If f is never zero take 1/ f|| and we get the same result for a minimum.
One consequence is that any holomorphic map on a compact holomorphic
manifold is constant (Schwartz III p.307)

Theorem 1280 (Schwartz III p.275, 312) If {:Q) — C is a holomorphic function
on the connected open 0 of the normed affine space E, then:

i) if Re f is constant then f is constant

it) if | f| is constant then fis constant

ii1) If there is a€ Q local extremum of Re f or Im f then fis constant

iv) If there is a€ Q local mazimum of |f| then f is constant

v) If there is a€ § local minimum of |f| then f is constant or f(a)=0

Sequence of holomorphic maps

Theorem 1281 Weierstrass (Schwartz III p.326) Let Q be an open bounded
in an affine normed space, F' a Banach vector space, if the sequence (fn), cn
of maps : fn, : Q@ — F ,holomorphic in  and continuous on the closure of €1,
converges uniformly on 0S) it converges uniformly on Q. Its limit f is holomor-
phic in Q and continuous on the closure of Q , and the higher derivatives fff)
converges locally uniformly in Q to f.

Theorem 1282 (Schwartz III p.327) Let Q be an open in an affine normed
space, I' a Banach vector space, if the sequence (fpn), ey of maps : fr : Q2 — F
,holomorphic in Q and continuous on the closure of ), converges locally uni-
formly in Q, then it converges locally uniformly on €, its limit is holomorphic

and the higher derivatives fr(f) converges locally uniformly in Q to f().

14.5.2 Maps defined on C

The most interesting results are met when f is defined in an open of C. But for
most of them cannot be extended to higher dimensions.

In this subsection : 2 is an open subset of C and F a Banach vector space
(in the following we will drop the arrow but F is a vector space and not an affine
space). And fisamap: f: Q= F

Cauchy differentiation formula

Theorem 1283 The map f : Q — F,Q from an open in C to a Banach vector
space F, continuously R-differentiable, is holomorphic iff the 1-form A\ = f'(z)dz
is closed : d\ =0
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Proof. This is a direct consequence of the previous subsection. Here the real
structure of E=C is obvious : take the "real axis” and the ”imaginary axis” of the
plane R?. R? as R™, Vn, is a manifold and the open subset () is itself a manifold
(with canonical maps). We can define the differential A = f/(z)dz + if'(z)dy =

fl(z)dz =

Theorem 1284 Morera (Schwartz III p.282): Let Q2 be an open in C and f :
Q — F be a continuous map valued in the Banach vector space F. If for any
smooth compact manifold X with boundary in Q0 we have fax f(2)dz =0 then f
18 holomorphic

Theorem 1285 (Schwartz III p.281) Let Q be a simply connected open subset
in C and f: Q — F be a holomorphic map valued in the Banach vector space
F. Then

i) for any class 1 manifold with boundary X in Q fax z)dz =0

it) f has indefinite integrals which are holomorphic maps ¢ € H(; F) :
©'(z) = f(2) defined up to a constant

Theorem 1286 (Schwartz III p.289,294) Let ) be a simply connected open
subset in C and f : Q — F be a holomorphic map valued in the Banach vector
space F. Then for any class 1 manifold X with boundary in §2

i)ifad X : faXZzg—O andzfae)%'faxf(z)dzzﬂﬂf( )

it) If X is compact and if a € X ™ (a) = 5 fax G fSn+1dZ

The proofs are a direct consequence of the Stockes theorem applied to 2.

So we have : f f(2)dz = ¢ (b) — ¢ (a) the integral being computed on any
continuous curve from a to b in

These theorems are the key to the computation of many definite integrals
f; f(2)dz

i) f being holomorphic depends only on z, and the indefinite integral (or
antiderivative ) can be computed as in elementary analysis

ii) as we can choose any curve we can take 7 such that f or the integral is
obvious on some parts of the curve

iii) if f is real we can consider some extension of f which is holomorphic

Taylor’s series

Theorem 1287 (Schwartz III p.303) If the map [ : Q — F,Q from an open
in C to a Banach vector space F is holomorphic, then the series : f(z) =

fla)+>07, %f(") (a) is absolutely convergent in the largest disc B(a,R)
centered in a and contained in Q and convergent in any disc B(a,r), r<R.
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Algebra of holomorphic maps

Theorem 1288 The set of holomorphic maps from an open in C to a Banach
vector space F is a complex vector space.

The set of holomorphic functions on an open in C is a complex agebra with
pointwise multiplication.

Theorem 1289 Any polynomial is holomorphic, the exponential is holomor-
phic,

The complex logarithm is defined as the indefinite integral of [ %. We have
/ R % = 2¢7 where R is any circle centered in 0. Thus complex logarithms are

defined up to 2imn

Theorem 1290 (Schwartz IIT p.298) If the function f : Q — C is holomorphic
on the simply connected open Q) is such that Vz € Q : f(z) # 0 then there is a
holomorphic function g f : Q0 — C such that f =expyg

Meromorphic maps

Theorem 1291 If fis a non null holomorphic function f:Q — C on an open
subset of C, then all zeros of f are isolated points.

Definition 1292 The map f : Q — F,Q from an open in C to a Banach vector
space F' is meromorphic if it is holomorphic except at a set of isolated points,
which are called the poles of f. A point a is a pole of order >0 if there is some
constant C such that f (z) ~ C/(z —a)" when z — a. If a is a pole and there is
no such r then a is an essential pole.

if F=C then a meromorphic function can be written as the ratio u/v of two
holomorphic functions:
Warning ! the poles must be isolated, thus sin%, In z, .. are not meromorphic

Theorem 1293 (Schwartz III p.330) If f is a non null holomorphic function
f:Q — C on an open subset of C : Q = Ry < |z —a|] < Ry then there is
a family of complex scalars (c,) > _ such that : f(z) = "= % ¢, (z —a)".

n=—oo n=—oo

The coefficients are uniquely defined by : ¢, = 5= &) qz where vy C

2im Jy (z—a)"+1
s a loop which wraps only once around a.

This formula is of interest if f is not holomorphic in a.

Theorem 1294 Weierstrass (Schwartz III p.337) : If f: @ — C is holomorphic
in Q@ = {0 < |z—a|l < R} and a is an essential pole for f, then the image by f
of any subset {0 < |z —a| <r < R} is dense in C.

It means that f(z) can be arbitrarily close to any complex number.
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14.5.3 Analytic maps

Harmonic maps are treated in the Functional Analysis - Laplacian part.

Definition 1295 A map f:QQ — F from an open of a normed affine space and
valued in a normed affine space F, both on the field K, is K-analytic if it is
K-differentiable at any order and Va € Q,3n(a) : Vo € n(a) : f(z) — f(a) =
St (@) (z —a)"

Warning ! a K-analytic function is smooth (indefinitely K-differentiable) but
the converse is not true in general.

Theorem 1296 (Schwartz III p.307) For a K-analytic map fQ — F from a
connected open of a normed affine space and valued in a normed affine space F,
both on the field K, the following are equivalent :

i) f is constant in

i) 3acQ:¥n>1:fM(a)=0

iii) f is constant in an open in

Theorem 1297 Liouville (Schwartz III p.322): For a K-analytic map f:E — F
from a normed affine space and valued in a normed affine space F, both on the
field K:

i) if f, Ref or Imf is bounded then f is constant

i) if 3a € E;n € Non > 0,0 > 0 : ||f(2)|| < Cllz—all™ then fis a

polynomial of order < n

Theorem 1298 (Schwartz III p.305) A holomorphic map f:) — F on an open
of a normed affine space to a Banach vector space F is C—analytic

Theorem 1299 (Schwartz III p.322) If f € Co (A R),Q open in R, then the
following are equivalent

i) [ is R-analytic

it) there is a holomorphic (complex analytic) extension of fin D C C such
that Q C D

iii) for every compact set CC ) there exists a constant M such that for every
a € C and everyn € N:

‘f(") (a)] < M™+inl
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15 MANIFOLDS

15.1 Manifolds

A manifold can be viewed as a "surface” of elementary geometry, and it is
customary to introduce manifolds as some kind of sets embedded in affine spaces.
However useful it can be, it is a bit misleading (notably when we consider Lie
groups) and it is good to start looking at the key ingredient of the theory, which
is the concept of charts. Indeed charts are really what the name calls for : a way
to locate a point through a set of figures. The beauty of the concept is that we do
not need to explicitly give all the procedure for going to the place so designated
by the coordinates : all we need to know is that it is possible (and indeed if
we have the address of a building we can go there). Thus to be mathematically
useful we add a condition : the procedures from coordinates to points must be
consistent with each other. If we have two charts, giving different coordinates
for the same point, there must be some way to pass from one set of coordinates
to the other, and this time we deal with figures, that is mathematical objects
which can be precisely dealt with. So this ”interoperability” of charts becomes
the major feature of manifolds, and enables us to forget most of the time the
definition of the charts.

15.1.1 Definitions

Definition of a manifold
The most general definition of a manifold is the following (Maliavin and Lang)

Definition 1300 An atlas A(E7 (O, ‘Pi)iel) of class r on a set M is comprised
of:

i) a Banach vector space E on a field K

i) a cover (Oy);c; of M (each O; is a subset of M and Uje1O; = M)

i) a family (¢i);c;  called charts, of bijective maps : @; : O; — U; where
U; is an open subset of E

i) ¥i,7 € I,0,N0; # @ : ¢; (0; N Oy) is an open subset of E, and the map
©; © <p;1 :Us = Uj , called transition map, is a r continuous differentiable
diffeomorphism on the domain U; N U;

Definition 1301 A manifold modeled on a Banach E is a set endowed with an
atlas A(E, (Oi, i) ,¢;) of class r and there is at least another atlas A’(E, (O}, ¢})c1)
of class r such that the union AU A’ is still an atlas of class r.

Comments

1. M is said to be modeled on E. If E’ is another Banach such that there
is a continuous bijective map between E and E’, then this map is a smooth
diffeomorphism and E’ defines the same manifold structure. So it is simpler to
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assume that E is always the same. If E is over the field K M is a K-manifold. We
will specify real or complex manifold when necessary. If E is a Hilbert space M
is a Hilbert manifold. There is also a concept of manifold modelled on Fréchet
spaces (example in the infinite jet prolongation of a bundle). Not all Banach
spaces are alike, and the properties of E are crucial for those of M.

2. The dimension of E is the dimension of the manifold (possibly infinite).
If E is finite n dimensional it is always possible to take E=K".

3. The charts of the atlas A are said to be compatible with the charts of the
other r-atlas A’. The maps ¢; o gpi_l in E give the rule when the domains of two
charts overlap. There can be a unique chart in an atlas, but if there are than
one it is mandatory that the O; are open subsets.

4. ris the class of the manifold, if r=o0c the manifold is said to be smooth,
if r=0 (the transition maps are continuous only) M is said to be a topological
manifold. If the transition charts are K-analytic the manifold is said to be
K-analytic.

5. To a point p€ M a chart associes a vector u=gp; (p) in E and, through
a basis in E, a set of numbers (xj)jeJ in K which are the coordinates of p in
the chart. If the manifold is finite dimensional the canonical basis of K™ is used
and the coordinates are given by :j=1...n: [z;] = [¢; (p)] matrices nx1

6. The condition b) could be seen as useless, it is not. Indeed the key point
in manifolds is the interoperability of charts thus, if an atlas is comprised of a
unique chart the existence of other atlases, defining the same manifold structure,
is necessary.

7. The property for two atlas to be compatible is an equivalence relation.
A class of equivalence in this relation defines a structure of manifold on a set,
and one can have different manifold structures on a given set. For R™ n# 4
all the smooth structures are euivalent (diffeomorphic), but on R* there are
uncountably many non equivalent smooth manifold structures (exotic !).

8. From the definition it is clear that any open subset of a manifold is itself
a manifold.

9. Notice that no assumption is done about a topological structure on M.
This important point is addressed below.

15.1.2 Examples

1. Any Banach vector space, any Banach affine space, and any open subsets of
these spaces have a canonical structure of smooth differential manifold (with an
atlas comprised of a unique chart), and we will always refer to this structure
when required.

2. A finite n dimensional subspace of a topological vector space or affine
space has a manifold structure (homeomorphic to K™).

3. An atlas for the sphere S,,, n dimensional manifold defined by Z?:ll r? =
1 in R™*! is the stereographic projection. Choose a south pole a € S,, and a
north pole —a € S,,. The atlas is comprised of 2 charts :

O1 = S,\ {a}, 1 (p) = ke
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Oz = S\ {-a}, ¢z (p) = Bp2

with the scalar product : (p,a) = E?Ill Ppia;

6. For a manifold embedded in R", passing from cartesian coordinates to
curvilinear coordinates (such that polar, spheric, cylindrical coordinates) is just
a change of chart on the same manifold (see in the section Tensor bundle below).

Grassmanian

Definition 1302 The Grassmanian denoted Gr(E;r) of a n dimensional vec-
tor space E over a field K is the set of all r dimensional vector subspaces of E.

Theorem 1303 (Schwartz IT p.256). The Grassmanian Gr(E;r) has a structure
of smooth manifold of dimension r(n-r), isomorphic to Gr(E;n-r) and home-
omorphic to the set of matrices M in K(n) such that : M*=M ; M*=M ;
Trace(M)=r

The Grassmanian for r=1 is the projective space P(E) associated to E. It is
a n-1 smooth manifold, which is compact if K=R..

15.1.3 Topology

The key point is that a manifold structure is defined by an atlas, and this
atlas defines a topology on M. Conversely if M has already a topology, and a
manifold structure is added, then there are compatibility conditions, which are
quite obvious but not always met.

The topology associated to an atlas
The principe is simple : as a minimum, all the charts should be continuous.

Theorem 1304 An atlas A(E, (O, goi)l-el) on a manifold M defines a topology
on M for which the sets O; are open in M and the charts are continuous. This
topology is the same for all equivalent atlas.

Proof. i) Take a base Q of the topology on E, then the collection of sets
{90;1 (w),weQie I} is a base of a topology on M. Each O; is open and each
©; is an homeomorphism between O; and U;.

ii) If we have two compatible atlas A= (E, (O, cpi)iel),A’: (E, (O}, cp;)iel)

then AU A’ is still a r-atlas. So at the intersections O;; = O; N O;- we have
i (05N O;) oy (/1a O;) are open subsets in E, and the transition maps :
gp;. O(pi_l U; = U J’ are r continuous differentiable diffeomorphism on the domain
U;nU;

Consider the topology defined by A. With this topology an open is the union
of sets such ¢; ! (w),w € Q. :It suffices to prove that ;! (@) is open in the
topology defined by A’.

Vo € Q: 7! (@) = ¢ ' (@)N0; = ¢; 1 (@)NONM = Ujes (05 (@) N 0; N OY)
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¢ (o (@) NOiNOY) = op ! (wnU;NUY)

@ NU; N U} is open in E, and because ¢/; o ¢; ! is a homeomorphism, @} o
e; ' (wnUin U}) is open in E, and ot (@)NO:NO’; = 90;71 (o7 (@) NO; N 0})
is an open for A’. m

Conversely if M is endowed with a given topological structure, and then with
a manifold structure, how do the two topologies coincide ?

Theorem 1305 (Malliavin p.20) The topology induced by a manifold structure
through an atlas A(E7 (O, ‘Pi)z‘el) on a topological space (M,Q) coincides with
this latter topology iff Vi € I,0; € Q and ¢; is an homeomorphism on O;.

A manifold modelled on E is locally homeomorphic to E

Theorem 1306 If a manifold M is modelled on E, then every point of M has a
neighborhood which is homeomorphic to an open of E. Conversely a topological
space M such that every point of M has a neighborhood which is homeomorphic
to an open of E can be endowed with a structure of manifold modelled on E.

Proof. i) Take an atlas A=(FE, (O;,¢;);c;) - Let p€ M soJi € I : p € O;. with
the topology defined by A, O; is a neighborhood of p, which is homeomorphic
to U;, which is a neighborhood of ¢; (p) € E.

ii) Conversely let (M,Q) be a topological space, such that for each p € M
there is a neighborhood n(p), an open subset i (p) of E, and a homeomorphism
¢p between n(p) and . The family (n (p), ¢p),c,, is an atlas for M :

Vp € M : ¢y (n(p)) = p(p) is open in B

¢p (n(p)Nn(q)) = p(p) N1 (g) is an open in E (possibly empty).

Yp O <p;1 is the compose of two homeomorphisms, so a homeomorphism m

Warning ! usually there is no global homeomorphism between M and E

Topological properties of manifolds
To sum up :

- if M has no prior topology, it gets one, uniquely defined by a class of atlas,
and it is locally homeomorphic to E.

- if M is a topological space, its topology defines the conditions which must
be met by an atlas so that it can define a manifold structure compatible with
M. So a set, endowed with a given topology, may not accept some structures of
manifolds (this is the case with structures involving scalar products).

1. Locally compact manifold:

Theorem 1307 A manifold is locally compact iff it is finite dimensional. It is
then a Baire space.

Proof. i) If a manifold M modelled on a Banach E is locally compact, then E
is locally compact, and is necessarily finite dimensional, and so is M.
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ii) If E is finite dimensional, it is locally compact. Take p in M, and a chart
vi (p) = x € E. x has a compact neighborhood n(x), its image by the continous
map @; is a compact neighborhood of p. m

It implies that a compact manifold is never infinite dimensional.

2. Paracompactness, metrizability
Theorem 1308 A second countable, reqular manifold is metrizable.

Proof. It is semi-metrizable, and metrizable if it is T1, but any manifold is T1
]

Theorem 1309 A regular, Hausdorff manifold with a o-locally finite base is
metrizable

Theorem 1310 A metrizable manifold is paracompact.

Theorem 1311 For a finite dimensional manifold M the following properties
are equivalent:

i) M is paracompact

it) M is metrizable

iii) M admits an inner product on its vector bundle

Proof. The final item of the proof is the following theorem :

(Kobayashi 1 p.116, 166) The vector bundle of a finite dimensional para-
compact manifold M can be endowed with an inner product (a definite positive,
either symmetric bilinear or hermitian sequilinear form) and M is metrizable.
]

It implies that :

Theorem 1312 For a finite dimensional, paracompact manifold M it is always
possible to choose an atlas A(E7 (Oi,cpi)iel) such that the cover is relatively

compact (O; is compact) and locally finite (each points of M meets only a finite
number of O;)

If M is a Hausdorf m dimensional class 1 real manifold then we can also have
that any non empty finite intersection of O; is diffeomorphic with an open of
R™ (Kobayashi p.167).

Theorem 1313 A finite dimensional, Hausdorff, second countable manifold is
paracompact, metrizable and can be endowed with an inner product.

Proof. The final item of the proof is the following theorem :

(Lang p.35) For every open covering (Qj)j ¢ of a locally compact, Haus-
dorff, second countable manifold M modelled on a Banach E, there is an atlas
(Oi,9i);er of M such that (0;);c; is a locally finite refinement of (€2;),;,
@i (0;) is an open ball B(x;,3) C E and the open sets ;' (B (z;,1)) covers M.
]

3. Countable base:
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Theorem 1314 A metrizable manifold is first countable.

Theorem 1315 For a semi-metrizable manifold separable is equivalent to sec-
ond countable.

Theorem 1316 A semi-metrizable manifold has a o—locally finite base.

Theorem 1317 A connected, finite dimensional, metrizable manifold is sepa-
rable and second countable.

Proof. It is locally compact so the result follows the Kobayashi p.269 theorem
(see General topology) =

4. Separability:
Theorem 1318 A manifold is a T1 space

Proof. A Banach is a T1 space, so each point is a closed subset, and its
preimage by a chart is closed m

Theorem 1319 A metrizable manifold is a Hausdorff, normal, regular topo-
logical space

Theorem 1320 A semi-metrizable manifold is normal and regular.
Theorem 1321 A paracompact manifold is normal
Theorem 1322 A finite dimensional manifold is regular.

Proof. because it is locally compact m

5. To sum up:

Theorem 1323 (Kobayashi 1 p.271) For a finite dimensional, connected, Haus-
dorff manifold M the following are equivalent :

i) M is paracompact

it) M is metrizable

iii) M admits an inner product

iv) M is second countable

6. A finite dimensional class 1 manifold has an equivalent smooth structure
(Kolar p.4) thus one can usually assume that a finite dimensional manifold is
smooth
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Infinite dimensional manifolds
Infinite dimensional manifolds which are not too exotic have a simple structure
: they are open subsets of Hilbert spaces.

Theorem 1324 (Henderson) A separable metric manifold modelled on a sep-
arable infinite dimensional Fréchet space can be embedded as an open subset
of an infinite dimensional, separable Hilbert space defined uniquely up to linear
isomorphism.

Of course the theorem applies to a manifold modeled on Banach space E,
which is a Fréchet space. E is separable iff it is second countable, because this
is a metric space. Then M is second countable if it has an atlas with a finite
number of charts. If so it is also separable. It is metrizable if it is regular
(because it is T1). Then it is necessarily Hausdorff.

Theorem 1325 A regular manifold modeled on a second countable infinite di-
mensional Banach vector space, with an atlas comprised of a finite number of
charts, can be embedded as an open subset of an infinite dimensional, separable
Hilbert space, defined uniquely up to linear isomorphism.

15.2 Differentiable maps

Manifolds are the only structures, other than affine spaces, upon which differ-
entiable maps are defined.

15.2.1 Definitions

Definition 1326 A map f: M — N between the manifolds M,N is said to be
continuously differerentiable at the order r if, for any point p in M, there are
charts (O;, ;) in M, and (Q;,%¢;) in N, such that p € O,, f (p) € Q; and that
Yjo fow; ! is r continuously differentiable in ¢; (0in f71(Q))) -

If so then ¢ o f o gp;l is r continuously differentiable with any other charts
meeting the same conditions.

Obviously r is less or equal to the class of both M and N. If the manifolds are
smooth and f is of class r for any r then f is said to be smooth. In the following
we will assume that the classes of the manifolds and of the maps match together.

Definition 1327 A r-diffeomorphism between two manifolds is a bijective
map, r-differentiable and with a r-differentiable inverse.

Definition 1328 A local diffeomorphism between two manifolds M,N is a
map such that for each p€ M there is a open subsets n(p) and n(f(p)) such that

the restriction f : n(p) — f(n(p)) is a diffeomorphism
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If there is a diffeomorphism between two manifolds they are said to be dif-
feomorphic. They have necessarily same dimension (possibly infinite).

The maps of charts (O;, ;) of a class r manifold are r-diffeomorphism :
@i € Cr (Oi;¢; (0;)). Indeed whenever O; N O;j # @ p; 0, is 1 continuously
differentiable. And we have the same result with any other atlas.

If a manifold is an open of an affine space then its maps are smooth.

Let A (E,(O;,¢;)) be an atlas of M, and B(G, (Q;,%;)) of N. To any map
f: M — N is associated maps between coordinates : if x = ¢; (p) then y =

¥; (f (p)) they read :
F:0; = Qj:y=F(x) with F=¢; 0 fo ;'

M f N
O, = = = @
S +
Lo Loy
Lo F
O = = = Q;

Then F’ (a) = (0 f o goi_l)l (a) is a continuous linear map € L (E;G) .
If f is a diffeomorphism F' = ;0 fop; s a diffeomorphism between Banach

vector spaces, thus : )
i) F’(a) is inversible and (F~' (b)) = (F'(a))"" € L(G;E)
ii) F is an open map (it maps open subsets to open subsets)

Definition 1329 The jacobian of a differentiable map between two finite di-
mensional manifolds is the matriz F' (a) = (¢; 0 f o o; ! (a))/

If M is m dimensional defined over K™ N is n dimensional defined over K",
then F' (a) = ¢j o f o p; ' (a) can be written in the canonical bases of K™, K™ :
j=l..n:y’ = FI (z',..2™) using tensorial notation for the indexes

And F' (a) = (0 fo o; ! (a))/ is expressed in bases as a nxp matrix (over
K)

m

—_——
s=1r@l =1 |55

If f is a diffeomorphism the jacobian of FF~! is the inverse of the jacobian of
F.

15.2.2 General properties

Set of r differentiable maps
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Notation 1330 C, (M; N) is the set of class r maps from the manifold M to
the manifold N (both on the same field)

Theorem 1331 The set C,. (M; F) of r differentiable map from a manifold M
to a Banach vector space F, both on the same field K, is a vector space. The set
C, (M; K) is a vector space and an algebra with pointwise multiplication.

Categories of differentiable maps

Theorem 1332 (Schwartz II p.224) If fe C.(M;N),g € C, (N; P) then go
f € C. (M.P) (if the manifolds have the required class)

Theorem 1333 The class r K-manifolds and the class r differentiable maps
constitute a category. The smooth K-manifolds and the smooth differentiable
maps constitute a subcategory.

There is more than the obvious : functors will transform manifolds into fiber
bundles.

Product of manifolds
The product MxN of two class r manifolds on the same field K is a manifold
with dimension = dim(M)+dim(N) and the projections mp; : M x N — M,
wn M x N — N are of class r.
For any class r maps : f : P — M,g : P — N the mapping : (f,g) :
P—MxN:(f,g9)(p)=(f(p),g(p)) is the unique class r mapping with the

property : mar ((f,9) (p)) = f (p), 7w ((f,9) (P)) = 9 (p)

Space L(E;E) for a Banach vector space

Theorem 1334 The set L(E; E) of continuous linear map over a Banach vec-
tor space E is a Banach vector space, so this is a manifold. The subset GL(E; E)
of inversible map is an open subset of L(E;E), so this is also a manifold.

The composition law and the inverse are differentiable maps :

i) the composition law : M : L(E;E) x L(E;E) — L(E}E) = M(f,q) =
f o g is differentiable and

M'(f,9)(6f,69) =b6fog+ fodg

ii) the map : §: GL(E; E) — GL (E; E) is differentiable and (3(f)) (6 f) =
—ftodfof!

15.2.3 Partition of unity

Partition of unity is a powerful tool to extend local properties to local ones. They
exist for paracompact Hausdorff spaces, and so for any Hausdorff finite dimen-
sional manifold. However we will need maps which are are not only continuous
but also differentiable. Furthermore difficulties arise with infinite dimensional
manifolds.
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Definition

Definition 1335 A partition of unity of class r subordinate to an open cov-
ering ($2i);c; of a manifold M is a family (f;);c; of maps f; € C. (M;Ry), such
that the support of f; is contained in Q; and :

Vp e M : f; (p) # 0 for at most finite many i

VpeM: 3 i, filp) =1

As a consequence the family (Supp (f;))ier of the supports of the functions
is locally finite

If the support of each function is compact then the partition is compactly
supported

A manifold is said to admit partitions of unity if it has a partition of unity
subordinate to any open cover.

Conditions for the existence of a partition of unity From the theorems
of general topology:

Theorem 1336 A paracompact Hausdorff manifold admits continuous parti-
tions of unity

Theorem 1337 (Lang p.37, Bourbaki) For any paracompact Hausdorff mani-
fold and locally finite open cover (£;)..; of M there is a localy finite open cover
(Ui);eq such that U, CQ

icl

Theorem 1338 (Kobayashi I p.272) For any paracompact, finite dimensional
manifold, and locally finite open cover (Q;);c; of M sch that each Q; has compact

closure, there is a partition of unity subodinate to (%;),c; -

Theorem 1339 (Lang p.38) A class r paracompact manifold modeled on a sep-

arable Hilbert space admits class r partitions of unity subordinate to any locally
finite open covering.

Theorem 1340 (Schwartz II p.242) For any class r finite dimensional second
countable real manifold M , open cover ($;),o; of M there is a family (f;),c; of
functions f; € C,. (M;R,) with support in §2; , such that Np € K : Y. fi (p) =
1, and ¥p € M there is a neighborhood n(p) on which only a finite number of f;
are not null.

Theorem 1341 (Schwartz II p.240) For any class r finite dimensional real
manifold M, Q0 open in M, pe §Q, there is a r continuously differentiable real

function f with compact support included in Q such that : f(p) > 0 and Ym €
Q:0< f(m) <1

Theorem 1342 (Schwartz I p.242) For any class r finite dimensional real
manifold M, open cover (€2;),c; of M, compact K in M, there is a family (f;);c;
of functions f; € C, (M;R,) with compact support in §; such that : Vp € M :
fi (p) # 0 for at most finite many i and Vp € K : 3 ,.; fi (p) >0
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Prolongation of a map

Theorem 1343 (Schwartz II p.243) Let M be a class r finite dimensional sec-
ond countable real manifold, C a closed subset of M, F' real Banach vector space,
then a map f € C,. (C; F) can be extended to a map f € C. (M;F):Vpe C:

f(p)=f(p)

Remark : the definition of a class r map on a closed set is understood in
the Whitney sense : there is a class r map g on M such that the derivatives for
any order s < r of g are equal on C to the approximates of f by the Taylor’s
expansion.

15.3 The tangent bundle

15.3.1 Tangent vector space

Definition

Theorem 1344 A each point p on a class 1 differentiable manifold M modelled
on a Banach E on the field K, there is a set, called the tangent space to M at
p, which has the structure of a vector space over K, isomorphic to E

There are several ways to construct the tangent vector space. The simplest
is the following;:

Proof. i) two differentiable functions f,ge Cy (M; K) are said to be equivalent
if for a chart ¢ covering p, for every differentiable path : ¢: K — E such that
¢ loc(0)=pwehave: (foplo c)/ li—o = (gop~to c)l lt=0. The derivative
is well defined because this is a map : K — K. This is an equivalence relation
~ . Two maps equivalent with a chart are still equivalent with a chart of a
compatible atlas.

ii) The value of the derivative (f o gp’l)/ | for ¢ (p) = z is a continuous map
from E to K, so this is a form in E’.

The set of these values T* (p) is a vector space over K, because C; (M; K)
is a vector space over K. If we take the sets T* (p) of these values for each class
of equivalence we still have a vector space.

iii) T* (p) is isomorphic to E’.

The map : T* (p) — E’ is injective :

I (fop™) o= (909 ") |sthen (fop oc) imo = (fop™) [soc|imo =
(goe™) leoclimo=f~g

It is surjective : for any A € E' take f (¢) = A (¢ (v))

iv) The tangent space is the topological dual of T* (p) . If E is reflexive then
(E’)’ is isomorphic to E. m

Remarks :

i) It is crucial to notice that the tangent spaces at two different points have
no relation with each other. To set up a relation we need special tools, such as
connections.
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i) T*(p) is the 1-jet of the functions on M at p.
iii) the demonstration fails if E is not reflexive, but there are ways around
this issue by taking the weak dual.

Notation 1345 T, M is the tangent vector space at p to the manifold M

Properties of the tangent space

Theorem 1346 The charts ¢} (p) of an atlas (E, (O, ¢;),e;) are continuous
inversible linear map ¢} (p) € GL (T,M; E)

A Banach vector space E has a smooth manifold structure. The tangent
space at any point is just E itself.

A Banach affine space (E , ﬁ) has a smooth manifold structure. The tangent

space at any point p is the affine subspace (p, ﬁ)

Definition 1347 A holonomic basis of a manifold M with atlas (E, (O;, ¢i),c1)
is the image of a basis of E by ¢,~1 . A each point p it is a basis of the tangent

K3
space T, M.

Notation 1348 (9z,),.4 is the holonomic basis at p=p; " (z) associated to

the basis (€q),ca by the chart (O;, ;)

When it is necessary to distinguish the basis given by different charts we will
use (0%a)yea > (OWa)aca s

0T = (gpi (p)/)71 ea € T,M & ¢ (p)0xq =eq € E

So a vector uy, of the tangent vector space can be written : u, = 3, c y u50rq
and at most finitely many u® are non zero. Its image by the maps ¢} (p) is a
vector of E : ¢} (p)up = > ,c4upea which has the same components in the
basis of E.

The holonomic bases are not the only bases on the tangent space. Any other
basis can be defined from a holonomic basis. They are called non holonomic
bases . An example is the orthonormal basis if M is endowed wih a metric.
But for a non holonomic basis the simple relation above : u, = > 4 ug 0z =
Y oacAVpla = i (P)up = D ncaVy#h (P)da does not hold any longer. The
vector has not the same components in the tangent space and in E. The equality
happens only if ¢, (p) 6o = €, meaning that the basis is holonomic.

Theorem 1349 The tangent space at a point of a manifold modelled on a Ba-
nach space has the structure of a Banach vector space. Different compatible
charts give equivalent norm.

Proof. Let (E, (O, ‘Pi)z‘el) be an atlas of M, and p € O;
The map : 7 : T,M — E :: 7, (u) = ¢} (p)u = v is a continuous isomor-
phism.
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Define : [ull; = [|¢} (p) ull g = [Jv]| g
With another map :

July = 11¢5 @)l = |
¢ )0 (o)

and similarly : [|ul|, <

1

o =]
E

@} (p) o (0 (p) HL(E;E)

©5 (p) o (¥} (p)~

|

T
(E:E)
o (¢ )|l
' ! o) -
So the two norms are equivalent (but not identical), they define the same

topology. Moreover with these norms the tangent vector space is a Banach
vector space. W

Derivative of a map

1. Definition:
Definition 1350 For a map f € C, (M;N) between two manifolds with atlas
(E, (Oi,cpi)iel) , (G, (Qj,z/Jj)jGJ) there is, at each point p € M a unique con-
tinuous linear map f'(p) € L (T,M;Ts,»)N), called the derivative of f at p,
such that : ¢ o f' (p) o (%._1)/ () = (¢jo fo gpi_l)/ (x) with z=¢p; (p)

£'(p) is defined in a holonomic basis by : f/(p)dzs = f'(p) o @} (z) " eq €

Trp) N
We have the following commuting diagrams :
f /" (p)
M - - = N T,M — — = TN
1 1 1 1
Lo N L eilp) +
! F ! ! F (x) !
E - = —= (G E — — — G

-1
V5o f/(p)0za =)o f'(p)oyi(a) ea €G
If M is m dimensional with coordinates x, N n dimensional with coordinates
y the jacobian is just the matrix of f(p) in the holonomic bases in T), M, T, N :
yzijfOQDi_l (z)ea=1.n:y*=F° (:vl,...xm)

=1l = 1 (5] o= [35]

Whatever the choice of the charts in M,N there is always a derivative map
£’(p), but its expression depends on the coordinates (as for any linear map). The
rules when in a change of charts are given in the Tensorial bundle subsection.

Remark : usually the use of f’(p) is the most convenient. But for some
demonstrations it is simpler to come back to maps between fixed vector spaces

by using (1/;j ofo gpi_l)/ (7).
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2. Partial derivatives:

The partial derivatives 8’1—]; (p) = f! (p) wih respect to the coordinate z® is
the maps L((‘Ea;Tf(p)N ) where €&, is the one dimensional vector subspace in
T, M generated by 0zq

To be consistent with the notations for affine spaces :

Notation 1351 f’(p) is the derwative f' (p) € L (T,M; T N)

Notation 1352 86:5']; (p) = f. (p) are the partial derivative with respect to the

coordinate ® = the maps E(@a; Tf(p)N)

2. Composition of maps :

Theorem 1353 If fe C, (M;N),g € Cy (N;P) then (go f)' (p) = ¢'(f(p)) o
f'p)el (TPM;TQOf(ZD)P)

3. Higher derivative :

With maps on affine spaces the derivative f’(a) is a linear map depending on
a, but it is still a map on fixed affine spaces, so we can consider {”(a). This is no
longer possible with maps on manifolds : if f is of class r then this is the map
F(a) =1;o0fop; ! (a) € C, (E;G) which is r differentiable, and thus for higher
derivatives we have to account for ;, ¢, ! In other words f '(p) is a linear map
between vector spaces which themselves depend on p, so there is no easy way
to compare {’(p) to £’(q). Thus we need other tools, such as connections, to go
further (see Higher tangent bundle for more).

4. Diffeomorphisms are very special maps :

i) This is a bijective map f € C, (M; N) such that f~1 € C, (M;N)

i) f'(p) is inversible and (£~ (q))" = (f'(p)) ™" € L (Ty(»)N; T, M) : this is
a continuous linear isomorphism between the tangent spaces

ili) f is an open map (it maps open subsets to open subsets)

5. Rank:

Definition 1354 The rank of a differentiable map f : M — N between
manifolds at a point p is the rank of its derivative f’(p). It does not depend on
the choice of the maps in M,N and is necessarily < min(dim M, dim N)

Cotangent space
Definition 1355 The cotangent space to a manifold M at a point p is the
topological dual of the tangent space T, M

To follow on long custom we will not use the prime notation in this case:
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Notation 1356 T, M* is the cotangent space to the manifold M at p

Definition 1357 The transpose of the derivative of f € C, (M;N) at p is the
map : f'(p)t € L (TypN*;T,N*)

The transpose of the derivative ¢ (p) € £ (T,M; E) of a chart is :¢} (p)' €
c (E (TpM)*)

If e is a basis of E’ such that e (eg) = 5 (it is not uniquely defined by e,
if E is infinite dimensional) then ¢ (p)" (¢*) is a (holonomic) basis of T, M*.

Notation 1358 dz® = ¢! (p)" (e®) is the holonomic basis of T,M* associated
to the basis (€“),c4 of E” by the atlas (E,(0;,¢i);c;)

So : dz® (Ozg) = &3

For a function f € C1 (M;K) : fi(a) € T,M* so fr(a) =3 o4 @adz®

The partial derivatives f/, (p) €L(€,; K) are scalars functions so : f/(a) =
EQEA f(; (p) dx®

The action of f’(a) on a vector u € T, M is fr(a)u =) 4 fo, (p) u®

The exterior differential of fis just df = > . 4 fi, (p) dz® which is consistent
with the usual notation (which justifies the notation dz®)

Extremum of a function
The theorem for affine spaces can be generalized .

Theorem 1359 If a function f € Cy (M;R) on a class 1 real manifold has a
local extremum in p € M then f’(p)=0

Proof. Take an atlas (E, (O;, ¢;),c;) of M. If p is a local extremum on M it is
a local extremum on any O; > p. Consider the map with domain an open subset
of E: Fr:;(0;) = R: F'(a) = f' o, ' If p=g; (a) is a local extremum on
O; then a € ; (0;) is a local extremum for fop; so F’ (a) =0 = f'(y;(a)) = 0.
|

Morse’s theory

A real function f : M — R on a manifold can be seen as a map giving the
heigth of some hills drawn above M.If this map is sliced for different eleva-
tions appear figures (in two dimensions) highlighting characteristic parts of the
landscape (such that peaks or lakes). Morse’s theory studies the topology of a
manifold M through real functions on M (corresponding to ”elevation”), using
the special points where the elevation ”vanishes”.

1. Subsets of critical points :

Definition 1360 For a differentiable map f: M — N a point p is critical is
f’(p)=0 and regular otherwise.
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Theorem 1361 (Lafontaine p.77) For any smooth maps f € Cy (M;N) ,
M finite dimensional manifold, union of countably many compacts, N finite
dimensional, the set of critical points is negligible.

A subset X is neligible means that, if M is modelled on a Banach E, Vp € M
there is a chart (O, ) such that pe M and ¢ (O N X) has a null Lebesgue
measure in E.

In particular :

Theorem 1362 Sard Lemna : the set of critical values of a function defined
on an open set of R™ has a null Lebesque measure

Theorem 1363 Reeb : For any real function f defined on a compact real man-
ifold M:

i) if f is continuous and has exactly two critical points then M is homeomor-
phic to a sphere

it) if M is smooth then the set of non critical points is open and dense in M

2. Degenerate points:

For a class 2 real function on an open subset of R™ the Hessian of f is the
matrix of f’ (p) which is a bilinear symmetric form. A critical point is degenerate
if f’(a) is degenerate (then det [F” (a)]=0)

Theorem 1364 Morse’s lemna: If a is a critical non degenerate point of the
function f on an open subset M of R™, then in a neighborhood of a there is a
chart of M such that : f(z) = f(a) = Y0 _, 22 + EZL:;D-‘,-I z?

The integer p is the index of a (for f). It does not depend on the chart,
and is the dimension of the largest tangent vector subspace over which f’(a) is
definite negative.

A Morse function is a smooth real function with no critical degenerate
point. The set of Morse functions is dense in Co (M;R).

One extension of this theory is ”catastroph theory”, which studies how real
valued functions on R™ behave around a point. René Thom has proven that
there are no more than 14 kinds of behaviour (described as polynomials around
the point).

15.3.2 The tangent bundle

Definitions

Definition 1365 The tangent bundle over a class 1 manifold M is the set :
TM =Upem {TyM}

So an element of TM is comprised of a point p of M and a vector u of T, M
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Theorem 1366 The tangent bundle over a class r manifold M with the atlas
(E,(0s,¢i);c1) is a class r-1 manifold

The cover of TM is defined by : O} = Upeo, {Tp,M}
The maps : O — U; X E :: (¢; (p), ¢} (p) up) define a chart of TM
If M is finite dimensional, TM is a 2xdimM dimensional manifold.

Theorem 1367 The tangent bundle over a manifold M with the atlas (E, (O, ‘Pi>z‘el)
is a fiber bundle TM(M,E,)

TM is a manifold

Define the projection : © : TM — M :: w(up) = p. This is a smooth
surjective map and 71 (p) = T, M

Define (called a trivialization) : ®; : O;x E — TM :: ®; (p,u) = ¢, (p) ' u €
T,M

If p € O;NO; then ¢ (p)_l uw and ¢} (p)_l u define the same vector of T, M

All these conditions define the structure of a vector bundle with base M,
modelled on E (see Fiber bundles).

A vector up in TM can be seen as the image of a couple (p,u) € M x E
through the maps ®; defined on the open cover given by an atlas.

Theorem 1368 The tangent bundle of a Banach wvector space ﬁ is the set
TM = Upen {up} . As the tangent space at any point p is E then TM = ExE

Similarly the tangent bundle of a Banach affine space (E , B) is £ x E and

can be considered as E iself.

Theorem 1369 If fis a differentiable map between the manifolds M,N, then f’
is the map f1:TM — TN : F(U) = (7 (up))up

We have the following diagram with the atlas (E, (O;,¢;);c;) » (G, (Qj,v; )jeJ)

™ —»————— [ >———— TN
e b
©i (Ol) xE 3= F —-— 1/)j (QJ) x G

F'(a,u) = (4 (/) 0 0 ' () o (o7 w)

Theorem 1370 The product MzN two class r manifolds has a structure of
manifold of class r with the projections wpr : MXN — M,y : MxN — N and
the tangent bundle of MxN is T(MxN)=TMxTN, ©h, : T(M x N) — TM,w' :
T(M x N) - TN

Similarly the cotangent bundle TM* is defined with 7=! (p) = T, M*

Notation 1371 TM is the tangent bundle over the manifold M
TM* is the cotangent bundle over the manifold M
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Vector fields

Definition 1372 A vector field over the manifold M is a map V : M —
TM :: V (p) = v, which associes to each point p of M a vector of the tangent
space T,M at p

In fiber bundle parlance this is a section of the vector bundle.

Warning ! With an atlas : (E, (O;,¢i);c;) of M a holonomic basis is defined
as the preimage of fixed vectors of a basis in E. So this not the same vector at
the intersections : dzin = @} ()" (€a) # Oja = ©; (2)"" (ea)

But a vector field V is always the same, whatever the open O;. So it must
be defined by a collection of maps :

Vit O; = K=V (p) =34 V™ (p) Ozia

IfpeO;NO;:V(p) =2 0caVi¥ (0)OTia =D ca Ve (p) Oxjo and dz =
-1
@i () 0 p; (2) (0ja)

In a finite dimensional manifold ¢ (z)~ " o ©; (z)~" is represented (in the
holonomic bases) by a matrix : [J;;] and ;o = [Jij]’g (0zj5) so : VI (p) =
Ypea Vi ) i)

If M is a class r manifold, TM is a class r-1 manifold, so vector fields can be
defined by class r-1 maps.

Notation 1373 X, (T'M) is the set of class r vector fields on M. If r is omitted
it will mean smooth vector fields

With the structure of vector space on T, M the usual operations : V+W, kV
are well defined, so the set of vector fields on M has a vector space structure.
It is infinite dimensional : the components at each p are functions (and not
constant scalars) in K.

Theorem 1374 If V € X (TM),W € X (TN) then X € X(TM) x X (TN) :
X (p)=(V(p),W(q)) € X(T (M x N))

Theorem 1375 (Kolar p. 16) For any manifold M modelled on E, and a family
of isolated points and vectors of E : (pj7uj>j€J there is always a vector field V

such that V (p;) = ®; (pj,u;)

Definition 1376 The support of a vector field Ve X (T M) is the support of
the map : 'V : M — TM.
It is the closure of the set : {p € M : V(p) # 0}

Definition 1377 A critical point of a vector field V is a point p where V(p)=0

Topology : if M is finite dimensional, the spaces of vector fields over M can
be endowed with the topology of a Banach or Fréchet space (see Functional
analysis). But there is no such topology available if M is infinite dimensional,
even for the vector fields with compact support (as there is no compact if M is
infinite dimensional).
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Commutator of vector fields

Theorem 1378 The set of of class >1 functions C, (M; K) over a manifold
on the field K is a commutative algebra with pointwise multiplication as internal

operation : f-g(p) = f(p)g(p).

Theorem 1379 (Kolar p.16) The space of vector fields X, (T M) over a mani-
fold on the field K coincides with the set of derivations on the algebra C,. (M; K)

i) A derivation over this algebra (cf Algebra) is a linear map : D € L(C, (M; K);C, (M; K))

such that
Vf,g€Cr(M;K): D(fg) = (Df)g + f(Dg)
ii) Take a function f € Cy (M; K) we have f/(p) = > ,ca fo (p) dz® € T,M*
A vector field can be seen as a differential operator DV acting on f :
DV(f)=[10)V =X 0ea fa D)V =X 0ca Vop2af
DV is a derivation on C, (M; K)

Theorem 1380 The vector space of vector fields over a manifold is a Lie al-
gebra with the bracket, called commutator of vector fields : Vf € C. (M; K) :
[V.W](f) = DV (DW(f))) — DW (DV (f))

Proof. Ifr>1, take : DV (DW(f)))—DW (DV (f)) it is still a derivation, thus
there is a vector field denoted [V, W] such that :

VfeCr (M;K): [V,W](f) = DV (DW(f))) — DW (DV (f))

The operation : [] : VM — VM is bilinear and antisymmetric, and :

[V, [W, X]] + W, [X, V] + [X, [V, W] = 0

With this operation the vector space V.M of vector fields becomes a Lie
algebra (of infinite dimension). m

The bracket [] is often called ”Lie bracket”, but as this is a generic name we
will use the -also common - name commutator.

The components of the commutator (which is a vector field) in a holonomic
basis are given by :

V.WI"=2"5ca (VﬂWéa - WBVéa)
By the symmetry of the second derivative of the ¢; for holonomic bases :
Va,B € A: [0xq,025] =0

Commutator of vectors fields on a Banach:

Let M be an open subset of a Banach vector space E. A vector field is a map
: Vi M — E:V(u) with derivative : V/(u): E — E € L(E; E)

With f € C. (M;K) : f'(u) € L(E;K),DV : C,.(M;K) - K :: DV (f) =
f () (V (u))

(DV (DWW ()) DW(DV( ) (u) = (g (f (@) (W () V (w)~(;

=7 (u) (W (u),V (u))+ ( ) (W' () (

= f'(u) W'(u) (V(u)) — ()(VVg(U))

that we can write : [V, W] (u)
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Let now M be either the set L£(E;E) of continuous maps, or its subset of
inversible maps GL(E;E), which are both manifolds, with vector bundle the set
L(E;E). A vector field is a differentiable map :
ViM—L(E;E)and feM:V'(f): L(E;E) = L(E;E) e L(L(E}E);L(E;E))
VW) =W H V) =V W () =W eV =V eW)(f)

f related vector fields

Definition 1381 The push forward of vector fields by a differentiable map
f € CiL(M;N) is the linear map :
fo i X(TM) = X(TN) = f. (V) (f (p)) = F (D) V (P)

We have the following diagram :

TM — f' — TN

Y l7n
M—=—f—> N

which reads : f.V = f'V
In components :
V(p) = 20 v (p) 04 (p)

IV () = s [ 0)]5 v (0) Oya (f (p) with [ ()] = 5=
The gector fields v; can be seen as : v; = (¢;), V 1 v; (@i (D)) = ¥} (p) V (p)
and ;. 0x, = €4

Theorem 1382 (Kolar p.20)The map f.: TM — TN has the following prop-
erties :

i) it is a linear map : VYa,b € K : f. (aVi +bVa) = af Vi + bfVa

ii) it preserves the commutator : [f Vi, fiVa] = f« [V1, V2]

iii) if f is a diffeomorphism then f. is a Lie algebra morphism between the
Lie algebras V.M and V,.N.

Definition 1383 Two vector fields V € VM, W € TN are said to be f related
if W (f(p))=/V(p)

Theorem 1384 (Kolarp.19) IfV e X(TM),W € X(I'N), X € X (T (M x N)) :
X (p) = (V(p),W (q)) then X and V are wps related, X and W are wn related
with the projections wapy : M X N — M, iny : M x N — N .

Definition 1385 The pull back of vector fields by a diffeomorphism f €
Cy (M; N) is the linear map :

FrX(TN) = X(TM) = f* (W) (p) = (f' ()" W (f ()
So: f*= (f’l)* ,pieq = 0z
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Frames

1. A non holonomic basis in the tangent bundle is defined by : 0, =
> pea FB0s where F? € K depends on p, and as usual if the dimension is
infinite at most a finite number of them are non zero. This is equivalent to
define vector fields (dq),c 4 Which at each point represent a basis of the tangent
space. Such a set of vector fields is a (non holonomic) frame. One can impose
some conditions to these vectors, such as being orthonormal. But of course
we need to give the F/? and we cannot rely upon a chart : we need additional
information.

2. If this operation is always possible locally (roughly in the domain of a
chart - which can be large), it is usually impossible to have a unique frame
of vector fields covering the whole manifold (even in finite dimensions). When
this is possible the manifold is said to be parallelizable . For instance the
only parallelizable spheres are Sy, .53, 57. The tangent bundle of a parallelizable
manifold is trivial, in that it can be written as the product MxE. For the others,
TM is in fact made of parts of MxE glued together in some complicated manner.

15.3.3 Flow of a vector field

Integral curve

Theorem 1386 (Kolar p.17) For any manifold M, point p€ M and vector field
V e X1 (M) there is a map : ¢: J — M where J is some interval of R such
that : ¢(0)=p and c’(t)=V(c(t)) for t€ M. The set {c(t),t € J} is an integral
curve of V.

With an atlas (E, (O, goi)iel) of M, and in the domain i, ¢ is the solution of
the differential equation :

Tofindz : R — U; = ¢; (0;) C Esuchthat : 2 = v (2 (t)) = ¢} (¢ () V(c(t))
and 2(0) = ¢ (p)

The map v(x) is locally Lipschitz on U; : it is continuously differentiable
and:

v(z+h) —v(x) = (x)h +e(h)[|hl] and [[v'(2)h] < [[o" (x)]| 7]

e(h) > 0=V0>0,3r:||h| <r=le) <d

Jo (@ + k) — v @) < (I @]+ = WD IR < (o’ @) +6) 1]

So the equation has a unique solution in a neighborhood of p.

The interval J can be finite, and the curve may not be defined on a the whole
of M.

Theorem 1387 (Lang p.94) If for a class 1 vector field V on the manifold V,
and V(p)=0 for some point p, then any integral curve of V going through p is
constant, meaning that ¥Vt € R : ¢(t) = p.

Flow of a vector field
1. Definition:
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Theorem 1388 (Kolar p.18) For any class 1 vector field V on a manifold M
and p € M there is a maximal interval J, C R such that there is an integral
curve c:J, — M passing at p for t=0. The map : ®yv : D(V) x M — M
, called the flow of the vector field, is smooth, D(V)=UpcmJp X {p} is an
open neighborhood of {0} x M, and @y (s + t,p) = @y (s, Py (p, 1))

The last equality has the following meaning: if the right hand side exists,
then the left hand side exists and they are equal, if s,t are both > 0 or < 0 and
if the left hand side exists, then the right hand side exists and are equal.

Notation 1389 @y (¢,p) is the flow of the vector field V, defined for t € J and
peM

The theorem from Kolar can be extended to infinite dimensional manifolds
(Lang p.89)

As @y (0,p) = p always exist, whenever ¢, —t € J, then @y (¢, Dy (—t,p)) =
p

®y is differentiable with respect to t and : %‘IDV (t,p) |t=0 = V(p); %(@V (t,p) |t=o =
V(®y (6,p))

Warning ! the partial derivative of ®y (¢, p) with respect to p is more com-
plicated (see below)

Theorem 1390 For t fized ®y (t,p) is a class r local diffeomorphism : there
is a neighborhood n(p) such that ®v (t,p) is a diffeomorphism from n(p) to its
1mage.

2. Examples on M=R"

)if V(p)=V a constant vector field. Then the integral curves are straigth
lines parallel to V and passing by a given point. Take the point A=(ay, ...a,) .
®y (a,t) = (y1,...yn) such that : %ﬂi =Vi,yi (a,0) = a; & y; = tV; + a; so the
flow of V is the affine map : ®y (a,t) =Vt+a

i) if V(p)=Ap & Vi (z1,..7,) = 3_"_; Ajz; where A is a constant matrix.
Then ®v (a,t) = (y1,...yn) such that :

Blimg = "i_y Aly; (0) = y(a,t) = (exptA)a

ili) in the previous example, if A = rI then y (a,t) = (exptr) a and we have
a radial flow

3. Complete flow:

Definition 1391 The flow of a vector field is said to be complete if it is defined
on the whole of R x M. Then ¥t ®vy (t,-) is a diffeomorphism on M.

Theorem 1392 (Kolar p.19) Every vector field with compact support is com-
plete.

So on compact manifold every vector field is complete.
There is an extension of this theorem :
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Theorem 1393 (Lang p.92) For any class 1 vector field V on a manifold with
atlas (E, (Os, ;) vi = (i), V, if :

Vpe M,3i eI, 3k,reR:

p € Og,max (J|vi, [|42]]) < k. B (@i (p) 1) C i (O:)

then the flow of V is complete.

4. Properties of the flow:

Theorem 1394 (Kolar p.20,21) For any class 1 vector fields V,W on a mani-
fold M:

5 (@v ()W) li=o = Py (t,p). [V, W]

%(I)W (_ta (I)V (_tv (I)W (tv (I)V (tap)))) |t:0 =0

%g_;q)w (_tv (I)V (_tv (I)W (tv (I)V (tvp)))) |t:0 = [V, W]

the following are equivalent :

i) [V,W] =0

ii) (®y)" W = W whenever defined

iii) @y (t, Pw (s,p)) = Pw (s, Py (t,p)) whenever defined

Theorem 1395 (Kolar p.20) For a differentiable map f € C1 (M; N) between
the manifolds M,N manifolds , any vector field V € X1 (TM) : fo®y = ®f vof
whenever both sides are defined. 1If f is a diffeomorphism then similarly for
WG%l(TN) : fO‘I)f*W:‘I)WOf

Theorem 1396 (Kolar p.24) For any vector fields Vi, € X1 (TM),k = 1..n
on a real n-dimensional manifold M such that :

i) Vk,1: [V, VI] =0

i) Vi (p) are linearly independent at p

there is a chart centered at p such that Vi, = Oxy,

5. Remarks:

i) %‘I’v (t,p) |t=0 = V(p) = %((I)V (t,p) li=g = V(®v (0,p))
Proof. Let be T =t + 0,0 fixed

Dy (Tv p) = oy (ta % (evp))

%(I)V (Tv p) |t:0 = %((I)V (tap) |t:9 = %(I)V (ta 4% (evp)) |t:0 = V((I)V (evp))
|

So the flow is fully defined by the equation : £ (®v (t,p) [t=0 = V(p)

ii) If we proceed to the change of parameter : s =+t = f(s) with f: J — J
some function such that £(0)=0,{’(s)# 0

2% /(\tap) =y (f(S),p) = oy (Svp)

Z(@v (5,0)[s=0 = £ (®v (£,9) li=s0) Els=0 = V(@v (f(0),p)Els=0 =
V(p)%|s:0

So it sums up to replace the vector field V by V (p) = V(p)%|szo

iii) the Lie derivative (see next sections)

LW = [V, W] = & (&0 (~t.p) oW o Zoy (t.p)) lio

332



One parameter group of diffeomorphisms

Definition 1397 A one parameter group of diffeomorphims on a man-
ifold M is a map : F : R x M — M such that for each t fixed F (t,.) is a
diffeomorphism on M and Vt,s € Ryp € M : F(t+s,p) = F(t,F(s,p)) =
F (s, F(t,p)); F(0,p) =p

R x M has a manifold structure so F has partial derivatives.

For p fixed F(.,p) : R — M and F (t,p) € Tpp,M so F{ (t,p) |t=o0 € T,M
and there is a vector field

V(p) = @i (p,v(p)) with v (p) = ¢} (p) (F} (t,p) [=0)

So V is the infinitesimal generator of F :F (t,p) = Py (t,p)

Warning ! If M has the atlas ( , (O @i 161) the partial derivative with
respect to p : F]; (t,p) € L (TpM; TF(t7p)M) and U (t,p) = ¢} o F’ opl™t(a) €
L(E;E)

Ul(t+s,p) = ¢ioFy(t+sp)og " (a) = ¢ o Fy(t,F(s,p) o Fy(sp)o
;! (a)

= o Fy (t,F (s,p)) o it oo Fy (s,p)op; " (a) = U(t, F (s,p))oU(s,p)

So we do not have a one parameter group on the Banach E which would
require : U(t+s,p)=U(t,p)oU(s,p).

15.4 Submanifolds

A submanifold is a part of a manifold that is itself a manifold, meaning that
there is an atlas to define its structure. This can be conceived in several ways.
The choice that has been made is that the structure of a submanifold must
come from its "mother”. Practically this calls for a specific map which injects
the submanifold structure into the manifold : an embedding. But there are other
ways to relate two manifolds, via immersion and submersion. The definitions
vary according to the authors. We have chosen the definitions which are the
most illuminating and practical, without loss of generality. The theorems cited
have been adjusted to account for these differences.

The key point is that most of the relations between the manifolds M,N stem
from the derivative of the map f : M — N which is linear and falls into one of
3 cases : injective, surjective or bijective.

For finite dimensional manifolds the results sum up in the following :

Theorem 1398 (Kobayashi I p.8) For a differentiable map f from the m di-
mensional manifold M to the n dimensional manifold N, at any point p in M:
i) if f'(p) is bijective there is a neighborhood n(p) such that f is a diffeomor-
phism. from n(p) to f(n(n))
it) if f’(p) is injective from a neighborhood n(p) to n(f(p)), f is a homeo-
morphism from n(p) to f(n(p)) and there are maps ¢ of M, v of N such that

= o fop ! reads : i=1..m : y* (f (p)) = 2° (p)
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iii) if f’(p) is surjective from a neighborhood n(p) to n(f(p)), f : n(p) = N
is open, and there are maps ¢ of M, ¢ of N such that F=y o f o 0! reads :
i=l.n:y" (f(p) =2"(p)

15.4.1 Submanifolds

Submanifolds

Definition 1399 A subset M of a manifold N is a submanifold of N if :
i) G = G1 ® Gy where G1, G4 are vector subspaces of G

i) there is an atlas (G, (Qi,l/}j)je]) of N such that M is a manifold with
atlas (Gl, (M M Qi7¢j|MﬂQi)ieI)

The key point is that the manifold structure of M is defined through the
structure of manifold of N. M has no manifold structure of its own. The di-
mension of M is < dimension N. But it is clear that not any subset can be a
submanifold.

Topologically M can be any subset, so it can be closed in N and so we have
the concept of closed manifold.

Theorem 1400 For any point p of the submanifold M in N, the tangent space
Tp,M is a subspace of T,N

Proof. Vg € N, v;(¢q) can be uniquely written as : 1; (q) = > cp, 7%€a +
> BB, 2Pes with (eq),ep, » (e8) ge, Pases of G, G2

geEM & VB EBy 2P =0

For any vector u, € TyN :ug = ) cpug0za

1/’3‘ (q) ug = ZaEBl ug 0z + ZﬁeB2 ugaxﬁ

anduquqM@VﬁEBQ:uqﬁ:O

So:VpeM:T,M C T,N and a vector tangent to N at p can be written
uniquely :

Up =uy +ug :uy € TpyM with up, € TL,M < ups =0 m

The vector us is said to be transversal to M at p

If N is n finite dimensional and M is a submanifold of dimension n-1 then M
is called an hypersurface.

Theorem 1401 Extension of a map (Schwartz Il p.442) A map f € C,. (M; E) ,r>
1 from a m dimensional class r submanifold M of a real manifold N which is the
union of countably many compacts, to a Banach vector space E can be extended

to f € C. (N;E)

Conditions for a subset to be a manifold

Theorem 1402 An open subset of a manifold is a submanifold with the same
dimension.
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Theorem 1403 A connected component of a manifold is a a submanifold with
the same dimenston.

Theorem 1404 (Schwartz IT p.261) For a subset M of a n dimensional class
r manifold N of a field K with atlas (E,(Qi,%:),c;), if,, Vp € M, there is, in a
neighborhood of p, a chart (Q;, ;) of N such that :

i) either v, (M NQ;) ={x € K" : &ypy1 = .. =z, =0} and M is closed

i) or i (M NQ;) =4 (Qi) NK™

then M is a m dimensional class r submanifold of N

Theorem 1405 Smooth retract (Kolar p.9): If M is a class r connected finite
dimensional manifold, f € C,(M;M) such that fo f = f then f(M) is a
submanifold of M

Embedding

The previous definition is not practical in many cases. It is more convenient to
use a map, as it is done in a parametrized representation of a submanifold in R™.
There are different definitions of an embedding. The simplest if the following.

Definition 1406 An embedding is a map f : C. (M;N) between two mani-
folds M,N such that:

i) [ is a diffeomorphism from M to f(M)

it) f(M) is a submanifold of N

M is the origin of the parameters, f(M) is the submanifold. So M must be a
manifod, and we must know that f(M) is a submanifold. To be the image by a
diffeomorphism is not sufficient. The next subsection deals with this issue.

dim M = dim f{(M) < dim N

If M,N are finite dimensional, F' can be written in a neighborhood of ¢q €
f (M) and adaptated charts :

f=1.m:y?=F~ (171, :cm)

B=m+1l.n:y%=0

The image of a vector u, € M is f'(p)up = v1 +v2 : v1 € T,f (M) and
Vg = 0

The jacobian [f'(p)])" is of rank m.

If M is a m dimensional embedded submanifold of N then it is said that M
has codimension n-m.

Example :

Theorem 1407 Let c:J — N a path in the manifold N with J an interval in
R. The curve C={c(t),t € J} C N is a connected 1 dimensional submanifold
iff ¢ is class 1 and ¢’(t) is never zero. If J is closed then C is compact.

Proof. ¢’(t) # 0 : then c is injective and a homeomorphism in N
Y oc(t) is a vector in G and there is an isomorphism between R as a vector
space and the 1 dimensional vector space generated by ¥ o ¢/(t) in G m

335



Submanifolds defined by embedding
The following important theorems deal with the pending issue : is f(M) a
submanifold of N 7

Theorem 1408 Theorem of constant rank (Schwartz IT .268) : If the map
f€C1(M;N) on am dimensional manifold M to a manifold N has a constant
rank s in M then :
i) Vp € M, there is a neighborhood n(p) such that f(n(p)) is a s dimensional
submanifold of N. For any m € n (p) we have : Ty f(n(p)) = f'(m)Tn M .
ii) Yq € f(M), the set f=1(q) is a closed m-s submanifold of M and Ym €
f7Ha) : T f~H(q) = ker f'(m)

Theorem 1409 (Schwartz II p.263) If the map f € C1 (M;N) on a m di-
mensional manifold M is such that f is injective and ¥p € M [’(p) is injective

i) if M is compact then f(M) is a submanifold of N and f is an embedding.
i) if fis an homeomorphism of M to f(M) then f(M) is a submanifold of N
and f is an embedding.

Theorem 1410 (Schwartz II p.264) If, for the map f € Cy (M;N) on a m
dimensional manifold M, f’(p) is injective at some point p, there is a neighbor-
hood n(p) such that f(n(p)) is a submanifold of N and f an embedding of n(p)

into f(n(p)).

Remark : L.Schwartz used a slightly different definition of an embedding.
His theorems are adjusted to our definition.

Theorem 1411 (Kolar p.10) A smooth n dimensional real manifold can be
embedded in R*" ! and R?"

Immersion

Definition 1412 A map fe Cy (M; N) from the manifold M to the manifold N
is an immersion at p is f'(p) is injective. It is an immersion of M into N if
it is an immersion at each point of M.

In an immersion dim M < dim N (f(M) is ”smaller” than N so it is immersed
in N)

Theorem 1413 (Kolar p.11) If the map fe Cy (M; N) from the manifold M to
the manifold N is an immersion on M, both finite dimensional, then for any p
in M there is a neighborhood n(p) such that f(n(p)) is a submanifold of N and

f an embedding from n(p) to f(n(p)).

Theorem 1414 (Kolar p.12) If the map fe C1 (M; N) from the manifold M to
the manifold N is an immersion on M, both finite dimensional, if f is injective

and a homeomorphism on f(M), then f(M) is a submanifold of N.
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Theorem 1415 (Kobayashi I p.178) If the map fe Cy (M; N) from the mani-
fold M to the manifold N is an immersion on M, both connected and of the same
dimension, if M is compact then N is compact and a covering space for M and
f is a projection.

Real submanifold of a complex manifold

We always assume that M,N are defined, as manifolds or other structure, on
the same field K. However it happens that a subset of a complex manifold has
the structure of a real manifold. For instance the matrix group U(n) is a real
manifold comprised of complex matrices and a subgroup of GL(C,n). To deal
with such situations we define the following :

Definition 1416 A real manifold M with atlas (E,(O;, :),c;) is an immersed
submanifold of the complex manifold N with atlas (G, (Qi, wi)iel’) if there is a
map : f: M — N such that the map : F =1jo fo goi_l, whenever defined, is
R-differentiable and its derivative is injective.

The usual case is f=Identity.

Submersions

Submersions are the converse of immersions. Here M is ”larger” than N so it
is submersed by M. They are mainly projections of M on N and used in fiber
bundles.

Definition 1417 A map fe Cy (M; N) from the manifold M to the manifold N
is a submersion at p is f’(p) is surjective. It is an submersion of M into N if
it is an submersion at each point of M.

In an submersion dim N < dim M

Theorem 1418 (Kolar p.11) A submersion on finite dimensional manifolds is
an open map

A fibered manifold M(N,7) is a triple of two manifolds M, N and a map
m : M — N which is both surjective and a submersion. It has the universal
property : if f is a map f€ C,. (IV; P) in another manifold P then f o is class r
iff f is class r (all the manifolds are assumed to be of class r).

Independant maps

This an aplication of the previous theorems to the following problem : let
feC(QK™),Q open in K™. We want to tell when the n scalar maps f; are
”independant”.

We can give the following meaning to this concept. f is a map between two
manifolds. If f(£2) is a p< n dimensional submanifold of K™ | any point ¢ in
£ () can be coordinated by p scalars y. If p<m we could replace the m variables
x by y and get a new map which can meet the same values with fewer variables.

1) Let m> n . If f’(x) has a constant rank p then the maps are independant

2) If ’(x) has a constant rank r<m then locally f () is a r dimensional
submanifold of K™ and we have n-r independent maps.
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15.4.2 Distributions

Given a vector field, it is possible to define an integral curve such that its tangent
at any point coincides with the vector. A distribution is a generalization of this
idea : taking several vector fields, they define at each point a vector space and
we look for a submanifold which admits this vector space as tangent space. We
address here mainly the finite dimensional case, a more general formulation is
given in the Fiber bundle part.

Distributions of Differential Geometry are not related in any way to the
distributions of Functional Analysis.

Definitions
1. Distribution:

Definition 1419 A r dimensional distribution on the manifold M is a map :
W :M — (TM)" such that W(p) is a r dimensional vector subspace of T, M

If M is an open in K™ a r dimensional distribution is a map between M and
the grassmanian Gr(K";r) which is a (m-r)r dimensional manifold.

The definition can be generalized : W(p) can be allowed to have different
dimensions at different points, and even be infinite dimensional. We will limit
ourself to more usual conditions.

Definition 1420 A family (V}-)jeJ of vector fields on a manifold M generates a
distribution W if for any point p in M the vector subspace spanned by the family
is equal to W(p) : Vp € M : W(p) = Span (V; (p))

So two families are equivalent with respect to a distribution if they generate
the same distribution. To generate a m dimensional distribution the family
must be comprised at least of m pointwise linearly independent vector fields.

2. Integral manifold:

Definition 1421 A connected submanifold L of M is an integral manifold
for the distribution W on M ifVp e L: T,L =W (p)

So dimL=dimW. A distribution is not always integrable, and the submani-
folds are usually different in each point.

An integral manifold is said to be maximal if it is not strictly contained in
another integral manifold. If there is an integral manifold, there is always a
unique maximal integral manifold. Thus we will assume in the following that
the integral manifolds are maximal.

Definition 1422 A distribution W on M is integrable if there is a family
(LA)yen of mazimal integral manifolds of W such that : ¥p € M : 3\ :p € Ly.
This family defines a partition of M, called a folliation, and each Lyis called
a leaf of the folliation.
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Notice that the condition is about points of M.

p~qg<s (peLy)&(qe Ly is a relation of equivalence for points in M
which defines the partition of M.

Example : take a single vector field. An integral curve is an integral manifold.
If there is an integral curve passing through each point then the distribution
given by the vector field is integrable, but we have usually many integral sub-
manifolds. We have a folliation, whose leaves are the curves.

3. Stability of a distribution:

Definition 1423 A distribution W on a manifold M is stable by a map fe
Cy (M; M) if : ¥p e M : f'(p)W (p) C W (f (p))

Definition 1424 A vector field V on a manifold M is said to be an infinites-
imal automorphism of the distribution W on M if W is stable by the flow
of V

meaning that : a%‘l)v (t,p) (W(p)) € W (Dy (t,p)) whenever the flow is
defined.

The set Aut(W) of vector fields which are infinitesimal generators of W is
stable.

4. Family of involutive vector fields:

Definition 1425 A subset VC X1 (T'M) is involutive if Vi,V € V,3AV5 €
V[V, Vo]l =V3

Conditions for integrability of a distribution
There are two main formulations, one purely geometric, the other relying on
forms.

1. Geometric formulation:

Theorem 1426 (Maliavin p.123) A distribution W on a finite dimensional
manifold M is integrable iff there is an atlas (E, (O, gai)iel) of M such that, for
any point p in M and neighborhood n(p) : Vg € n(p) N O; : ¥, () W (q) = E;
where E = E;1 ® E;s

Theorem 1427 (Kolar p.26) For a distribution W on a finite dimensional
manifold M the following conditions are equivalent:

i) the distribution W is integrable

ii) the subset Viy = {Viw € X (TM) :Vpe M : V (p) € W (p)} is stable:

YVi,Va € Vi, 3X € Vi - %‘I)Vl (t,p) (V2 (p))) = X (P, (t,p)) whenever
the flow is defined.

iii) The set Aut(W)NVw spans W

i) There is an involutive family (V;), ., which generates W
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2. Formulation using forms :

Theorem 1428 (Malliavin p.133) A class 2 form w € Ay (M;V) on a class
2 finite dimensional manifold M valued in a finite dimensional vector space V
such that ker @ (p) has a constant finite dimension on M defines a distribution
on M : W (p) = kerw (p). This distribution is integrable iff : Yu,v € W(p) :
w(p)u=0,w(p)v=0= dw(u,v)=0

Corollary 1429 A function fe Cy (M;R) on a m dimensional manifold M such
that dimker f'(p) = Cte defines an integrable distribution, whose folliation is
given by f (p) = Cte

Proof. The derivative f’(p) defines a 1-form df on N. Its kernel has dimension
m-1 at most.

d(df)=0 thus we have always dw (u,v) =0. =

W (p) = ker w (p) is represented by a system of partial differential equations
called a Pfaff system.

15.4.3 Manifold with boundary

In physics usually manifolds enclose a system. The walls are of paramount im-
portance as it is where some conditions determining the evolution of the system
are defined. Such manifolds are manifolds with boundary. They are the geo-
metrical objects of the Stokes’ theorem and are essential in partial differential
equations. We present here a new theorem which gives a stricking definition of
these objects.

Hypersurfaces
A hypersurface divides a manifold in two disjoint parts :

Theorem 1430 (Schwartz IV p.305) For any n-1 dimensional class 1 subman-
ifold M of a n dimensional class 1 real manifold N, every point p of M has a
neighborhood n(p) in N such that :

i) n(p) is homeomorphic to an open ball

it) M N n(p) is closed in n(p) and there are two disjoint connected subsets
ny,ng such that :

n(p) = (M N (p)) U Ua,

Vge MNn(p):q€niNng

iii) there is a function f : N — R such that : n(p) = {q: f(¢) =0},n; =
{a: f(g) <0},n2 ={q: fg) >0}

Theorem 1431 Lebesgue (Schwartz IV p.305) :Any closed class 1 hypersurface
M of a finite dimensional real affine space E parts E in at least 2 regions, and
exactly two if M is connected.
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Definition
There are several ways to define a manifold with boundary, always in finite

dimensions. We will use only the following, which is the most general and useful
(Schwartz IV p.343) :

Definition 1432 A manifold with boundary is a set M :
i) which is a subset of a n dimensional real manifold N

(o)

it) identical to the closure of its interior : M = <M>
ii1) whose border OM called its boundary is a hypersurface in N

Remarks :

[e]

i) M inherits the topology of N so the interior M, the border OM are well
defined (see topology). The condition i) prevents ”spikes” or "barbed” areas
protuding from M. So M is exactly the disjointed union of its interior and its
boundary:

M=TT=MUOM = ((AZC))C

MNOM =0

OM =Mn (Me)=0(M°)

ii) M is closed in N, so usually it is not a manifold

iii) we will always assume that OM # &

iv) N must be a real manifold as the sign of the coordinates plays a key role

Properties

Theorem 1433 (Schwartz IV p.343) If M is a manifold with boundary in N,
N and OM both connected then :

i) OM splits N in two disjoint regions : M and M¢
it) If O is an open in N and M NO # @ then M NO is still a manifod with
boundary : OM N O

ii1) any point p of OM is adherent to M, M and M¢

Theorem 1434 (Lafontaine p.209) If M is a manifold with boundary in N,
then there is an atlas (O, @;);c; of N such that :

Vi (Oiﬂ]\o/f) ={z € p;(0;) : 1 <0}
©; (Ol ﬂaM) = {{E S (/71(01) A O}

Theorem 1435 (Taylor 1 p.97) If M is a compact manifold with boundary in
an oriented manifold N then there is no continuous retraction from M to OM.
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Transversal vectors
The tangent spaces T,0M to the boundary are hypersurfaces of the tangent
space 1, N. The vectors of T, N which are not in T,0M are said to be transver-
sal.
If N and OM are both connected then any class 1 path c(t) : ¢: [a,b] = N

o
such that c(a)e M and c(b)e M¢ meets M at a unique point (see topology).
For any transversal vector : u € T,N,p € OM, if there is such a path with
c'(t) = ku,k > 0 then u is said to be outward oriented, and inward oriented
if ¢/(t) = ku, k < 0. Notice that we do not need to define an orientation on N.

Equivalently if V is a vector field such that its flow is defined from p € M
to ¢ € M€ then V is outward oriented if 3t > 0: ¢ = Py (¢,p) .

Fundamental theorems
Manifolds with boundary have a unique characteristic : they can be defined
by a function : f: N — R.
It seems that the following theorems are original, so we give a full proof.

Theorem 1436 Let N be a n dimensional smooth Hausdorff real manifold.

i) Let f € C1(N;R) and P = f~1(0) # @, if f'(p)# 0 on P then the
set M = {p e N: f(p) <0} is a manifold with boundary in N, with boundary
OM = P. And : ¥p € OM,Yu € T,0M : f'(p)u=0

it) Conversely if M is a manifold with boundary in N there is a function :
f € Cy(N;R) such that :

M={peN:f(p)<0},0M={peN:f(p)=0}

Vp € OM : f'(p) # 0 and : Yu € T,0M : f'(p)u = 0, for any transversal
vector v : f'(p)v #0

If M and OM are connected then for any transversal outward oriented vector
v: f'(p)v>0

iii) for any riemannian metric on N the vector gradp defines a vector field
outward oriented normal to the boundary

N is smooth finite dimensional Hausdorff, thus paracompact and admits a
Riemanian metric

Proof of i)
Proof. fis continuous thus P is closed in N and M’={p € N : f(p) < 0} is open.

The closure of M’ is the set of points which are limit of sequences in M’ :
W:{hmcbhanM/}:{pENZf(p)SO}:M

f has constant rank 1 on P, thus the set P is a closed n-1 submanifold of N
and Vp € P : T,P = ker f'(p) thus Vu € T,0M : f'(p)u=0. m

Proof of ii)
Proof. 1) there is an atlas (O;, ¢;);c; of N such that :

©i (Olm]\%) = {,T S 901(01) < 0}
©; (Ol ﬂaM) = {{E S (/71(01) 21 =0
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Denote : ¢} (p) = z1 thus Vp € M : ¢} (p) <0

N admits a smooth partition of unity subordinated to O; :

Xi € Coo (N;RL) :Vp e OF i xi(p) =0;Vpe N: Y xi(p) =1
Define : f(p) = >, x:i (p) ¢} (p)

Thus S

Vpe M: f(p) =3 xi(p) i (p) <0

VpedM: f(p)=>,xi(p)¢i (p) =0

Conversely :

Yixip)=1=J={iel:x;(p) #0t #2

letbe: L={iel:peO;} 4@ soVi¢ L:x;(p)=0

Thus JNL # @ and f (p) = X icsnp Xi (D) 0F (D)

let p€ N : f(p) <O0: there is at least one j € JN L such that ¢} (p) < 0=

peM

let p€N:f(p)=0:3,csmpXi () @i (p) =0, (p) 0= ¢; (p) =0

2) Take a path on the boundary : ¢: [a,b] = OM

c(t) € M = oHe(t) = 0 = (p}) (e(t) d(t) = 0 = Vp € IM,Vu €
TpOM : (9011 (p))/“ =0

7'y = 5, (e @)u+ xi) (1) (o) s )

pEOM = pl(p) = 0= f(Pu= Y, xip) (¢}) (p)u=0

3) Let p € OM and v, transversal vector. We can take a basis of T,N
comprised of v; and n-1 vectors (vq)"_, of T,0M

Vu€T,N :u=>"_,tuala

fp)u= 30 uaf (p)va = urf' (p)ur

As f/(p) # 0 thus for any transversal vector we have f/(p)u # 0

4) Take a vector field V such that its flow is defined from p € M to g € M*®
and V (p) = v;

vy is outward oriented if 3t > 0: ¢ = @y (¢,p). .Then :

t<0= @y (t,p) € M= f(Pv (t,p)) <0

t=0= f(®v(t,p) =0

d _ —

GOV (t,p) =0 =V(p) = v

L (@v () li=0 = [(p)vr = limy_o- f (Pv (£,p)) >0

5) Let g be a riemannian form on N. So we can associate to the 1-form df
a vector field : V¥ = g*P9sf and f'(p)V = g*P0sf0af > 0 is zero only if
f’(p)=0. So we can define a vector field outward oriented. m

Proof of iii)
Proof. V is normal (for the metric g) to the boundary : u€ M : g,u®V» =
9apu®g? 0y f = w0y f = f'(p)lu=0 m

Theorem 1437 Let M be a m dimensional smooth Hausdorff real manifold,
f € Cy (M;R) such that f'(p)# 0.on M

i) Then My ={p € M : f(p) <t} , foranyt € f(M) is a family of manifolds
with boundary OMy ={p € M : f(p) =t}
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it) f defines a folliation of M with leaves OM,

iii) if M is connected compact then f(M)=[a,b] and there is a transver-
sal vector field V whose flow is a diffeomorphism for the boundaries OM; =
Dy (OM,,t)

Proof. M is smooth finite dimensional Hausdorff, thus paracompact and admits
a Riemanian metric

i) £’(p)# 0. Thus f’(p) has constant rank m-1.

The theorem of constant rank tells us that for any t in f(M)C R the set
f7L(t) is a closed m-1 submanifold of M and

Wpe fUE) : T f 7 (t) = ker f'(p)

We have a family of manifolds with boundary : M; = {p € N : f(p) <t} for
te f(M)

ii) Frobenius theorem tells us that f defines a foliation of M, with leaves the
boundary OM; = {p € N : f(p) =t}

And we have Vp € My, ker f'(p) = T,0M,

=VYu € T,0M,; : f'(p)u=0,Vu € T,M,u ¢ T,0M,; : f'(p)u+#0

iii) If M is connected then f(M)=|a, b| an interval in R. If M is compact then
f has a maximum and a minimum :

a<f(p)<b

There is a Riemannian structure on M, let be g the bilinear form and define
the vector field :

Vo= 2 v e MV (p) = 4 (9(0) 05F () G with A = X5 9°7 (9 f) (9f) >

0

f'(p)V = 1905 f0af =1 S0 V is a vector field everywhere transversal and
outward oriented. Take p, € OM,

The flow @y (pg,s) of V is such that : Vs > 0: 30 € [a,b] : Dy (pg, s) € IMy
whenever defined.

Define : h: R — [a,b] : h(s

%(I)V(pv)|59— V(v (p.0))

Gh(s)ls=0 = f'(@v (p,0))V(®v (p,0)) = L= h(s) =

and we have : @y (ps,s) € OM; =

) =1 (®v (pa; 5))

An application of these theorems is the propagation of waves. Let us take
M = R* endowed with the Lorentz metric, that is the space of special relativity.
Take a constant vector field V of components (v1,v2,vs, ¢) with Zizl (va)” =
2. This is a field of rays of ligth. Take f (p) = (p, V') = p1v1 + pav2 + p3v3 — cpa

The folliation is the family of hyperplanes orthogonal to V. A wave is rep-
resented by a map : F : M — FE with E some vector space, such that :
F(p) = xo f(p) where x : R — E . So the wave has the same value on
any point on the front wave, meaning the hyperplanes f(p)=s. f(p) is the phase
of the wave.

For any component F; (p) we have the following derivatives :

a=1,2,3: a o i =F (- va)%%ﬂ-:ﬂ’ (v2)
2 F; = F’( )—>£7Fi=F;’ (c?)

Ops
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s0: Z3Fi+ 25+ 25 F — £5F, = 0=0F,

F follows the wave equation. We have plane waves with wave vector V.

We would have spherical waves with f(p) = (p, p)

Another example is the surfaces of constant energy in symplectic manifolds.

15.4.4 Homology on manifolds

This is the generalization of the concepts in the Affine Spaces, exposed in the
Algebra part. On this subject see Nakahara p.230.

A r-simplex S” on R™ is the convex hull of the r dimensional subspaces
defined by r+1 independants points (Ai)fl :

ST = <A0, AT> = {P eR": P= Z;‘:O tZAZ,O <t < 1, E;‘:O t;, = 1}

A simplex is not a differentiable manifold, but is a topological (class 0)
manifold with boundary. It can be oriented.

Definition 1438 A r-simplex on a manifold M modeled on R™ is the image
of a r-simplex S™ on R™ by a smooth map : f: R® - M

It is denoted : M" = (po, p1,.-.pr) = {f (A0),...f (A}))

Definition 1439 A r-chain on a manifold M is the formal sum : Y. k;M]
where M, s any r-simplex on M counted positively with its orientation, and
k; € R

Notice two differences with the affine case :

i) here the coeflicients k; € R (in the linear case the coefficients are in Z).

ii) we do not precise a simplicial complex C : any r simplex on M is suitable

The set of r-chains on M is denoted G, (M). It is a group with formal
addition.

Definition 1440 The border of the simplex (po,p1,...pr) on the manifold
M is the r-1-chain :
s k ~ .
(P01, ---Pr) = Y o (—1)" (po, 1 -, Dk, ---Dr) where the point py has been
removed. Conventionnaly : 0 (po) =0

M"=f(S")=0M" = f(0S")

9?2 =0

A r-chain such that 9M™ = 0 is a r-cycle. The set Z, (M) = ker (9) is the
r-cycle subgroup of G, (M) and Zy(M) = Go(M)

Conversely if there is M™ ™! € G,.11 (M) such that N = OM € G, (C) then
N is called a r-border. The set of r-borders is a subgroup B, (M) of G, (M)
and B, (M) =0.0ne has : B,.(M) C Z.(M) C G.(M)

The r-homology group of M is the quotient set : H,. (M) = Z,.(M)/B, (M)

The rth Betti number of M is b, (M) = dim H, (M)
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16 TENSORIAL BUNDLE

16.1 Tensor fields
16.1.1 Tensors in the tangent space

1. The tensorial product of copies of the vectorial space tangent and its topo-
logical dual at every point of a manifold is well defined as for any other vector
space (see Algebra). So contravariant and covariant tensors, and mixed tensors
of any type (r,s) are defined in the usual way at ever point of a manifold.

2. All operations valid on tensors apply fully on the tangent space at one
point p of a manifold M : ®.T,M is a vector space over the field K (the same
as M), product or contraction of tensors are legitimate operations. The space
®T,M of tensors of all types is an algebra over K.

3. With an atlas (E, (Oz‘,%)ie]) of the manifold M, at any point p the
maps : ¢} (p) : T,M — E are vector space isomorphisms, so there is a unique
extension to an isomorphism of algebras in L(®T,M;®FE) which preserves the
type of tensors and commutes with contraction (see Tensors). So any chart
(04, i) can be uniquely extended to a chart (O;, @;rs) :

Pi,r,s (p) : QLTpM — @ E

VS, T, € TT,M, k. k' € K :

Pir,s (p) (kSp + K'T}) = kpirs (p) Sp + K'@irs (p) (Tp)

Pi,r,s () (Sp @ Tp) = pir,s (P) (Sp) ® @ir,s (p) (Tp)

2irs () (Trace (S,)) = Trace (@i,s (p) ((S)))

with the property :

(5 () @ #; (P)) (up @ vp) = 5 (p) (up) ® ¥ (p) (vp)

-1 —1
t t

A @ (¢ 0)) () =0 0) (W)@ (¢ @) (),

4. Tensors on T, M can be expressed locally in any basis of T, M. The natural
bases are the bases induced by a chart, with vectors (0x4),c 4 and covectors
(dz®)pcq With @ 0z = @ (p) "' ea,dz™ = ¢; (p)' e where (€a)aca is a basis
of E and (e%),c 4 a basis of E’.

The components of a tensor T, in ®,T,M expressed in a holonomic basis
are :

Ty = Yo ar 2oprp U 0%y © . ® 0T, ® daft @ .. ® da’

and : @; 1. (p) (02, ® .. ® Iz, ® d2™ ® ... ® d2P) = €4, ®..®eq, @ ®
. ®ePs

The image of T), by the previous map ¢; s (p) is a tensor t in ®E which
has the same components in the basis of ®.F :

Piris (D) Tp = L. Lo Uy o1 @ @ €a, @M @@ e

16.1.2 Change of charts

1. In a change of basis in the tangent space the usual rules apply (see Algebra).
When the change of bases is induced by a change of chart the matrix giving the
new basis with respect to the old one is given by the jacobian.
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2. If the old chart is (O;, ;) and the new chart : (O;,1);) (we can assume
that the domains are the same, this issue does not matter here).

Coordinates in the old chart : x = ¢; (p)

Coordinates in the new chart : y = ; (p)

Old holonomic basis :

0o =& (p) " €a;

dz = @ (x)" e with da® (D) = o

New holonomic basis :

0yo =07 (p) " €a

=P} (y)" e* with dy® (ys) = o3

In a n-dimensional manifold the new coordinates (yl):l:
respect to the old coordinates by :

a=1l.n:y*=F(z',..2") S (p) = Foy;(p) & F(z)=1op; " (z)

oF* ]

The jacobian is : J = [F'(z)] = [Jg} = {W ~ {gZﬁ}

Oya = X5 [0 025 = 52 = ¥ 52 5% © Oy = ¥} 0 9} (p) O

* s\ —1

=S dug = dyt = 5 25daf & dy = ¢ o (9 (2)") T daa
The components of vectors :
Up =Y 0 up 0 = D e ag‘ﬁya with ﬁg‘ = Z,@ Jgug ~ E,@ gzﬂuﬁ
The components of covectors :

—~ co o~ _118 s
p = Yoo Hpad® = Y Hpady®™ With fipe = Y5 [J7' pps ~ 4 g%uw

For a type (r,s) tensor :
T=3 0 o 2p. p. o 5 0Ta, © .8 024, @ da' @ ... @ daP

T= Zoa Qo 261 Bs P1~.~.~'a;ayal ®. 9 8y0"” ® dyﬁl ®..® dyﬁs

Wlth
A T —17H _17Hs
= nen ettt IS, IS [T [T
/u - A OY%L 9y°T 9zl ahs
tﬁll 5 ( ) Z)\l A Zul....u #1 s BZM "'OZM 6251 "'8355
For a r-form
] a;p/\: z/:\(zl'aa’") Way...0, T @ dr*? @ ... @ do® = Z{almw} Way...a,dT* A
i o Ndzor
. O;p/\: z/:\(gl'daT) B0,y @ dy™® @ ... @ dy®r = Z{al...oq‘} Day ..o dy®t A
v o N dySr
. ~ _11B1---Br
with @a, . o, = 2{61 8.} T@Bi..Br det [J 1}0[11
where det [J *1} illir is the determinant of the matrlx [J *1} with elements
row [ column oy

, are expressed with

16.1.3 Tensor bundle

The tensor bundle is defined in a similar way as the vector bundle.

Definition 1441 The (r,s) tensor bundle is the set QT M = Upey Q5 TpyM
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Theorem 1442 ®.TM has the structure of a class r-1 manifold, with dimen-
sion (rs+1)zdimM

The open cover of @.TM is defined by : O} = Upeo, {QLT,M}

The maps : O} = U; X QLE :: (¢; (p) , pir,s (p) Tp) define an atlas of @1T M

The dimension of @.TM is (rs+1)xdimM. Indeed we need m coordinates for
p and mxrxs components for T).

Theorem 1443 ®.TM has the structure of vector bundle over M, modeled on
®LE

®LTM is a manifold

Define the projection : 7, : @ TM — M :: w5 (T,) = p. This is a smooth
surjective map and -} (p) = @[T, M

Define the trivialization : ®;,s : O; X @ F — Q.TM = @, (p,t) =
@;Tl)s (pi (p))t € T, M. This is a class c-1 map if the manifold is of class c.

If p € O; N Oy then ‘P;,rl,s o @;rs(p)t and cpjfis © @i rs (p)t define the same
tensor of @1, M

Theorem 1444 ®.TM has a structure of a vector space with pointwise oper-
ations.

16.1.4 Tensor fields

Definition

Definition 1445 A tensor field of type (r,s) is a map : T : M — Q.TM
which associates at each point p of M a tensor T(p)

A tensor field of type (r,s) over the open U; C Eisamap : t;: U; > QLF

A tensor field is a collection of maps : T; : O; x @-F — QTTM :: T(p) =
D, .5 (p,t; (wi(p))) with ¢; a tensor field on E.

This reads :

T (p) = Zal...ow 261””65 tgll.'.'.'g;[)m ®.. X &lr X dxPr R..® dxPs

Pirrs (D) (T(P) = Xy w2y tor e (00 (D) €0y ® .. R eq, @M ©...®

Bs

e

The tensor field if of class c if all the functions ¢; : U; = ®LE are of class c.

Warning! As with vector fields, the components of a given tensor fields vary
through the domains of an atlas.

Notation 1446 X. (LT M) is the set of fields of class c type (r,s) tensors on
the manifold M

X. (AsTM) is the set of fields of class ¢ antisymmetric type (0,s) tensors on
the manifold M
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A vector field can be seen as a (1,0) type contravariant tensor field X (®7TM) ~
X(TM)

A vector field on the cotangent bundle is a (0,1) type covariant tensor field
X (@YTM) ~ X (TM*)

Scalars can be seen a (0,0) tensors. Similarly a map : T': M — K is just a
scalar function. So the O-covariant tensor fields are scalar maps: X (®8TM ) =
X (NoTM)~C(M;K)

Operations on tensor fields
1. All usual operations with tensors are available with tensor fields when they
are implemented at the same point of M.

With the tensor product (pointwise) the set of tensor fields over a manifold
is an algebra denoted X (T M) = @, X (RLTM) .

If the manifold is of class ¢, ®.T'M is a class r-1 manifold, the tensor field
is of class c-1 if the map : t : U; — ®LE is of class c-1. So the maps :
tgll_'_'_'g‘; : M — R giving the components of the tensor field in a holonomic basis
are class c-1 scalar functions. And this property does not depend of the choice
of an atlas of class c.

2. The trace operator (see the Algebra part) is the unique linear map :

Tr: X (®1TM) — C(M; K) such that Tr (w® V) = w (V)

From the trace operator one can define the contraction on tensors as a linear
map : X(®,TM) — X (®;:}TM) which depends on the choice of the indices
to be contracted.

3. It is common to meet complicated operators over vector fields, including
derivatives, and to wonder if they have some tensorial significance. A useful
criterium is the following (Kolar p.61):

If the multilinear (with scalars) map on vector fields

FeLs(X(TM);X(®"TM)) is still linear for any function, meaning :

ka € Cw (M, K) ,V(Vk)zzl JF (f1V1, fs‘/s) = f1f2...st (Vl, ‘/5)

then 37 € X (QLTM) =V (Vi)i_, , F (V1,..Vs) =T (V1 ..Vy)

16.1.5 Pull back, push forward

The push-forward and the pull back of a vector field by a map can be generalized
but work differently according to the type of tensors. For some transformations
we need only a differentiable map, for others we need a diffeomorphism, and
then the two operations - push forward and pull back - are the opposite of the
other.

Definitions
1. For any differentiable map f between the manifolds M,N (on the same
field):
Push-forward for vector fields :
foi X(TM) = X (TN) 5 L.V = 'V & LV (£ () = F5)V ()
Pull-back for 0-forms (functions) :
T X (MTN™) = X (AT M™) = f*h = ho f< f*h(p) = h(f(p))
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Pull-back for 1-forms :

[P X (MTN*) = X (MTM*) : ffu=pof < f*ulp)=u(f(®)ef (p)

Notice that the operations above do not need a diffeormorphism, so M,N do
not need to have the same dimension.

2. For any diffeomorphism f between the manifolds M,N (which implies that
they must have the same dimension) we have the inverse operations :

Pull-back for vector fields :

FPrX(TN) - X (TM) = f W = (Ve W= (Fe)W(fp)

Push-forward for O-forms (functions) :

fe: X (ATM*) = X (AgTN*) :: fug=go f' & feg(q) =9 (f" (9))

Push-forward for 1-forms : )

fo: X(MTM) = X (MTN) = X = @0 (1) & fA(g) = A(f7 (@)

RV
(f 1) (@)

3. For any mix (r,s) type tensor, on finite dimensional manifolds M,N with
the same dimension, and any diffeomorphism f: M — N

Push-forward of a tensor :

fe: X(@T,M) = X (@LTLN) = (fT) (f (9)) = £ () Tp

Pull-back of a tensor : )

17X (@IT,M) — X (@IT,N) = (£5) (F (@) = (£) " (@) S,

where f] ((p) : @TpM — ®;Ty) N is the extension to the algebras of the
isomorphism : f'(p) : T,M — Ty N

Properties

Theorem 1447 (Kolar p.62) Whenever they are defined, the push forward f.
and pull back f* of tensors are linear operators (with scalars) :

[T e L(X(T,M); X (T,N))

fe € L(X(DTM) ; X (R(T,N))

which are the inverse map of the other :

=0,

Fo= ()

They preserve the commutator of vector fields:

[V, f*Va] = [7 Vi, Vo]

and the exterior product of r-forms :

fflwAr)=ffon f*r

fe(@AT) = fiww A farr

They can be composed with the rules :

(fog) =g of*

(fog). = fvog.

They commute with the exterior differential (if f is of class 2) :

d(f*w) = f*(dw)

d(few) = fi(dw)
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So for functions :

heC(N;K): (f*h) (p) =1 (f (p) o I’ (p) /
g€ C(M;K): (f.9) (@) =9 (f7" (@) o (f71) (a)
and for 1-forms and vector fields :
peX(MTN*),V € X(TM): f*u(V) = u(f.V)
AEX(MTM*),W e X(TN): fAX(W)=X(f*W)

Components expressions
For a diffeomorphism f between the n dimensional manifolds M with atlas

(K™, (0i,:);c;) and the manifold N with atlas (K” (Qj %)) ¢ J) the formulas

are

Push forward : f.: X (®.TM) — X (®.TN)
T(P) =0 ar 2aprp To 5 (0) 0%y ® .. @ O2a, ® d2' @ ... @ da®

(FT) (@) =Xy a0 Yops... 5 Tal 57 (0) 0Ya, ® .. @ Dya, Rdy?r @ ... @ dyPs
with :
Tal...ar (@) =20 2, m ;i\ (F() [T15: - I15, [J_l]gi - [J_I}Z:

r AL (£ dy*l  Oy°r gxM1  Qats
TOél Ot (q) Z)\l Ar EHL---M T;,Lll...;,es (f ! (q)) BZ/\I"'BZ”\T Q;ﬁil "'B;Es

Pull-back : f*: X (QLTN) — X (@5TM)
S(@) =P ar . S5 (@) 0Yay © . @ Oy, @ dY™ @ ... @ dy
/ fi(p )= L Lo, Sfa”f...ﬂi (p) Oa, ® .. ® Oz, @ d2ft @ .. ® daP
wi
85750 () = Xa, Dy St (F @) [T50 - [T 13 51 - 1
1 o K1 Hs
Sﬂl ( )= ZAI A E,“ s Alfffﬁ; (f () gyxl ---gw gfcm "'SZBS
Where x are the coordinates on M, y the coordinates on N, and J is the
jacobian :
/ / -1 oz®
)= [F@) = |25 P =" = 2]
F is the transition map : F : ¢; (O;) — 1, (Q;) =y = ;0 fop; ! (v) = F ()

For a r-form these formulas simplify :
Push forward :
d 0‘722/\: z/:\((zllaar) wal”'ardxal ® d$a2 ®...0 dIaT = Z{aln.ar} walv”ardxal A
x o A dx®r

(f+@) (@) = 2 (0s...0n) FParan (@) Y @AY @..QdYY =30, oy Par.oa, (@) Ay A

dy®2 A ... A dy®r
ith :
YV\I - 1 _11B1.--Br
Ta..an () = E{,@l....m} Wpi...0r (f (Q)) det [J }almar

= Z,ul....,us Wht...ps (f_l (q)) [J_l]gi h [J_l]Z:
Pull-back :

w (Q) = E(al___ar) Was...o (Q) Ay @dy? ®...Qdy"" = E{Ql---ar} Was...o (Q) dy®* N\

dy2 A ... A dy®r
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(D) = ara) Bau.ay (p) dr @2 @..@dz =Y o\ Bay.a, (p) dT A
dx®? N ... Ndx®r
with :

Baror (D) = Ny @oropy (F ) det [JI00 =50 0w (F () 1

where det [J ] leir is the determinant of the matrix [J '] with r column
(a1, .. ) comprised each of the components {f;...5,}

Remark :

A change of chart can also be formalized as a push-forward :

pi:0; = Ui x =i (p)

Vi O = Vi iy = (p)

1/)1-090;1 :0; — 04 ::y:1/)1-o<p;1(:1:)

The change of coordinates of a tensor is the push forward : a = (1/)1- o <p;1) , Li-
As the components in the holonomic basis are the same as in E, we have the
same relations between T and T'

16.2 Lie derivative
16.2.1 Invariance, transport and derivation

As this is a problem frequently met in physics it is useful to understand how
the mathematics work.

Equivariance
1. Let be two observers doing some experiments about the same phenomenon.

They use models which are described in the tensor bundle of the same manifold
M modelled on a Banach E, but using different charts.

Observer 1 : charts (O;, i), ,i (O;) = U; C E with coordinates x

Observer 2 : charts (Oy,v;),c;,%i (0;) = V; C E with coordinates y

We assume that the cover O; is the same (it does not matter here).

The physical phenomenon is represented in the models by a tensor T €
®LTM. This is a geometrical quantity : it does not depend on the charts used.
The measures are done at the same point p.

Observer 1 mesures the components of T : T (p) = 32, o, 25,5, tar 5. (P) 0Ta,®
. ®0Tq, ®dEP ® ... ® dxPs

Observer 2 mesures the components of T : T (p) = }°,, o, 26,5, 551 5. (@) 0Ya, ®
" ® Yo, ® dyP' @ ... @ dyPs

So in their respective charts the measures are :

s=(¥:), T

Passing from one set of measures to the other is a change of charts :

s= (o 80;1)* t= (i), 0 (<P;1)* 3

So the measures are related : they are equivariant. They change according
to the rules of the charts.
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2. This is just the same rule as in affine space : when we use different frames,
we need to adjust the mesures according to the proper rules in order to be able
to make any sensible comparison. The big difference here is that these rules
should apply for any point p, and any set of transition maps ¥; o <p;1. So we
have stronger conditions for the specification of the functions tg;:::g; (p) .

Invariance

1. If both observers find the same numerical results the tensor is indeed
special : t = (¢;), o (goi_l)* t . It is invariant by some specific diffeomorphism
(z/Ji o, 1) and the physical phenomenon has a symmetry which is usually
described by the action of a group. Among these groups the one parameter
groups of diffeomorphisms have a special interest because they are easily related
to physical systems and can be characterized by an infinitesimal generator which
is a vector field (they are the axes of the symmetry).

2. Invariance can also occur when with one single operator doing measure-
ments of the same phenomenon at two different points. If he uses the same
chart (Oj, ¢i);c; with coordinates x as above :

Observation 1 at point p : T'(p) = 32, o, 26,6, L. 5, (P) OTa, ® .. ®
024, ®dz? @ ... ® dxP

Observation 2 at point q : T'(q) = 32, o, 26,6, tgr. 5, (@) 0Ta, ® .. ®
02q, ®dz? @ ... ® dxPs

Here we have a big difference with affine spaces, where we can always use
a common basis (eq),c4. Even if the chart is the same, the tangent spaces
are not the same, and we cannot tell much without some tool to compare the
holonomic bases at p and q. Let us assume that we have such a tool. So we
can ”transport” T(p) at q and express it in the holonomic frame at q. If we
find the same figures we can say that T is invariant when we go from p to q.
More generally if we have such a procedure we can give a precise meaning to
the variation of the tensor field between p and q.

In differential geometry we have several tools to transport tensors on tensor
bundles : the ”push-forward”, which is quite general, and derivations.

Transport by push forward
__If there is a diffeomorphism : f : M — M then with the push-forward
T =Af*T reads :

T(f () = f"Tj(p) = Pips (Pt (w50 f(p) = Pirs (p,t; (vi ()

L

The components of the tensor T', expressed in the holonomic basis are :
Faq ... o A « . 1M1 17 Ms
T i (F®) =X, x Xy Tt @V N ST [T - [T
where [J] = [gyTZ} is the matrix of f’(p)
So they are a linear (possibly complicated) combination of the components
of T.
Definition 1448 A tensor T is said to be invariant by a diffeomorphism on

the manifold M f - M — M if : T = f*T < T = f.T
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If T is invariant then the components of the tensor at p and f(p) must be
linearly dependent.

If there is a one parameter group of diffeomorphisms, it has an infinitesimal
generator which is a vector field V. If a tensor T is invariant by such a one
parameter group the Lie derivative £y71 = 0.

Derivation

1. Not all physical phenomenons are invariant, and of course we want some
tool to measure how a tensor changes when we go from p to q. This is just what
we do with the derivative : T (a +h) = T (a) + T'(a)h + € (h) h .So we need a
derivative for tensor fields. Manifolds are not isotropic : all directions on the
tangent spaces are not equivalent. Thus it is clear that a derivation depends
on the direction u along which we differentiate, meaning something like the
derivative D, along a vector, and the direction u will vary at each point. There
are two ways to do it : either u is the tangent ¢’(t) to some curve p=c(t), or
u=V(p) with V a vector field. For now on let us assume that u is given by some
vector field V (we would have the same results with ¢’(t)).

So we shall look for a map : Dy : X (®,TM) — X(®LTM) with V' €
X (T M) which preserves the type of the tensor field.

2. We wish also that this derivation D has some nice useful properties, as
classical derivatives :

1) it should be linear in V : VV, Ve VM, k, K eK: DkVJrk/V/T = vaT+
k' Dy T so that we can compute easily the derivative along the vectors of a basis.
This condition, joined with that Dy T should be a tensor of the same type as T
leads to say that :

D:X(®ITM) — X (®75,,TM)

For a (0,0) type tensor, meaning a function on M, the result is a 1-form.

ii) D should be a linear operator on the tensor fields :

VS, T € X(®TM), kK € K:DkS+KT)=kDS+ K DT

iii) D should obey the Leibnitz rule with respect to the tensorial product :

D(S®T)=(DS)®T+ S® (DT)

The tensor fields have a structure of algebra X (® T M) with the tensor prod-
uct. These conditions make D a derivation on X (®TM) (see Tensors in the
Algebra part).

iv) In addition we wish some kind of relation between the operation on
TM and TM*. Without a bilinear form the only general relation which is
available is the trace operator, well defined and is the unique linear map :
Tr: X (®{TM) — C(M; K) such that Vw € X (®{TM),V € X (®TM)
Tr(weV)=w (V)

So we impose that D commutes with the trace operator. Then it commutes
with the contraction of tensors.

3. There is a general theorem (Kobayashi p.30) which tells that any deriva-
tion can be written as a linear combination of a Lie derivative and a covariant
derivative, which are seen in the next subsections.
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4. The parallel transport of a tensor T by a derivation D along a vector field
is done by defining the ”transported tensor” T as the solution of a differential
equation Dy T = 0 and the initial condition T (p) = T (p) . Similarly a tensor is
invariant if DyT = 0.

5. Conversely with a derivative we can look for the curves such that a given
tensor is invariant. We can see these curves as integral curves for both the
transport and the tensor. Of special interest are the curves such that their
tangent are themselves invariant by parallel transport. They are the geodesics.
If the covariant derivative comes from a metric these curves are integral curves
of the length.

16.2.2 Lie derivative

The idea is to use the flow of a vector field to transport a tensor : at each
point along a curve we use the diffeomorphism to push forward the tensor along
the curve and we compute a derivative at this point. It is clear that the result
depends on the vector field : in some way the Lie derivative is a generalization
of the derivative along a vector. This is a very general tool, in that it does not
require any other ingredient than the vector field V. The covariant derivative is
richer, but requires the definition of specific maps.

Definition
Let T be a tensor field T € X (®5T M) and V a vector field V € X (TM) . The

flow @y is defined in a domain which is an open neighborhood of 0xM and in
this domain it is a diffeomorphism M — M. For t small the tensor at ®v (—t, p)
is pushed forward at p by v (¢,.) :

(v (42),T) (p) = (@ (t,.)),., (1) T (Pv (~,p))

The two tensors are now in the same tangent space at p, and it is possible
to compute for any p in M :

£vT (p) = limeo 3 (Pv (¢,.), T) (p) = T(p)) = limeo 1 ((Pv (t,.), T) (p) —
@y (0..),7) (»))

The limit exists as the components and J are differentiable and :

Definition 1449 The Lie derivative of a tensor field T € X (QTTM) along
the vector field V € X (TM) is : £yvT (p) = 4 (v (t,.), T) (p)) |t=0

In components :

(v (t,.),. )55 (p)

=D oo Tt @y (=) 150 IS0 [T [T
with : F:U; = Uy =i 0@y (L,.)op; ' (v) = F ()

[F/(2)] = 1] = |95]

so the derivatives of @y (¢, p) with respect to p are involved
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Properties of the Lie derivative

Theorem 1450 (Kolar p.63) The Lie derivative along a vector field V € X (T M)
on a manifold M is a derivation on the algebra X (TM) :

i) it is a linear operator : £y € L (X (@;TM); X (QLTM))

it) it s linear with respect to the vector field V

iii) it follows the Leibnitz rule with respect to the tensorial product

Moreover:

iv) it commutes with any contraction between tensors

v) antisymmetric tensors go to antisymmetric tensors

So VYV, W € X (TM), ¥k, k' € K,¥S,T € X (2T M)

Lyviw =Ly +Lw

Ly (kS+KET)=kELy S+ K £,T

Ly (S@T)=(£vS)RT+S® (£vT)

which gives with f € C(M;K) : £v (f xT) = (£vf) x T+ f x (£yT)
(pointwise multiplication)

Theorem 1451 (Kobayashi I p.32) For any vector field V € X (T M) and ten-
sor field T € X (T M) :
Dy (—t,.)" £yT = -4 (Pv (—t,.)" T) |i=0

Theorem 1452 The Lie derivative of a vector field is the commutator of the
vectors fields :

VV,W e X(TM): £yW = —£ywV = [V, W]

JeCMK): £vf=ivf=V(f)=>,Vuaf=[f (V)

Remark : V (f) is the differential operator associated to V acting on the
function f

Theorem 1453 FEaxterior product:
VA u€X(ATM*) : £v (AAp) = (EvA) Ap+ AN (£vp)

Theorem 1454 Action of a form on a vector:
VAEX(MTM*) W eX(TM): £y (A(W)) = (LvA) (W) + A (£LyW)
YA e X (A TM*) Wy, W, e X(TM):
(£vA) (Wh, W) =V AW, W) = S A(Wh, L [V W] W)

Remark : V (A (W71, ...W,.)) is the differential operator associated to V acting
on the function \ (W1, ...W,.)

Theorem 1455 Interior product of a v form and a vector field :
YAae X (ATTM*) VW eX (TM) : £V(’LW/\) =iy W (/\) + iw (fv/\)

Remind that : (Zw)\) (Wl, -'-Wr—l) =A (W, Wl, '-'Wr—l)

Theorem 1456 The bracket of the Lie derivative operators £y, £y for
the vector fields V,\W is : [£v,£€w] = £v o £w — £w o £v and we have
I€v, £w] = Lv,w)
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Parallel transport The Lie derivative along a curve is defined only if this is
the integral curve of a tensor field V. The transport is then equivalent to the
push forward by the flow of the vector field.

Theorem 1457 (Kobayashi I p.33) A tensor field T is invariant by the flow of
a vector field V iff £yT =0

This result stands for any one parameter group of diffeomorphism, with V
= its infinitesimal generator.

In the next subsections are studied several one parameter group of diffeo-
morphisms which preserve some tensor T (the metric of a pseudo riemannian
manifold, the 2 form of a symplectic manifold). These groups have an infinites-
imal generator V and £y7 = 0.

16.3 Exterior algebra
16.3.1 Definitions

For any manifold M a r-form in 7}, M* is an antisymmetric r covariant tensor in
the tangent space at p. A field of r-form is a field of antisymmetric r covariant
tensor in the tangent bundle TM. All the operations on the exterior algebra of
Tp,M are available, and similarly for the fields of r-forms, whenever they are
implemented pointwise (for a fixed p). So the exterior product of two r forms
fields can be computed.

Notation 1458 X (ATM*) = @dmMx (A, TM*) is the exterior algebra of
the manifold M.

This is an algebra over the same field K as M with pointwise operations.
In a holonomic basis a field of r forms reads :

@ (D) = X (ar...a,) Pai..ar (P) 2™ @ d2®? @ ... @ d2"

=2 {a1..ar} FPor.ar () dz® Adz® A A dar

with (aj...a;) any 1 indexes in A, {aj...a,} any ordered set of r indexes in

0 €6, Wyay..a,) = €(0) Tay...ar
Way...ap - M — K the form is of class c if the functions are of class c.

To each r form is associated a r multilinear antisymmetric map, valued in
the field K :

Vo € X(ATM*) ) V1,.., V., € X(TM) :

w(Vi,.., V) = Z(mm%) Way ..o,V 02 00T

Similarly a r-form on M can be valued in a fized Banach vector space F. It
reads :

w = E{al...ar} S @ o fi @ dz® Adz® A LA da®

where (f;){_, is a basis of F.

All the results for r-forms valued in K can be extended to these forms.
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Notation 1459 A, (M; F) is the space of fields of r-forms on the manifold M
valued in the fixed vector space F

So X (A, TM*) = A, (M;K).

Definition 1460 The canonical form on the manifold M modeled on E is
the field of 1 form valued in E : © =3 ., dz® @ eq

So: ©(p)(up) =D qeatipea €E

It is also possible to consider r-forms valued in TM. They read :

W=D 4lo1.an} 2B @B o, 0rg@dz® Adz®2 A . Ndz® € X (A, TM* @ TM)

So this is a field of mixed tensors ®.7'M which is antisymmetric in the lower
indices. To keep it short we use the :

Notation 1461 A, (M;TM) is the space of fields of r-forms on the manifold
M wvalued in the tangent bundle

Their theory involves the derivatives on graded algebras and leads to the
Frolicher-Nijenhuis bracket (see Kolar p.67). We will see more about them in
the Fiber bundle part.

16.3.2 Interior product

The interior product iy w of a r-form w and a vector V is an operation which,
when implemented pointwise, can be extended to fields of r forms and vectors
on a manifold M, with the same properties. In a holonomic basis of M:

Vo € X(ATM*),m € X(NSTM*), VW € X(TM),f € C(M;K),k €
K :

v = T (D g VO B dr A Ade . da

where ~ is for a variable that shall be omitted.

iv (@AT) = (ivw) Ar+ (=1)*F7 @ A (iyn)
iv 9 iV =0

iy = fiv

z'mw]w = (’wa) V- (va) w

sz(kV) =0

w € X(NTM*): (ivo) W =w(V,W) = —-w(W,V) =—(iww)V

16.3.3 Exterior differential

The exterior differential is an operation which is specific both to differential
geometry and r-forms. But, as functions are 0 forms, it extends to functions on
a manifold.
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Definition 1462 On a m dimensional manifold M the exterior differential
is the operator : d : X1 (ATM*) = Xo (Ar11TM*) defined in a holonomic basis
by :

d (Z{mm%} Way...a,dT* Adz® A . A da:o‘T)

= Z{mmar} 221:1 05T ay...andx? N dz®t Ndz®2 A ... A dz®r

Even if this definition is based on components one can show that d is the
unique "natural” operator A, TM* — A, 1T M*. So the result does not depend
on the choice of a chart.

For :

[ € Co(MK) + df = X e s (0uf) da® s0 df(p) = F(p)€ £ (T,M; K)

we MTM*:

d(ZaeA wadr®) = Za<ﬂ(8gwa —(%mg)(d:z:ﬁ[\d:z:a) = Za<6(85wa)(dxﬁ®
dz® — dz® @ daP)

we NTM*:

dw = Z{a1~~~0¢7“+1} ( Zii(_1)kilaakwa1.@...ar+1) dz® Adz® A Ndx®r

Theorem 1463 (Kolar p.65) On a m dimensional manifold M the exterior
differential is o linear operator : d € L(X1 (ATM*); X0 (Ar1TM*)) which
has the following properties :

i) it is milpotent : d*=0

i) it commutes with the push forward by any differential map

ii1) it commutes with the Lie derivative £y for any vector field V

So :
VA ueXANTM*),meX(ATM*) VK e K,V e X(TM), f € Co(M;K)
d(kX+ K p) =kd\+ K'du

d(dw) =0
f*od:dof*
£V0d2d0£V

Voo e X(ApTM*) :dw=0

Theorem 1464 On a m dimensional manifold M the exterior differential d,
the Lie derivative along a vector field V and the interior product are linked in
the formula : Vo € X (A, TM*), Ve X(TM): £yw =iydw +doiyvw

This is an alternate definition of the exterior differential.

Theorem 1465 VA € X (A,TM*), € X(ASTM*) : d(AAp) = (AN Ap+
(—1)%5> X A (dp)

so for f € Cy (M;K) :d(fw) = (df) Nw + fdw
Theorem 1466 Value for vector fields :

Vw € %(ATTM*),Vl, ---7‘/7“+1 S %(TM) :
dw(vlu ‘/27 '-"/tl‘-‘rl)

= S (w(Vl, ...\Z-...VTH))—I—Z{M}(—1)i+jw([Vi, Vi Vi, Vi Vi Vi)
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here V; is the differential operator linked to V; acting on the function w(V7, ...V;...VTH)

Which gives : dw(V,W) = (iww) V — (ivw) W — ijy,w)@

and if w e X (MTM*) : dw(V,W) = Ly (ivw) — £w (ivw) — iy,w@

If w is a r-form valued in a fixed vector space, the exterior differential is
computed by :

T = (o] 2oi Ty € @ AT Az A A dar

—=dw =31, o DB i Opwl,, o, € @ dxP Adz®r Adz®2 A LA da®r

16.3.4 Poincaré’s lemna

Definition 1467 On a manifold M :

a closed form is a field of r-form w € X (A, TM*) such that dw =0

an exact form is a field of r-form w € X (A, TM*) such that there is X €
X (A1 TM*) with w = dA

An exact form is closed, the lemna of Poincaré gives a converse.
Theorem 1468 Poincaré’s lemna : A closed differential form is locally exact.

Which means that : If w € X (A, TM*) such that dww = 0 then, for any
p € M, there is a neighborhood n(p) and A € X (A,_1TM*) such that w = dX
in n(p).

The solution is not unique : A+ du is still a solution, whatever u. The study
of the subsets of closed forms which differ only by an exact form is the main
topic of cohomology (see below).

If M is an open simply connected subset of a real finite dimensional affine
space, w € ATM* of class q, such that dww = 0, then there is a function
f € Cy41(M;R) such that df = w

IfM=R"w=>._,a(x)dz®,dw =0= \Nx) =Y o_, fol ao (tz)dt :
dA\=w

16.4 Covariant derivative

The general theory of connections is seen in the Fiber bundle part. We will
limit here to the theory of covariant derivation, which is part of the story, but
simpler and very useful for many practical purposes.

In this section the manifold M is a m dimensional smooth real manifold with
atlas (O, i);er

The theory of affine connection and covariant derivative can be extended to
Banach manifolds of infinite dimension (see Lewis).

16.4.1 Covariant derivative

A covariant derivative is a derivative for tensor fields, which meets the require-
ments for the transportation of tensors (see Lie Derivatives). On the tensor
bundle of a manifold it is identical to an affine connection, which is a more
general breed of connections (see Fiber Bundles).
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Definition

Definition 1469 A covariant derivative on a manifold M is a linear op-
erator V € L(X(TM);D) from the space of vector fields to the space D of
derivations on the tensorial bundle of M, such that for every Ve X (TM) :

i) Vv € L(X(®,TM); X (®5,,TM))

it) Vy follows the Leibnitz rule with respect to the tensorial product

i) V. commutes with the trace operator

Definition 1470 An affine connection on a manifold M over the field K is
a bilinear operator V € L2 (X (T'M); X (T'M)) such that :

Vf ey (M,K) : foy = fVXY

Vx(fY) = fVxY + (ixdf)Y

In a holonomic basis of M the coefficients of V are the Christoffel symbols
of the connection : I'g, (p)

Theorem 1471 An affine connection defines uniquely a covariant derivative
and conversely a covariant derivative defines an affine connection.

Proof. i) According to the rules above, a covariant derivative is defined if we
have the derivatives of 9, dz® which are tensor fields. So let us denote :

(Vo) (p) = E;nn 1 X0 (p) dz" ® 0,

Vda® =377 Y2 (p)de" @ da”

By definition : ( “(9)) =65 = V (I'r (dz* (0p))) = Tr (Vdxz®) @ 9p) +
Tr(dz™ ® V@B) =0

Tr (Zn 1Y, iy d2 @ dxY ® 8[3) —Tr (d:z:o‘ ® En =1

Z:r,]n'y Yoy dac” (diﬂ (0s)) = Z:r,]n'y 1 XW dz" (dz® (0y))

P 1Y‘J‘dgc" == Xppda” @Y‘l =—Xp3

So the der1vat1on is fully deﬁned by the value of the Christofell coefficients
I'3,, (p) scalar functions for a holonomic basis and we have:

Vo =341y Thade? © 0,

Vda® = =375 I‘g‘,ydxﬁ ® dx¥

ii) Conversely an affine connection with Christofell coefficients I'j, (p) defines
a unique covariant connection (KobayashiI p.143). m

;Bd:c" ® 37)

Christoffel symbols in a change of charts

A covariant derivative is not unique : it depends on the coefficients I' which
have been computed in a chart. However a given covariant derivative V is a
geometric object, which is independant of a the choice of a basis. In a change
of charts the Christoffel coefficients are not tensors, and change according to
specific rules.

Theorem 1472 The Christoffel symbols in the new basis are :
a — —11A v o o ; ; >
IS, =2 [J 1]; [J 1}7 (Fu/\ [J], — 0, [J])\) with theJacobian J = [gy?}
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Proof. Coordinates in the old chart : = ¢; (p)
Coordinates in the new chart : y = 1; (p)
Old holonomic basis :
00 = ¢ (p) " €as
dz® = ¢ (z)" e* with dz® (Dxp) = o5
New holonomilc basis : 5
o =i (p) ea =25 [J ], Oz
dy* = v; (y)" e = 3 [ 7)o dg with dy® (ys) = 0§
Transition map:
a=1ln:y*=F(2,.2") & F(z) = 0p; " (2)
Fe e
Jacobian : J = [F'(z)] = [Jg} - {%LX ~ [%}
V=3, V01, =3, Vo0ya with Ve =3 ,J5VF =~y 2 yP
If we want the same derivative with both charts, we need for any vector field

YV = S0y (52 Ve T8,V ) def@0ra = S0 sy (52 Ve + T8, 77) dy’e
OYa
VV is a (1,1) tensor, whose components change according to :
« T . Ta « 1M
T=3,5T50x,@da? =3 5 Tg0ya@dy’ with Tg =37, T [J]5 [J s
Ua | Ta 17 v a7—17H
So: V4T VY =3, (3= VI+ TR V") IS [J 15
which gives : T, = [/ [771] (r;A ] - 8, [J];“) -

Properties
YV,W e X (TM) VS, T € X('TM) ,k, k' € K,¥Vf € Cy(M;K)
Vy € L(X(@[TM); X (25,,TM))
Vv (kS + k/T) =kVyS+k'VyT
Vv (ST)=(VyS) T+ S® (VyT)
VivW = fVyW
Vv (fW) = fVvW + (ivdf )W
Vf=df €x(&)TM)
Vv (Tr(T))=Tr(VyT)
Coordinate expressions in a holonomic basis:
for a vector field : V. =31, V0, :

VvV = Zzﬁzl (aﬁva + Fngv) dzP ® 0,
for a 1-form : w =" | woda® :
Vo = ZZﬁ:l (aﬁwa - Fgazmy) dz? @ dr®

for a mix tensor :
T (p) = Zal...m 261...~Bs T[il.::'[iT (p) 0%y ® .. ® 0%, ® Azt @ ... ® dzPs

VT (D) =Y ar o oy oy L0477 % 0%, ® .. @ 0T, ®d2? @ d2™ @ ... ®
daxPs

Pa...og Q1.0 T Q1O —1MOk4 1O NS n Q1.0
T35 = TG s +2 = TS5 Ts, s, 2 k=1 D 15, b nBes. e
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16.4.2 Exterior covariant derivative

The covariant derivative of a r-form is not an antisymmetric tensor. In order to
get an operator working on r-forms, one defines the exterior covariant derivative
which applies to r-forms on M, valued in the tangent bundle.

Definition 1473 The exterior covariant derivative associated to the co-
variant derivative V, is the linear map :
Vee LA, (M;TM); Ay (M;TM))
with the condition : VX, X1,. X, e X(TM),w € X (A,TM*)
(Vew) (XQ,Xl,...XT) - - -
= Z;:()(_l)iinw(Xm Xl, ...Xi...Xr)+Z{i7j}(—1)i+jw([Xi, Xj], XQ, Xl, Xz X]XT)

This formula is similar to the one for the exterior differential (V replacing
£).
Which leads to the formula :
Vew = Y, (dwﬂ + (z7 (3, T8, de) A w"*)) dzp

Proof. Such a form reads : m
@ =D glar..an} 208 @8 o dz® Ada®? A A da® ® Oz € A (M;TM)

Proof. Let us denote : >, w?(Xo, ...)/(\i...XT)B:Cﬂ =25 QP 0z
From the exterior differential formulas , 3 fixed:
(dw®) (Xo, X1, ... Xr)

=Y (—1) X2, (wB(XO, )?X)) Y gy (C1) P (X0, X, Koy o Ky o X X )
So :
Vew(Xo,Xl, XT)

= ¥ (A7) (Xo, X1, . X, )P+ Yo (— 1) (in (EB Qf@:z:g) — s XDa (Qf’) axﬁ)

= 5 (A7) (Xo, X1, X, )0w+ Xy (1) (S (0af +T8,07) Xp0ms — 3,05 X0 0a () 025)
= 55 (A7) (Xo, X1, X,)0w5 + Do(=1)1 (S, T, X705

Q=0 Srn) szomanril}Xg‘)Xfl...Xﬁi...Xﬁr

ZM Fg’y Z::O(_l)inqu = Z'y Z;:O Z{)\o....)\r,l} Ffi'yw’{YAo..,.Ar,l}Xg\oXl)\l X?,)\ X

= (2, (Ca T, de®) A7) (Xo, .. X,)

Ve (Xo, X1, X0) = X (427 + (£, (S0 T8, d2%) A=) ) (Xo, .. X,)0z
[

A vector field can be considered as a O-form valued in TM, and VX €
X(TM):V.X = VX (we have the usual covariant derivative of a vector field
on M)

Theorem 1474 FExterior product:

Voo, € A (M;TM),ws € Ay (M;TM) : Ve (wr Aws) = (Vew,) A ws +
(=1)" @, A Vews
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So the formula is the same as for the exterior differential d.

Theorem 1475 Pull-back,push forward (Kolar p.112) The exterior covariant
derivative commutes with the pull back of forms :
VfeCy(N;M),we X(ATN*) : Ve (f*w) = f*(V.w)

16.4.3 Curvature

Definition 1476 The Riemann curvature of a covariant connection V is
the multilinear map :

R: (:{ (TM))3 — %(M) o R(X, Y, Z) = VvaZ - VYVXZ - V[Xﬁy]Z

It is also called the Riemann tensor or curvature tensor. As there are many
objects called curvature we opt for Riemann curvature.

The name curvature comes from the following : for a vector field V :

R(0a,03,V) =V9,V9,V-V5,Vo,V-Vs. 0,V = (Vo.Vo, — Vo,Va,) V
because [On, d5] =0

So R is a measure of the obstruction of the covariant derivative to be com-
mutative : Vg, Vg, — Vg, Vo, #£0

Theorem 1477 The Riemann curvature is a tensor valued in the tangent bun-
1

dle : Re X (AQTM* ®TM)
1

R=3 1 Y ap Rypda? A da" @ da? @ Qg with

R g = T, = 0515, + Do T, = T, T,

Proof. R(X,KZ) = VvaZ - VyVXZ - V[XJ/]Z

= Vx ((0a2°+T5,27)Y*.) = Vy ((0a2° +T5,27) X*0.)

= (0a2° +T5,27) (X"0,Y™ = Y0, X))

— (aﬂ ((0aZ® +T5,27)Y*) +T5, ((0a2"+T0,27) YO‘)) XPo.

— (95 ((0az° +T5,27) X*) = T5,Vy (0227 + 12, 27) X°)) Y20

— ((0aZ°) (X10,Y* = Y10,X)) + 15, 27 (X19,Y* — Y9, X))) O

The component of 0. is:

= (05 (0a2° +T5,27)) XPY +(0a 2° + 15, 27) XPOsY 415, (0. 2") Y* X P+
re, o, 27 XPye

— (05 (02 +T15,27)) XY P —(0a 2% + 15, 27) YPOs X*—T5,0a 2" XY P~
IR IVAD G

— (0a2%) X (0yY *)+(8a 2°) Y (8, X *)=T5, 27X (9, *)+T5, Z7Y " (9, X )

= (0500.2°) XPY *+(9T%,,) XPZVY 2415, (0527) XPY “+(0a.27) (05Y *) XP

+T5, 27 (0pY*) XP + 15, (8a2") Y*XP + 15, T 27V XP

—(080a2°) XY P—(0p1%,,) 27 XY P-T%, (9527) XY P —(0a.27) (05X ™) YP

+T5, 27 (05X ) YP —T5, (0a27) X*YF —T5, T4 ZYXYF

—(0aZ%) X"0Y *+(0a27) Y (0y X *) =15, ZY X" (9, Y *) 415, Z7Y " (9, X*)

= (050a2°) XPY® — (050, 2°) XY F
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+ (0 Z°) (95Y ) XP—(0a2°) (05X ) Y P = (00 Z°) X7 (D,Y *)+(0aZ°) Y (0, X )
+T5,, (9527) XPY 415, (0a2") Y XP-T5, (0a2") XY P-TE, (9527) X°YF
+T5, 27 (05Y ) XP—T5, ZVX" (9,Y *)+T5, 27 (s X*) YP+T5, 27V (9,X)
+ (05T%,) XPZVY 415, T ZY > XP—(95T%,,) 27 X*YP-T5, T Z7XY P
= (0a082°) XY P—(03002°) XY P+(0a2°) ((05Y ™) XP — XP (05Y ) + Y P (95X %) — (95X *) YF)
415, XY P (0a,27)-T5, XY P (0, 2M)4T5, XY P (95 27)-T%, XY P (9527)
+F§WZ‘Y ((0pY*) XP — XP(95Y)) +T5,27 ((0sX*) YP +YP (95X*))
+ (05T%,) XPZVY = (9pT5,,) ZY XY P45, T, 27V XP T, T Z7XY P
(aﬁr ) XPY @27 —(9pT%,,) XY P Z74T5, Th XPY“Z7-T5, Tl XYPZ7
R(X,Y,Z) = (( ) XYPZY — (95T5,) X°YPZ7 4 T5, T XYPZ7 - F%UFZWX‘*Y[BZW) 0.
R(X,Y,Z) = XaYﬁZ%')
With : Rz _8 I‘ — 0pT5, + 15, %, — 5,2

Bn~ ay
Clearly : RSz, = RM S0t R= Z{aﬁth de® N daf @ dz" ® 0. =

Theorem 1478 For any covariant deriwative V and its exterior covariant deriva-
tive V, :

Voo € A, (M;TM) : Ve (Vew) = RAw where R is the Riemann curvature
of V

More precisely in a holonomic basis :
Ve(Vew) =35 (Z{w} RS, 5dx™ A dx") ANw? ® 0zq

Proof. Vew =), (dwo‘ + (E,@ (Za F%daz”) A wﬁ)) Oz =), (dwo‘ +2595 A wﬁ)®
Oz,

with Q% = ZW IS gdx”

Ve (Vew) = 3., (d(vew)“ + 30505 A (vew)ﬁ) ® 94

=3, (d (dwo‘ +359% Awﬂ) +3505 A (de +>.,98 /\w"’)) ® Oz

=Y a8 (ng/\wﬂ —Qg/\dwﬁ+Qg/\dwﬂ+ﬂg/\zwﬂg/\w7) ® 0z

=Y a8 (ng N +30 Q2 AQEA wﬂ) ® 0z

Ve (Vew) = Yos (ng 30,00 A Qg) A @ ® Oz

405+ 50,92 A Q) = d (5, Tgsda?) + X, (. 18,de?) A (3, T)pde")

=23, O pgda? ANdx" + 37, T T sda® Ada”

ney T eV 0B
=5, (03755 + 5. T2.17,) da? A da? m

Definition 1479 The Ricci tensor is the contraction of R with respect to the
indexes €, 3 :

Ric = Zav Ricaydz® @ dx” with Ricay = EB By
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It is a symmetric tensor if R comes from the Levi-Civita connection.

Remarks :

i) The curvature tensor can be defined for any covariant derivative : there
is no need of a Riemannian metric or a symmetric connection.

ii) The formula above is written in many ways in the litterature, depending
on the convention used to write P%v' This is why I found useful to give the
complete calculations.

iii) R is always antisymmetric in the indexes «, 8

16.4.4 Torsion
Definition 1480 The torsion of an affine connection V is the map:

T:X(TM) x X (TM) = X (TM) = T(X,Y) = VxY — Vy X — [X,Y]

It is a tensor field : T =37 5 T zdz* ® dzf @ 0z, € X (®3TM) with
T); = -T,); =T}, —T}, so this is a 2 form valued in the tangent bundle :

T =Y oy L (Ths — Tha ) de®Ada? @ O, € Ao (M5 TM)
Definition 1481 An affine connection is torsion free if its torsion vanishes.

Theorem 1482 An affine connection is torsion free iff the covariant derivative
is symmetric : T =0T, =17,

Theorem 1483 (Kobayashi I p.149) If the covariant connection V is torsion
free then :
Vw € X (A, TM*) : dw = 4 Yoes(r €(0) V@

Definition 1484 A covariant connection on a manifold whose curvature and
torsion vanish is said to be flat (or locally affine).

16.4.5 Parallel transport by a covariant connection

Parallel transport of a tensor

Definition 1485 A tensor field T € X (®5;TM) on a manifold is invariant by a
covariant connection along a path ¢ : [a,b] = M on M if its covariant derivative
along the tangent, evaluated at each point of the path, is null : V)T (c(t)) =0

Definition 1486 The transported tensor T of a tensor field T € X (®LITM)
along a path ¢ : [a,b] — M on the manifold M is defined as a solution of the
differential equation : VT (c(t)) = 0 with initial condition : T (c(a)) =

T (c(a))
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If T in a holonomic basis reads :

T (p)

= s 2B 2y T (D)5 5 0Ty ® .. ® O, @ da? RdrP ®...® dxPs
VeI (t) =0« 3 T75 % v7 =0 with ¢’(t)=3__ v 0z,

The tensor field T is defined by the first order linear differential equations :

X, 00 TE )

i - Z;:l U’YI"?;C]TEI.:.Oggmmwlnar + EZ:l U’erﬁkTgll-:bjilnﬁk+lvvﬁs

T (c(a)) =T (c(a))

where T', ¢(t) and v are assumed to be known.

They define a map : Pt. : [a,b] x X (QLTM) — X (LT M)

If S,T € X(®TM),k, k' € K then : Pt.(t,kS+kT) = kPt.(t,5) +
k' Pt.(t,T) but the components of T do not depend linearly of the components
of T.

The map : Pt.(.,T): [a,b] = X (®LTM) :: Pt.(¢t,T) is a path in the tensor
bundle. So it is common to say that one ”lifts” the curve ¢ on M to a curve in
the tensor bundle.

Given a vector field V, a point p in M, the set of vectors u, € T, M such that

Vyvu,=0& 3", ((%V"Y + FlﬁVﬁ) ug = 0 is a vector subspace of T;, M, called

the horizontal vector subspace at p (depending on V). So parallel transported
vectors are horizontal vectors.

Notice the difference with the transports previously studied :

i) transport by ”push-forward” : it can be done everywhere, but the com-
ponents of the transported tensor depend linearly of the components of T

ii) transport by the Lie derivative : it is the transport by push forward with
the flow of a vector field, with similar constraints

Holonomy

If the path cis aloop : ¢: [a,b] = M :: ¢(a) = ¢(b) = p the parallel transport
goes back to the same tangent space at p. In the vector space T),M, which is
isomorphic to K", the parallel transport for a given loop is a linear map on
T, M, which has an inverse (take the opposite loop with the reversed path) and
the set of all such linear maps at p has a structure group : this is the holonomy
group H (M,p) at p .If the loops re restricted to loops which are homotopic to
a point this is the restricted holonomy group Hy (M, p). The holonomy group
is a finite dimensional Lie group (Kobayashi I p.72).

Geodesic
1. Definitions:

Definition 1487 A path ¢ € Cy ([a,b]; M) in a manifold M endowed with a
covariant derivative V describes a geodesic c([a,b]) if the tangent to the curve
c([a, b)) is parallel transported.
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So ¢ describes a geodesic if : Vo) c'(t) =04 > (% + T8, (c(t)) VaV7> =
0 with V (t) = ¢/ (t)

A curve C, that is a 1 dimensional submanifold in M, can be described by
different paths. If C is a geodesic for some parameter t, then it is still a geodesic
for a parameter 7 = h(¢) iff 7 = kt + k' meaning iff h is an affine map.

For a given curve C, which is a geodesic, any path ¢ € C1 ([a,b]; M) such
that ¢ ([a,b]) = C and for which V. (4)c/(t) = 0 is called an affine parameter.
They are all linked to each other by an affine map.

If a geodesic is a class 1 path and the covariant derivative is smooth (the
coefficients I" are smooth maps), then c is smooth.

If we define fgv = kI'g, + (1 — k) I'g, with a fixed scalar k, we still have a
covariant derivative, which has the same geodesics. In particular with k=1/2
this covariant derivative is torsion free.

2. Fundamental theorem:

Theorem 1488 (Kobayashi I p.139, 147) For any point p and any vector v
in TpM of a finite dimensional real manifold M endowed with a covariant con-
nection, there is a unique geodesic c€ Cq (Jp; M) such that ¢(0) = p,d'(0) = v
where J,, is an open interval in R, including 0, depending both of p and v,.

For each p there is a neighborhood N(p) of (p, ﬁ) x0 in TMxR in which the
exponential map : exp : TM xR — M :: exptv, = c(t) is defined. The point
c(t) is the point on the geodesic located at the affine parameter t from p.This
map is differentiable and smooth if the covariant derivative is smooth. It is a
diffeomorphism from N(p) to a neighborhood n(p) of p in M.

Warning ! this map exp is not the flow of a vector field, even if its construct is
d

similar. % (exptvy) |¢=¢ is the vector v, parallel transported along the geodesic.
Theorem 1489 In a finite dimensional real manifold M endowed with a co-
variant connection, if there is a geodesic passing through p#£q in M, it is unique.
A geodesic is never a loop.

This is a direct consequence of the previous theorem.

3. Normal coordinates:

Definition 1490 In a m dimensional real manifold M endowed with a covari-
ant connection, a system of normal coordinates is a local chart defined in a
neighborhood n(p) of a point p, with m independant vectors (g;);, in T,M, by
which to a point g€ n (p) is associated the coordinates (yi,...,ym) Such that :
q=-expv withv=> " y'e;.

In this coordinate system the geodesics are expressed as straigth lines :
¢;i(t) ~ tv and the Christofell coefficients are such that at p : Vi, j, k: I'}; (p) +

f};j (p) = 0 so they vanish if the connection is torsion free. Then the covariant
derivative of any tensor coincides with the derivative of its components.
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Theorem 1491 (Kobayashi I p.149) Any point p of a finite dimensional real
manifold M endowed with a covariant connection has is a convex neighborhood
n(p) : two points in n(p) can be joigned by a geodesic which lies in n(p). So
there is a system of normal coordinates centered at any point.

n(p) is defined by a ball centered at p with radius given in a normal coordi-
nate system.

Affine transformation

Definition 1492 A map f € Cy (M; N) between the manifolds M,N endowed
with the covariant derivatives V,V, is an affine transformation if it maps
a parallel transported vector along a curve c in M into a parallel transported

vector along the curve f(c) in N.

Theorem 1493 (Kobayashi I p.225) An affine transformation f between the
manifolds M,N endowed with the covariant derivatives V,@, and the corre-
sponding torsions and curvature tensors T, T, R, R

i) maps geodesics into geodesics

i) commutes with the exponential : expt (f'(p)vp) = f(exptuy)

iii) for X, Y, Z € X (TM) :

f*(VxY) = Vf*AXf*Y

[FTXY) =T ("X, fY)

f*R(X,Y,Z)=R(f*X, f*Y, f*2)

iv) is smooth if the connections have smooth Christofell symbols

Definition 1494 A vector field V on a manifold M endowed with the covariant
derivatives V is an infinitesimal generator of affine transformations if fr : M —
M :: fi (p) = exp Vi (p) is an affine transformation on M.

Ve X (T'M) an infinitesimal generator of affine transformationsis on M iff :

VX eX(TM):Vx(£y —Vy)=R(V,X)

The set of affine transformations on a manifold M is a group. If M has a
finite number of connected components it is a Lie group with the open compact
topology. The set of vector fields which are infinitesimal generators of affine
transformations is a Lie subalgebra of X (T'M), with dimension at most m?+m.
If its dimension is m?+m then the torsion and the riemann tensors vanish.

Jacobi field

Definition 1495 Let a family of geodesics in a manifold M endowed with a
covariant derivatives V be defined by a smooth map : C : [0,1] X [—a,+a] = M
,a€ R such thatVs € [—a,+a] : C (.,s) = M is a geodesic on M. The deviation
vector of the family of geodesics is defined as : Jy = %_€|s:0 € TowoM
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It measures the variation of the family of geodesics along a transversal vector
Ji

Theorem 1496 (Kobayashi II p.63) The deviation vector J of a family of
geodesics satisfies the equation :

V2. Ji + Vo, (T (Ji,v1)) + R (Je,ve, vp) = 0 with v, = &g

It s fully defined by the values of Ji, V., Ji at a point t.

Conwversely a vector field Je X (T M) is said to be a Jacobi field if there is
a geodesic c(t) in M such that :

Vt: V2 J (c(t)+ Vo, (T (J(c(t), )+ R(J (c(t)),ve,v0) = 0 with v, = &

It is then the deviation vector for a family of geodesics built from c(t).

Jacobi fields are the infinitesimal generators of affine transformations.

Definition 1497 Two points p,q on a geodesic are said to be conjugate if there
1s a Jacobi field which vanishes both at p and q.

16.4.6 Submanifolds

If M is a submanifold in N, a covariant derivative V defined on N does not
necessarily induce a covariant derivative V on M : indeed even if XY are in
X (TM), VxY is not always in X (T M).

Definition 1498 A submanifold M of a manifold N endowed with a covariant
derivatives V is autoparallel if for each curve in M, the parallel transport of
a vector v, € T,M stays in M, or equivalently if VX, Y € X (TM),VxY €
X(TM).

Theorem 1499 (Kobayashi II p.54) If a submanifold M of a manifold N en-
dowed with a covariant derivatives V is autoparallel then V induces a covariant
derivative V on M and ¥X|Y € X(TM) : VxY = VxY.

Moreover the curvature and the torsion are related by :

~ ~

VX,Y,Z e X(TM): R(X,Y,Z)=R(X,Y,Z),T(X,Y)=T(X,Y)

M is said to be totally geodesic at p if Vv, € T, M the geodesic of N defined
by (p,vp) lies in M for small values of the parameter t. A submanifold is totally
geodesic if it is totally geodesic at each of its point.

An autoparallel submanifold is totally geodesic. But the converse is true
only if the covariant derivative on N is torsion free.
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17 INTEGRAL

Orientation of a manifold and therefore integral are meaningful only for finite
dimensional manifolds. So in this subsection we will limit ourselves to this case.

17.1 Orientation of a manifold
17.1.1 Orientation function

Definition 1500 Let M be a class 1 finite dimensional manifold with atlas
(E, (Oi,cpi)iel) , where an orientation has been chosen on E. An orientation
function is the map : 0; : O; — {+1,—1} with 6 (p) = +1 if the holonomic
basis defined by ; at p has the same orientation as the basis of E and 0 (p) = —1
if not.

If there is an atas of M such that it is possible to define a continuous orien-
tation function over M then it is possible to define continuously an orientation
in the tangent bundle.

This leads to the definition :

17.1.2 Orientable manifolds

Definition 1501 A manifold M is orientable if there is a continuous system
of orientation functions. It is then oriented if an orientation function has been
chosen.

Theorem 1502 A class 1 finite dimensional real manifold M is orientable iff
there is an atlas atlas (E, (O, ‘Pi)iel) such that ¥i,j € I : det ((pj o (p{l)/ >0

Proof. We endow the set ©® = {+1,—1} with the discrete topology : {+1}
and {—1} are both open and closed subsets, so we can define continuity for 6;.
If 6, is continuous on O; then the subsets 6; ' (+1) = Of, 0, (=1) = O; are
both open and closed in O; . If O; is connected then we have either O;r =0,
or O; = O;. More generally §; has the same value over each of the connected
components of O;.

Let be another chart j such that p € O; N O;. We have now two maps :
Ok : O — {+1, —1} for k=i,j. We go from one holonomic basis to the other by
the transition map :

ea = ¢} (p) 00 = @ (p) Yo = Oya = @ (p) " 0 ¢} (p) Oz

The bases 0z, dyo have the same orientation iff det ¢/; (p) "ol (p) > 0. As
the maps are class 1 diffeomorphisms, the determinant does not vanish and thus
keep a constant sign in the neighborhood of p. So in the neighborhood of each
point p the functions 6;,6; will keep the same value (which can be different),
and so all over the connected components of O;,0;. m

There are manifolds which are not orientable. The most well known examples
are the Mobius strip and the Klein bottle.
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Notice that if M is disconnected it can be orientable but the orientation is
in fact distinct on each connected component.

By convention a set of disconnected points M = U;eps {pi} is a 0 dimensional
orientable manifold and its orientation is given by a function 6 (p;) = £1.

Theorem 1503 A finite dimensional complex manifold is orientable

Proof. At any point p there is a canonical orientation of the tangent space,
which does not depend of the choice of a real basis or a chart. m

Theorem 1504 An open subset of an orientable manifold is orientable.

Proof. Its atlas is a restriction of the atlas of the manifold. m

An open subset of R™ is an orientable m dimensional manifold.

A curve on a manifold M defined by a path : ¢ : J = M = ¢(t) is a
submanifold if ¢’(t) is never zero. Then it is orientable (take as direct basis the
vectors such that ¢’(t)u>0).

If (V;);% are m linearly independant continuous vector fields over M then
the orientation of the basis given by them is continuous in a neighborhood of
each point. But it does not usually defines an orientation on M, because if M
is not parallelizable there is not such vector fields.

A diffeomorphism f : M — N between two finite dimensional real manifolds
preserves (resp.reverses) the orientation if in two atlas: det (1/)j ofo (p;l)/ >0
(resp.<0).

As det (wj ofo cp{l)/ is never zero and continuous it has a constant sign :
If two manifolds M,N are diffeomorphic, if M is orientable then N is orientable.

Notice that M,N must have the same dimension.

17.1.3 Volume form

Definition 1505 A volume form on a m dimensional manifold M is a m-
form w € X (A, TM™*) which is never zero on M.

Any m form g on M can then be written p = fw with f € C (M;R).

Warning ! the symbol ”da! A ... A dz™” is not a volume form, except if M
is an open of R™. Indeed it is the coordinate expression of a m form in some
chart ¢; :w; (p) = 1 Vp € O;. At a transition p € O; N O; we have, for the same
form : w; = det [J’l] # 0 so we still have a volume form, but it is defined
only on the part of O; which intersects O;. We cannot say anything outside O;.
And of course put w; (¢) = 1 would not define the same form. More generally
f(p)dxt A ... A dx™ were f is a function on M, meaning that its value is the
same in any chart, does not define a volume form, not even a m form. In a
pseudo-riemannian manifold the volume form is \/|det g|dz! A ... A dz™ where
the value of |det g| is well defined at any point, but changes according to the
usual rules in a change of basis.
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Theorem 1506 (Lafontaine p.201) A class 1 m dimensional manifold M which
1s the union of countably many compact sets is orientable iff there is a volume
form.

As a consequence a m dimensional submanifold of M is itself orientable (take
the restriction of the volume form). It is not true for a n<m submanifold.

A riemannian, pseudo-riemannian or symplectic manifold has such a form,
thus is orientable if it is the union of countably many compact sets.

17.1.4 Orientation of an hypersurface

Definition 1507 Let M be a hypersurface of a class 1 n dimensional manifold
N. A vector u, € T,N,p € M is transversal if u, ¢ T,M

At any point we can have a basis comprised of (up, €2, ...€,,) where (Eﬁ>gz2
is a local basis of T, M . Thus we can define a transversal orientation function
by the orientation of this basis : say that 0 (u,) = +1 if (up, 2, ...€,) is direct
and 6 (u,) = —1 if not.

M is transversally orientable if there is a continuous map 6.

Theorem 1508 The boundary of a manifold with boundary is transversally ori-
entable

See manifold with boundary. It does not require N to be orientable.

Theorem 1509 A manifold M with boundary OM in an orientable class 1 man-
ifold N is orientable.

Proof. The interior of M is an open subset of N, so is orientable. There is an
outward going vector field n on M |, so we can define a direct basis (e,) on
OM as a basis such that (n, e, ..., e,—1) is direct in N and M is an orientable
manifold m

17.2 Integral

In the Analysis part measures and integral are defined on any set . A m di-
mensional real manifold M is locally homeomorphic to R™, thus it implies some
constraints on the Borel measures on M, whose absolutely continuous part must
be related to the Lebesgue measure. Conversely any m form on a m dimensional
manifold defines an absolutely continuous measure, called a Lebesgue measure
on the manifold, and we can define the integral of a m form.

17.2.1 Definitions

Principle
1. Let M be a Hausdorff, m dimensional real manifold with atlas
(Rm, (O, goi)l-el) Ui = ¢; (0;) and p a positive, locally finite Borel measure
on M. It is also a Radon measure.
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i) On R™ is defined the Lebesgue measure d¢ which can be seen as the
tensorial product of the measures dé*, k = 1...m and reads : d¢ = d¢' ® ... ® dE™
or more simply : d¢ = d¢t..dE™

ii) The charts define push forward positive Radon measures v; = @, on
U; C R™ such that VB C U; : pup (B) = p(p; " (B))

Each of the measures v; can be uniquely decomposed in a singular part A;
and an absolute part 7;, which itself can be written as the integral of some
positive function g; € C (U;; R) with respect to the Lebesgue measure on R™

Thus for each chart there is a couple (g;, A;) such that : v; = pip = U; + A,
vi = gi (§) d§

If a measurable subset A belongs to the intersection of the domains O; N O;
and for any i,j :

Pisp (@i (A)) = p(A) = jup (5 (4))

Thus there is a unique Radon measure v on U = U;U; C R™ such that :
v = v; on each U;. v can be seen as the push forward on R™ of the measure
on M by the atlas. This measure can be decomposed as above :

v=v+\1v=g(£d¢

iii) Conversely the pull back ¢fv of v by each chart on each open O; gives
a Radon measure p; on O; and p is the unique Radon measure on M such that
tlo, = piv on each O;.

iv) Pull back and push forward are linear operators, they apply to the sin-
gular and the absolutely continuous parts of the measures. So the absolutely
continuous part of u denoted i is the pull back of the product of g with the
Lebesgue measure :

tlo, = ¢; (Vlu,) = ¢ivi = @7 (g: (€) dE)

Vlu, = gis (Blo,) = pixtli = gi (§) d€

2. On the intersections U; N U; the maps : ¢i; = p; o p; ' : Uy — U; are
class r diffeomorphisms, the push forward of v; = . by pi; is :(@ij), Pixpt =
(pjowi ), pirt = pjupt

U; = @j«[t being the image of U; = ;i by the diffeomorphism ¢;; reads :

vj = (i), i = |det [¢;]| s

which resumes to : g; = ’det [cpgj] } Gi

So, even if there is a function g such that v is the Radon integral of g, g
itself is defined as a family (g;),.; of functions changing according to the above
formula through the open cover of M.

3. On the other hand a m form on M reads @ = w (p) dz* Adx?...Adx™ in the
holonomic basis. Its components are a family (wi)ie ; of functions @; : 0; — R

such that : w; = det [%J} ~! &, on the intersection O; N 0.

The push forward of w by a chart gives a m form on R™ :

(pinmi) (€) = @i (7' (€)) e! A...Ae™ in the corresponding basis (ek);n:l of
(R™)"

and on O; N O; :

-1 _

(0x5) = (pij), pirwi = det [@j;] @i (97 (£)) €' A Ae™

So the rules for the transformations of the component of a m-form, and
the functions g; are similar (but not identical). Which leads to the following
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definitions.

Integral of a m form on a manifold

Theorem 1510 On a m dimensional oriented Hausdorff class 1 real manifold
M, any continuous m form w defines a unique, absolutely continuous, Radon
measure on M, called the Lebesgue measure associated to w.

Proof. Let (Rm, (Oiv‘Pi)iel) ,U; = ¢i (0O;) be an atlas of M as above. As M
is oriented the atlas can be chosen such that det [%J} > 0 . Take a continuous
m form w on M .On each open U; = ¢, (O;) we define the Radon measure :
Vi = @ix (t9;) d€. Tt is locally finite and finite if fUi |(iswi)| d§ < oo .Then on
the subsets U; NU; # @ : v; = v; .Thus the family (v;),.; defines a unique
Radon measure, absolutely continuous, on U = U;U; C R™ .The pull back, on
each chart, of the v; give a family (u;),.; of Radon measures on each O; and
from there a locally compact, absolutely continuous, Radon measure on M.

It can be shown (Schwartz IV p.319) that the measure does not depend on
the atlas with the same orientation on M. m

Definition 1511 The Lebesgue integral of a m form w on M is fM e where
e 1S the Lebesgue measure on M which is defined by w.

It is denoted [, @

An open subset €2 of an orientable manifold is an orientable manifold of
the same dimension, so the integral of a m-form on any open of M is given by
restriction of the measure p : [, @

Remaks

i) the measure is linked to the Lebesgue measure but, from the definition,
whenever we have an absolutely continuous Radon measure p on M, there is a
m form such that y is the Lebesgue measure for some form. However there are
singular measures on M which are not linked to the Lebesgue measure.

ii) without orientation on each domain there are two measures, different by
the sign, but there is no guarantee that one can define a unique measure on the
whole of M. Such "measures” are called densities.

iii) On R™ we have the canonical volume form : dz = da! A ... Adz™, which
naturally induces the Lebesgue measure, also denoted dx=dz! ® ... ® da™ =
drldz?...dz™

iv) The product of the Lebesgue form w, by a function f : M — R gives
another measure and : fw, = wy,.Thus, given a m form w, the integral of any
continuous function on M can be defined, but its value depends on the choice
of w.

If there is a volume form wy, then for any function f : M — R the linear
functional f — [, u J@0 can be defined.
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Warning ! the quantity [ Y fdz' A ... A dz™ where f is a function is not
defined (except if M is an open in R™ ) because fdx!' A ... A dz™ is not a m
form.

v) If M is a set of a finite number of points M = {p;},.; then this is a
0-dimensional manifold, a 0-form on M is just a map : f : M — R and the
integral is defined as :[,, f = >, f(pi)

vi) For m manifolds M with compact boundary in R™ the integral [ A is
proportionnal to the usual euclidean ”volume” delimited by M.

Integrals on a r-simplex

It is useful for practical purposes to be able to compute integrals on subsets
of a manifold M which are not submanifolds, for instance subsets delimited
regularly by a finite number of points of M. The r-simplices on a manifold meet
this purpose (see Homology on manifolds).

Definition 1512 The integral of a r form w € X (A, TM*) on a r-simplex
M"™ = f(S") of a m dimensional oriented Hausdorff class 1 real manifold M is

given by : fMT = fo‘ ffodx

fe Co (R™; M) and

ST =8" = <A0, Ar> = {P ER™:P= Z::O tiAi;O <t < 1,2::0 t; = 1}
is a r-simplex on R™.

f*w € X (A,R™) and the integral [, f*wdz is computed in the classical
way. Indeed f*w = > 7ay. 0.dz® A ... Adx® so the integrals are of the
kind : fsr Toy...0.dx%...dx® on domains s” which are the convex hull of the r
dimensional subspaces generated by r+1 points, there are r variables and a r
dimensional domain of integration.

Notice that here a m form (meaning a form of the same order as the dimen-
sion of the manifold) is not needed. But the condition is to have a r-simplex
and a r form.

For ar-chain C" = 7 k;M] on Mthen: [, @w =73 ki [}, @=> ki [q frwdz.
and : fcerTw = fcrw"'fDrw 1
17.2.2 Properties of the integral
Theorem 1513 [, is a linear operator : X (A, TM*) — R
VE, K e Ryw,m e Ay TM* : [, (kw+Km)p=k [, op+k [, 7
Theorem 1514 If the orientation on M is reversed, [, wp — — [, wp

Theorem 1515 If a manifold is endowed with a continuous volume form wy
the induced Lebesque measure pg on M can be chosen such that it is positive,
locally compact, and M is o—additive with respect to pg.

Proof. If the component of w is never null and continuous it keeps its sign
over M and we can choose wy such it is positive. The rest comes from the
measure theory. m
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Theorem 1516 (Schwartz IV p.332) If fe C1 (M; N) is a diffeomorphism be-
tween two oriented manifolds, which preserves the orientation, then : Yw €
X1 (AmTM*):wa = fN (few)

This result is not surprising : the integrals can be seen as the same integral
computed in different charts.
Conversely :

Theorem 1517 Moser’s theorem (Lang p.406) Let M be a compact, real, finite
dimensional manifold with volume forms w,n such that : wa = fMﬂ' then
there is a diffeomorphism f: M — M such that m = f*w

If M is a m dimensional submanifold of the n>m manifold N, both oriented,
f an embedding of M into N, then the integral on M of a m form in N can be
defined by :

Vw € X1 (A TN*): [}, @ = ff(M) (fv@)

because f is a diffeormophism of M to f(M) and f(M) an open subset of N.

Example : a curve ¢ : J — N :: ¢(t) on the manifold N is a orientable
submanifold if ¢’(t)# 0. For any 1-form over N : @ (p) = > wa (p) dz®. So
cow =w (c(t))d(t)dt and [ w = [, @ (c(t))(t)dt

17.2.3 Stokes theorem

1. For the physicists it is the most important theorem of differential geometry.
It can be written :

Theorem 1518 Stokes theorem ; For any manifold with boundary M in a n
dimensional real orientable manifold N and any n—1 form w € X1 (Ap—1TN™*) :

fde:faMw

This theorem requires some comments and conditions .

2. Comments :
i) the exterior differential dw is a n-form, so its integral in N makes sense, and
the integration over M, which is a closed subset of N, must be read as : f]\(} dw,

[e]
meaning the integral over the open subset M of N (which is a n-dimensional
submanifold of N).

ii) the boundary is a n-1 orientable submanifold in N, so the integral of a
the n-1 form w makes sense. Notice that the Lebesgue measures are not the
same : on M is is induced by dw , on M it is induced by the restriction w|gns
of w on OM

iii) the n-1 form w does not need to be defined over the whole of N : only
the domain included in M (with boundary) matters, but as we have not defined
forms over manifold with boundary it is simpler to look at it this way. And of
course it must be at least of class 1 to compute its exterior derivative.
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3. Conditions :

There are several alternate conditions. The theorem stands if one of the
following condition is met:

i) the simplest : M is compact

ii) w is compactly supported : the support Sup(w) is the closure of the set
:{peM:w(p) # 0}

ili) Sup(w) N M is compact

Others more complicated conditions exist.

4. There is another useful version of the theorem. If C is a r-chain on M,
then both the integral [, o @ and the border 9C ot the r chain are defined. And
the equivalent of the Stokes theorem reads :

If C is a r-chain on M, @ € X1 (A1 TM?*) then [ dw= [, @

Theorem 1519 Integral on a curve (Schwartz IV p.339) Let E be a finite di-
mensional real normed affine space. A continuous curve C generated by a path c :
[a,b] = E on E is rectifiable if ¢ (c) < oo with € (c) = supd>_,_, d(p (tet1)), p(tk))
for any increasing sequence (tn),cy in [a,b] and d the metric induced by the
norm. The curve is oriented in the natural way (t increasing).

For any function f € C1 (E;R) : [, df = f(c(b)) — f(c(a))

17.2.4 Divergence

Definition

Theorem 1520 For any vector field V € X (T'M) on a manifold endowed with
a volume form wy there is a function div(V) on M, called the divergence of
the vector field, such that £y wy = (divV) wy

Proof. If M is m dimensional, wy, £ywo € X (AnTM*). All m forms are
proportional on M and wy is never null, then Vp € M,3k € K : £ywq (p) =
kwo (p) m

Expression in a holonomic basis
YV e X(TM): £ywy = ivdwo+doiywy and dwg = 0 so £y wg = d (iy o)
wo = o (p) detA...Adx™ : £y wy =d (Ea Ve (—1)0‘71 wodxlA..cE:E.Adxm)

=Y, (va (1) wo) drP Azt A.dz® Ada™ = (3, Oa (Vo)) dz' A Adz™
So : divV = w%) Y0 Oa (V@)

Properties
For any f € Cy (M;R),V e X
div (fV) woy = d(vawQ) =
ivwo—i—fdw( Yo

(M) : fV € X (M) and
d(fivwo) = df Nivwo + fd(ivwo) = df A
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df Nivo = (3, Bafdxo‘)/\(zﬁ (—1)® VBmgda A ...dzP... A d:cm) = (3, VOOuf) o =

f (V) @0
So : div (fV) = f(V)+ fdiv(V)

Divergence theorem

Theorem 1521 For any vector field V € X1 (T M) on a manifold N endowed
with a volume form wy , and manifold with boundary M in N: [, (divV)wy =

faM iy @o

Proof. fv?ﬂo = (dl’UV) wo = d(ivmo)

In conditions where the Stockes theorem holds :

fM d(iywo) = fM (divV) wg = faM iytog |

wo defines a volume form on N, and the interior of M (which is an open
subset of N). So any class 1 vector field on N defines a Lebesgue measure on
oM by iv?ﬂo.

If M is endowed with a Riemannian metric there is an outgoing unitary
vector n on OM (see next section) which defines a measure w; on OM and :
ivwg = (V,n) w1 = iywg so [, (divV)wo = [, (V.n) w1

17.2.5 Integral on domains depending on a parameter

Anticipating on the next section.

Layer integral:

Let (M,g) be a class 1 m dimensional real riemannian manifold with the vol-
ume form wy, f a class 1 function : f: M — R. We want to compute : fM fmo.
Any function p € C (M;R) such that p’(x)# 0 defines a family of manifolds
with boundary N(t)={x € M : p(z) <t} in M, which are diffeomorphic by the
flow of the gradiant grad(p). Using an atlas of M there is a folliation in R™ and
using the Fubini theorem the integral can be computed by summing first over
the hypersurface defined by N(t) then by taking the integral over t.

Theorem 1522 (Schwartz 4 p.99) Let M be a m dimensional class 1 real
riemannian manifold with the volume form wy, then for any function f €

Cy (M;R) wo—integrable on M such that f’(x)#£ 0 on M, for almost every
value of t, the function g(x) = Hq{‘(axd)fﬂ is integrable on the hypersurface N (t) =
{r e M : f(x) =t} and we have :

Jos fmo= [y~ (fN(t) %0 (t)) dt where o (t) is the volume form induced

on N(t) by wg

(the Schwartz’s demontration for an affine space is easily extended to a real
manifold)

0 (t) = ipy@o where n = gradf

llgradf]l

(see Pseudo riemannian manifolds ) so
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fM Jwo = fooo fN(t) %igmdﬂﬂo

Remark : the previous theorem does not use the fact that M is riemannian,
and the formula is valid whenever g is not degenerate on N(t), but we need
both £’ 0, ||gradf|| # 0 which cannot be guarantee without a positive definite
metric.

Integral on a domain depending on a parameter :

Theorem 1523 Reynold’s theorem: Let (M,g) be a class 1 m dimensional real
riemannian manifold with the volume form wy, f a function f € C1 (R x M;R),
N(t) a family of manifolds with boundary in M, then :

% fN(t) ft,z)wmo(x) = fN(t) % (t,z) wo (‘T)+f8N(t) f(z,t) (v,n) o (t) where
v(q(t)) =G for q(t)e N (1)

This assumes that there is some map : ¢ : Rx M — M :: ¢(t,q(s)) =
qgt+s) €N (t+s)

If N(t) is defined by a function p : N (t) = {x € M : p(z) < ¢} then :

i I £ (62) @0 (2) = [y B (6:2) %0 () + fonge) s ()
Proof. the boundaries are diffeomorphic by the flow of the vector field (see
Manifolds with boundary) :

V=29 g, € ON (t) : By (g1,5) € ONpps

llgradpl?

S0 2 v(q (1) = ZPy (a1.5) h=s = V (¢ () = 72242

g
On the other hand : n = 2£edp
llgradpl|

_ lgradpl®> _ 1
<’U,7’L> ~ ligradp|® T Tgradpll
Formula which is consistent with the previous one if f does not depend on t.

m forms depending on a parameter:
w is a family w (¢) of m form on M such that : p: R — X (A, TM*) is a class

1 map and one considers the integral : [ Nty P where N(t) is a manifold with
boundary defined by N (¢t) = {z € M : p(x) <t}

M is extended to R x M with the riemannian metric G = dtQdt+3Y | gopdz®®
dz?

With A\=dt Ap(t): Dp= Ldt Ap+duAp=2dtAp

With the previous theorem : fol(t) Du= fN(t) pwo where I (t) = [0,

d _ : d ,

7t Iney 1= Sy o (de@) + [y 37 + Jona v

where d,w is the usual exterior derivative with respect to x, and v = gradp
17.3 Cohomology

Also called de Rahm cohomology (there are other concepts of cohomology). It is
a branch of algebraic topology adapted to manifolds, which gives a classification
of manifolds and is related to the homology on manifolds.
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17.3.1 Spaces of cohomology

Definition
Let M be a real smooth manifold modelled over the Banach E.

1. The de Rahm complex is the sequence :

0= X (AgTM*) % X (M TM*) % X (ATM*) S ..

In the categories parlance this is a sequence because the image of the operator
d is just the kernel for the next operation :

if w € X (A, TM*) then dww € X (A, 1 TM*) and d*ww =0

An exact form is a closed form, the Poincaré lemna tells that the converse
is locally true, and cohomology studies this fact.

2.Denote the set of closed r-forms : F" (M) = {w € X (A, TM*) : dw = 0}
with F° (M) the set of locally constant functions. F" (M) is sometimes called
the set of cocycles.

Denote the set of exact r—1 forms :

G Y M)={weX(ATM*):Im € X (A,_1TM*) : w = drr} sometimes called
the set of coboundary.

Definition 1524 The rth space of cohomology of a manifold M is the quo-
tient space : H™ (M) = F" (M) /G"™1 (M)

The definition makes sense : F" (M),G"~1 (M) are vector spaces over K
and G"~1 (M) is a vector subspace of F" (M) .

Two closed forms in one class of equivalence denoted [| differ by an exact
form :

w ~wy e It € X (A1 TM*) : wy =wy +dr

The exterior product extends to H" (M)

[w] € HP(V),[r] € HY(V) : [@w] A [r] = [@w A 7| € HPTI(V)

So : @M T (M) = H* (M) has the structure of an algebra over the field
K

Properties

Definition 1525 The r Betti number of the manifold M is the dimension of
H" (M) ,
The Euler characteristic of the manifold Mis : x (M) = S5 M (_1)" b, (M)

r=1

They are topological invariant : two diffeomorphic manifolds have the same
Betti numbers and Euler characteristic.

Betti numbers count the number of ”holes” of dimension r in the manifold.

x (M) =0 if dimM is odd.

Definition 1526 The Poincaré polynomial on the field K is : P (M) : K —
K P(M)() = 5, by (M) 2"
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For two manifolds M\N : P(M x N)=P (M) x P(N)

The Poincaré polynomials can be computed for Lie groups (see Wikipedia,
Betti numbers).

If M has n connected components then : H% (M) ~ R™. This follows from the
fact that any smooth function on M with zero derivative (i.e. locally constant)
is constant on each of the connected components of M. So by (M) is the number
of connected components of M,

If M is a simply connected manifold then H! (M) is trivial (it has a unique
class of equivalence which is [0]) and by (M) = 0.

Theorem 1527 If M,N are two real smooth manifolds and f : M — N then :
i) the pull back f*w of closed (resp.exact) forms w is a closed (resp.exact)
form so :
I [ = ("] € BT (M)
i) if f,g € Coo (M; N) are homotopic then Vew € H" (N) : f* [w] = ¢* [w]

Theorem 1528 Kiinneth formula : Let M, Mysmooth finite dimensional
real manifolds :
HT(Ml XMQ)Z D [Hp(Ml)(X)Hq(Mg)]
) =

p+q=r
H*(M; x My) = H*(M;) x H*(My)
b (My x Ma) = Zq-’-p:r bp(M1)by(M2)

X(My x M) = x(My1)x(M2)

17.3.2 de Rahm theorem

Let M be a real smooth manifold

The sets C" (M) of r-chains on M and X (A, TM*) of r-forms on M are real
vector spaces. The map :

():C" (M) x X(ATM*) - R (C,w) = [, @

is bilinear. And the Stokes theorem reads : (C,dw) = (0C, w)

This map stands with the quotient spaces H” (M) of homologous r-chains
and H, (M) of cohomologous r-forms:

() H" (M) x Hy (M) = R = ([C], [@]) = [ []

In some manner these two vector spaces can be seen as "dual” from each
other.

Theorem 1529 de Rahm : If M is a real, m dimensional, compact manifold,
then :

i) the vector spaces H" (M), H, (M) have the same finite dimension equal
to the rth Betti number b, (M)

by (M) =0 if r>dimM, by, (M) = by—r (M)

i) the map () : H" (M) x H, (M) — R is non degenerate

i) H™ (M) = H, (M)*

iv) H™ (M) ~ H™™" (M)

v) Let M € C" (M) i = 1..b. (M) : Vi # j : [M]] # [M]] then :

a closed r-form w is exact iff Vi = 1...b, : IM?‘ w=0
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Vk;, e R,i = 1...br,3w€ArTM*:dsz,erwzki

Theorem 1530 (Lafontaine p.233) Let M be a smooth real m dimensional,
compact, connected manifold, then:

i) a m form w is exact iff [, @ =0

it) H™ (M) is isomorphic to R

Notice that they stand for compact manifolds.

17.3.3 Degree of a map

Theorem 1531 (Lafontaine p.235) Let M,N be smooth real m dimensional,
compact, oriented manifolds, f € Co (M;N) then there is a signed integer
k(f) called the degree of the map such that 3k (f) € Z : Vw € AZ,TM* :

Juw=k(f) [y®

If f is not surjective then k(f)=0
If f,g are homotopic then k(f)=k(g)

Theorem 1532 (Taylor 1 p.101) Let M be a compact manifold with boundary,
N a smooth compact oriented real manifold, fe Cy (M; N) then : Deg (f|onm) =0
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18 COMPLEX MANIFOLDS

Everything which has been said before for manifolds stand for complex mani-
folds, if not stated otherwise. However complex manifolds have specific proper-
ties linked on one hand to the properties of holomorphic maps and on the other
hand to the relationship between real and complex structures.

It is useful to refer to the Algebra part about complex vector spaces.

The key point is that the main constructs involve only the tangent bundle,
not the manifold structure itself.

18.1 Complex manifolds

Complex manifolds, meaning manifolds whose manifold structure is complex are
a different story.

18.1.1 General properties

1. Complex manifolds are manifolds modelled on a Banach vector space E over
C. The transition maps : ¢; o ¢; ! are C-differentiable maps between Banach
vector spaces, so they are holomorphic maps, and smooth. Thus a differentiable
complex manifold is smooth.

2. The tangent vector spaces are complex vector spaces : their introduction
above does not require the field to be R. So on the tangent space real structures
can be defined (see below).

3. Amap f € C,. (M;N) between complex manifolds M,N modeled on E,G
is R-differentiable iff the map F' =1;0 fo <p;1 : E — G is R- differentiable. If
F is 1-C-differentiable, it is holomorphic, thus smooth and f itself is said to be
holomorphic.

F is C-differentiable iff it is R-differentiable and meets the Cauchy-Riemann
conditions on partial derivatives Fy = iF, where yx refer to any real structure
on E.

4. A complex manifold of (complex) dimension 1 is called a Riemann man-
ifold. The compactified (as in topology) of C is the Riemann sphere. Im-
portant properties of holomorphic functions stand only when the domain is an
open of C. So many of these results (but not all of them) are still valid for maps
(such as functions or forms) defined on Riemann manifolds, but not on general
complex manifolds. We will not review them as they are in fact very specific
(see Schwartz).

18.1.2 Maps on complex manifolds

In the previous parts or sections several theorems address specifically complex
vector spaces and holomorphic maps. We give their obvious extensions on man-
ifolds.
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Theorem 1533 A holomorphic map f : M — F from a finite dimensional
connected complex manifold M to a normed vector space F is constant if one of
the following conditions is met:

i) [ is constant in an open of M

it) if F=C and Re f orIm f has an extremum or |f| has a maximum

iii) if M is compact

Theorem 1534 If M,N are finite dimensional connected complex manifolds, f
a holomorphic map f : M — N ,if f is constant in an open of M then it is
constant in M

A compact connected finite dimensional complex manifold cannot be an
affine submanifold of C™ because its charts would be constant.

18.1.3 Real structure

A real structure on a complex manifold involves only the tangent bundle, not
the manifold itself, which keeps its genuine complex manifold structure.

Theorem 1535 Any tangent bundle of a manifold modeled on a complex space
E admits real structures, defined by a real continuous real stucture on E.

Proof. If M is a complex manifold with atlas (E, (O, ¢k)ex) it is always
possible to define real structures on E : antilinear maps ¢ : F — F such that
02 = Idg and then define a real kernel Er and split any vector u of E in a real
and an imaginary part both belonging to the kernel, such that : © = Re u+4¢ Imu.
If E is infinite dimensional we will require o to be continuous

At any point p€ Oy, of M the real structure Si(p) on T, M is defined by :

Sk (p) = ¢} too o) T,M — T,M

This is an antilinear map and S? (p) = Idy, m-

The real kernel of T, M is (T, M)y, = {u, € TpM : S (p) up = up} = ¢} ' (z) (Er)

Indeed : u € Bg : 0 (u) =u— up = ¢} ' (2)u

Sk (p)up = @) 0o o) 0T () (u) = it (@) (u) = u,

At the transitions :

o =g, 0Sk(p)owy ! =¢;oS;(p)op;!

S; () = (¢ " o9)) oSk (p) o (¢ o))

From the definition of the tangent space S; (p), Sk (p) give the same map so
this definition is intrinsic and we have a map :S : M — C (T'M;TM) such that
S(p) is a real structure on T,M. m

The tangent bundle splits in a real and an imaginary part : TM = ReTM &
iImTM

We can define tensors on the product of vector spaces ((TPM)]R X (T,,M)R) "®
(T, M)y x (T,M)g) "

We can always choose a basis (e,),. 4 of E such that : o (e,) = eq,0 (i) =
—e, so that the holonomic basis of the real vector space F, = Er @ ERr reads

(€ari€a)qea-
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18.2 Complex structures on real manifolds

There are two ways to build a complex structure on the tangent bundle of a
real manifold : the easy way by complexification, and the complicated way by
a special map.

18.2.1 Complexified tangent bundle

This is the implementation, in the manifold context, of the general procedure
for vector spaces (see Algebra). The tangent vector space at each point p of a
real manifold M can be complexified : T,M¢c = T, M @ i1, M. If M is modeled
on the real Banach E, then 7}, Mc is isomorphic ot the complexified of E, by
taking the complexified of the derivatives of the charts. This procedure does
not change anything to the manifold structure of M, it is similar to the tensorial
product : the complexified tangent bundle is TM¢c =TM ® C.

A holonomic basis of M is still a holonomic basis in T'M¢, the vectors may
have complex components.

On T Mc we can define a complexified tangent bundle, and r forms valued
in C: X (A,TME) =N (M;C).

All the operations in complex vector space are available at each point p of M.
The complexified structure is fully dependent on the tangent bundle, so there
is no specific rule for a change of charts. This construct is strictly independant
of the manifold structure itself.

However there is another way to define a complex structure on a real vector
space, by using a complex structure.

18.2.2 Almost complex structures

Definition 1536 An almost complex structure on a real manifold M is a
tensor field Je X (®1TM) such that Vu € T,M : J? (p) (u) = —u

Theorem 1537 A complex structure on a real manifold M defines a structure
of complex vector space on each tangent space, and on the tangent bundle. A
necessary condition for the existence of a complex structure on a manifold M is
that the dimension of M is infinite or even.

A complex structure defines in each tangent space amap : J(p) € £ (T,M; T, M)
such that J? (p) (u) = —u. Such a map is a complex structure on 7, M, it cannot
exist if M is finite dimensional with an odd dimension, and otherwise defines,
continuously, a structure of complex vector space on each tangent space by :
iu = J (u) (see Algebra).

A complex vector space has a canonical orientation. So a manifold endowed
with a complex structure is orientable, and one can deduce that there are ob-
structions to the existence of almost complex structures on a manifold.

A complex manifold has an almost complex structure : J(u)=iu but a real
manifold endowed with an almost complex structure does not necessarily admits
the structure of a complex manifold. There are several criteria for this purpose.
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18.2.3 Kahler manifolds

Definition 1538 An almost Kédhler manifold is a real manifold M endowed
with a non degenerate bilinear symmetric form g, an almost complex structure
J, and such its fundamental 2-form is closed. If M is also a complex manifold
then it is a Kdahler manifold.

i) It is always possible to assume that J preserves g by defining : g (p) (up, vp) =
(9 (p) (up,vp) + g (p) (Jup, Juvp)) and so assume that : g (p) (up, vp) = g (p) (Jup, Jvy)
ii) The fundamental 2-form is then defined as :
@ (p) (up, vp) = g (p) (up, JUp)
This is a 2-form, which is invariant by J and non degenerate if g is non
degenerate. It defines a structure of symplectic manifold over M.
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19 PSEUDO-RIEMANNIAN MANIFOLDS

So far we have not defined a metric on manifolds. The way to define a metric on
the topological space M is to define a differentiable norm on the tangent bundle.
If M is a real manifold and the norm comes from a bilinear positive definite form
we have a Riemanian manifold, which is the equivalent of an euclidean vector
space (indeed M is then modelled on an euclidean vector space). Riemannian
manifolds have been the topic of many studies and in the litterature most of the
results are given in this context. Unfortunately for the physicists the Universe of
General Relativity is not riemannian but modelled on a Minkovski space. Most,
but not all, the results stand if there is a non degenerate, but non positive
definite, metric on M. So we will strive to stay in this more general context.

19.1 General properties
19.1.1 Definitions

Definition 1539 A pseudo-riemannian manifold (M,q) is a real finite di-
mensional manifold M endowed with a (0,2) symmetric tensor which induces a
bilinear symmetric non degenerate form g on TM.

Thus g has a signature (+p,-q) with p+q=dimM, and we will say that M is
a pseudo-riemannian manifold of signature (p,q).

Definition 1540 A riemannian manifold (M,g) is a real finite dimensional
manifold M endowed with a (0,2) symmetric tensor which induces a bilinear
symmetric definite positive form g on TM.

Thus a riemannian manifold is a pseudo riemannian manifold of signature
(m,0).

The manifold and g will be assumed to be at least of class 1. In the following
if not otherwise specified M is a pseudo-riemannian manifold. It will be specified
when a theorem stands for riemannian manifold only.

Any real finite dimensional Hausdorff manifold which is either paracompact
or second countable admits a riemannian metric.

Any open subset M of a pseudo-riemannian manifold (N,g) is a a pseudo-
riemannian manifold (M,g|s).

The bilinear form is called a scalar product, and an inner product if it
is definite positive. It is also usually called the metric (even if it is not a metric
in the topological meaning)

The coordinate expressions are in holonomic bases:

g€ @YTM : g(p) =4 9ap (p) dz* @ dzP

Jap = JBa

up € TyM : Vv, € T,M = g (p) (up,vp) =0=1u, =0< det[g(p)] #0
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Isomorphism between the tangent and the cotangent bundle

Theorem 1541 A scalar product g on a finite dimensional real manifold M
defines an isomorphim between the tangent space T,M and the cotangent space
Tp,M™ at any point, and then an isomorphism j between the tangent bundle TM
and the cotangent bundle TM*.

J:TM —TM* :uy, € T,M — p, =g (up) € T,M*

Vo, € TyM = g (p) (up, vp) = pp (vp)

g induces a scalar product g* on the cotangent bundle,

9" (p) (up, Ap) = Eaﬂ /‘pa)\p,@gaﬁ ()

which is a defined by the (2,0) symmetric tensor on M:

9 =2 us 9P (p) 0xo ® O

with : >, 9*? (p) gs (p) = 45 so the matrices of g and g* are inverse from

each other : [¢*] = [¢] "

For any vector : up, =3 upOra € TyM @ pip = 5 (up) =5 gagugd:ro‘

and conversely : i, = > fipadz® € TyM* — 571 (pp) = up = > 0B 9P oz,

The operation can be done with any mix tensor. Say that one ”lifts” or
"lowers” the indices with g.

If f € C1(M;R) the gradient of f is the vector field grad(f) such that :
Vu € VM : g(p) (gradf,u) = f'(p)u < (gradf)™ = Y5970 f

Orthonormal basis

Theorem 1542 A pseudo-riemannian manifold admits an orthonormal ba-
sis at each point :

Vp -3 (ei);il , € € TpM :g (p) (ei, ej) =Nij = :|:6ij

The coefficients n;; define the signature of the metric, they do not depend
on the choice of the orthonormal basis or p. We will denote by [n] the matrix
ni; so that for any orthonormal basis : [E] = [e?] :: [E]" [¢] [E] = [n]

Warning ! Even if one can find an orthonomal basis at each point, usually
there is no chart such that the holonomic basis is orthonormal at each point.
And there is no distribution of m vector fields which are orthonormal at each
point if M is not parallelizable.

Volume form
At each point p a volume form is a m-form w, such that @, (e1,...,em) = +1
for any orthonormal basis (cf.Algebra). Such a form is given by :
@o (p) = \/|det g (p)|dzt A dz?... A dz™
As it never vanishes, this is a volume form (with the meaning used for
integrals) on M, and a pseudo-riemanian manifold is orientable if it is the union
of countably many compact sets.
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Divergence

Theorem 1543 The divergence of a vector field V is the function div(V)e
C (M;R) such that : £ywo = (divV) wg and

divV = 2, (02V° + V3 Y5, 677 (9ag5,))
Proof. divV = L3 0. (Vo) (sec Integral)
So: divV =~ 57, 0 (veVidetg ) = . 0V o4V /et g (p)]
= Yo 02V + Vet Ty V) (et ) T (=) 1™")
= S0 0V VLT (|5, (Bagin) 977 ) = S (0aV2 + VL 5 077 (agsy))

Complexification

It is always possible to define a complex structure on the tangent bundle of
a real manifold by complexification. The structure of the manifold stays the
same, only the tangent bundle is involved.

If (M,g) is pseudo-riemannian then, point wise, g(p) can be extended to a
hermitian, sequilinear, non degenerate form v (p) :

Vu,v € T,M : v (p) (u,v) = g (p) (w,v) ;7 (p) (fu,v) = —ig (p) (u,v) ;7 (p) (u,iv) =
ig (p) (u,v) (see Algebra).

~y defines a tensor field on the complexified tangent bundle X (@27 M) . The
holonomic basis stays the same (with complex components) and 7 has same
components as g.

Most of the operations on the complex bundle can be extended, as long as
they do not involve the manifold structure itself (such as derivation). We will
use it in this section only for the Hodge duality, because the properties will be
useful in Functional Analysis. Of course if M is also a complex manifold the
extension is straightforward.

On the other hand the extension to infinite dimensional manifolds does not
seem promising. One of the key point of pseudo-riemanian manifolds is the
isomorphism with the dual, which requires finite dimensional manifolds. In fact
Hilbert structures (quite normal for infinite dimensional manifolds) is the best
extension.

19.1.2 Hodge duality
Here we use the extension of a symmetric bilinear form g to a hermitian, sequi-

linear, non degenerate form that we still denote g. The field K is R or C.

Scalar product of r-forms
This is the direct application of the definitions and results of the Algebra
part.
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Theorem 1544 On a finite dimensional manifold (M,g) endowed with a scalar
product the map :

Gr : X(ATM*) x X (A TM*) - K =

Gr (A1) = 2 far.an B 8,3 Ao i .3, det [9_1]{%“%}7{[31“&}

18 a non degenerate hermitian form and defines a scalar product which does
not depend of the basis.

It is definite positive if g is definite positive

In the matrix [g’l] one takes the elements g®** with ay € {a;..00.}, 3 €
{ﬂl--ﬂr} _ _

Gr (A1) = Yar oy Morean) g8, 90 g™ g, 5 = Dy ary Man a2 00

where the indexes are lifted and lowered with g.

The result does not depend on the basis.
Proof. In a change of charts for a r-form :

A= Z{al...m} Aay ... dx® A dz®2 A A dx®r = E{al . })\al ady®r A
dy®2 A ... A dy®r

with X, o = X(a, s} Asu., det [J‘l]ill'jfj;

where det [J _1} il ii is the determinant of the matrix [J _1} with elements
row [ column oy

Gr(A p) = Z{al BB} Aoy, arﬁﬁl
Y1 Yr

E{Otl .ar}{p1..Br} E{’h A} /\»y1 -, det [J {}a }{ﬁ "

X Z{"]l nT} ,u/nl N det [J }gl 7677‘ det [/\ 1} a1 0‘7‘ 1.5y

_Z{wm'yr}{m e} )‘VI e Fy e

gy det [J7H00 det [T det [ 1] o) (81-8r)

det[ _1]{a1 .ar},{B1..Br}

X oo}
Gos = [T [T g
det [g1]ter e Bt gep [qm1) O O g [ 12020 dog [ 100

V1w m.--nr

In an orthonormal basis : G, (A, u) = Z{m..ar}{ﬂl..m} Xm_%ugl_ﬂrno‘lﬁl...no‘rﬁr

For r = 1 one gets the usual bilinear symmetric form over X (®(1)TM ) :
G1 (A ) = Yup Makisg™®
For r=m : Gy, (A, p1) = A (det g) ™"

Theorem 1545 For a 1 form 7 fized in X (AT M*), the map :

A X(NTM*) - X (A TM*) s XA(m)pu=7Ap

has an adjoint with respect to the scalar product of forms : Gry1 (A (7)) p, p') =
Gy (p, X* (m) ') which is

A () X (A TM*) = X (A i TM*) 2 N () = tgradntt

It suffices to compute the two quantities.
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Hodge duality

Theorem 1546 On a m dimensional manifold (M,g) endowed with a scalar
product, with the volume form wq the map :

%0 X (A TM*) = X (A—r TM™) defined by the condition

VY € X (ATM*) A A= G, (A 1) wo

18 an anti-isomorphism

A direct computation gives the value of the Hodge dual *\ in a holonomic
basis ;
* Z{oa...aT} )‘{al...ar}d:ﬂal AN d,CCaT)

= D foran 1By € (BrBroar, am ) A | det gldaz®r A dzez... A

dxm-r
With e = sign det [¢g] (which is always real)
For r=0:
*\ = Ao
For r=1:
(Do Aadz®) = X0 (~1)7F g2 %5 /[det gldat A ..daf A .. A da™
For r=m-1: . R
x (Zgj:l M.gmdz! A dz® A .. A dxm) =y (—1)“*1X1”“”'”\/|det gldz®
For r=n:

* ()\dxl Ao A d:vm) = 6\/\dlc—cg|

A

Theorem 1547 The inverse of the map * is :
7 X (ATMY) = X (A TM*) 57N = (=) 5 N & 5% )\, =
( 1)7‘(11 r)/\
Gq(A, #p) = Gnq(*A, 1)
Gn_q(xX, xu) = G4(\, 1)

Codifferential

Definition 1548 On a m dimensional manifold (M,g) endowed with a scalar
product, with the volume form wy, the codifferential is the operator :
§: X (A1 TM*) = X (ATM*) 2 60X = e(—1)" M) s dse ) = (—1)"xdx 1\
where € = (—1)" with p the number of - in the signature of g

2. It has the following properties :

2 =0

For fe C(M;R):0f=0

For Ar € X (Ap 1 TM*) s 56X = (—1)" " " d % A

)\){'Yln')’rfl}
_ E(_l)r(mfr) /Idet g Z{m..nmﬂﬂ} €M M1, Y1 o Yr—1) Zgnlﬁl'.'gnm—r+lﬁm—r+l %

—
(=2}
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oy (—)R 2 for o} € (al-'araﬁlu ﬁk--ﬁm—rﬂ) 9By (/\al"'% V/|det 9|)

For r=1: 6 (3_; Aadz®) = (—1)”\/‘dlc—tg‘ > p=10a (g"‘B/\B\/|det g|)
Proof. § (3, \adz®) = e(=1)" xd * (3, Aadx®)

=e(—=1)™mxd (22;1 (—=1)*T g*F N5 \/[det g[dz' A LT A A dwm)

= (=120 5 (1) 8, (g‘”z\_v\/M) dzP Ndz AN Adz™
=e(=1)"* 30 51 Oa (go‘ﬁ/\_g\/M) dz A ... Adz™

= (‘Um\/mle—tg‘ 22,3:1 8 (gaﬁ/\ﬁ\/M) u

The codifferential is the adjoint of the exterior derivative with respect to the
interior product G, (see Functional analysis).

Laplacian

Definition 1549 On a m dimensional manifold (M,g) endowed with a scalar
product the Laplace-de Rahm operator is :
A X (ATM*) = X (ATM*) 2 A = — (0d+ db) = — (d+6)*

Remark : one finds also the definition A = (§d + dJ) .
Properties : see Functional analysis
19.1.3 Isometries

The isometries play a specific role in that they define the symmetries of the
manifold.

Definition 1550 A class 1 map f : M — N between the pseudo-riemannian
manifolds (M,g),(N,h) is isometric at p € M if :
Vup, vy € T,M b (f (p)) (f'(P)up, f'(P)vp) = g (p) (up, vp)

Then {’(p) is injective. If f is isometric on M this is an immersion, and if it
is bijective, this an embedding.

Definition 1551 An isometry is a class 1 bijective map on the pseudo-riemannian
manifolds (M,g) which is isometric for all p in M

(Kobayashi I p.162)
An isometric immersion maps geodesics to geodesics
An isometry maps orthonormal bases to orthonormal bases.

Killing vector fields

Definition 1552 A Killing vector field is a vector field on a pseudo-riemannian
manifold which is the generator of a one parameter group of isometries.
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For any t in its domain of definition, ®y (¢, p) is an isometry on M.
A Killing vector field is said to be complete if its flow is complete (defined
over all R).

Theorem 1553 (Kobayashi I p.237) For a vector field V on a pseudo-riemannian
manifold (M,g) the followings are equivalent :

i) V is a Killing vector field

ZZ) fjvg =0

W) VY, Z e X(TM) :g((£v = V)Y, Z) = —g((£v = Vv) Z,Y) where V
1s the Levy-Civita connection

w) Vo, B30 (9v80aVY + gary0sV7 + V70ygas) =0

Theorem 1554 (Wald p.442) If V is a Killing vector field and ¢/ (t) the tangent
vector to a geodesic then g (c(t)) (¢ (t),V) = Cte

Group of isometries

Theorem 1555 (Kobayashi I p.238) The set of vector fields X (M) over a m
dimensional real pseudo-riemannian manifold M has a structure of Lie algebra
(infinite dimensional) with the commutator as bracket. The set of Killing vector
fields is a subalgebra of dimension at most equal to m(m+1)/2. If it is equal to
m(m+1)/2 then M is a space of constant curvature.

The set I(M) of isomometries over M, endowed with the compact-open topol-
ogy (see Topology), is a Lie group whose Lie algebra is naturally isomorphic to
the Lie algebra of all complete Killing vector fields (and of same dimension).
The isotropy subgroup at any point is compact. If M is compact then the group
I(M) is compact.

19.2 Lévi-Civita connection

On a pseudo-riemannian manifold there is a "natural” connection, called the
Lévy-Civita connection.

19.2.1 Definitions

Metric connection

Definition 1556 A covariant derivative V on a pseudo-riemannian manifold
(M,g) is said to be metric if Vg =0

Then we have similarly for the metric on the cotangent bundle : Vg* =0

So : Va, 8,7 : Vygas = V,g*F =
By simple computation we have the theorem :
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Theorem 1557 For a covariant deriwative V on a pseudo-riemannian mani-
fold (M,g) the following are equivalent :
i) the covariant derivative is metric

i) Yo, B, : Oygap = 3, (Qanr% + gﬂﬁFZa)

iii) the covariant derivative preserves the scalar product of transported vec-
tors

iv) the riemann tensor is such that :

VX, Y, ZeX(TM): RX,Y)Z+RY,Z) X+ R(Z,X)Y =0

Lévi-Civita connection

Theorem 1558 On a pseudo-riemannian manifold (M,qg) there is a unique
affine connection, called the Lévi-Civita connection, which is both torsion
free and metric. It is fully defined by the metric, through the relations :

1 1

I's, = 5 Zn(gom (089+yn + Ovgpy — Ongpy) = ) Zn (9n089°" +9pn0y9*" +
9*"095+)

There are many demonstrations, which is a straightforward computation, of
this theorem for riemannian connection. For a connection of any signature see
Wald.

Warning ! these are the most common definitions for I', but they can vary

(mainly in older works) according to the definitions of the Christofell symbols.
Those above are fully consistent with all other definitions used in this book.

19.2.2 Curvature

With the Lévi-Civita connection many formulas take a simple form :

1
Theorem 1559 '3, = Zn ganl"g,y = 5(8[39%[ + 0980 — 0alsy)
Oagpy = Zn 97771—‘25 + 98nL0
By — _ B B
Dag® ==, ¢°"T2, +9""T4,

S 1, — 10ldetg] _ 9a (1/1detg])
yrye T 27 [detgl T T /ldetg)

Proof. g detg = (7= detg) gy, = 9" (det ) ggs, = (detg) 9" g

G Bagrn) = g™ (9uThy + 9xlh,) = (9™ gulhy + g gnlh,) = Tay +T4,) =
AN
Yo
Oadet g =2 (det g) ',

d / __d / _ 1 d _ 1 —
dﬁ_‘”‘ |d€tg| = dﬁ_"‘ |d€tg| = mdg—a |detg| = m (2 (_1)17 (detg) an) =
V/|detg|T7, =

Theorem 1560 div(V) =) V., V*
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Proof. div(V) =", (%Vo‘—l—Vo‘mam/ ldet g (p)| = D=, OaVE+VE3 4 Fga =
S VU m

Theorem 1561 For the volume form : Vwy =0

Owia...
Proof. (Vwi2..0), = Do ~— 22:1 27:1 Fglwlz.lfl,ﬁ,url...n

= Oa/|det g| — > TL w12, 0 = Oar/|det g| — wlz,,,n%vltgaa det g
= 0a+/|det g| — 3/|det g|#tgaa(det g)
|det g| = (—1)" det g
_ [ 1(=1)P0sdetg 1 1 _1 (=n? (=P _
(Vw)a = (2 /Idetg| 2V |detg|dctg(9a detg) 2 (0 det g) <\/dctg| \/dctg|>
0O m

Theorem 1562 Jgwy = %M

wo

Theorem 1563 Z'y Ty, = dawo

wo

The Riemann curvature is in the general case (see above) :
R(X,Y,Z)=VxVyZ -VyVxZ - Vxy|Z € MV
R =301 Vs RSypde? Ndz" @ da® @ Qg with RS, 5 = 0,05y — 9,155 +
5. (05055 ~ T5.0%)
For the Levi-Civitta connection the Riemann tensor, is :
1
Rijp = 5 2,19" (9i0kgsn — 0:0ngjn = 0;Okgin + 9;Ongit)

1
+ (&gl” + 591595’7 (0igse + 0sGic — 8691'5)) (Di9xn + Orgjin — Ongik)

1
- (ajgl77 - gglsgsn (33‘955 + 859]'5 - sgjs>) (8igkn + 8kgin - ngik)}
It has the properties :

Theorem 1564 (Wald p.59)
Rij + Ry, + Ry, =

Bianchi’s identity : Vo Ry ; + VRS, + VR, ;=0

Rijri = gim R},

Rijer = —gim Ry = —Rikji

gmlejk + gmlRé‘]ﬂ' + gmleﬂ'j =0« Rmijk + ijki + Rmkij =0

(V (Vgij)g)a - (v (Vgij)a)B = R{5:9:5 + R 5,9ie =0 = Rjapi + Riagj =
Rapys = —Rspya

V(Rjeq — Ripa)a + V(RGy — Riga)e + V(RG g — Regq)s =0

The Weyl’s tensor is C such that :
Rapys = Capys + 725 (Jaby Rels — 951 Rol) — trrigray BYak 9615
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The Ricci tensor is :
Ric =}, Ricaydz® ® da”

RiCOW = Zﬁ Rfaﬁ'y = Zn (8‘1FZV - 8771—‘247 + Zs (ngl—‘fw - ]‘—‘ZEFZ(’Y))
So it is symmetric : Ricay = Ricya

Definition 1565 The scalar curvature is :R=73" g 9P Ricop € C (M;R)

19.2.3 Sectional curvature

(Kobayashi I p.200)

Definition 1566 On a pseudo-riemannian manifold (M,g) the sectional cur-
vature K(p) at p€ M is the scalar : K(p) = g (p) (R (u1,u2,u2),uy) where
u1,uz are two orthonormal vectors in T, M.

K(p) depends only on the plane P spanned by w1, us.

Definition 1567 If K(p) is constant for all planes P in p, and for all p in M,
then M is called o space of constant curvature.

So there are positive (resp.negative) curvature according to sign of K(p).
Then :
RX,)Y,2)=K (g(Z,Y)X —g(Z,X)Y)
g'yn =K (6’?91377 - 539/%)
If M is connected, with dimension >2, and K(p) depends only on p (and not
P), then M is a space of constant curvature.

Definition 1568 A Riemannian manifold whose Levi-Civita connection is flat
(the torsion and the riemann tensor vanish on M) is said to be locally euclidean.

Definition 1569 An FEinstein manifold is a pseudo-riemannian manifold whose
Ricci tensor is such that : Rag (p) = A (P) gap

Then R = Cte; A = Cte

19.2.4 (Geodesics

Geodesics can be defined by different ways :

- by a connection, as the curves whose tangent is paralllel transported

- by a metric on a topological space

- by a scalar product on a pseudo-riemannian manifold

The three concepts are close, but not identical. In particular geodesics in
pseudo-riemannian manifolds have special properties used in General Relativity.
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Length of a curve
A curve C is a 1 dimensional submanifold of a manifold M defined by a class
1 path : ¢: [a,b] = M such that ¢’(t)# 0.
The volume form on C induced by a scalar product on (M,g) is
— Vg () (@), D)t = emo.
So the ”volume” of C is the length of the curve :

b) = f[a_’b] wy = fC CyTO) = f: \/|g (c(?)) (¢(t),(t))|dt , which is always
finite because the function is the image of a compact by a continuous function,
thus bounded. And it does not depend on the parameter.

The sign of g (¢ (¢)) (¢/(¢),(t)) does not depend of the parameter, it is >0
if M is Riemannian, but its sign can change on c if not. If, for ¢ € [a, b] :

g (c(®) (c(t),d(t)) <0 we say that the path is time like

g (c(t)) ((t),d(t)) > 0 we say that the path is space like

g (c(t)) ((t),d(t)) = 0 we say that the path is light like

Theorem 1570 In a pseudo-riemannian manifold (M,g), the curve of extermal
length, among all the class 1 path from p to qin M of the same type, is a geodesic
for the Lévy-Clivita connection.

Proof. So we restrict ourselves to the set P of paths ¢ € Ci ([a,b]; M) such
that g (¢ (t)) (¢'(t),(t)) has a constant sign (e = +1 or -1), and c(a)=p,c(b)=q.
At first a,b are fixed.
To find an extremal curve is a problem of variational calculus.
The space Cy ([a,b]; M) is a Banach, because [a,b] is compact. So the subset
of P: P* such that g (¢ (t)) (¢/(t), ¢/ (t)) > 0 and P~ such that g (¢ (¢)) (¢'(t), ¢ (t)) <
0 are open in this space.
The map c in P/~ for which the functionnal : £ (a, b) f Veg (e '(t), ¢ (t))dt
is extremum is such that the derivative vanishes.
The Euler-Lagrange equations give with ¢’(t)=)"_ u® (t) 0z :

Fora:%%—%<\/% =0

Moreover the function : L = / eg /(t), ¢'(t)) is homogeneous of de-
gree 1 so we have the integral \/eg (c )) (c’(t), d(t)=60=Ct

The equations become :

3 (0agsy) W’ = F (9apu”) = (§9a8) 0 + gas gru”

using : Ongpy = gﬁ’)’raﬁ + gpnl's-, and d“ w0, uﬁ, 2L = (0ygap)uY =

(gnﬁr% + ganl—‘y,@) u’

% (ngZB + gﬁnrgw) wuf = (gnﬁr% + ganrzﬂ) utuf + gaﬁuva'vuﬂ

Gy (Vau' = au") W +gpn (Vau" — Oau’) uf =2 (gns (Vau" = Oau’) + gan (Vpu" — dgu")) uf+
2gapuY O, uP

—2GouPVpuY =0

Vwuu=0

Thus a curve with an extremal length must be a geodesic, with an affine
parameter.
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If this an extremal for [a,b] it will be an extremal for any other affine pa-
rameter. W

Theorem 1571 The quantity g (c (t)) (¢'(t),c/(t)) is constant along a geodesic
with an affine parameter.

Proof. Let us denote : () = gopuu”
de

i (0,0) uY = (V,0) u" = uuPuY (Vo gap)+9as(Vyu)uPu) +gas(Vyul Judu? =
2005(Vyut)uPu? =0 m
So a geodesic is of constant type, which is defined by its tangent at any
point. If there is a geodesic joining two points it is unique, and its type is fixed
by its tangent vector at p. Moreover at any point p has a convex neighborhood
n(p).
To sum up :

Theorem 1572 On a pseudo-riemannian manifold M, any point p has a convex
neighborhood n(p) in which the points q can be sorted according to the fact that
they can be reached by a geodesic which is either time like, space like or light
like. This geodesic is unique and is a curve of extremal length among the curves
for which g (c(t)) (c'(t),c (t)) has a constant sign.

Remarks :

i) there can be curves of extremal length such that g (c(¢)) (¢/(¢),c/(t)) has
not a constant sign.

ii) one cannot say if the length is a maximum or a minimum

iii) as a loop cannot be a geodesic the relation p,q are joined by a geodesic is
not an equivalence relation, and therefore does not define a partition of M (we
cannot have p ~ p ).

General relativity context

In the context of general relativity (meaning g is of Lorentz type and M is
four dimensional) the set of time like vectors at any point is disconnected, so it
is possible to distinguish future oriented and past oriented time like vectors. The
manifold is said to be time orientable if it is possible to make this distinction
in a continuous manner all over M.

The future of a given point p is the set I(p) of all points q in p which can be
reached from p by a curve whose tangent is time like, future oriented.

There is a theorem saying that, in a convex neighborhood n(p) of p, I(p)
consists of all the points which can be reached by future oriented geodesic staying
in n(p).

In the previous result we could not exclude that a point q reached by a space
like geodesic could nevertheless be reached by a time like curve (which cannot
be a geodesic). See Wald p.191 for more on the subject.
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Riemannian manifold

Theorem 1573 (Kobayashi I p. 168) For a riemannian manifold (M,g) the
map : d: M x M — Ry :: d(p,q) = min. ¢ (p,q) for all the piecewise class 1
paths from p to q is a metric on M, which defines a topology equivalent to the
topology of M. If the length of a curve between p and q is equal to d, this is a
geodesic. Any maping fin M which preserves d is an isometry.

Theorem 1574 (Kobayashi I p. 172) For a connected Riemannian manifold
M, the following are equivalent :

i) the geodesics are complete (defined for t€ R)

it) M is a complete topological space with regard to the metric d

iii) every bounded (with d) subset of M is relatively compact

i) any two points can be joined by a geodesic (of minimal length)

v) any geodesic is infinitely extendable

As a consequence:

- a compact riemannian manifold is complete

- the affine parameter of a geodesic on a riemannian manifold is the arc
length £.

19.3 Submanifolds

On a pseudo-riemannian manifold (N,g) g induces a bilinear symmetric form in
the tangent space of any submanifold M, but this form can be degenerate if it
is not definite positive. Similarly the Lévy-Civita connection does not always
induces an affine connection on a submanifold, even if N is riemmanian.

19.3.1 Induced scalar product

Theorem 1575 If (N,g) is a real, finite dimensional pseudo-riemannian man-
ifold, any submanifold M, embedded into N by f, is endowed with a bilinear sym-
metric form which is non degenerate at pe f (M) iff det [f'(p)]" [g (0)] [f' ()] #
0. It is non degenerate on f(M) if N is riemannian.

Proof. Let us denote f(M)z]\//f as a subset of N.

Because M is a submanifold any vector vq € TyN,q € M has a unique
decomposition : v, = vy, + w, with vy, € qu

Because f is an embedding, thus a diffeomorphism, for any vector v; € Tqﬁ/\
there is u, € T,M,q = f(p) : vy = f' (p) up

So vy = [ (p) up + wy

g reads for the vectors of TqW :g9(f(p) (f’ (p) up, f' (p) u;) = f.«g(p) (up, u;)

h = f.g is a bilinear symmetric form on M. And Tq/V[7 is endowed with the bi-

linear symmetric form which has the same matrix : [ (p)] = [f'(0)]" g ()] [/ ()]
in an adaptated chart.
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If g is positive definite : Vuy, : g (f (p)) (f" (p) up, f' () u;) =0= f"(p)up =
0 u, cker f'(p) =u,=0 m

If N is n dimensional, M m<n dimensional, there is a chart in which [f/(p)]
and hy, = Y05 gas (F ) I )5 [ ()]

If g is riemannian there is an orthogonal complement to each vector space
tangent at M.

nxm

19.3.2 Covariant derivative

1. With the notations of the previous subsection, h is a symmetric bilinear form
on M, so, whenever it is not degenerate (meaning [h] invertible) it defines a
Levi—Civi‘cau1 connection V on M:

[, = 55,00 Gy + b~ D)

A lenghty but straightforward computation gives the formula :

A A « «

Ly = Zaﬁ'y Ga (&,F# + F,@VFEFJ)

. -1

with [F] = [f" ()] and (G (0)]yusn = Bl Flcn (9 = [G[F] =

- t
(h] [F] [g] [F] = I

This connection V is symmetric and metric, with respect to h. .

2. A vector field Ue X (T'M) gives by push-forward a vector field on TM
and every vector field on T'M is of this kind.

The covariant derivative of such a vector field on N gives :

Vv (ffU)=X+Y € X(T'N) with X = f*U’ for some U'e X (T'M)

On the other hand the push forward of the covariant derivative on M gives
Cf (%VU) cx (TM)

It can be schown (Lovelock p.269) that V p«y (f*U) = f* (@vU) +S(f*U, f*V)

S is a bilinear map called the second fundamental form. If g is riemannian
S: X (T]\//\[) x X (T]\/Z) — X (T]\/IL) sends ugq,vq € Tq]\/j to the orthogonal
complement Tq]\/j L oof Tq]\? (Kobayashi IT p.11).

So usually the induced connection is not a connection on TM , as V -y (f*U)
has a component out of T'M.

19.3.3 Vectors normal to a hypersurface

Theorem 1576 If (N,g) is a real, finite dimensional pseudo-riemannian man-
ifold, M a hypersurface embedded into N by f, then the symmetric bilinear form
h induced in M is not degenerate at gEf(M) iff there is a normal v at f(M) such

that g(q)(v,v) #0

Proof. 1. If f{(M) is a hypersurface then [F] is a nx(n-1) matrix of rank n-1, the
system of n-1 linear equations : [u];,.,, [F],,_; = 0 has a non null solution,

unique up to a multiplication by a scalar. If we take : [v] = [g] ' [14]" we have
the components of a vector orthogonal to T,M : [F]" [g] [v] = 0 = Yu, € T,M :
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g(f () (f'(p)up,vy) = 0. Thus we have a non null normal, unique up to a
scalar. Consider the matrix F' = [F, F], ., were the last column is any column

of F. It is of rank n-1 and by development along the last column we gets :
~ ~ (L..n\e) A
det F=0=3, (—1)*"" Fg det [F] . =3 (=) Fe det [F] N
And the component expression of Vectbrs normal to f(M) is :

V= Fas (=1)7 g det [F]"" oy

2. If h is not degenerate at p, then there is an orthonormal basis (ei);:ll at
pin M, and [h] = L = [F]' [g] [F]

If v eT, M we would have v] = [F]u] for some vector u, € T,M and
(K] (9] V] = [Ff\[g] [F[u] = [u] =0

Sov ¢ T,M. If g(q) (v,v) = 0 then, because ((f'(p)e;,i=1..n—1),v)
are linearly independant, they constitute a basis of T;N. And we would have
Yu € TyN : Jug € TqJ\/Z,y eR:u=vy,+yvandg(q) (v,vp +yr) = 0so g would
be degenerate.

3. Conversely let g (¢) (v,v) #0 Ifv € Tq]\/Z: JueT,M:v=f(pu. As
v is orthogonal to all vectors of Tq]\? we would have : g (q) (f'(p)u, f'(p)u) =0
Sov ¢ Tq]\/i and the nxn matrix : F = [F, ]
of n indtependant Vectotrs. , . [F]t -

a & _ (EV gl F] (] [l V] _ 9 0
A= i) =78 vl

det [ﬁ}t lg) [ ] = det (1F1" [g) [F1) det ()" [9] W]) = g (p) (v, ) (et [A]) =
(det [ﬁ})z det[g] # 0
=det[h] #0 m

nxn 18 the matrix of coordinates

Theorem 1577 If M is a connected manifold with boundary OM in a real,
finite dimensional pseudo-riemannian manifold (N,g), given by a function f €
Cy (M;R), the symmetric bilinear form h induced in M by g is not degenerate
at g€ OM iff g (gradf, gradf) #0 at g and then the unitary, outward oriented
normal vector to OM is : m
Proof. On the tangent space at p to M : Vu, € T,0M : f'(p)u, =0

Yu € T,N : g (gradf,u) = f'(p)u so f'(p)up =0 < g (gradf,up) =0

So the normal N is proportional to gradf and the metric is non degenerate
iff g (gradf, gradf) #0

If M and OM are connected then for any transversal outward oriented vec-
tor v : f'(p)v > 0 so a normal outward oriented N is such that : f'(p)N =
g (gradf, N) > 0 with N=kgradf : g (gradf,gradf)k >0 =

A common notation in this case is with the normal v = gradf

5 Tg(gradf,gradf)] -
Vo € Cy (M;R) : 52 = g (gradp,v) = 3,5 9asg®™ (Oy) VP =3, (D) v* =
¢ (p)v
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If N is compact and we consider the family of manifolds with boundary
: My = {pe N: f(p) <t} then the flow of the vector v is a diffeomorphism
between the boundaries : OM; = ®,, (t — a, 0M,,) (see Manifold with boundary).

19.3.4 Volume form

Theorem 1578 If (N,g) is a real, finite dimensional pseudo-riemannian man-
ifold with its volume form wqy, M a hypersurface embedded into N by f, and the
symmetric bilinear form h induced in f(M) is not degenerate at q€ f (M), then
the volume form wy induced by h on f(M) is such that wy = i,wo, where v is
the outgoing unitary normal to f(M). Conversely wo = v*Awy where v* is the

1-form v}, =3 4 JopV’?

Proof. if the metric h is not degenerate at ¢, there is an orthonormal ba-
sis (ai);:ll in T,f(M) and a normal unitary vector v, so we can choose the
orientation of v such that (v,e1,...,e,—1) is direct in TN, and :

wo (V,El, ceey En—l) =1= i,,wo

Let us denote v* € T;N* the 1-form such that v, =3 GapV?

v* ANwy € AT N* and all n-forms are proportional so : v* A wy = kwy as
wo is never null.

(V* A wl) (n,sl, ...,Enfl) = ka (TL, €1, ...,Enfl) =k

= ﬁ deen71 € (0) v* (n) w1 (Eg(l), ...Eg(q)) =1

Sov* ANwy =wp |

Notice that this result needs only that the induced metric be not degenerate
on M (we do not need the Levy Civita connection)

The volume form on N is : wg = +/|det g|dy* A ...dy"

The volume form on M = f (M) is ©y = /|det h|du' A ... A du™?

19.3.5 Stockes theorem

Theorem 1579 If M is a connected manifold with boundary OM in a real,
pseudo-riemannian manifold (N,g), given by a function f € Cy (M;R), if g (gradf, gradf) #
0 on OM then for any vector field on N : [, (divV)wo = [,,, 9 (V,v) w1 where

w1 the volume form induced by g on OM and v the unitary, outward oriented

normal vector to OM

Proof. The boundary is an hypersurface embedded in N and given by f(p)=0.

In the conditions where the Stockes theorem holds, for a vector field V on M
and wy € X (A,TN*) the volume form induced by g in TN : [,, (divV) wy =
faM iy @o i

Yy =ty (V* A\ wl) = (ivV*) Nt + (_1)degu 78 (ivwl) =g (‘/, I/) w1 —
v A (ivwr)

On OM : v* A (iywy) =0

Sy (divV) o = [5,,9(V,v)w =

The unitary, outward oriented normal vector to M is : v = m
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G(Vi) = Doag 6V = T S 0V 5 990, ] = Lo (5, V0, f) =
Toraar1 £ @)V

fM (divV) wo = fBM ”gr—}ldf”f’(p)le

If V is a transversal outgoing vector field : f'(p)V > 0 and [,, (divV)wo > 0

Notice that this result needs only that the induced metric be not degenerate
on the boundary. If N is a riemannian manifold then the condition is always

met.
Let ¢ € C1 (M;R),V € X (M) then for any volume form (see Lie derivative)

div (V) = ¢ (V) + @div (V)

but ¢’ (V) reads : ¢'(V) = g (grade, V)

With a manifold with boundary it gives the usual formula :

S div (@V)@o =[5, 9(pVin) w1 = [, 09 (Vin) w1 = [y, g (grade, V) wo+
Jos ediv (V) @y

If ¢ or V has a support in the interior of M then [, ¢g(V,n)w; = 0 and

Jar 9 (grade, V) wo = — [, ediv (V) wo
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20 SYMPLECTIC MANIFOLDS

Symplectic manifolds,used in mechanics, are a powerful tool to study lagrangian
models. Some of the concepts (such as Poisson fields) are also a key ingredient
in quantum theory of fields. We consider only finite dimensional manifolds.
The extension of symplectic structures to infinite dimensional manifolds does
not seem promising. One of the key point of symplectic manifold (as of pseudo-
riemanian manifolds) is the isomorphism with the dual, which requires finite
dimensional manifolds. In fact Hilbert structures (quite normal for infinite
dimensional manifolds) is the best extension.
We will follow mainly Hofer.

20.0.6 Symplectic manifold

Definition 1580 A symplectic manifold M is a finite dimensional real man-
ifold endowed with a 2-form w closed non degenerate, called the symplectic
form:

w € X (AT M*) is such that :

it is non degenerate : Yu, € TM : Vv, € T,M : @ (p) (up,vp) =0=u, =0

it is closed :dw = 0

As each tangent vector space is a symplectic vector space a necessary con-
dition is that the dimension of M be even, say 2m.

M must be at least of class 2.

Any open subset M of a symplectic manifold (N,w) is a symplectic manifold
(M, |ar).

Definition 1581 The Liouwille form on a 2m dimensional symplectic man-
ifold (M, @) is Q = (Aw)™ . This is a volume form on M.
So if M is the union of countably many compact sets it is orientable

Theorem 1582 The product M = My x Mz of symplectic manifolds (M, 1), (Ma, ws2)
s a symplectic manifold:

VieVM,Vob e VM,V = (Vl,‘/é) c VM, x VM,
w (V,W) = w1 (Vi, W1) + w2 (Va, Wa)

Symplectic maps

Definition 1583 A map f € Cy (My; Ms) between two symplectic manifolds
(M, 1), (M, w2) is symplectic if it preserves the symplectic forms : f*ws =
w1
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f’(p) is a symplectic linear map, thus it is injective and we must have :
dim M1 S dim M2

f preserves the volume form : f*Qs = 21 so we must have :

fMl [ = fMQ Qy = fMl U

Total volumes measures play a special role in symplectic manifolds, with a
special kind of invariant called capacity (see Hofer).

Symplectic maps are the morphisms of the category of symplectic manifolds.

Theorem 1584 There cannot be a symplectic maps between compact smooth
symplectic manifolds of different dimension.

Proof. If the manifolds are compact, smooth and oriented :

dk (f) cZ: fMl f*QQ = k(f) fM2 QQ = fMl Ql

where k(f) is the degree of the map. If f is not surjective then k(f)=0. Thus
if dim M7 < dim M5 then fMl Q1 = 0 which is not possible for a volume form.

if dim M7 = dim M, then f is a local diffeomorphism m

Conversely: from the Moser’s theorem, if M is a compact, real, oriented,
finite dimensional manifold with volume forms w, 7 such that : [, @ = [, 7
then there is a diffeomorphism f : M — M such that # = f*w. So f is a
symplectomorphism.

Canonical symplectic structure
The symplectic structure on R?2™ is given by wg = Yoy e® A f* with matrix
I B
m=g
Algebra)

and any basis (e, fi),, and its dual (e*, f*)."

ey (see

:|2m><2m

Theorem 1585 Darboux’s theorem (Hofer p.10) For any symplectic manifold
(M, @) there is an atlas (R*™,(O;,¢;),c;) such that, if R*™ is endowed with
its canonical symplectic structure with the symplectic form wy, the transitions
maps (pj_l o @; are symplectomorphisms on R?™

They keep invariant @y : (30;1 o cpi)* Wy = Wo

The maps ¢; are symplectic diffeomorphisms.

Then there is a family (w;),.; € X (AT M*)" such that Vp € O; : @ (p) =
w; (p) and w; = @ wo

We will denote (za,¥a)l—, the coordinates in R*™ associated to the maps
w; :and the canonical symplectic basis. Thus there is a holonomic basis of M
which is also a canonical symplectic basis : dz® = ¢} (e®),dy® = ¢} (f*) and :
w=y o, dz™ Ady*

The Liouville forms reads : Q = (Aw)™ = dz* A ... Ada™ ANdy' A .. A dy™.

So locally all symplectic manifolds of the same dimension look alike.

Not all manifolds can be endowed with a symplectic structure (the spheres
Sy, for n>1 have no symplectic structure).
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Generating functions
(Hofer p.273)
In (Rzm, wo) symplectic maps can be represented in terms of a single func-
tion, called generating function.
Let f : R?™ — R¥™ 2 f (€,n) = (z,y) be a symplectic map with x=(z")
(5 77)

m
=10

£,n)
If det } # 0 we can change the variables and express f as :

/\/\

)

Then f is symplectic if there is a function W : R?™ — R?>™ :: W (x,7) such
that :

E=Ax,n) =G~

y=B(z,n) =9¥

20.0.7 Hamiltonian vector fields

Isomorphism between the tangent and the cotangent bundle

Theorem 1586 On a symplectic manifold (M, w), there is a canonical isomor-
phism at any point p between the tangent space T,M and the cotangent space
T,M*, and between the tangent bundle TM and the cotangent bundle TM*.

j:TM — TM* = u, € T,M — pp = 3(up) € Tp,M* = Vv, € T,M :
@ (p) (up, vp) = pip (vp)

Hamilonian vector fields
As a particular case, if f is a function then its differential is a 1-form.

Definition 1587 The Hamiltonian vector field V; associated to a function
f € C1(M;R) on a symplectic manifold (M, w) is the unique vector field such
that : iy, w = —df & VW € X(TM) : @ (Vy, W) = —df (W)

Theorem 1588 The flow of a Hamiltonian vector field preserves the symplectic
form and is a one parameter group of symplectic diffeomorphisms. Conversely
Hamiltonian vector fields are the infinitesimal generators of one parameter group
of symplectic diffeomorphisms.

Proof. We have £y, = iy,dw + do iy, = 0 so the flow of a Hamiltonian
vector field preserves the symplectic form.

vt Dy, (1, )" @ = w : the flow is a one parameter group of symplectic
diffeomorphisms. =

So symplectic structures show a very nice occurence : the infinitesimal gen-
erators of one parameter groups of diffeomorphisms which preserve the structure
(the form w) are directly related to functions f on M.
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Theorem 1589 The divergence of Hamiltonian vector fields is null.

Proof. Hamiltonian vector field preserves the Liouville form : £y =0 . So
we have £y Q= (divVy) Q= divVy =0 m

Theorem 1590 Symplectic maps S maps hamiltonian vector fields to hamilto-
nian vector fields

Vies = S*Vf : (I)Vf (t, ) oS=5o (I)Vfos (t, )

Poisson brackets

Definition 1591 The Poisson bracket of two functions f,h € C1 (M;R) on
a symplectic manifold (M, w) is the function :
(f,h) = w(grad(f), grad(h)) = w(JV;, JV},) = w(Vy, Vi) € C (M;R)

Theorem 1592 With the Poisson bracket the vector space Coo (M;R) is a Lie
algebra (infinite dimnsional)

i) The Poisson bracket is a an antisymmetric, bilinear map.:
Vfl,fz e Cq (M;R),k,k/ eR:

(f1, f2) = = (fa; f1)

(kfi+ K fa,h) =k (fi,h) + K (f2,h)

(fif2,h) = (fi,h) f2 + (f2:h) f

ii) (f1, (f2, f3)) + (f2, (f3, f1) + (f3, (f1, f2)) =0

Furthermore the Poisson bracket has the properties:

i) for any function : ¢ € Cy (R;R) : (f,¢0h) = ¢'(h)(f, h)
ii) If f is constant then : Vh €€ C1 (M;R) : (f,h) =0

111) (fu h) = -£grad(h) (f) = _£grad(f) (h)

20.0.8 Complex structure

Theorem 1593 (Hofer p.14) On a symplectic manifold (M, w) there is an al-
most complex structure J and a Riemannian metric g such that : Yu,p € T, M :

@ (p) (u, Jv) = g (p) (u,v)

@ (p) (Ju, Jv) = @ (p) (u,v) so J(p) is a symplectic map in the tangent space

J? = —Id,J* = J~! where J* is the adjoint of J by g : g (Ju,v) = g (u, J*v)

Finite dimensional real manifolds generally admit Riemannian metrics (see
Manifolds), but g is usually not this metric. The solutions J,g are not unique.

So a symplectic manifold has an almost complex Kéhler manifold structure.

In the holonomic symplectic chart :

[7] = 9] [7]1g]

@ (p) (u, Jv) = [u]' [J]" [Jm] [o] = [u]' [9] [v] & [g] = [J]' [Jn]

J is not necessarily J,,

det g = det J det J,,, = 1 because [J]* = [Jn]® = —Iom
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So the volume form for the Riemannian metric is identical to the Liouville
form €.

If V; is a Hamiltonian vector field : @ (Vy, W) = —df (W) = @ (W, —J?V}) =
g(W,—=JVs) so: JVy = grad (f).

20.0.9 Symplectic structure on the cotangent bundle

Definition

Theorem 1594 The cotangent bundle TM* of a m dimensional real manifold
can be endowed with the structure of a symplectic manifold

The symplectic form is w = >  dy* A dz® where (xo‘,yﬁ)zﬁzl are the
coordinates in TM*

Proof. Let (R™, (O;,¢;);c;) be an atlas of M, with coordinates (z*).";

The cotangent bundle TM* has the structure of a 2m dimensional real man-
ifold with atlas (Rm  R™, (01- X Upeo, Ty M, ((pi, (go’i)t)))

A point p, € TM* can be coordinated by the pair (xo‘,yﬁ);nﬂzl where x
stands for p and y for the components of p, in the holonomic basis. A vector
Y € T,,TM* has components (u*,04),c, expressed in the holonomic basis
(02a, 0Ya)

Let be the projections :

m TM* — M :mq (up) =p

mo T (TM*) - TM* = (Y) = pp

So : 7 (pp) : Ty, TyM* — Ty M 7y (pp) Y = u € T, M

Define the 1-form over TM* : A (p,) € L (T}, T,M*; R)

Npp) (V) = 72 (V) (« (1) (V) = pp (u) € R

It is a well defined form. Its components in the holonomic basis associated
to the coordinates (2, ya),c4 are :

A(bp) = 20 Yady®

The components in dy® are zero.

The exterior differential of A is w = d\ = )" dy® A dz® so w is closed, and
it is not degenerate. m

fX,YeTl, TM*: X =3, (u*0zy+0%0y*);Y =3 (v*0xs + 0%0y®)

@ (1) (X,Y) = T, (07u — ge)

Application to analytical mechanics

In analytic mechanics the state of the system is described as a point q in some
m dimensional manifold M coordinated by m positional variables (qi)r;l which
are coordinates in M (to account for the constraints of the system modelled as
liaisons between variables) called the configuration space. Its evolution is some

path R — M : ¢(t) The quantities <qi, dd—‘i = ql) belong to the tangent bundle
TM.
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The dynamic of the system is given by the principle of least action with a
Lagrangian : L € Co (M X R™;R) : L (g;,u;)
q(t) is such that : til L(q(t),q(t))dt is extremal.

The Euler-Lagrange equations give for the solution :
oL _ d OL o dr

gt T dt Out T Ou' dt

If the Hessian [ O°L ] has a determinant which is non zero it is possible to

Ou; Ouj
implement the change of variables :
(qz7u1) — (qlapz) P = % .
and the equations become : ¢" = g}lf ph = —gg with the Hamiltonian :

H(q,p) =32, piv’ — L(g, )
The new variables p; € TM™* are called the moments of the system and the
cotangent bundle TM* is the phase space. The evolution of the system is a path

C:R—=TM* (qi (t),p; (t)) and C'(t) = (qz,pZ

The Hamiltonian vector field Vy associated with H has the components :
Vi = (g—ﬁaqi, —g—gapi)izx.m
So the solutions C(t) are just given by the flow of V.

20.0.10 Surfaces of constant energy

As infinitesimal generators of the one parameter group of diffeomorphisms (Hamil-
tonian vector fields) are related to functions, the submanifolds where this func-
tion is constant play a specific role. They are manifolds with boundary. So
manifolds with boundary are in some way the integral submanifolds of symplec-
tic structures.

In physics usually a function, the energy H, plays a special role, and one
looks for the evolutions of a system such that this energy is constant.

Principles
If a system is modelled by a symplectic manifold (M,w) (such as above) with

a function H € Cy (M;R):

1. The value of H is constant along the integral curves of its Hamiltonian
vector field Vg of H

The Hamiltonian vector field and its flow ®y,, are such that :

@ (Vir, &®vy, () li=0) = —dHZ Py, (1,.) [i=o = 0 = L H (v, (t,p)) |i=s

So : Vt,¥p: H (Py, (t,p)) = H (p) & Py, (t,.),H=H .

2. The divergence of Vp is null.

3. H defines a folliation of M with leaves the surfaces of constant energy
0S.={peM:H(p)=c}

If H'(p)=0 then Vi = 0 because VW : w (Vig, W) = —dH (W) =0

If H'(p)#£0 the sets : S. = {p € M : H (p) < ¢} are a family of manifolds
with boundary the hypersurfaces 0S. The vector Vi belongs to the tangent
space to 05, The hypersurfaces 0S. are preserved by the flow of V.

4. If there is a Riemannian metric g (as above) on M then the unitary normal

outward oriented v to 0S.is : v = "U(TIL;VH)
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v =2l ____ with gradH = JVy = g (gradH, gradH) = g (JVi, JVg) =

= lg(gradH,gradH)|
g (VH,VH) =w (VH, JVH) >0
The volume form on 9S; is 21 =1, Q< Q=Q; Av
If M is compact then H(M)=[a,b] and the flow of the vector field v is a diffeo-
morphism for the boundaries 0S5, = ®, (05,, ¢) . (see Manifolds with boundary).

Periodic solutions
If t is a time parameter and the energy is constant, then the system is de-

scribed by some curve c(t) in M, staying on the boundary 9S.. There is a great
deal of studies about the kind of curve that can be found, depending of the
surfaces S. They must meet the equations :

Vu € TypyM : @ (Vg (c(t)),u) = —dH (c(t))u

A T periodic solution is such that if : ¢/(t) = Vi (t) on M, then ¢(T)=c(0).
The system comes back to the initial state after T.

There are many results about the existence of periodic solutions and about
ergodicity. The only general theorem is :

Theorem 1595 Poincaré’s recurrence theorem (Hofer p.20): If M is a Haus-
dorff, second countable, symplectic (M,w) manifold and H € Cy (M;R) such

that H’(p) is not null on M, then for almost every point p of 0S. = {p € M : H (p) = ¢}

there is an increasing sequence (ty), cy such that lim, o @y, (tn,p) = p

the null measure is with respect to the measure €2;. The proof in Hofer can
easily be extended to the conditions above.

One says that p is a recurring point : if we follow an integral curve of the
hamiltonian vector, then we will come back infinitely often close to any point.

411



Part V
PART 5 : LIE GROUPS

The general properties and definitions about groups are seen in the Algebra part.
Groups with countably many elements have been classified. When the number
of elements is uncountable the logical way is to endow the set with a topological
structure : when the operations (product and inversion) are continuous we get
the continuous groups. Further if we endow the set with a manifold structure
compatible with the group structure we get Lie groups. The combination of
the group and manifold structures gives some stricking properties. First the
manifold is smooth, and even analytic. Second, the tangent space at the unity
element of the group in many ways summarize the group itself, through a Lie
algebra. Third, most (but not all) Lie groups are isomorphic to a linear group,
meaning a group of matrices, that we get through a linear representation. So
the study of Lie groups is closely related to the study of Lie algebras and linear
representations of groups.

In this part we start with Lie algebras. As such a Lie algebra is a vector space
endowed with an additional internal operation (the bracket). The most common
example of Lie algebra is the set of vector fields over a manifold equipped with
the commutator. In the finite dimensional case we have more general results,
and indeed all finite dimensional Lie algebras are isomorphic to some algebra
of matrices, and have been classified. Their study involves almost uniquely
algebraic methods. Thus the study of finite dimensional Lie groups stems mostly
from their Lie algebra.

The theory of linear representation of Lie groups is of paramount importance
in physics. There is a lot of litterature on the subject, but unfortunately it is
rather confusing. The point is that this is a fairly technical subject, with many
traditional notations and conventions which are not very helpful. I will strive
to put some ligth on the topic, with the main purpose to give to the reader the
most useful and practical grasp on these questions.
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21 LIE ALGEBRAS

I will follow mainly Knapp.

21.1 Definitions
21.1.1 Lie algebra

Definition 1596 A Lie algebra G over a field K is a vector space A over
K endowed with a bilinear map (bracket) ] : Ax A— A

VX,Y,Z € AVApe K : [\X + uY, Z] = N X, Z] + ulY, Z] such that :

(X, Y] = —[Y, X]

(X, [V, Z)) +[Y,[Z, X]]| + [Z,[X,Y]] = 0 (Jacobi identities)

Notice that a Lie algebra is not an algebra because the bracket is not as-
sociative. But any algebra becomes a Lie algebra with the bracket : [X,Y] =
XY-Y- X

The dimension of the Lie algebra is the dimension of the vector space. In
the following A can be infinite dimensional if not otherwise specified.

A Lia algebra is said to be abelian if it is commutative, then the bracket is
null : VX,V : [X,Y]=0

Notation 1597 ad is the linear map ad : A — L(A; A) :: ad(X)(Y) = [X,Y]
induced by the bracket

Classical examples
The set of linear endomorphisms over a vector space L(E;E) with the bracket

i [figl=fog—golf.

The set K(r) of square rxr matrices endowed with the bracket : [X,Y] =
(X [Y] - [Y][X].

The set of vector fields VM over a manifold endowed with the commutator
[V, W]

Any vector space with the trivial bracket : [X,Y] = 0. Indeed any commu-
tative Lie algebra has this bracket.

Structure coefficients

If (e;);; is a basis of the vector space A, then : Vi, j : [e;,e;] = Y, c; Clex
where the family (ij)ke I of scalars in K, called the structure coefficients,
has at most finitely many non zero elements. In a vector space the components
of a vector can take any value. This is not the case with the structure coeflicients.

We must have C’fj = —C]’% and due to the Jacobi identities :
Vi gk Yep (CHCOR 4+ CLOT + CLCR) =0

So the structure coefficients have special properties. Conversely a family
of structure coefficients meeting these relations define, in any basis of a vector
space, a bracket and so a unique Lie algebra structure (with the understanding
that the structure coefficients change accordingly in a change of basis).
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The system of equations for the structure coefficients has not always a solu-
tion : not all Lie algebras structures are possible in a vector space over a field
K with a given dimension. This is the starting point for the classification of Lie
algebras.

21.1.2 Morphisms of Lie algebras

Definition

Definition 1598 A Lie algebra morphism (also called a homomorphism) is
a linear map f between Lie algebras (A,[] ,),(B,[]5) which preserves the bracket

JeL(AB) VX, Y € As f(IX,Y]) = [f (X),f (V)]

They are the morphisms of the category of Lie algebras over the same field.

We will denote hom (A, B) the set of morphisms from A to B

A Lie algebra isomorphism is an isomorphism of vector spaces which is
also a Lie algebra morphism.

Two Lie algebras A,B are isomorphic if there is an isomorphism of Lie
algebra: A — B

Spaces of Lie algebras morphisms

Theorem 1599 The set L(A;A) of linear maps over a Lie algebra A is a Lie
algebra with the composition law and the map ad : A — L (A; A) is a Lie algebra
morphism :

h([X7 Y]) = fog([X, ])—gof([X, Y]
[fog(X),fog(Y)]—lgof(X),g
So:Vf,gehom(A;A):h=[f,g]=fog—gof€hom(A;A)
ii) Take U € A : ad (X) o )
Y, [X, U]
:[X7 [YvU]]+[Y7 [UvX]]:_ [
So : ad € hom (A,L(4;A)) : [a
ad(Y)oad(X)=ad([X,Y],) m

Y] = [[X,Y],U] = ad (X, Y]) (U)
X),ad (Y)]L(A;A) = ad(X)oad(Y) -

Definition 1600 An automorphism over a Lie algebra (A, []) is a linear auto-
morphism of vector space (thus it must be inversible) which preserves the bracket

f € GL(A) VXY € A: f([X,Y]) = [f(X),f(Y)] .Then f=! is a Lie
algebra automorphism.
The set of automorphisms over A is a group with the composition law.

Definition 1601 A derivation over a Lie algebra (A,][]) is an endomorphism
D such that :
DeL(A4A):VX)YeA:D(X,Y])=[D(X),Y]+[X,D(Y)]
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For any X the map ad(X) is a derivation.

Theorem 1602 (Knapp p.38) The set of derivations over a Lie algebra (A, [])
, denoted Der(A), has the structure of a Lie algebra with the composition law :
D,D’" € Der (A): Do D' — D' oD € Der(A)

The map : ad : A — Der (A) is a Lie algebra morphism

21.1.3 Killing form

Definition 1603 The Killing form over a finite dimensional Lie algebra (A, [])
18 the bilinear map B :
BeL?*(AAK): AxA— K :: B(X,Y) = Trace(ad(X) o ad(Y))

(see tensors).
Theorem 1604 The Killing form is a bilinear symmetric form

Proof. In a basis (e;);c; of A and its dual (ei)iel the map ad can be read as
the tensor : _ _
ad(X) =3, i ker C}cja:kei ® el
ad(Y') = Zi,j,ke] Clzcjykei ® e’
ad(X)oad(Y) (Z) = ¥, ; per ad(X) (C,ijykzjei) = Yismer Clyh=lad(X) (e;) =
Ei,j,ke] szcjykzj El,mel Ofm‘xmel . ‘
ad(X) 0 ad(Y) =32, ;1 mer ChiCiiy/"2™e? @ e
Trace(ad(X) o ad(Y)) = Zi,j,k,mel C,ijC'f-myk:cm
So T'race(ad(X) o ad(Y')) = Trace(ad(Y') o ad(X))

And B=32, 1 mer ChiCnicf @ e™ m

Theorem 1605 The Killing form is such that : VX, Y, Z € A: B([X,Y],Z) =
B(X,[Y,Z])

It comes from the Jacobi identities

Theorem 1606 (Knapp p.100) Any automorphism of a Lie algebra (A,[]) pre-
serves the Killing form

FAXYD) =1 (X), f(Y)] = B(f(X),f(Y)) = B(X,Y)

21.1.4 Subsets of a Lie algebra

Subalgebra

Definition 1607 A Lie subalgebra (say also subalgebra) of a Lie algebra
(A,[]) is a vector subspace B of A which is closed under the bracket operation :
VX, Y e B:[X,Y] € B.
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Notation 1608 [B,C| denotes the vector space Span {[X,Y],X € B,Y € C}
generated by all the brackets of elements of B,C in A

Theorem 1609 If B is a subalgebra and f an automorphism then f(B) is a
subalgebra.

Definition 1610 The normalizer N(B) of a subalgeba B of the Lie algebra
(A,[]) is the set of vectors : N(B)={X € A:VY € B:[X,Y] € B}

Ideal

Definition 1611 An ideal of of the Lie algebra (A,]]) is a vector subspace B
of A such that : [A,B]C B

So an ideal is a subalgebra (the converse is not true)

If B,C are ideals then the sets B + C,[B,C|, B N C are ideal

If AB are Lie algebras and f € hom(A, B) then ker f is an ideal of A.

If B is an ideal the quotient set A/B: X ~Y & X —Y € B is a Lie
algebra with the bracket : [X],[Y]] = [X,Y] because YU,V € B,3W € B :
X+UY+V] = [X,Y]+W .Then the map : A — A/B is a Lie algebra
morphism

Center

Definition 1612 The centralizer Z(B) of a subset B of the Lie algebra (A,[])
isthe set - Z(B)={X € A:VY € B:[X,Y] =0}
The center Z(A) of the Lie algebra (A,[]) is the centralizer of A itself

So: Z(A)={X € A:VY € A:[X,Y] =0} is the set (which is an ideal) of
vectors which commute with any vector of A.
Z(A) is an ideal.
21.1.5 Complex and real Lie algebra
(see Complex vector spaces in the Algebra part)
Complexified

There are two ways to define a complex vector space structure on a real vector
space and so for a real Lie algbra.

1. Complexification:

Theorem 1613 Any real Lie algebra (A,[]) can be endowed with the structure
of a complex Lie algebra, called its complexified (Ac, [|) which has same basis
and structure coefficients as A.
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Proof. i) It is always possible to define the complexified vector space A¢c =
A®iA over A

ii) define the bracket by :

(X +iV, X' +iYV']. = [ X, X' -V, Y]+i([X,) Y]+ [X,Y]) =

Definition 1614 A real form of a complex Lie algebra (A,]]) is a real Lie
algebra (Ao, []) such that its complexified is equal to A : A= Ay ® iAo

2. Complex structure:

Theorem 1615 A complex structure J on a real Lie algebra (A,[]) defines a
structure of complex Lie algebra on the set A iff Joad =ado J

Proof. J is a linear map J€ L (E;E) such that J? = —Idg , then for any
X € A:iX is defined as J(X).

The complex vector space structure Ay is defined by X =z + iy & X =
x + J(y) then the bracket

(X, X', = [z, 2|+ [T (), J (W) +[z T W)+, T ()] = [z, 2] = [Ty, y']+
i (23] + [, 9])

if [z, J(y)] = —=J ([x,y']) & Ve € Ay : J (ad (z))oad (J (x)) & Joad = adoJ
]

If A is finite dimensional a necessary condition is that its dimension is even.

Real structure

Theorem 1616 Any real structure on a complex Lie algebra (A,[]) defines a
structure of real Lie algebra with same bracket on the real kernel.

Proof. There are always a real structure, an antilinear map o such that o2 =
Id4 and any vector can be written as : X = Re X +4Im X where Re X, Im X €
Ag. The real kernel Ag of A is a real vector space, subset of A, defined by
o (X)=X. It is simple to check that the bracket is closed in Ag. =

Notice that there are two real vector spaces and Lie algebras Ag,iAg which
are isomorphic (in A) by multiplication with i. The real form of the Lie algebra
is: A, = Agr X 1Ar which can be seen either as the direct product of two real
algebras, or a real algebras of two times the complex dimension of A.

If o is a real structure of A then Ag is a real form of A.

21.2 Sum and product of Lie algebras
21.2.1 Free Lie algebra

Definition 1617 A free Lie algebra over any set X is a pair (L, ) of a Lie
algebra L and a map : 3 : X — L with the universal property : whatever the
Lie algebra A and the map : f: X — A there is a unique Lie algebra morphism
F:L— Asuchthat: f=Foj
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Theorem 1618 (Knapp p.188) For any non empty set X there is a free algebra
over X and the image j(X) generates L. Two free algebras over X are isomorphic.

21.2.2 Sum of Lie algebras

Definition 1619 The sum of two Lie algebras (A,[],),(B,[]z) is the vector
space A ® B with the bracket :
XY e AX' Y eB: [ X+ XY +Y],05=[X,Y], +[XY]p

then A’=(A,0), B’=(0,B) are ideals of A® B

Definition 1620 A Lie algebra A is said to be reductive if for any ideal B
there is an ideal C such that A= B ® C

A real Lie algebra of matrices over the fields R, C, H which is closed under
the operation conjugate / transpose is reductive.

21.2.3 Semi-direct product

Theorem 1621 (Knapp p.38) If (A,[]4).(B,[lg) are two Lie algebras over the
same field, F a Lie algebra morphism F : A — Der(B) where B is the set of
derivations over B, then there is a unique Lie algebra structure over A® B called
semi-direct product of A,B, denoted C = A ®p B such that :

VX, YeA: [ X,)Y],=[XY],

VX, YeB:[X)Y],=[X,Y]y

VX €AY eB:[X,)Y],=F(X)()

Then A is a subalgebra of C, and B is an ideal of C.
The direct sum is a special case of semi-direct product with F=0.

21.2.4 Universal envelopping algebra

A Lie algebra is not an algebra. It entails that the computations in a Lie algebras,
when they involve many brackets, become quickly unmanageable. This is the
case with the linear representations (F,p) of Lie algebras where it is natural
to deal with products of the kind p(X1)p (X2)...p(X,) which are product of
matrices, image of tensorial products X; ® ... ® X,,. Moreover it is useful to be
able to use some of the many theorems about ”true” algebras. But to build an
algebra over a Lie algebra A requires to use many copies of A.
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Definition

Definition 1622 The universal envelopping algebra of order r U, (A) of a Lie
algebra (A, []) over the field K is the quotient space: (T (A))" of the tensors of or-
der 1 over A, by the two sided ideal :] = {X @Y - Y @ X — [X,Y],X,Y € T'(A)}

The universal envelopping algebra U (A) is the direct sum : U (A) =
BrzoUr (A)

Theorem 1623 (Knapp p.214) With the tensor product U(A) is a unital al-
gebra over the field K

The scalars K belong to U(A) and the unity element is 1.

So all elements of the kind : XY - Y ® X — [X,Y] ~0

The subset U, (A) of the elements of U(A) which can be written as products
of exactly r elements of A is a vector subspace of U(A).

U(A) is not a Lie algebra. Notice that A can be infinite dimensional.

The map : 2: A — U(A) is one-one with the founding identity :

[ X, Y] = o(X)e(Y) —o(Y)e(X)

Theorem 1624 (Knapp p.215) The universal envelopping algebra of a Lie alge-
bra (A, []) over the field K has the universal property that, whenever L is a unital
algebra on the field K and p: A — L a map such that p(X)p(Y)—p(Y)p(X) =
p|X,Y] , there is a unique algebra morphism p such that : p: U(A) = L:p=
poi

Properties

Theorem 1625 Poincaré-Birkhoff-Witt (Knapp p.217):If A is a Lie algebra
with basis (e;);c; where the set I has some total ordering, then the set of mono-
mials : (1(e5,))"" (2(€i))" ... (2 (eip))np Ly <dg.. <ip€l,ny,.mp € Nisa
basis of its universal envelopping algebra U(A).

Theorem 1626 (Knapp p.216) Transpose is the unique automorphism t :
U(A) — U(A) on the universal envelopping algebra U(A) of a Lie algebra :
such that : (X)) = —u(X)

Theorem 1627 (Knapp p.492) If (A,[]) is a finite dimensional Lie algebra ,
then the following are equivalent for any element U of its universal envelopping
algebra U(A):

i) U is in the center of U(A)

i) VX e A: XU=UX

i) VX € A:exp(ad (X)) (U)=U

Theorem 1628 (Knapp p.221) If B is a Lie subalgebra of A, then the asso-
ciative subalgebra of U(A) generated by 1 and B is canonically isomorphic to
U(B).
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Soif A=A & Ay then U(A) =~ U (A1) ®x U (42)
And we have also : U(A) =~ Sdim 4, (A1) Sdim 4, (A2) with the symmetriza-
tion operator on U(A) :

Sr(U) =X 1y.00) U™ Loea, €a)-€a(r)

Theorem 1629 (Knapp p.230) If A is the Lie algebra of a Lie group G then
U(A) can be identified with the left invariant differential operators on G, A can
be identified with the first order operators .

Theorem 1630 If the Lie algebra A is also a Banach algebra (possibly infi-
nite dimensional), then U(A) is a Banach algebra and a C*-algebra with the
involution : x: U (A) - U (A) : U* =U"

Proof. the tensorial product is a Banach vector space and the map 1 is contin-
uous. W

Casimir elements
Casimir elements are commonly used to label representations of groups.

Definition 1631 (Knapp p.293) If (F, p) is a finite dimensional representation
of the finite dimensional Lie algebra (A,[]) , and the Killing form B on A is
non degenerate the Casimir element of order r is :

Q=300 =1 Tr (pleiy - eipe - €35,)) 1 (Biy) ot (B, ) € U (A)

where :

(€;);—, is a basis of A

E; is the vector of A such that : B (E;, e;) = ;5

Warning ! the basis (E;);_; is a basis of A and not a basis of its dual A¥,
so € is just an element of U(A) and not a bilinear form.

The matrix of the components of (E;)!_, is just [E] = [B]”" where [B] is
the matrix of B in the basis. So the vectors (E;)!"_; are another basis of A

For r=1 and p = Id we have :

O =302 Bleiej)r(Ei)1(E;) € U (A)

The Casimir element has the following properties :

i) it does not depend of the choice of a basis

ii) it belongs to the center Z(U(A)) of U(A), so it commutes with any element
of A

21.3 Classification of Lie algebras

Foundamental theorems

Theorem 1632 Third Lie-Cartan theorem (Knapp p.663) : Every finite di-
mensional real Lie algebra is isomorphic to the Lie algebra of an analytic real
Lie group.
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Theorem 1633 Ado’s Theorem (Knapp p.663) : Let A be a finite dimensional
real Lie algebra, n its unique largest nilpotent ideal. Then there is a one-one
finite dimensional representation (E,f) of A on a complex vector space E such
that f(X) is nilpotent for every X in n. If A is complex then f can be taken
complex linear.

Together these theorems show that any finite dimensional Lie algebra on a
field K is the Lie algebra of some group on the field K and can be represented as
a Lie algebra of matrices. We will see that this not true for topological groups
which are a much more diversified breed.

Thus the classification of finite dimensional Lie algebras is an endeavour
which makes sense : the scope of the mathematical structures to explore is well
delimited, and we have many tools to help our quest. But the path is not so
easy and rather technical. However the outcome is much simpler, and that is
the most important for all practical purposes.

The existence of brackets leads to some relations between elements of a Lie
algebra. Indeed we have : [e;,e;] = C’fjek meaning that a vector of A can be
defined, either as a linear combination of vectors of a basis (as in any vector
space), or through the bracket operation. Thus we can consider the possibility
to define a ”set of generators”, meaning a set of vectors such that, by linear
combination or brackets, they give back A. This set of generators, if it exists,
will be of a cardinality at most equal to the space vector dimension of A. This is
the foundation of the classification of Lie algebras. We are lead to give a special
attention to the subsets which are generated by the brackets of vectors (what
we have previously denoted [B, C]).

The classification of Lie algebras is also the starting point to the linear
representation of both Lie algebras and Lie groups and in fact the classification
is based upon a representation of the algebra on itself throuh the operator ad.

The first step is to decompose Lie algebras in more elementary bricks, mean-
ing simple Lie algebras.

21.3.1 Solvable and nilpotent algebras

Definition 1634 For any Lie algebra (A,[]) we define the sequences :
AY=AJ A = [AD, AC] D . AR = [AF AF] .
Ag=AD A=A Ao)... D Apy1 = [A Ar], ...

Theorem 1635 (Knapp p.42) For any Lie algebra (4,]]) :

AR C Ay
Each A, Ay, is an ideal of A.

Solvable algebra

Definition 1636 A Lie algebra is said solvable if 3k : A¥ = 0. Then A1 is
abelian.
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Theorem 1637 Any 1 or 2 dimensional Lie algebra is solvable
Theorem 1638 If B is a solvable ideal and A/B is solvable, then A is solvable

Theorem 1639 The image of a solvable algebra by a Lie algebra morphism is
solvable

Theorem 1640 (Knapp p.40) A n dimensional Lie algebra is solvable iff there
1s a decreasing sequence of subalgebras By, :

By=B2B;.. 2 By1..2 B, =0

such that Byy1 is an ideal of By and dim(By/Bgy1) =1

Theorem 1641 Cartan (Knapp p.50) : A finite dimensional Lie algebra is
solvable iff its Killing form B is such that : VX € AY € [A,A]: B(X,Y)=0

Theorem 1642 Lie (Knapp p.40) : If A is a solvable Lie algebra on a field
K and (E, f) a finite dimensional representation of A, then there is a non null
vector u in E which is a simulaneous eigen vector for f(X),X € A if all the
eigen values are in the field K.

So if A is solvable, it can be represented in a finite dimensional vector space
as a set of triangular matrices.

Theorem 1643 (Knapp p.32) If A is finite dimensional Lie algebra, there is
a unique solvable ideal, called the radical of A which contains all the solvable
ideals.

Nilpotent algebra

Definition 1644 A Lie algebra A is said nilpotent if Ik : A, = 0.

Theorem 1645 A nilpotent algebra is solvable, has a non null center Z(A) and
A1 CZ(A).

Theorem 1646 The image of a nilpotent algebra by a Lie algebra morphism is
nilpotent

Theorem 1647 (Knapp p.46) A Lie algebra A is nilpotent iff VX € A: ad (X)
is a nilpotent linear map (meaning that 3k : (adX)" = 0).

Theorem 1648 (Knapp p.49) Any finite dimensional Lie algebra has a unique
largest nilpotent ideal n, which is contained in the radical rad(A) of A and
[A,rad(A)JC n. Any derivation D is such that D(rad(A))Cn.

Theorem 1649 (Knapp p.48, 49) A finite dimensional solvable Lie algebra A

i) has a unique largest nilpotent ideal n, namely the set of elements X for
which ad(X) is nilpotent. For any derivation D : D(A)E n
it) [A,A] is nilpotent
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Theorem 1650 Engel (Knapp p.46) If E is a finite dimensional vector space,
A a sub Lie algebra of L(E;E) of nilpotent endomorphisms, then A is nilpotent
and there is a non null vector u of E such that f(u)=0 for any f in A. There is
a basis of E such that the matrices of f are triangular with 0 on the diagonal.

21.3.2 Simple and semi-simple Lie algebras

Definition 1651 A Lie algebra is :
simple if it is non abelian and has no non zero ideal.
semzi-simple if it has no non zero solvable ideal.

A simple algebra is semi-simple, the converse is not true.
Theorem 1652 (Knapp p.33) If A is simple then [A, Al = A

Theorem 1653 (Knapp p.33) FEvery semi-simple Lie algebra has for center
Z(A)=0.

Theorem 1654 (Knapp p.32) A finite dimensional Lie algebra A is semi-
simple iff rad(A)=0.

There are no complex semi-simple Lie algebra of dimension 4,5 or 7.

Theorem 1655 (Knapp p.54) If Ao is the real form of a complex Lie algebra
A, then Ay is a semi simple real Lie algebra iff A is a semi simple complex Lie
algebra.

Theorem 1656 (Knapp p.50,54) For a finite dimensional Lie algebra A :

i) A/rad(A) is semi-simple.

it) A is semi-simple iff the Killing form B is non degenerate

iii) A is solvable iff the Killing form B is such that : YX € A)Y € [A,A] :
B(X,Y)=0

i) A is semi simple iff A = Ay & As... ® A where the A; are ideal and
simple Lie subalgebras. Then the decomposition is unique and the only ideals of
A are sum of some A;.

Thus the way to classify finite dimensional Lie algebras is the following :

i) for any algebra H=A /rad(A) is semi-simple.

ii) rad(A) is a solvable Lie algebra, and can be represented as a set of trian-
gular matrices

iii) any semi simple algebra is the sum of simple Lie algebras

iv) from H we get back A by semi-direct product

If we have a classification of simple Lie algebras we have a classification of
all finite dimensional Lie algebras.
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21.3.3 Abstract roots system

The classification is based upon the concept of abstract roots system, which
is...abstract and technical, but is worth a look because it is used extensively

in many topics related to the representation of groups. We follow Knapp (II
p.124).

Abstract roots system
1. Definition:

Definition 1657 An abstract roots system is a finite set A of non null
vectors of a finite dimensional real vector space (V,()) endowed with an inner
product (definite positive), such that :

i) A spans V

i) Va,B € A: 2828 ¢ N

(a,0)
iii) the set W of linear maps on 'V defined by s, (8) = ﬁ—2%a forae A
carries A on itself

W is a subgroup of the orthonormal group of V, comprised of reflexions,
called the Weyl’s group.

The vectors of A are linearly dependant, and the identities above are very
special, and indeed they can be deduced from only 9 possible configurations.
The next step is to simplify A.

2. Reduced system:
It is easy to see that any integer multiple of the vectors still meet the iden-
tities. So we can restrict a bit the definition :

Definition 1658 An abstract roots sytem is said to be reduced if « € A =
200 ¢ A.

Most of the results will be given for reduced roots system.

Definition 1659 An abstract roots system is said to be reducible if it is the
direct sum of two sets, which are themselves abstract roots systems, and are
orthogonal. It is irreducible if not.

An irreducible system is necessarily reduced, but the converse is not true.
The previous conditions give rise to a great number of identities. The main
result is that « € A = —a € A even if the system is reduced.

3. Ordering:

Definition 1660 An ordering on a finite dimensional real vector space is an
order relation where :

a set of positive vectors is identified

if u is in V, either u or -u is positive

if u and v are positive then u+v is positive.
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There are many ways to achieve that, the simplest is the lexicographic or-
dering. Take a basis (ei)ézl of V and say that u>0 if there is a k such that
(u,e;) =0 for i=1..k-1 and (u, er) > 0.

4. Simple system:

Definition 1661 A root o € A of an ordered abstract root system is simple
if @« > 0 and there is no 8,8 > 0 such that o« = 8+ .

Theorem 1662 For any abstract roots system A there is a set Il = (aq, ..., o)
with I=dim (V) of linearly independant simple roots, called a simple system,
which fully defines the system:

i) for any root B € A : E(ni)lizl ,n; € N : either 8 = Zi:l noy; or B =
=i i

it) W is generated by the sq,;,i =1...1

i) Va € A, Jw e W,a; € I1: @ = waey;

w) if ILIT are simple systems then Jw € W, w unique : ' = wll

The set of positive roots is denoted AT = {a € A:a > 0}.
Remarks :
i) I = AT C A but AT is usually larger than II

ii) any + (Zé:l niai) does not necessarily belong to A

Definition 1663 A vector A € V is said to be dominant if : Va € A" :
A\ a) > 0.

For any vector A of V there is always a simple system II for which it is
dominant, and there is always w € W such that wA is dominant.

Abstract Cartan matrix
The next tool is a special kind of matrix, adjusted to abstract roots systems.
1. For an abstract root system represented by a simple system IT = (ay, ..., a;)
the matrix :

[4];; = 23255

has the properties :

i) [A] i €L

ii) [A]ii =2Vi#j: [A]ij <0

iii) [A]ij =0& [A]ji =0

iv) there is a diagonal matrix D with positive elements such that DAD™! is
symmetric definite positive.

v) does not depend ot the choice of positive ordering, up to a permutation
of the indices (meaning up to conjugation by permutation matrices).

2. A matrix meeting the conditions i) through iv) is called a Cartan matrix.
To any Cartan matrix one can associate a unique simple system, thus a reduced

abstract root system, unique up to isomorphism.
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3. By a permutation of rows and columns it is always possible to bring a
Cartan matrix in the block diagonal form : a triangular matrix which is the
assembling of triangular matrices above the main diagonal. The matrix has a
unique block iff the associated abstract root system is irreducible and then is
also said to be irreducible.

The diagonal matrix D above is unique up a multiplicative scalar on each
block, thus D is unique up to a multiplicative scalar if A is irreducible.

Dynkin’s diagram
Dynkin’s diagram are a way to represent abstract root systems. They are also
used in the representation of Lie algebras.

1. The Dymkin’s diagram of a simple system of a reduced abstract roots
IT is built as follows :

i) to each simple root a; we associate a vertex of a graph

ii) to each vertex we associate a weigth w; = k (ay, a;) where k is some fixed
scalar

iii) two vertices i, j are connected by [4],;

The graph is connected iff the system is irreducible.

2. Conversely given a Dynkin’s diagram the matrix A is defined up to a
multiplicative scalar for each connected component, thus it defines a unique
reduced abstract root system up to isomorphism.

3. There are only 9 types of connected Dynkin’s diagrams, which define
all the irreducible abstract roots systems. They are often represented in books
about Lie groups (see Knapp p.182).

x [A];; = 4% edges

(aioq){aj,a;

4. To understand the usual representation of Dynkin’s diagram :

i) the abstract roots system is a set of vectors of a finite dimensional real vec-
tor space V. So, up to isomorphism, we can take V as a n dimensional subspace
of R™ for some m (it is almost always R™ itself but there are exceptions).

ii) we can define the inner product () through an orthonormal basis, so we
take the canonical basis (e;);~, of R™ with the usual euclidian inner product.

iii) thus a simple roots system is defined as a special linear combination of
the (e;);",

5. The 9 irreducible roots systems are the following :
a) Ap:n>1: V:ZZillxkek,ZZ;lxk =0
A= €; — ej,i 75_]

IT={e; —es,ea —e3,..n —€ni1}

b) Bp,:n>2:V=R"
A={te;te;,i<jtU{Lesr}

IT={e; —e9,e2 —€3,..n_1 — €n,€n}
¢)Cp:n>3:V=R"

A ={te;, tej,i<j}U{Et2es}

IT={e; —ez,ea —€3,..n_1 — €n,2e,}
d)D,:n>4:V=R"
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A= {:I:ei:I:ej,i < j}
IT={e1 —ez,e2 —€3,..n—1 — €n,€n_1+€n}
e) 5 exceptional types (with the dimension of V) : Eg (6), E7 (7), Es (8),F4(4),G2 (2)

21.3.4 Classification of semi-simple complex Lie algebras

The procedure is to exhibit for any complex semi-simple Lie algebra an abstract
roots system, which gives also a set of generators of the algebra. And conversely
to prove that a Lie algebra can be associated to any abstract roots system.

In the following A is a complex semi-simple finite dimensional Lie algebra
with dimension n.

Cartan subalgebra

Definition 1664 A Cartan subalgebra of a complex Lie algebra (A,[]) is an
abelian subalgebra h such that there is a set of linearly independant eigen vectors
Xk of A such that A = Span(Xy) and VH € h : adg Xy, = A\ (H) X}, with an
eigen value A (H) which can depend on H

We assume that h is a maximal Cartan algebra : it does not contain any
other subset with these properties.

Theorem 1665 (Knapp p.134) Any complex semi-simple finite dimensional
Lie algebra A has a Cartan subalgebra. All Cartan subalgebras of A have the
same dimension, called the rank of A

Cartan subalgebras are not necessarily unique. If h;h’ are Cartan subalgebras
of A then there is some automorphism a € Int(A) : b’ = ah

Definition 1666 A Cartan subalgebra h of a real Lie algebra (A, []) is a subalge-
bra of h such that the complezified of h is a Cartan subalgebra of the complexified
of A.

Theorem 1667 (Knapp p.384) Any real semi simple finite dimensional Lie
algebra has a Cartan algebra . All Cartan subalgebras have the same dimension.

Root-space decomposition
1. Let h be a Cartan subalgebra, then we have the following properties :
i) h itself is an eigen space of ady with eigen value 0 : indeed VH, H' € h :
[H,H'|=adgH' =0
ii) the eigenspaces for the non zero eigen values are unidimensional
iii) the non zero eigen values are linear functions « (H) of the vectors H
2. Thus there are n linearly independant vectors denoted X} such that :
for k=1...1 (X;g)ﬁcz1 is a basis of h and VH € h: adg Xy, = [H, X;] =0
fork=141,..n: VH € h: adg Xy, = [H, Xi| = oy, (H) X}, where: oy, : h —» C
is linear, meaning that oy € h*
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These functions do not depend on the choice of X}, in the eigenspace because
they are unidimensional. Thus it is customary to label the eigenspaces by the
function itself : indeed they are no more than vectors of the dual, and we have
exactly n-1 of them. And one writes :

A(h) ={ax € h*}

Ay ={Xe€eA:VHeh:adgX =a(H)X}

A=h DBaeca Aa

The functionals o € A are called the roots, the vectors of each A, are the
root vectors, and the equation above is the root-space decomposition of the
algebra.

3. Let B be the Killing form on A. Because A is semi-simple B is non
degenerate thus it can be used to implement the duality between A and A*,
and h and h*, both as vector spaces on C.

Then : VH,H' € h: B(H,H") =3 Aa(H)a(H')

Define :

i) V the linear real span of A in h*: V = {3 A zao; x4 € R}

ii) the n-1 B-dual vectors Hy of « inh: H, € h:VH € h: B(H,H,) =
a(H)

iii) the bilinear symmetric form in V :

(Ha, Hp) = B (Ha, Hg) = X5 cp 7 (Ha) v (Hy)

(u,v) =32, BEA TaysB (Ha, Hg

iv) hg the real linear span of the H, : hg = {ZQGA ToHy; o € R}

Then :

i) Vis a real form of h*: h* =V @iV

ii) ho is a real form of h: h = hy @ ihg and V is exactly the set of covectors
such that VH € hg : u (H) € R and V is real isomorphic to A

iii) () is a definite positive form, that is an inner product, on V

iv) the set A is an abstract roots system on V, with ()

v) up to isomorphism this abstract roots system does not depend on a choice
of a Cartan algebra

vi) the abstract root system is irreducible iff the Lie algebra is simple

4. Thus, using the results of the previous subsection there is a simple sys-
tem of roots I = (ay,...a;) with 1 roots, because V = spang(A),dimg V' =
dimc¢ A* = dimc h =1

Define :

hi = ﬁHai

E; #OEAM :VH € h:adyF; :Oéi(H)Ei

F,#£0€A_,,:VH e h:adyF;, = —«; (H) F;

Then the set {h;, E;, Fi}izl generates A as a Lie algebra (by linear combina-
tion and bracket operations). As the abstract roots systems have been classified,
so are the semi-simple complex Lie algebras.

So a semi-simple complex Lie algebra has a set of at most 8 x rank genera-
tors. But notice that it can have fewer generators : indeed if dim(A)=n<3L

This set of generators follows some specific identities, called Serre’s relations,
expressed with a Cartan matrix C, which can be useful (see Knapp p.187):
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o FJ] = _CZJ
(adE;)" " E; = 0 when i # j
(adF;)~ ™ F; = 0 when i # j

Example sl(C,3)
This the Lie algebra of 3x3 complex matrices such that Tr(X)=0. It is a 8
dimensional, rank 2 algebra.
Its Killing form is : X,Y € sl(C,3): B(X,Y) =6Tr(XY)
The Cartan algebra comprises of diagonal matrices and we take as basis of

h:
1 0 0 0 0 O
Hi=]|0 -1 0|;Hy=1{0 1 0
0 0 O 0 0 -1

and take as other elements of a basis of sl(c,3) :
010 0 00 0 0 1

Ei=1|0 0 0|;E,=1(0 0 1|;E3=1(0 0 O
000 0 00 0 0 0

F1 = E{;FQ = Eé;Fg = E§

Eq, Es, E3 are common eigen vectors of ad(h) :

ad (Hl)El = 2E1 = Q1 (Hl) El;ad (HQ)El = —El = (1 (HQ) El

ad (Hl) E2 = —E2 = (g (Hl) EQ; ad (HQ) EQ = 2E2 = (g (HQ) E2

ad (Hy) B3 = B3 = ag (H1) E3;ad (H2) E3 = E3 = a3 (Hs) B3

It is easy to see that : adgF; = —«; (H) F;

Each of the root spaces are generated by one of the vectors F1, Es, E3, F1, Fy, F3

So: sl(C,3)=ha (B} E;) @ (L, F)

We have the roots : A = {a1, a2, a3, —a1, —ag, —as} which are not inde-
pendant : we have also ag = oy + as

A simple system is given by : II = {a1, a2} and the positive racines are :
AT ={a1, a2, a3} and the negative : A~ = {—«a1, —ag, —az}

The generators of sI(C,3) are : {H;, Ej, F;};_; ,

Take as basis of the dual vector space sl(C,3)* : ()\i)fz
[X]l for X = Hl,HQ

Ai <E§:1 i Hy+ 3 v By + Zij) = S (H)) + 305 vk (By) +
zjAi (Fy)

then: a1 = )\1 — )\2,(12 = )\2 — )\3,(13 = )\1 — )\3

The A; play the same role as the e; in the Dynkin diagram.

101 =1,2,3: N (X) =
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Classification of semi-simple complex Lie algebras
1. The classification of Lie algebras follows the classification of abstract roots

systems (Knapp p.683). The Lie algebras are expressed as matrices algebras in
their standard linear representation (see below):

Ap,n>1:sl(n+1,0)

B,,n>2:s50(2n+1,C)

Cp,n>3:sp(n,C)

Dy,,n > 4:s0(2n,C)

The exceptional systems give rise to 5 exceptional Lie algebras (their dimen-
sion is in the index) :Fg, E7, Es, Fy, Go

2. Conversely if we start with an abstract roots system it can be proven :

i) Given an abstract Cartan matrix C there is a complex semi-simple Lie
algebra whose roots system has C as Cartan matrix

ii) and that this Lie algebra is unique, up to isomorphism. More precisely :

let AJA’ be complex semi-simple algebras with Cartan subalgebras h, h’,
and roots systems A, A’. Assume that there is a vector space isomorphism :¢ :
h — R’ such that its dual ¢* : B* — h* = ©* (A") = A. For a € A define
o' = ¢*7!(a). Take a simple system II C A, root vectors E,, E, then there
is one unique Lie algebra isomorphism ® : A — A’ such that ®|;, = ¢ and
¢ (E,) = Ew

3. Practically : usually there is no need for all the material above. We know
that any finite dimensional Lie algebra belongs to one the 9 types above, and
we can proceed directly with them.

21.3.5 Compact algebras

This the only topic for which we use analysis concepts in Lie algebra study.

Definition of Int(A)
Let A be a Lie algebra such that A is also a Banach vector space (it will be
the case if A is a finite dimensional vector space). Then :

i) For any continuous map f€ L£(A4;A) the map : expf = > o7 L f" €
L(A; A) (f™ is the n iterate of f) is well defined (see Banach spaces) and has
an inverse.

ii) If f is a continuous morphism then f™([X,Y]) = [/ (X), " (Y)] and
exp(f) is a continuous automorphism of A

iii) if for any X the map ad(X) is continuous then : exp ad(X) is a continuous
automorphism of A

iv) the subset of continuous (then smooth) automorphisms of A is a Lie
group whose connected component of the identity is denoted Int(A).

Compact Lie algebra

Definition 1668 A Banach Lie algebra A is said to be compact if Int(A) is
compact with the topology of L(A; A).
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Int(A) is a manifold, if it is compact, it must be locally compact, so it cannot
be infinite dimensional. Therefore there is no compact infinite dimensional Lie
algebra. Moreover :

Theorem 1669 (Duistermaat p.151) A compact complex Lie algebra is abelian.

So the story of compact Lie algebras is limited to real finite dimensional Lie
algebras.

Theorem 1670 The Lie algebra of a compact Lie group is compact.

Theorem 1671 (Duistermaat p.149) For a real finite dimensional Lie algebra
A the following are equivalent :
i) A is compact
it) its Killing form is negative semi-definite and its kernel is the center of A
iii) A is the Lie algebra of a compact group

Theorem 1672 (Duistermaat p.151) For a real finite dimensional Lie algebra
A the following are equivalent :

i) A is compact and semi-simple

it) A is compact and has zero center

ii1) its Killing form is negative definite

iv) Every Lie group with Lie algebra Lie isomorphic to A is compact

The simplest criterium to identify compact algebras lays upon the Killing
form :

i) the Lie algebra of a real compact Lie group is always compact and its
Killing form is semi-definite negative.

ii) conversely if the Killing form of a real Lie algebra A is negative definite
then A is compact (and semi-simple).

21.3.6 Structure of semi-simple real Lie algebra

The structure and classification of real Lie algebras are a bit more complicated
than complex ones. They are based upon the fact that any semi-simple complex
Lie algebra can be decomposed into two compact real Lie algebras.

Compact real forms

Theorem 1673 (Knapp p.434) The isomorphisms classes of compact, semi
simple real finite dimensional Lie algebras Ay and the isomorphisms classes
of complex semi simple finite dimensional Lie algebras A are in one-one cor-
respondance : A is the complezification of Ay and Ay is a compact real form
of A. Under this correspondance simple Lie algebras correspond to simple Lie
algebras.
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So any finite dimensional complex semi-simple Lie algebra A has a compact
real form ug. A can be written : A = ug P iug where ug is a real compact Lie
algebra. Any two compact real forms are conjugate via Int(A)

Using the previous classification we can list all the real forms : A — ug

Ap,n>1:sl(n+1,C) = su(n+1,C)

Bn,m>2:s0(2n+1,C) — so(2n + 1, R)

Cpn,n >3:sp(n,C) = sp(n, H) ~ sp(n,C) Nu(2n)

Dy,n > 4:s0(2n,C) — so(2n,R)

and similarly for the exceptional Lie algebras (Knapp p.413).

Given an abstract Cartan matrix C there is a unique, up to isomorphism,
compact real semi simple algebra such that its complexified has C as Cartan
matrix.

Cartan involution

Definition 1674 A Cartan involution on a real semi-simple Lie algebra A
is an automorphism on A, such that 6> = Id and By : By (X,Y) = —B (X, 0Y)
is positive definite.

Let A be a semi-simple complex Lie algebra, ug its compact real form. Then
VZ € A, Jx,y € ug : Z = x +1y.

Define :0 : A — A :: (Z) = x — iy this is a Cartan involution on Ag =
(ug,up) and all the Cartan involutions are of this kind.

Theorem 1675 (Knapp p.445) Any real semi-simple finite dimensional Lie al-
gebra Ag has a Cartan involution. And any two Cartan involutions are conjugate
via Int(Ag).

Cartan decomposition:

Definition 1676 A Cartan decomposition of a real finite dimensional Lie al-
gebra (A,[]) is a pair of vector subspaces ly,po of A such that :

i) A=1lo @ po

it) lo is a subalgebra of A

iti) [lo, lo] & lo, [lo, po] € po, , [Po, po] T lo,

i) the Killing form B of A is negative definite on ly and positive definite on

P.o
v) lo, po are orthogonal under B and By

Theorem 1677 Any real semi-simple finite dimensional Lie algebra A has a
Cartan decomposition

Proof. Any real semi-simple finite dimensional Lie algebra A has a Cartan in-
volution 6, wich has two eigenvalues : £1. Taking the eigenspaces decomposition
of A with respect to 8 :0 (lp) = lo, 0 (po) = —po we have a Cartan decomposition.
]
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Moreover lg, pg are orthogonal under By.

Conversely a Cartan decomposition gives a Cartan involution with the defi-
nition # = +1d on Iy and 0§ = —Id on pg

If A =1Iy®po is a Cartan decomposition of A, then the real Lie algebra
A =ly @ipo is a compact real form of the complexified (Ag)¢

Theorem 1678 (Knapp p.368) A finite dimensional real semi simple Lie alge-
bra is isomorphic to a Lie algebra of real matrices that is closed under transpose.
The isomorphism can be specified so that a Cartan involution is carried to neg-
ative transpose.

Classification of simple real Lie algebras
The procedure is to go from complex semi simple Lie algebras to real forms by
Cartan involutions. It uses Vogan diagrams, which are Dynkin diagrams with
additional information about the way to get the real forms. The results are the
following (Knapp p.421) :
Up to isomorphism, any simple real finite dimensional Lie algebra belongs
to one the following types :
i) the real structures of the complex semi simple Lie algebras (considered as
real Lie algebras) :
Ap,n>1:su(n+1,C) @isu(n+1,C)
Bn,n > 2:s0(2n+ 1,R) @ iso(2n + 1,R)
Cnyn >3 (sp(n,C)Nu(2n)) @i (sp(n,C) Nu(2n))
D,,n >4:s0(2n,R) @ iso(2n,R)
and similarly for FEg, Er7, Egs, Fy, G2
ii) the compact real forms of the complex semi simple Lie algebras
A,,n>1:su(n+1,C)
Bn,n >2:s0(2n+ 1,R)
Cpnyn >3 :sp(n,C)Nu(2n)
D,,n >4:s0(2n,R)
and similarly for FEg, Er7, Eg, Fy, G2
iii) the classical matrix algebras :
su(p,q,C):p>q>0,p+qg>1
so(p,q,R) :p>qg>0,p+qoddand >4 orp>q>0,p+qevenp+q>7
sp(p,q, H) :p>q,p+q>2
sp(n,R) :m > 2
*(271 C):n>3
sl(n,R):n>2
sin,H) :n>1
1v) 12 non complex, non compact exceptional Lie algebras (p 416)
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22 LIE GROUPS

22.1 General definitions and results
22.1.1 Definition of Lie groups

Whereas Lie algebras involve quite essentially only algebraic tools, at the group
level analysis is of paramount importance. And there is two ways to deal with
this : with simple topological structure and we have the topological groups,
or with manifold structure and we have the Lie groups. As it is common in
the litterature to mix both cases, it is necessary to understand the difference
between both structures.

Topological group

Definition 1679 A topological group is a Hausdorff topological space, en-
dowed with an algebraic structure such that the operations product and inverse
are continuous.

With such structure we can handle all the classic concepts of general topology
: convergence, integration, continuity of maps over a group,...What we will miss
is what is related to derivatives. Of course Lie algebras can be related to Lie
groups only.

Definition 1680 A discrete group is a group endowed with the discrete topol-
0gy.

Any set endowed with an algebraic group structure can be made a topological
group with the discrete topology.A discrete group which is second-countable has
necessarily countably many elements. A discrete group is compact iff it is finite.
A finite topological group is necessarily discrete.

Theorem 1681 (Wilansky p.240) Any product of topological groups is a topo-
logical group

Theorem 1682 (Wilansky p.243) A topological group is a regular topological
space

Theorem 1683 (Wilansky p.250) A locally compact topological group is para-
compact and normal

Lie group

Definition 1684 A Lie group is a class v manifold G, modeled on a Banach
space E over a field K, endowed with a group structure such that the product
and the inverse are class r maps.
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Moreover we will assume that G is a normal, Hausdorff, second countable
topological space, which is equivalent to say that G is a metrizable, separable
manifold (see Manifolds).

The manifold structure (and thus the differentiability of the operations) are
defined with respect to the field K. As E is a Banach we need the field K to
be complete (practically K=R or C). While a topological group is not linked to
any field, a Lie group is defined over a field K, through its manifold structure
that is necessary whenever we use derivative on G.

The dimension of the Lie group is the dimension of the manifold. Notice
that we do not assume that the manifold is finite dimensional : we will precise
this point when it is necessary. Thus if G is infinite dimensional, following
the Henderson theorem, it can be embedded as an open subset of an infinite
dimensional, separable, Hilbert space.

For the generality of some theorems we take the convention that finite groups
with the discrete topology are Lie groups of dimension zero.

Lie groups are locally connected, but usually not connected. The connected
component of the identity, denoted usually G is of a particular importance.
This is a group and a manifold, so it has its own Lie group structure (we will
see that it is a Lie subgroup of G).

Example : GL(R,1) = (R, x) has two connected components, GLo(R,1) =
{z,z >0}

We will denote :

the operation G x G = G :: xy = 2

the inverse : G = G iz — 71

the unity : 1

There are some general theorems :

A Lie group is locally compact iff it is finite dimensional.

If G has a complex manifold structure then it is a smooth manifold, and the
operations being C-differentiable are holomorphic.

Theorem 1685 Montgomery and Zippin (Kolar p.43) If G is a separable, lo-
cally compact topological group, with a neighbourhood of 1 which does not contain
a proper subgroup then G is a Lie group .

Theorem 1686 Gleason, Montgomery and Zippin (Knapp p.99 for the real
case) : For a real finite dimensional Lie group G there is exactly one analytic
manifold structure on G which is consistent with the Lie group structure

As the main advantage of the manifold structure (vs the topological struc-
ture) is the use of derivatives in the following we will always assume that a Lie
group has the structure of a smooth (real or complex) manifold, with smooth
group operations.

Warning ! Mathematicians who are specialists of Lie groups use freely the
name ”analytic group”. For Knapp ”an analytic group is a connected Lie group”
(p.69). This is rather confusing. The manifold structure to be analytic is a
property which is rarely used, whereas it is really useful that it is smooth. So a
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smooth manifold will do, and if the analycity is required it is possible to revert
to the theorems above. On the other hand few Lie groups are connected, and
many theorems stand only for connected Lie groups. To use these theorems one
takes the component of the identity (which is the most useful part of the group)
and extend the results by some products. Similarly we will always specify if
the manifold structure is real or complex, and finite or infinite dimensional if
there is some restriction. If there is no such specification that means that the
definition or the result stands for any Lie group, real or complex, finite or infinite
dimensional. So here :

Lie group = any kind of smooth manifold with smooth group operations

Connected Lie group = any kind of Lie group whose manifold is connected

Real Lie group = Lie group whose manifold is modelled on a Banach real
vector space

Complex Lie group = Lie group whose manifold is modelled on a Banach
complex vector space and whose operations are C-differentiable

Finite dimensional Lie group = Lie group whose manifold is finite dimen-
sional

Examples of Lie groups
1. The group GL(K,n) of square nxn inversible matrices over a field K : it is

a vector subspace of K n* which is open as the preimage of det X # 0 so it is a
manifold, and the operations are smooth.

2. A Banach vector space is an abelian Lie group with addition

3. Let E be a Banach vector space, then the set L(F;FE) of continuous
linear map is a Banach vector space, thus a manifold. The set GL (E; E) of
continuous automorphisms over E is an open subset of L(E; F) thus a manifold.
It is a group with the composition law and the operations are differentiable (see
derivatives). So GL (F; E) is a Lie group (but not a Banach algebra).

22.1.2 Translations

Basic operations

1. The translations over a group are just the rigth (R) and left (L) products
(same definition as for any group - see Algebra). They are smooth diffeomor-
phisms. There is a commonly used notation for them :

Notation 1687 R, is the right multiplication by a : R, : G — G : Ryx = za
L, is the left multiplication by a : Ly : G — G :: Lyx = ax

and R,z = xa = L,a

These operations commute : L, o Ry = Ry o L,

Because the product is associative we have the identities :
abe = Reab = R (Ryb) = Lobe = Ly, (Lpc)

Lab = La © Lb; Ra © Rb = Rab;

Lot = (La) ™ jRa-1 = (Ra) ™'

Laq(a) = 1;Ra71(a) =1
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Li=Ry=1d
2. The conjugation with respect to a is the map : Conj, : G = G ::
Conjqxr = ara™!

Notation 1688 Conj,x = L, 0 Ry-1(x) = Ry—1 0 Ly (x)

If the group is commutative then Conj,z = x
Conjugation is an inversible map.

Derivatives
1. If G is a Lie group all these operations are smooth diffeomorphisms over
G so we have the linear bijective maps :

Notation 1689 L!x is the derivative of L, (g) with respect to g, at g=x; L,z €
GL (T,G;T,.Q)
R! x is the derivative of Rq, (g) with respect to g, at g=z; Rl,x € GL (TG TyoG)

2. The product can be seen as a two variables map : M : G x G — G :
M (z,y) = xy with partial derivatives :

uweT,G,veT,G: M (x,y)(u,v) = Ry (z)u+ L, (y)v € Tp,y G

o (@y) = & (Ry (2)) 2= = Ry, (2)

2 (@) = & (Lo (2) la=y = L (y)

Let g,h be differentiable maps G — G and :

f:G =G f(x) =gla)h(z) = M (g(x), h(x))

F(@) = & (g @) h (2)) = Ry (9(2) 0 () + L, (b)) 0 ()

3. Similarly for the inverse map :§: G — G :: S (x) =2~

%%(zﬂz:a =Q(a) =—R,_(1)oL! _,(a)=—L,_,(1)o R/ _,(a)

and for the map : f: G — G :: f(x) = g(x) "' =SJog(x)

= (9@)™) = fl2) = —Ry (D)o Ll i(g9(x)) o g'(x) = —Ly,)-(e)
R o (9(@)) 0 g'(a)

4. From the relations above we get the useful identities :

(L) " = L) (By1) ' = Ryi(9)

(Lyh) ™ = L (gh); (Ryf) " = 1 (o)

e~

gh g h »4lhg g h

(L, ()™ =L, () L, 1 (gh)

Group of invertible endomorphisms of a Banach
If E is a Banach vector space, then the set GL (F; E) of continuous automor-

phisms over E with the composition law is a Lie group. The derivative of the
composition law and the inverse are (see derivatives) :

M:GL(E;E)x GL(E;E) - GL(E;E) = M (f,g)=fog

M'(f,g)(6f,09) =6fog+ fody

S:GL(E;E) —» GL(E;E) =S (f)=f1

(S Of)=—frodfof!
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Thus we have :

M'(f,g)(3f,69) = Ry(f)éf + L' (g9)dg
R (f)of =6fog=Ry(df),

L' (9)dg = f odg = Ly (dg)

Linear groups
The set of matrices GL(n,K) over a field K is a Lie group. The operations :
M:GL(n,K)x GL(n,K) = GL(n,K) :: M(X,Y)=XY =LxY = Ry X
$:GL(n,K) = GL(n,K) =S (X) =Xt
have similarly the derivatives :
R (V) = Ry L (V) = Lx
(3(X)) (w) = =X tuXx

Tangent bundle of a Lie group
The tangent bundle TG=U,ccT,G of a Lie group is a manifold GxE, on the

same field K with dimTG=2xdimG. We can define a multiplication on TG as
follows :

M:TGxTG— TG :: M(Uy,V,) = R (2)Uy + L, (y)Vy € Ty G

$:TG = TG =¥(Vy)=—-R _,(1)oL! _,(z)Vo=—L_,(x)o Rl _,(x)V, €
T,-1G

Identity U, =0, € ThG

Notice that the operations are between vectors on the tangent bundle TG,
and not vector fields (the set of vector fields is denoted X (T'G)).

The operations are well defined and smooth. So TG has a Lie group struc-
ture. It is isomorphic to the semi direct group product : TG ~ (T1G,+) ocaq G
with the map Ad : G x Th'G — T1G (Kolar p.98).

22.1.3 Lie algebra of a Lie group

Subalgebras of invariant vector fields

Theorem 1690 The subspace of the vector fields on a Lie group G over a field
K, which are invariant by the left translation have a structure of Lie subalgebra
over K with the commutator of vector fields as bracket. Similarly for the vector
fields invariant by the right translation

Proof. i) Left translation, right translation are diffeomorphisms, so the push
forward of vector fields is well defined.

A left invariant vector field is such that: X € X(TG) : Vg € G : Ly, X =
X & L (z) X(z) = X (g92)

so with x=1: Vg € G: L, (1) X(1) = X (g)

The set of left smooth invariant vector fields is

LVG={X € X (TG) : X (9) = L, (1) u,u € TG}

Similarly for the smooth right invariant vector fields :

RVGz{X € X (TG): X (9) = R, (N u,u e TlG}
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ii) The set Xo (T'G) of smooth vector fields over G has an infinite dimen-
sional Lie algebra structure over the field K, with the commutator as bracket (see
Manifolds). The push forward of a vector field over G preserves the commutator
(see Manifolds).

X, YelVG:[X,Y]=Z € X (TG)

Ly (Z)=Lgu ((X,Y]) = [Lgs X, LY = [X,Y]=Z = [X,Y] € LVG

So the sets LVG of left invariant and RVG right invariant vector fields are
both Lie subalgebras of X (TG). m

Lie algebra structure of TG

Theorem 1691 The derivative L} (1) of the left translation at =1 is an iso-
morphism to the set of left invariant vector fields. The tangent space T1G be-
comes a Lie algebra over K with the bracket

[u, 0]z, 6 = Ly (9) [Ly (D w, Ly (1) 0]y g

So for any two left invariant vector fields X,Y :

[X,Y](g) = Ly (1) (X (1), Y (Dlpe)

Proof. The map : A: T1G — LVG = A(u) (9) = L; (1) u is an injective linear
map

It has an inverse: VX € LVG,3u € T1G : X (g9) = Ly (1)u

AN LVG - TG u= L) . (9) X (g) which is linear.

So we map : [;,¢ : TiG x TiG — TG == [u, 0] o = A7 (A (1), A (0)]Lve)
is well defined and it is easy to check that it defines a Lie bracket. m

Remarks :

i) if M is finite dimensional, there are several complete topologies available
on X (TG) so the continuity of the map A is well assured. There is no such
thing if G is infinite dimensional, however A and the bracket are well defined
algebraically.

ii) some authors (Duistermaat) define the Lie bracket through rigth invariant
vector fields.

With this bracket the tangent space 717G becomes a Lie algebra, the Lie
algebra of the Lie group G on the field K, with the same dimension as G as
manifold, which is Lie isomorphic to the Lie algebra LVG.

Notation 1692 T1G is the Lie algebra of the Lie group G

Right invariant vector fields

The right invariant vector fields define also a Lie algebra structure on T1G,
which is Lie isomorphic to the previous one and the bracket have opposite signs
(Kolar p.34).

Theorem 1693 If X,Y are two smooth right invariant vector fields on the Lie
group G, then [X,Y](g) = —R(1) [X (1), X (D], ¢
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Proof. The derivative of the inverse map (see above) is :
=3(@)lo=g = (9) = =R, 1(1) 0 L 1 (9) = S'(97") = —Ry(1) o Ly(g™")
Ry(1)=-S'(g7 ) o Lj . (1)
So if X is a right invariant vector field : X (g9) = R (1) X(1) then X (g) =
—'(g7 )X with Xy = L, (1) X (1) a left invariant vector field.
For two right invariant vector fields :
(X, Y] = [-S'(¢g7 ") XL, =S (g7 )Y¥2] = ¥'(97") [X2, Y]

(97 [Lo ()X (1), L (1) X (1)]
(gL (X (1), X (g g = —Ry(1) X (1), X (D] ®

Theorem 1694 (Kolar p.34) If X,Y are two smooth vector fields on the Lie
group G, respectively right invariant and left invariant, then [X,Y] =0

Lie algebra of the group of automorphisms of a Banach space

Theorem 1695 For a Banach vector space E, the Lie algebra of GL (E; E) is
L(E;E) . It is a Banach Lie algebra with bracket [u,v] =uov —vou

Proof. If E is a Banach vector space then the set GL (E; E) of continuous
automorphisms over E with the composition law is an open of the Banach vector
space L(E; E). Thus the tangent space at any point is L(E; F) .

A left invariant vector field is : f € GL(E;E),u € L(E;E) : Xp(f) =
Ly(Nu=fou=Ls(1)u

The commutator of two vector fields VW:GL (E;E) — L(E;E) is (see
Differential geometry) :

VW) = (W) Vi) = (V) W ()

with the derivative : V'(f) : L(E;E) — L(E;FE) and here : X (f) =
fou=Ry(f)= (X1)' (f) = g (Ru(f)) = Ru

Thus : [L(fu)u,/:;u)v] — Ry (fou)— Ry (fov) = fo(uov—vou) =
Ly (1) [w,v]zgmy = ol vl e mm

So the Lie bracket on the Lie algebra L(E;E) is : u,v € L(E; E) : [u,v] =
uov—wvowu. This is a continuous bilinear map because the composition of maps
is itself a continuous operation. m

Linear groups

If G is a Lie group of matrices, meaning some subset of GL(K,n) with a Lie
group structure, as a manifold it is embedded in the vector space of square
matrices K(n) and its tangent space at any point is some vector subspace L(n)
of K(n). Left invariant vector fields are of the kind : X, (g) = [g] x [u] where
g € G,u € L(n). The commutator is, as above :

Xz, Yi]yq = lg] x [u] x [v] = [g] x [0] x [u] = [u, 0] ) = [u] X [v] = [v] X [u].
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The group of automorphisms of the Lie algebra

Following the conditions imposed to the manifold structure of G, the tangent
space T, G at any point can be endowed with the structure of a Banach space
(see Differential geometry), which is diffeomorphic to E itself. So this is the case
for T1G which becomes a Banach Lie algebra, linear diffeomorphic to E.

The set L(T1G;T1G) of continuous maps over 731G has a Banach algebra
structure with composition law and the subset GL (T1G;T1G) of continuous
automorphisms of 771G is a Lie group. Its component of the identity Int(7T1G)
is also a Lie group. Its Lie algebra is £ (T1G;T1G) endowed with the bracket :
f,9€ L(MGTVG) = [f,g]=fog—gof

One consequence of these results is :

Theorem 1696 A Lie group is a parallellizable manifold

Proof. take any basis (eq),.4 of the Lie algebra and transport the basis in
any point x by left invariant vector fields : (L], (1) eq),e4 is a basis of T,G. =

22.1.4 Adjoint map

Definition

Definition 1697 The adjoint map over a Lie group G is the derivative of the
conjugation taken at x=1

Notation 1698 Ad is the adjoint map : Ad : G — L(TWG;ThG) = Ady =
(Conjg(@))'|e=1 = Li(g™1) o Ry-1 (1) = Ry -1 (g) o Ly(1)

Properties

Theorem 1699 The adjoint map over a Lie group G is a bijective, continu-
ous linear map, and Vx € G : Ad, € GL (T1G;T1G) is a continuous automor-
phism of Lie algebra and belongs to its connected component Int (T1G) .

Theorem 1700 (Knapp p.79) For any Lie group Ad is a smooth Lie homo-
morphism from G to GL (T1G; ThG)

It is easy to check that :

Adgy = Ady o Ad,,

Ady = Id

(Ady) "' = Ady—

Vu,v € TG,z € G : Ady [u,v] = [Adyu, Adyv]

If G is the set GL(F;E) of automorphims of a Banach vector space or
a subset of a matrices group, then we have seen that the derivatives of the
translations are the translations. Thus :

GL(E;E): Adyu =xouoz™!

Matrices : Ad, [u] = [a] [u] [2] "
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Derivative of the adjoint map
Conjugation being differentiable at any order, we can compute the derivative

of Ad, with respect to x :

L Ady|y—e € L(TVG; L (TVG;TVG)) = L2 (TG ThG)

(s Adow) [ =1 (v) = [u, ], ¢ = ad(w)(v)

If M is a manifold on the same field K as G, f : M — G a smooth map then
for a fixed u € T1G let us define :

Gu: M — TG 2 ¢y (p) = Adypyu

The value of its derivative for v, € T, M is :

&, () (1p) = Ady) [ Ly (f () D)y,

22.1.5 Exponential map

The exponential map exp : L (E; E) — GL (E; E) is well defined on the set of
continuous linear maps on a Banach space E . It is related to one paramer
groups, meaning the differential equatlon = SU(t) between operators on E,
where S is the infinitesimal generator and U( )=exptS. On manifolds the flow
of vector fields provides another concept of one parameter group of diffeomor-
phisms. Lie group structure gives a nice unified view of these concepts.

One parameter subgroup

Theorem 1701 (Kolar p.36) On a Lie group G, left and right invariant vector
fields are the infinitesimal generators of one parameter groups of diffeomor-
phism. The flow of these vector fields is complete.

Proof. i) Let ¢ : R —» G be a smooth map such that : Vs, t,s+t € R :

¢(s +1) = ¢()¢()SO¢()
Then : Fr:RxG — G = FR(tx):gb():zr— R;¢ (t) is a one parameter

group of d1ffeomorph1sm on the manifold G, as defined previously (see Differ-
ential geometry). Similarly with Ff, (t,2) = ¢ (t) x = L, (t)
So Fr, Fr, have an infinitesimal generator, which is given by the vector field

Xp (@) = L, (1) ($lm0) = L (W u
Xn () = B, (1) (Gh=0) = B (1)

with u = %hzo e TG
2. And conversely any left (right) invariant vector field gives rise to the flow

Dy, (t,z) (Px, (t,2)) which is defined on some domain D (Px, ) = Uzea {Jx X {2}} C

R x G which is an open neighborhood of 0xG
Define: ¢ (t) = Ox, (t,1) = d(s+t) =Px, (s+t,1) = Px, (s,Px, (t,1)) =
Dy, (s,¢(t)) thus ¢ is defined over R
Define Fy, (t,2) = L,¢ (t) then : %FL (t,2) |t=0 = L., (1) %|t:0 = X, (z) so
this is the flow of X, and
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Fr(t+s,2) =Fr (6, Fr (5,2) = Lp, (5,00 (t) = Lygs)@ (t) = ¢ (s) ¢ (t) =
P(s+t)=0(s)o(t)

Thus the flow of left and rigth invariant vector fields are complete. m

The exponential map

Definition 1702 The exponential map on a Lie group is the map :
exp: T'G = G mexpu=Px, (1,1) = Px,, (1,1) with X1, (x) = L, (1) u, Xr(z) =
R, (1)u,u e ThG

From the definition and the properties of the flow :

Theorem 1703 On a Lie group G over the field K the exponential has the
following properties:

i) exp (0) = 1, (expu)’ |u=o = Idr,c

ii) exp ((s 4 t)u) = (exp su) (exp tu) ;exp(—u) = (expu) ™"

Z”) % eXptu|t:9 = Llexpeu(l)u = R‘/expeu (1) u

i) Vo € G,u € T1G : exp (Adyu) = x (expu) x~! = Conj, (expu)

v) For any left X1, and right Xg invariant vector fields : ®x, (x,t) =
xexptu; Px, (z,t) = (exptu)x

Theorem 1704 (Kolar p.86) On a finite dimensional Lie group G the expo-
nential has the following properties:

i) it is a smooth map from the vector space T1G to G,

it) it is a diffeomorphism of a neighbourhood n(0) of 0 in T1G to a neigh-
borhood of 1 in G. The image expn(0) generates the connected component of the
identity.

Remark : the theorem still holds for infinite dimensional Lie groups, if the
Lie algebra is a Banach algebra, with a continuous bracket (Duistermaat p.35).
This is not usually the case, except for the automorphisms of a Banach space.

Theorem 1705 (Knapp p.91) On a finite dimensional Lie group G for any
vectors u,v € T1G :
(U, V], =0 Vs,t € R:expsuoexptv=exptvoexpsu

Warning !

i) we do not have exp(u+v)=(expu)(expv) and the exponential do not com-
mute. See below the formula.

ii) usually exp is not surjective : there can be elements of G which cannot
be written as g = exp X. But the subgroup generated (through the operation
of the group) by the elements {expv,v € n(0)} is the component of the identity
Gy. See coordinates of the second kind below.

iii) the derivative of expu with respect to u is not expu (see below logarithmic
derivatives)

iv) this exponential map is not related to the exponential map deduced from
geodesics on a manifold with connection.
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Theorem 1706 Campbell-Baker-Hausdorff formula (Kolar p.40) : In the
Lie algebra ThG of a finite dimensional group G there is a heighborhood of 0 such
that Vu,v € n(0) : expuexpv = expw where

o (=)" [l fc k I
w=utv+g[uv]+300, (nJlr)1 o (Zk,zzo;kﬂg zmr (adu)” (adv) ) (u) dt

Group of automorphisms of a Banach space

Theorem 1707 The exponential map on the group of continuous automor-
phisms GL (E; E) of Banach vector space E is the map :

exp : Rx L(E;E) — GL(E}E) = exptu = Y~ %u” and |lexptul| <
expt [|ull

where the power is understood as the n iterate of u.
Proof. GL (E; E) is a Lie group, with Banach Lie algebra L(FE; E') and bracket
s u,v € L(ESE)  [u,v] =uov—vou

Foru e L(E;E) X =L} (1)u= fou fixed, the map : ¢: R x L(E; E) —
L(E;E) = ¢(t) = f1®x, (f,t) = exptu with the relations : ¢ (0) = Id, ¢ (s +t) =
@ (8) o ¢ (t) is a one parameter group over L(E;E) (see Banach spaces). It is
uniformly continuous : lim;_ ||¢(t) — Id|| = lims—¢ |lexptu — Id|| = 0 because
exp is smooth (L(E; E) is a Banach algebra). So there is an infinitesimal gener-
ator : S € L(E;E) : ¢(t) = exptS with the exponential defined as the series :
exptS = ZZOZO %S”. Thus we can identified the two exponential maps. The ex-
ponential map has all the properties seen in Banach spaces :||exp tu|| < expt ||u]|
and if E is finite dimensional :det(exp u) = exp(Tr (u)) =

Linear Group of matrices

If G is a Lie group of matrices, meaning some subset of GL(K,n) with a
Lie algebra L(n) then the flow of a left invariant vector field is given by the
equation : $®x, (t,9)|im9 = X1 (Px, (0,9)) = ®x, (6.g) x u whose solu-
tion is : ®x, (t,g) = gexptu where the exponential is computed as exptu =
> a0 ;—p! [u]” . Thus the exponential can be computed as the exponential of a
matrix.

Logarithmic derivatives

Definition 1708 (Kolar p.38) : For a map f € Co (M;G) from a manifold
M to a Lie group G, on the same field,
the right logarithmic derivative of f is the map : dpf : TM — T1G ::

5rf (up) = Ry 2 (f () F'(D)uiy
the left logarithmic derivative of f is the map : dpf : TM — TG ::

orf (up) = L/f(p)—l (f () f'(P)up
0r,0r € Ay (M;T1G) : they are 1-form on M valued in the Lie algebra of G
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If f=Id¢ then 0y, (f) (z) = L, (z7') € A1 (G;T1G) is the Maurer-Cartan
form of G

If f,ge Co (M; Q) :

Sr (fg) (p) = O6rf (p) + Ads()0rg (p)

o (fg) (p) =09 (p) + Ady(y 101 f (p)

Theorem 1709 (Kolar p.39, Duistermaat p.23) If T'G is a Banach Lie algebra
of a Lie group G, then
i) The derivative of the exponential is given by :

(expu) = R, (1 of esedWds = L ( ofO —s0d(W) ds € L (T1G; TexpuG)
with :
Jo s = (ad(u)) o () — 1) = T, PN € £ (TG TG)
n .
1 _sad(u _ -1 —ad(z)) _ o8] (_ad(u))n .
fO e ( )dS = (ad(u)) O(I—e ( )) = ano W S E (TlG,TlG)

the series, where the power is understood as the n iterate of ad(u), being
convergent if ad(u) is inversible
it) thus we hcwe :

or (exp f esed®) s

51, (exp) ( f e—s2dW) s

iii) The eigen values of fo es@d(w) ds gre % where z is eigen value of ad(u)

) The map 2= (expv) |ymu : T'G — TiG is bijective except for the u which
are eigen vectors of ad(u) with eigenvalue of the form +i2kw with k € 7/0

Coordinates of the second kind

Definition 1710 On a n dimensional Lie group on a field K, there is a neigh-
borhood n(0) of 0 in K™ such that the map to the connected component of the
identity Go : ¢ : n(0) = Go :: ¢ (t1,..tn) = exptier X explaes... X expipe, is a
diffeomorphism. The map ¢~ is a coordinate system of the second kind
on G.

Warning ! The product is not commutative.

22.1.6 Morphisms

Definitions
1. As usual when we have two different structures over a set, morphisms are
map which are consistent with both structures.

Definition 1711 A group morphism is a map f between two groups G,H such
_ -1
that : Y,y € G: f(zy) = f (x) f(y). [ (z7") = [ (2)

Definition 1712 A morphism between topological groups is a group morphism
which is also continuous
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Definition 1713 A class s Lie group morphism between class r Lie groups
over the same field K is a group morphism which is a class s differentiable map
between the manifolds underlying the groups.

If not precised otherwise the Lie groups and the Lie morphisms are assumed
to be smooth.

A morphism is usually called also a homomorphism.

2. Thus the categories of :

i) topological groups, comprises topological groups and continuous mor-
phisms

ii) Lie groups comprises Lie groups on the same field K as objects, and
smooth Lie groups morphisms as morphisms.

The set of continuous (resp. Lie) groups morphisms between topological
(resp.Lie) groups G,H is denoted hom (G; H) .

3. If a continuous (resp.Lie) group morphism is bijective and its inverse is
also a continuous (resp.Lie) group morphism then it is a continuous (resp.Lie)
group isomorphism. An isomorphism over the same set is an automorphism.

If there is a continuous (resp.Lie) group isomorphism between two topological
(resp.Lie) groups they are said to be isomorphic.

Lie group morphisms
1. The most important theorems are the following :

Theorem 1714 (Kolar p.36) If f is a smooth Lie group morphism f € hom(G, H)
then its derivative at the unity f’(1) is a Lie algebra morphism f'(1) € hom (T1G, T  H) .

The following diagram commutes :

TlG — f7(1) — TlH

{ {
expg exXpH
{ {

G — f — H
Vu € T'G : f (expgu) =expy f'(1)u
and conversely:

Theorem 1715 (Kolar p.42) If f : T'G — T1H is Lie algebra morphism be-
tween the Lie algebras of the finite dimensional Lie groups G,H, there is a Lie
group morphism F locally defined in a neighborhood of 1 such that F' (1¢) = f.
If G is simply connected then there is a globally defined morphism of Lie group
with this property.

Theorem 1716 (Knapp p.90) Any two simply connected Lie groups whose Lie
algebras are Lie isomorphic are Lie isomorphic.
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Notice that in the converse there is a condition : G must be simply connected.

Warning ! two Lie groups with isomorphic Lie algebras are not Lie iso-
morphic in general, so even if they have the same universal cover they are not
necessarily Lie isomorphic.

2. A continuous group morphism between Lie groups is smooth:

Theorem 1717 (Kolar p.37, Duistermaat p.49, 58) A continuous group mor-
phism fi between the Lie groups G,H on the same field K:

i) fi is a smooth Lie group morphism

it) if fi is bijective and H has only many countably connected components,
then it is a smooth diffeomorphism and a Lie group isomorphism.

iit) if : at least G or H has finitely many connected components, fi €
hom(G; H), fo € hom(H,G) are continuous injective group morphisms. Then
f1(G)=H,fa(H) =G and f1, fa are Lie group isomorphisms.

3. Exponential of ad:

Theorem 1718 On a Lie group G the map Ad is the exponential of the map
ad in the following meaning :
Yu S TlG : AdCXpG u — echﬁ(TIG;TlG) ad(u)

Proof. Va € G, Ad, € GL (T\G;T1G) : so Ad is a Lie a Lie group morphism :
Ad: G — GL(ThG;T1G) and we have :
!/

Vu € TiG : Adexpgu = €XPar(r, 611 6) (Ade) ey U = €XPor(r, i1y 6) 0d (W)
]

The exponential over the Lie group GL (T1G;T1G) is computed as for any
group of automorphisms over a Banach vector space :

eXPar(ry6imi 6y d(u) = Y07 o a1 (ad (u))"™ where the power is understood as
the n iterate of ad(u).

And we have :

det(exp ad (u)) = exp(Tr (ad (v))) = det Adexpu

22.1.7 Action of a group on a set

Definitions
These definitions are mainly an adaptation of those given in Algebra (groups).

Definition 1719 Let G be a topological group, E a topological space.
A left-action of G on F is a continuous map : A : G X E — E such that :
Vo € E,¥g,9' € G: A(g,A(g9',p)) =A(g-9,p);A(1,p) =p
A right-action of G on E is a continuous map : p: E X G — E such that :

Ve e E\Ng, g €G:p(p(p,9),9) =ppg -9);ppl)=p

For g fixed, the maps A (g,.): E — E,p(.,g9) : E — E are bijective.

In the following every definition holds for a right action.

If G is a Lie group and E is a manifold M on the same field then we can
define class r actions. It is assumed to be smooth if not specified otherwise.
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A manifold endowed with a right or left action is called a G-space.

The orbit of the action through pe E'is the subset of E: Gp = {\ (¢,p) ,g € G}.
The relation ¢ € Gp is an equivalence relation between p,q denoted R, the
classes of equivalence form a partition of G called the orbits of the action.

The action is said to be :

transitive if Vp,q € E,3g € G: g = X (g,p) . : there is only one orbit.

free if : A(g,p) =p=g =1 (resp. p(p,g) = p = g = 1). Then each orbit
is in bijective correspondance with G and the map : A(.,p) : G — A(G,p) is
bijective.

effective if : Vp : A(g,p) = A(h,p) => g = h (resp. p(p,9) = p(p,h) = g =
h)

Theorem 1720 (Kolar p.44) If A : G x M — M s a continuous effective left
action from a locally compact topological group G on a smooth manifold M, then
G is a Lie group and the action is smooth

A subset F of E is invariant by the action if : Vp € F.Vg € G : A(g,p) € F.
F is invariant iff it is the union of a collection of orbits. The minimal non empty
invariant sets are the orbits.

Theorem 1721 (Duistermaat p.94) If X : G x M — M ‘s a left action from
a Lie group G on a smooth manifold M, then for any p € E the set A(p) =
{g € G:X(g,p) =p} is a closed Lie subgroup of G called the isotropy sub-
group of p. The map X\ (.,p) : G — M factors over the projection : © : G —
G/A (p) to an injective immersion : ©: G/G/A (p) — M which is G equivariant
s A (g,2([x])) =2 ([N (g,p)]) - The image of v is the orbit through p.

Proper actions

Definition 1722 A left action A : Gx M — M of a Lie group G on a manifold
M is proper if the preimage of a compact of M is a compact of GzM

If G and M are compact and Hausdorff, and A\ continuous then it is proper
(see topology)

Theorem 1723 (Duistermaat p.98) A left action X\ : G x M — M of a Lie
group G on a manifold M is proper if for any convergent sequences py,, — D, gm —
g there is a subsequence (Gm,pn) such that A(gm,pn) = Mg, D)

Theorem 1724 (Duistermaat p.53) If the left action A : G x M — M of
a Lie group G on a manifold M is proper and continuous then the quotient set
M/Ry whose elements are the orbits of the action, is Hausdor[f with the quotient
topology.

If moreover M,G are finite dimensional and of class r, A is free and of class
r, then the quotient set M/Ry has a unique structure of class r real manifold
of dimension = dim M - dim G. M has a principal fiber bundle structure with
group G.
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That means the following :

The projection 7 : M — M/R) is a class r map;

Vp € M/ R, there is a neighborhood n(p) and a diffeomorphism 7 : 771 (n (p)) —
G xn(p) = 7(m) = (11 (m),72(m)) such that Vg € G,m € 7~ (n(p)) :
T(Ag,p)) = (A (g, 71 (m)) 7 (m))

Identities
From the definition of an action of a group over a manifold one can deduce

some identities which are useful.

1. As a consequence of the definition :

Ag~hp) =Ag.p) (g™ =p(pg) "

2. By taking the derivative of A(h, A(g,p)) = A(hg,p) and putting succes-
sively g=1,h=1,h =g~}

Ap(L,p) = Idrym

X w(9,p) = X (L, A(g, )) —1(9) = A9, p)AG(1,p) L) 1 (9)

(Np(9:2) " = Xy(g™ ( p)

Notice that A (1 p) (TlG T, M) is not necessarily inversible.

3. Similarly :
Pp(p, 1) = Idry
PP, 9) = py(p(p.9), 1)L} -1 (9) = p,(p: 9)py (P, 1) R} -1 ()

(0,(.9) " = phlp(p,g)sg™)

Fundamental vector fields
They are used in Principal bundles.

Definition 1725 For a differentiable left action A : Gx M — M of a Lie group
G on a manifold M, the fundamental vector fields are the vectors fields on
M generated by a vector of the Lie algebra of G:

(L TG = TM =g (u) (p) = N, (1,p) u

We have similarly for a right action :
Cr: TG = TM = (r(u)(p) = py (p,1)u

Theorem 1726 (Kolar p.46) For a differentiable action of a Lie group G on
a manifold M, the fundamental vector fields have the following properties :
i) the maps (r,,Cr are linear

it) [Cr (u), Cr (v )] x(rm) = —SL ([uvU]TlG)

[Cr (uw),Cr (v )]x(TM =(r ([ ]TIG)

i) Xy (2,9) [p=qCr (u) () = (1 (Adsu) (A (2, 9)
Pp (4:) |p= q<R( ) (9) = Cr (Ady—1u) (p (g, 7))

) Cz (u) = A (X& (u),0),Cr (u) = pu (X (u),0) with Xp (u) = R, (1) u, X1, (u) =

L (Du
v) the fundamental vector fields span an integrable distribution over M, whose
leaves are the connected components of the orbits.
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Theorem 1727 The flow of the fundamental vector fields is :
D¢y (u) (£, p) = A(exptu,p)
D¢, (u) (t,p) = p (P, exp tu)

Proof. use the relation : f o ®y = @y o f with A(Px,) (t7),p) =
ey (u) (t, A (z,p)) and x=1 m

Equivariant mapping

Definition 1728 A map f: M — N between the manifolds M,N is equivari-
ant by the left actions of a Lie group G A1 on M, Ay on N, if : Vp € M,Vg €
G: f(Ai(g,p)) = X2 (g, f (p)

Theorem 1729 (Kolar p.47) If G is connected then f is equivariant iff the
fundamental vector fields Cr1,(re are f related :

f () (Cer (w) = Crz (u) (f (p) & filrr (u) = Cr2 (u)

A special case is of bilinear symmetric maps, which are invariant under the
action of a map. This includes the isometries.

Theorem 1730 (Duistermaat p.105) If there is a class >0 proper action of
a finite dimensional Lie group G on a smooth finite dimensional Riemannian
manifold M, then M has a G-invariant class r-1 Riemannian structure.

Conversely if M is a smooth finite dimensional riemannian manifold (M,g)
with finitely many connected components, and if g is a class k>1 map, then the
group of isometries of M is equal to the group of automorphisms of (M;g), it
s a finite dimensional Lie group, with finitely many connected components. Its
action is proper and of class k+1.

22.2 Structure of Lie groups
22.2.1 Subgroups

The definition of a Lie subgroup requires more than the algebraic definition. In
this subsection there are many theorems, which can be useful. Some of them
are really necessary for the representation theory, but their utility is not obvious
until we get there.

Topological groups

Definition 1731 A subset H of a topological group G is a subgroup of G if:
i) H is an algebraic subgroup of G
it) H has itself the structure of a topologic group
iii) the injection map : 1: H — G is continuous.
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Explanation : Let Q be the set of open subsets of G. Then H inherits the
relative topology given by 2N H. But an open in H is not necessarily open in G.
So we take another Qy and the continuity of the map : 2 : H — G is checked
with respect to (G,Q), (H,Qm).

Theorem 1732 If H is an algebraic subgroup of G and is a closed subset of a
topological group G then it is a topological subgroup of G.

But a topological subgroup of G is not necessarily closed.

Theorem 1733 (Knapp p.84) For a topological group G, with a separable, met-
ric topology :

i) any open subgroup H is closed and G/H has the discrete topology

it) the identity component G is open if G is locally connected

ii1) any discrete subgroup (meaning whose relative topology is the discrete
topology) is closed

i) if G is connected then any discrete normal subgroup lies in the center of

G.

Lie groups

Definition 1734 A subset H of a Lie group is a Lie subgroup of G if :

i) H is an algebraic subgroup of G

it) H is itself a Lie group

iii) the inclusion v+ : H — G is smooth. Then it is an immersion and a
smooth morphism of Lie group © € hom (H; G).

Notice that one can endows any algebraic subgroup with a Lie group struc-
ture, but it can be non separable (Kolar p.43), thus the restriction of iii).

The most useful theorem is the following (the demonstration is still valid for
G infinite dimensional) :

Theorem 1735 (Kolar p.42) An algebraic subgroup H of a lie group G which
is topologicaly closed in G is a Lie subgroup of G.

But the converse is not true : a Lie subgroup is not necessarily closed.
As a corollary :

Theorem 1736 If G is a closed subgroup of matrices in GL(K,n), then it is a
Lie subgroup (and a Lie group).

For instance if M is some Lie group of matrices in GL(K,n), the subset of M
such that detg=1 is closed, thus it is a Lie subgroup of M.

Theorem 1737 (Kolar p.41) If H is a Lie subgroup of the Lie group G, then
the Lie algebra T1H is a Lie subalgebra of ThG.

Conversely :
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Theorem 1738 If h is a Lie subalgebra of the Lie algebra of the finite dimen-
sional Lie group G there is a unique connected Lie subgroup H of G which has
h as Lie algebra. H is generated by exp(h) (that is the product of elements of

eap(h)).

(Duistermaat p.42) The theorem is still true if G is infinite dimensional and
h is a closed linear subspace of T1G.

Theorem 1739 Yamabe (Kolar p.43) An arc wise connected algebraic subgroup
of a Lie group is a connected Lie subgroup

22.2.2 Centralizer

Reminder of algebra (see Groups):

The centralizer of a subset A of a group G is the set of elements of G which
commute with the elements of A

The center of a group G is the subset of the elements which commute with
all other elements.

The center of a topological group is a topological subgroup.

Theorem 1740 (Kolar p.44) For a Lie group G and any subset A of G:

i) the centralizer Z of A is a subgroup of G.

it) If G is connected then the Lie algebra of Z4 is the subset : T1Z4 =
{u e G :Va € Zy : Adyu = u}

If A and G are connected then T'Z4 = {u € T'G :Yv € T4 Z 4 : [u,v] = 0}

iii) the center Zg of G is a Lie subgroup of G and its algebra is the center
Of TlG

Theorem 1741 (Knapp p.90) A connected Lie subgroup H of a connected Lie
group G 1is contained in the center of G iff T1H is contained in the center of
T1G.

22.2.3 Quotient spaces

Reminder of Algebra (Groups) If H is a subgroup of the group G :

The quotient set G/H is the set G/ ~ of classes of equivalence : z ~ y <
JheH:x=y-h

The quotient set H\G is the set G/ ~ of classes of equivalence : z ~ y &
JheH:x=h-y

Usually they are not groups.

The projections give the classes of equivalences denoted [z] :

1,:G—G/H:7np(x) =[], ={yeG:Fhe H:x=y-h}=x-H

mrR:G—=H\G:7p(x) =zl ={yeG:3he H:a=h-y}=H -z

xe€H=mnp(z)=nr(x)=[z] =1

By choosing one element in each class, we have two maps :

For G/H:A:G/H - G:z#y< X(z)#A(y)

For H\G:p: H\G = G:x £y < p(z) # p(y)
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any x € G can be written as :x = A (z)-h or = b’ - p (z) for unique h,h’'e H
G/H=H\G iff H is a normal subgroup. If so then G/H=H\G is a group.
Then 77, is a morphism with kernel H.

Topological groups

Theorem 1742 (Knapp p.83) If H is a closed subgroup of the separable, metris-
able, topological group G, then :

i) the projections : Tp, TR are open maps

ii) G/H is a separable metrisable space

iii) if H and G/H (or H\G) are connected then G is connected

w) if H and G/H (or H\G) are compact then G is compact

Lie groups

Theorem 1743 (Kolar p.45, 88, Duistermaat p.56) If H is a closed Lie sub-
group of the Lie group G then :

i) the maps :

AMiHXG—G:A(h,g)=Lpg=hg

p:GxH—=G:p(g,h)=Rpg =gh

are left (rigth) actions of H on G, which are smooth, proper and free.

ii) There is a unique smooth manifold structure on G/H,H\G, called homo-
geneous spaces of G.

If G is finite dimensional then dimG/H=dimG - dimH.

iii) The projections wr,mr are submersions, so they are open maps and
7 (g), 77 (g) are surjective

i) G is a principal fiber bundle G(G/H,H,nr),G(H\G, H,7R)

v) The translation induces a smooth transitive right (left) action of G on
H\G (G/H):

A:GxG/H - G/H :: A(g,z) =7 (gA(x))

P:H\GxG— H\G: P(x,9) =7r(p(z)g)

vi) If H is a normal Lie subgroup then G/H=H\G=N is a Lie group (possibly
finite) and the projection G — N is a Lie group morphism with kernel H.

The action is free so each orbit, that is each coset [z], is in bijective corre-
spondance with H

remark : if H is not closed and G/H is provided with a topology so that the
projection is continuous then G/H is not Hausdorff.

Theorem 1744 (Duistermaat p.58) For any Lie group morphism f € hom (G, H)

i) K=Xker f={zxe€G: f(xr) =1n} is a normal Lie subgroup of G with Lie
algebra ker f'(1)
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it) if m: G — G/K is the canonical projection, then the unique homomor-
phism ¢ : G/K — H such that f = ¢ o7 is a smooth immersion making
f(G)=¢ (G/K) into a Lie subgroup of H with Lie algebra f1(1)T1G

iii) with this structure on f(G), G is a principal fiber bundle with base f(G)
and group K.

i) If G has only many countably components, and f is surjective then G is
a principal fiber bundle with base H and group K.

Normal subgroups
A subgroup is normal if for all gin G, gH = Hge Ve € G:2- H -2~ € H.
1. For a topological group:

Theorem 1745 (Knapp p.84) The identity component of a topological group is
a closed normal subgroup .

2. For a Lie group :

Theorem 1746 (Kolar p.44, Duistermaat p.57) A connected Lie subgroup H
of a connected Lie group is normal iff its Lie algebra ThH is an ideal in ThG.
Conversely : If h is an ideal of the Lie algebra of a Lie group G then the group
H generated by exp(h) is a connected Lie subgroup of G, normal in the connected
component Gqy of the identity and has h as Lie algebra.

Theorem 1747 (Duistermaat p.57) For a closed Lie subgroup H of Lie group
G, and their connected component of the identity Go, Hy the following are equiv-
alent :

i) Hy is normal in Gy

Zl) Vo € Go,’u eT\H : Ad,u e T'H

ii1) T1H is an ideal in T1G

If H is normal in G then Hy is normal in Gg

Theorem 1748 (Duistermaat p.58) If f is a Lie group morphism between the
Lie groups G,H then K =kerf ={x € G: f(x) =1y} is a normal Lie sub-
group of G with Lie algebra ker f'(1)

Theorem 1749 (Kolar p.44) For any closed subset A of a Lie group G, the
normalizer Ng = {a € G : Conj,(A) = A} is a Lie subgroup of G. If A is a Lie
subgroup of G, A and G connected, then Ngo = {x € G : Yu € T\ N, : Adu €
T1N4s} and T1Ny = {u € T1G : Yv € T1 Nyad(u)v € T1 Ny}

22.2.4 Connected component of the identity

Theorem 1750 The connected component of the identity Go in a Lie group G:
i) is a normal Lie subgoup of G, both closed and open in G. It is the only
open connected subgroup of G.
it) is arcwise connected
iii) is contained in any open algebraic subgroup of G
iv) is generated by {expu,u € T1G}
v) G/Gy is a discrete group
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The connected components of G are generated by Gy or Goz : so it suffices
to know one element of each of the other connected components to generate G.

22.2.5 Semi-direct product of groups

Theorem 1751 (Kolar p.47) If A\ : Gx K — K is a left action of the Lie group
G on the Lie group K, such that for each g€ G : X(g,.) : K — K is a group
morphism, the operation in KzG : (k,g) x (K',g") = (kX(g,k"),99") defines a
Lie group G ,denoted G=K o\ G, called the semi-direct product of K and
G.

The second projection : my : G- Gisa surjective smooth morphism with
kernel Kzl _

The insertion : 1 : G — G : 1(9) = (1,9) is a smooth morphism with
mo 01 = Idg

The map : A : G — Aut(K) is an automorphism in the group Aut(K) of
automorphisms on K

We have similar results with a right action and the multiplication :
(k.g) x (K',g") = (99" p (k, 9) k')

Theorem 1752 (Neeb p.35) If A : G x K — K is a left action of the Lie group
G on the Lie group K, such that for each g€ G : A(g,.) : K — K is a group
morphism, a map f : K — G is a 1-cocycle if f (kk') = N(f (k),k"). Then
the map : (f,Idk) : K — K o\ G is a group morphism, and conversely every
group morphism is of this form.

This is the starting point to another cohomology theory.

22.2.6 Third Lie’s theorem

A Lie group has a Lie algebra, the third Lie’s theorem adresses the converse :
given a Lie algebra, can we build a Lie group ?

Theorem 1753 (Kolar p.42, Duistermaat p.79) Let g be a finite dimensional
real Lie algebra, then there is a simply connected Lie group with Lie algebra
g. The restriction of the exponential mapping to the center Z of g induces an
isomorphism from (Z,+) to the identity component of the center of G (the center
Z of g and of G are abelian).

Notice that that the group is not necessarily a group of matrices : there
are finite dimensional Lie groups which are not isomorphic to a matrices group
(meanwhile a real finite dimensional Lie algebra is isomorphic to a matrices
algebra).

This theorem does not hold if g is infinite dimensional.

Theorem 1754 Two simply connected Lie groups with isomorphic Lie algebras
are Lie isomorphic.

455



But this is generally untrue if they are not simply connected. However if
we have a simply connected Lie group, we can deduce all the other Lie groups,
simply connected or not, sharing the same Lie algebra, as quotient groups. This
is the purpose of the next topic.

22.2.7 Covering group

See topology for the definition of covering spaces.

Theorem 1755 (Knapp p.89) Let G be a connected Lie group, there is a unique
connected, simply connected Lie group G and a smooth Lie group morphism :
7+ G — G such that (G 7T) s a universal covering of G. G and G have the

same dimension, and same Lie algebra. G is Lie isomorphic to G/H where H
is some discrete subgroup in the center of G. Any connected Lie group G’ with
the same Lie algebra as G is isomorphic to G/D for some discrete subgroup D
in the center of G.

So for any connected Lie group G, there is a unique simply connected Lie
group G which has the same Lie algebra. And G is the direct product of G and
some finite groups. The other theorems give results useful whith topological
groups.

Theorem 1756 (Knapp p.85) Let G be a connected, locally pathwise connected,
separable topological metric group, H be a closed locally pathwise connected sub-
group, Hy the identity component of H.Then

i) the quotient G/H is connected and pathwise connected

it) if G/H is simply connected then H is connected

iii) the map G/Ho — G/H s a covering map

) if H1is discrete, then the quotient map G— G/H is a covering map

v) if H is connected ,G simply connected, G/H locally simply connected, then
G/H is simply connected

Theorem 1757 (Knapp p.88) Let G be a locally connected, pathwise connected,
locally simply connected, separable topological metric group, (é, TG — G) a

simply connected covering of G with e = 7= (1). Then there is a unique mul-
tiplication in G such that it is a topological group and 7 is a group homeomor-
phism. G with this structure is called the universal covering group of G. It
18 unique up to isomorphism.

Theorem 1758 (Knapp p.88) Let G be a connected, locally pathwise connected,
locally sitmply connected, separable topological metric group, H a closed sub-
group, locally pathwise connected, locally simply connected. If G/H is simply
connected then the fundamental group m1 (G, 1) is isomorphic to a quotient group
of m (H,1)
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22.2.8 Complex structures

The nature of the field K matters only for Lie groups, where the manifold
structure is involved. It does not matter for topological groups. All the previous
results are valid for K=R, C whenever it is not stated otherwise. So if G is a
complex manifold its Lie algebra is a complex algebra and the exponential is a
holomorphic map.

The converse (how a real Lie group can be made a complex Lie group) is
less obvious, as usual. The group structure is not involved, so the problem is
to define a complex manifold structure. The way to do it is through the Lie
algebra.

Definition 1759 A complex Lie group G¢ is the complexification of a real
Lie group G if G is a Lie subgroup of Gc and if the Lie algebra of Gc is the
complezification of the Lie algebra of G.

There are two ways to ”complexify” G.

1. By a complex structure J on 73G. Then 717G and the group G stay
the same as set. But there are compatibility conditions (the dimension of G
must be even and J compatible with the bracket), moreover the exponential
must be holomorphic (Knapp p.96) with this structure : d%epr(v) lo=u =
J((d% expv) |v—=y). We have a partial answer to this problem :

Theorem 1760 (Knapp p.435) A semi simple real Lie group G whose Lie al-
gebra has a complex structure admits uniquely the structure of a complex Lie
group such that the exponential is holomorphic.

2. By complexification of the Lie algebra. This is always possible, but the
sets do not stay the same. The new complex algebra gc can be the Lie algebra of
some complex Lie group G¢ with complex dimension equal to the real dimension
of G. But the third’s Lie theorem does not apply, and more restrictive conditions
are imposed to G. If there is a complex Lie group G¢ such that : its Lie algebra
is (T1G) and G is a subgroup of G¢ then one says that G is the complexified
of G. Complexified of a Lie group do not always exist, and they are usually not
unique. Anyway then G¢ # G.

If G is a real semi simple finite dimensional Lie group, its Lie algebra is semi-
simple and its complexified is still semi-simple, thus G¢ must be a complex semi
simple group, isomorphic to a Lie group of matrices, and so for G.

Theorem 1761 (Knapp p.537) A compact finite dimensional real Lie group
admits a unique complexification (up to isomorphism,)

22.2.9 Solvable, nilpotent Lie groups

Theorem 1762 (Kolar p.130) The commutator of two elements of a group G
is the operation : K : G x G — G :: K (g,h) = ghg~1g~!

If G is a Lie group the map is continuous. If G1,Gs are two closed subgroup,
then K [G1,G2] generated by all the commutators K (g1,92) with g1 € G1, g2 €
Gs is a closed subgroup, thus a Lie group.
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From there one can build sequences similar to the sequences of brackets of
Lie algebra :

G'=G=Gy)G"=K [G”fl,anl] ,Gn, =K|[G,Gp-1],G, C G™

A Lie group is said to be solvable if 3n € N: G" =

A Lie group is said to be nilpotent if 3In e N: G,, =1

But the usual and most efficient way is to proceed through the Lie algebra.

Theorem 1763 A Lie group is solvable (resp.nilpotent) if its Lie algebra is
solvable (resp.nilpotent).

Theorem 1764 (Knapp p.106) If g is a finite dimensional, solvable, real, Lie
algebra, then there is a simply connected Lie group G with Lie algebra g, and G
if diffeomorphic to an euclidean space with coordinates of the second kind.

If (€)', is a basis of g, then : Vg € G,3t1,.t, € R : g = exptier X
exptaes... X exptnen

There is a sequence (Gp) of closed simply connected Lie subgroups of G such
that :

G=Gy2Gy...2G, ={1}

Gp =RP Gp+1

Gp4+1 normal in Gy,

Theorem 1765 (Knapp p.107) On a simply connected finite dimensional nilpo-
tent real Lie group G the exponential map is a diffeomorphism from T1G to G (it
is surjective). Moreover any Lie subgroup of G is simply connected and closed.

22.2.10 Abelian Lie groups

Abelian group = commutative group

Main result

Theorem 1766 (Duistermaat p.59) A connected Lie group G is abelian iff its
Lie algebra is abelian. Then the exponential map is onto and its kernel is a dis-
crete (closed, zero dimensional) subgroup of (T1G,+). The exponential induces
an isomorphism of Lie groups : T1G/kerexp — G

That means that there are 0 < p < dim 771G linearly independant vectors Vi
of T1G such that :

kerexp = > Y_, ziVi, 21 € Z

Such a subset is called a p dimensional integral lattice.

Any n dimensional abelian Lie group over the field K is isomorphic to the
group (with addition) : (K/Z)" x K" P with p = dim span ker exp

Definition 1767 A torus is a compact abelian topological group
Theorem 1768 Any torus which is a finite n dimensional Lie group on a field

K is isomorphic to ((K/Z)" ,+)
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A subgroup of (R, +) is of the form G = {ka,k € Z} or is dense in R

Examples :

the nxn diagonal matrices diag(A1,...An), A\x # 0 € K is a commutative n
dimensional Lie group isomorphic to K.

the nxn diagonal matrices diag(exp (iA1),...exp (iAp)), A # 0 € R is a
commutative n dimensional Lie group which is a torus.

Pontryagin duality

This is a very useful concept which is used mainly to define the Fourier trans-
form (see Functional analysis). It is defined for topological groups. Some of the
concepts are similar to the linear multiplicative functionals of Normed algebras.

Definition 1769 The ”Pontryagin dual” G of an abelian topological group
G is : the set of continuous morphisms, called characters, x : G — T where T
is the set of complex number of module 1 endowed with the product as internal
operation : T = ({z € C:|z| =1}, x) . Endowed with the compact-open topol-
ogy and the pointwise product as internal operation G is a topological abelian
group.

X€G g heG:x(g+h) =x(9)x (), x(-9)=x(9)  x(1) =1

(xax2) (9) =xa (9 x2(9)

The "double-dual” of G : (G) :0:G T
Themap: 7: GxG — T :: 7 (g, x) = x (9) is well defined and depends only

on G.
Forany g € Gthemap: 7 : G — T : 75 (x) = 7 (g, x) = x (g) is continuous

and 7, € (é)

The map, called Gel’fand transformation : ~: G — (CA?) it § = 74 has the
defining property : Vy € G : a(x)=x(9)
Theorem 1770 Pontryagin-van Kampen theorem: If G is an abelian, locally

compact topological group, then G is continuously isomorphic to its bidual ((A?

through the Gel’fand transformation. Then if G is compact, its Ponlryagin dual
G is discrete, and conversely if G is discrete, then G is compact. If G is finite
then G is finite.

If G is compact, then it is isomorphic to a closed subgroup of T G,

Examples : Z =T,T = Z,R = R, (Z/nZ) = Z/nZ

A subset E of G is said to separate G if : Vg,h € G,g # h,Ax € F: x(g9) #
x (h) .

Any subset E which separates G is dense in G.

Theorem 1771 Peter-Weyl: If G is an abelian, compact topological group,
then its topological dual G separates G:

Vg,h € G,g# h,3x € G: x(g) # x (h)
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22.2.11 Compact groups

Compact groups are of special interest for physicists. They have many specific
properties that we will find again in representation theory.

Main properties

A Lie algebra A is compact if the component of the identity of its group of
automorphisms Int(A) is compact with the topology of £(A; A) (see Lie alge-
bras)

Definition 1772 A topological or Lie group is compact if it is compact with its
topology.

Theorem 1773 The Lie algebra of a compact Lie group is compact.
Any closed algebraic subgroup of a compact Lie group is a compact Lie sub-
group. Its Lie algebra is compact.

Theorem 1774 A compact Lie group is necessarily
i) finite dimensional
it) a torus if it is a connected complex Lie group
ii1) a torus if it is abelian

Proof. i) a compact manifold is locally compact, thus it cannot be infinite
dimensional

ii) the Lie algebra of a compact complex Lie group is a complex compact
Lie algebra, thus an abelian algebra, and the Lie group is an abelian Lie group.
The only abelian Lie groups are the product of torus and euclidean spaces, so
a complex compact Lie group must be a torus. =

Theorem 1775 (Duistermaat p.149) A real finite dimensional Lie group G :
i) is compact iff the Killing form of its Lie algebra ThG is negative semi-
definite and its kernel is the center of T1G
it) is compact, semi-simple, iff the Killing form of its Lie algebra T1G is
negative definite (so it has zero center).

Theorem 1776 (Knapp p.259) For any connected compact Lie group the ex-
ponential map is onto. Thus : exp : T'G — G is a diffeomorphism

Theorem 1777 Weyl’s theorem (Knapp p.268): If G is a compact semi-simple
real Lie group, then its fundamental group is finite, and its universal covering
group s compact.

8. For a compact real Lie group there is a Haar measure w, UG w| < 00
and an inner product invariant by the adjoint Ad on the Lie algebra, meaning
a bilinear symmetric form () such that : (u,v) = (Ad,u, Ad,v)

Take any bilinear symmetric form B on the real finite dimensional vector
space T1G and define :

(u,v) = [ B(Adyu, Ad,v) w

460



Structure of compact real Lie groups

The study of the internal structure of a compact group proceeds along lines
similar to the complex simple Lie algebras, the tori replacing the Cartan alge-
bras. It mixes analysis at the algebra and group levels (Knapp IV.5 for more).

Let G be a compact, connected, real Lie group.

1. Torus:

A torus of G is an abelian Lie subgroup. It is said to be maximal if it is
not contained in another torus. Maximal tori are conjugate from each others
via Adgy. Each element of G lies in some maximal torus and is conjugate to an
element of any maximal torus. The center of G lies in all maximal tori.

So let T be a maximal torus, then : Vg € G : 3t € T,x € G : g = xtz~ L.
The relation : o ~ y < 3z : y = zzz~! is an equivalence relation, thus we have
a partition of G in classes of conjugacy, T is one class, pick up (z;);c; in the
other classes and Gz{xit:vfl,i el,te T} .

2. Root space decomposition:

Let T be a maximal torus, with Lie algebra t. If we take the complexified
(ThG) of the Lie algebra of G, and t¢ of t, then t¢ is a Cartan subalgebra of
(IG) and we have a root-space decomposition in a similar fashion as a semi
simple complex Lie algebra :

(TlG)C =tc Ba ga

where the root vectors g, = {X € (I'G) :VH €tc: [H,X]=a(H)X}
are the unidimensional eigen spaces of ad over t¢, with eigen values « (H),
which are the roots of (T1G) with respect to t.

The set of roots A ((T1G) , tc) has the properties of a roots system except
that we do not have t§ = spanA.

For any H € t: a(H) € iR : the roots are purely imaginary.

3. For any A € ¢ : X is said to be analytically integral if it meets one of the
following properties :

)WHet:expH=1=3keZ: \(H)=2ink

ii) there is a continuous homomorphism £ from T to the complex numbers of
modulus 1 (called a multiplicative character) such that : VH € ¢ : exp A (H) =
§(exp H)

then A is real valued on t. All roots have these properties.

remark : A € t} is said to be algebraically integral if 2&‘2‘;
inner product on the Lie algebra as above.

€ 7Z with some

22.2.12 Semi simple Lie groups

Definition 1778 A Lie group is :
simple if the only normal subgroups are 1 and G itself.
semi-simple if its Lie algebra is semi-simple (it has no non zero solvable

ideal).

The simplest criterium is that the Killing form of a semi-simple Lie group is
non degenerate. The center of a connected semi-simple Lie group is just 1.
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Any real semi-simple finite dimensional Lie algebra A has a Cartan decom-
position that is a pair of subvector spaces lg, pp of A such that : A = Iy ® pg, lo
is a subalgebra of A, and an involution 6 (ly) = lo, 0 (po) = —po

We have something similar at the group level, which is both powerful and
useful because semi-simple Lie groups are common.

Theorem 1779 (Knapp p.362) For any real, finite dimensional, semi-simple
Lie group G, with the subgroup L corresponding to ly € T1G :

i) There is a Lie group automorphism © on G such that ©' (g)|s=1 =0

it) L is invariant by ©

iii) the maps : Lxpyg — G ::g=lexpp and po Xx L = G :: g = (expp)! are
diffeomorphisms onto.

i) L is closed

v) L contains the center Z of G

vi) L is compact iff Z is finite

vii) when Z is finite then L is a mazimal compact subgroup of G.

So any element of G can be written as : g = lexpp or equivalently as
g = (exp X)I. Moreover if L is compact the exponential is onto : [ = exp A\, A € [

O is called the global Cartan involution

The decomposition g = (expp)! is the global Cartan decomposition.

Warning ! usually the set {expp,p € po} is not a group.

As an application :

Theorem 1780 (Knapp p.436) For a complex semi simple finite dimensional
Lie group G:

i) its algebra is complex semi simple, and has a real form wy which is a
compact semi simple real Lie algebra and the Lie algebra can be written as the
real vector space T1G = ug @ iug

it) G has necessarily a finite center.

iti) G is Lie complex isomorphic to a complex Lie group of matrices. And
the same is true for its universal covering group (which has the same algebra).

Remark : while semi simple Lie algebras can be realized as matrices algebras,
semi simple real Lie groups need not to be realizable as group of matrices : there
are examples of such groups which have no linear faithful representation (ex :
the universal covering group of SL(2,R)).

22.2.13 Classification of Lie groups

The isomorphisms classes of finite dimensional :
i) simply connected compact semi simple real Lie groups
ii) complex semi simple Lie algebras
iii) compact semi simple real Lie algebras
iv) reduced abstract roots system
v) abstract Cartan matrices and their associated Dynkin diagrams
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are in one one correspondance, by passage from a Lie group to its Lie algebra,
then to its complexification and eventually to the roots system.

So the list of all simply connected compact semi simple real Lie groups is
deduced from the list of Dynkin diagrams given in the Lie algebra section, and
we go from the Lie algebra to the Lie group by the exponential.

22.3 Integration on a group

The integral can be defined on any measured set, and so on topological groups,
and we start with this case which is the most general. The properties of integra-
tion on Lie groups are similar, even if they proceed from a different approach.

22.3.1 Integration on a topological group

Haar Radon measure

The integration on a topological group is based upon Radon measure on a
topological group. A Radon measure is a Borel, locally finite, regular,signed
measure on a topological Hausdorff locally compact space (see Measure). So if
the group is also a Lie group it must be finite dimensional.

Definition 1781 (Neeb p.46) A left (right) Haar Radon measure on a locally

compact topological group G is a positive Radon measure p such that : Vf €

Coc (G5C) Vg e G U(f) = [ (92 p(2) = [ | () pu (@)

and for right invariant : Vf € Co. (G;C),Vg € G : £(f) = [, f(zg) u(z) =
Jo £ (@) p(x)

Theorem 1782 (Neeb p.46) Any locally compact topological group has Haar
Radon measures and they are proportional.

The Lebesgue measure is a Haar measure on (R™, 4) so any Haar measure
on (R™,+) is proportional to the Lebesgue measure.
If G is a discrete group a Haar Radon measure is just a map : fG fu =

Ygec f(@)ulg),nlg) € Ry
On the circle group T={expit,t € R} : £(f) = 5= fozw F (expit) dt

Theorem 1783 All connected, locally compact groups G are o-finite under
Haar measure.

Modular function

Theorem 1784 For any left Haar Radon measure py, on the group G there is
a continuous homomorphism, called the modular function A : G — R such
that : Va € G: Ripp = A(a)”" pp . It does not depend on the choice of .
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Definition 1785 If the group G is such that A(a) = 1 then G is said to be
unimodular and then any left invariant Haar Radon measure is also right
invariant, and called a Haar Radon measure.

Are unimodular the topological, locally compact, goups which are either :
compact, abelian, or for which the commutator group (G,G) is dense.
Remark : usually affine groups are not unimodular.

Spaces of functions
1. If G is a topological space endowed with a Haar Radon measure (or even a

left invariant or right invariant measure) p, then one can implement the classical
definitions of spaces of integrable functions on G (Neeb p.32). See the part
Functional Analysis for the definitions.

L? (G, S, p, C) is a Banach vector space with the norm: || f]|,, = ([ [f[” 1) l/p

L? (G, S, u,C) is a Hilbert vector space with the scalar product : (f,g) =
[ Fan

L>®(G,Spu,C)={f:G—=-C:3C eR:|f(x)] < C}

L*> (G, S, 1, C) is a C*-algebra (with pointwise multiplication and the norm
[flloo =inf (C €R: p({|u(f)] > C}) =0)

2. If H is a separable Hilbert space the definition can be extended to maps
valued in H (Knapp p.567)..

One use the fact that :

if (e;)c; is a Hilbert basis, then for any measurable maps G — H.

(0(9),9(9)) = Xicy (9 (9) eirex) (e3, 1 (g) e) is a measurable map : G — C

The scalar product is defined as : (¢,1) = [ (¢ (9),% (9)) p-
Then we can define the spaces L? (G, u, H) as above and L? (G, u, H) is a

separable Hilbert space

Convolution

Definition 1786 (Neeb p.134) Let ur be a left Haar measure on the locally
compact topological group G. The convolution on L' (G, S, ur,C) is defined as
the map :

*: LY (G, S, ur,,C) x LY (G, S, ur, C)

= L' (G, S, 1, C) o (9) = [ ()¢ (27 g) pr (2) = oo (92) ¢ (z71) p ()

Definition 1787 (Neeb p.134) Let uy, be a left Haar measure on the locally
compact topological group G. On the space L' (G, S, pur,C) the involution is

defined as : ©* (g) = (A (g))_1 ©(g™1) so it will be o*(g) = p(g~Y) if G is

unimodular.

Supp(p * ¥) C Supp(p)Supp ()

convolution is associative
e =l < llelly 1,
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el = llel,
(p*1)” =" % p*
If G is abelian the convolution is commutative (Neeb p.161)
With the left and right actions of G on L' (G, S, ur,,C) :
Ag) e (x) =@ (9 'x)

P(g)¢(z) =¢(z9)
then :

A(g) (p*1p) = (A(

(
(P(g)p) x =@ *(A(
(A(g) )" =Al(g) (P 59) ©*)
(P(g)e)" = (A(g) (A(g)¥")
1A (9) ¢l = llelly

Theorem 1788 With convolution as internal operation L' (G,S,ur,C) is a
complex Banach *-algebra and A (g),A (g) P (g) are isometries.

22.3.2 Integration on a Lie group

The definition of a Haar measure on a Lie group proceeds differently since it is
the integral of a n-form.

Haar measure

Definition 1789 A left Haar measure on a real n dimensional Lie group is
a n-form w on TG such that : YVa € G: Liw =w

A right Haar measure on a real n dimensional Lie group is a n-form w
on TG such that : YVae G: Riw =w

that is Vuy,..u, € T,G : w (azx) (L}, (z) uy, ..., L, () ur) = w (z) (u1, ...uy)

Theorem 1790 Any real finite dimensional Lie group has left and right Haar
measures, which are volume forms on TG

Proof. Take the dual basis (ei)?zl of T1G and its pull back in x :
¢ () (1) = € (L1 (@) = € (@) (e (@) = ¢ (L (2) ¢ (@) = &}
Then w, (z) = e! () A... Ae” (z) is left invariant : ‘ ‘
@ (az) (LG () ur, s L (2) up) = 32, iy € (i1, ip) € (az) (L (2) wa) .. (az) (L, (2) ur)
= Yoy € (i1, ) € (Lzaz),l (az) L', (z) ul) i (Lzaz),l (az) L, (z) u)
Ly () = L (2) (2 (2))"" = et (L’(az),l (az) L, (z) ul) — e (L, (x)uy) =
e (z) (u1)

Such a n form is never null, so @, () = e (z) A ... A €™ (z) defines a left
invariant volume form on G. And G is orientable. m
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All left (rigth) Haar measures are proportionnal. A particularity of Haar
measures is that any open non empty subset of G has a non null measure :
indeed if there was such a subset by translation we could always cover any
compact, which would have measure 0.

Remark : Haar measure is a bit a misnomer. Indeed it is a volume form, the
measure itself is defined through charts on G (see Integral on manifolds). The
use of notations such that dj,,dr for Haar measures is just confusing.

Modular function

Theorem 1791 For any left Haar measure wyr on a finite dimensional Lie
group G there is some non null function A(a) , called a modular function,
such that : Riwy = A(a)” @y

Proof. Riwy = R:(Liwy) = (LyR.) " wr = (Roly) wr = LiRiwy =
L} (Riwr) thus Riwy is still a left invariant measure, and because all left
invariant measure are proportionnal there is some non null function A (a) such
that : Riw, = A(a) 'w, m

Theorem 1792 (Knapp p.532) The modular function on a finite dimensional
Lie group G, with wr,wr left, rigth Haar measure, has the following properties

i) its value is given by : A (a) = |det Ad,|

it) A : G — Ry is a smooth group homomorphism

iii) if a € H and H is a compact or semi-simple Lie subgroup of G then
Afa)=1

) S*wp = A(x) wr are rigth Haar measures (with S = inverse map)

v) S*wr = A (z) " wg are left Haar measures

vi) Lyowg = A(a) wr

Definition 1793 A Lie group is said to be unimodular if any left Haar mea-
sure is a right measure (and vice versa). Then we say that any right or left
inwvariant volume form is a Haar measure.

A Lie group is unimodular iff Va € g : A (a) = 1.
Are unimodular the following Lie groups : abelian, compact, semi simple,
nilpotent, reductive.

Decomposition of Haar measure
We have something similar to the Fubini theorem for Haar measures.

Theorem 1794 (Knapp p.535) If S, T are closed Lie subgroups of the finite di-
mensional real Lie group G, such that : SOT is compact, then the multiplication
M : SxT — G is an open map, the products ST exhausts the whole of G except
for a null subset. Let Ag, At be the modular functions on S,T. Then any left
Haar measure wy, on S, T and G can be normalized so that :

466



VfeC(G;R):
Ja for = [gur M (fﬁ—ﬁ (wr)s @ (WL)T> = Js@1 () Jp 3 As(s (st) wr (1)

Theorem 1795 (Knapp p.538) If H is a closed Lie subgroup of a finite dimen-
sional real Lie group G, Aqg, Ay are the modular functions on G,H, if and only
if the restriction of Ag to H is equal to Ay there is a volume form p on G/H
invariant with respect to the right action. Then it is unique up to a scalar and
can be normalized such that :

Vf S CQC G (C fowL fG/HM fH ,Th ZUL h) with 7, : G —
G/H..?TL( )h=g<:>g 17TL( )EH

G/H is not a group (if H is not normal) but can be endowed with a manifold
structure, and the left action of G on G/H is continuous.

Comments

A Haar measure on a Lie group is a volume form so it is a Lebesgue measure
on the manifold G, and is necessarily absolutely continuous. A Haar measure
on a topological Group is a Radon measure, without any reference to charts,
and can have a discrete part.
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22.4 CLASSICAL LINEAR LIE GROUPS AND ALGE-
BRAS

What is usually called ”classical Lie groups”, or ”classical linear groups” are Lie
groups and Lie algebras of matrices. They are of constant use in the practical
study of Lie groups and their properties have been extensively studied and
referenced. So it is useful to sum up all the results.

22.5 General results
22.5.1 Notations

We denote here (they are traditional notations) :

The field K is either R or C.

L(K,n) the set of square nxn matrices on a field K,

GL(K,n) the set of inversible square nxn matrices on a field K,

SL(K,n) the set of inversible square nxn matrices on a field K with determi-
nant=1

L(K,n) is a Lie algebra on the field K with the bracket : [X,Y] = [X][Y] —
¥V][X]

GL(Kn) is a Lie group on the field K with Lie algebra L(K,n) and group
operations left and right multiplications of matrices.

The identity matrix is I,, = diag(1,...,1) € GL(K,n)

The Lie groups of matrices are usually (the most convenient) denoted as
AB(K,n) C GL(K,n) where the letters AB specifie the group, and SB(K,n) C
SL(K,n) denotes the special group, subgroup of AB(K,n).

The Lie algebras of matrices are usually denoted as ab(K,n) C L(K,n)
where the lower case letters ab correspond of the Lie group which has the same
Lie algebra.

It is common to consider matrices on the division ring of quaternions denoted
H. This is not a field (it is not commutative), thus there are some difficulties
(and so these matrices should be avoided).

A quaternion reads (see the Algebra part) : : & = a + bi + ¢j + dk with
a,b,c,d € R and

PP=72=k=-1ij=k=—ji,jk=1i=—kj ki=j=—ik

So we can write : * = 21 + j (¢ — id) = 21 + jz2,21,20 € C

xx’ = 212) + j220zh 4+ (2125 + 21 22) = 212] — 202, + j (2125 + 2] 22) = 2’2

and a matrix on L(H,n) reads : M = My + jMs, M1, M, € L (C,n) so it can
be considered as a couple of complex matrices with the multiplication rule :

(MM = 5 [MJ? (M, — (M (M), + 55, [MAJ? [M]] + (M]? (Mo

that is : MM’ = My M{ — My M} + j (M1 M4 + M| M>)

The identity is : (I,,0)

L(K,n) is a Banach finite dimensional vector space with the norm : |[|M| =
Tr(MM*)=Tr (M*M) where M* is the transpose conjugate.
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22.5.2 Lie algebras

Definition
A Lie algebra of matrices on the field K is a subspace L of L(K,n) for some
n, such that :

VXY e LiVrr e K:r[X]|+7'[Y] € L, [X][Y] - [Y][X] € L.

The dimension m of L is usually different from n. A basis of L is a set
of matrices [e;]]", which is a basis of L as vector space, and so the structure
coefficients are given by :

Cir leil = [ej] lex] — [ex] [e]

with the Jacobi identies : Vi, j, k,p: > ", (Cgkcﬁ + C’,lﬂ-C'fl + ijC,fl) =0

To be consistant with our definitions, L(K,n) is a Lie algebra on the field K.
So L(C,n) is a Lie algebra on the field C but also on the field R, by restriction
of multiplication by a scalar to real scalars. Thus we have real Lie algebras of
complex matrices : the only condition is that VX, Y € L, Vr,r' € R: r[X] +
" [Y]e L, [X][Y] - [Y][X] € L.

Complex and real structure

If L is a real Lie algebra, its complexified is just the set : {X +:Y, X, Y € L} C
L (C,n) which is a complex Lie algebra with Lie bracket : [X +4Y, X' +iY']; =
[Xv X/]L - [Ya Y/]L +i ([Xa Y/]L + [X/a Y]L)

If L is a complex Lie algebra, the obvious real structure is just : [X] =
[z] +ily],[x], [yl € L(R,n)

We have a real Lie algebra Lg = Lg. & iLg, comprised of couples of real
matrices, with the bracket above, with two isomorphic real subalgebras Ly , 7 Lg.

Ly is a real form of L.

If L is a even dimensional real Lie algebra endowed with a complex structure,
meaning a linear map J€ L (L; L) such that J> = —Idy, and Joad = ado J
then take a basis of L :(ej)?;nl with p=1..m : J(e;) = €j1m,J (€j4m) = —€;

The complex Lie algebra reads :

Le = 22121 (aP +iyP) [ep] = 22121 (@ [ep] + ¥P [ep+ml])

22.5.3 Lie groups

Definition
Let G be an algebraic subgroup G of GL(K,n) for some n. The group opera-

tions are always smooth and GL(K,n) is a Lie group. So G is a Lie subgroup if
it is a submanifold of L(K,n).

There are several criteria to make a Lie group :

i) if G is closed in GL(K,n) it is a Lie group

ii) if G is a finite group (it is then open and closed) it is a Lie group

It is common to have a group of matrices defined as solutions of some equa-
tion. Let F': L (K,n) — L (K,n) be a differentiable map on the manifold L(K,n)
and define G as a group whose matrices are solutions of F(M)=0. Then follow-
ing the theorem of constant rank (see Manifolds) if F’ has a constant rank r in
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L(K,n) the set F~1(0) is a closed n?-r submanifold of L(K,n) and thus a Lie
subgroup. The map F can involve the matrix M and possibly its transpose and
its conjugate. We know that a map on a complex Banach is not C-differentiable
if its involve the conjugate. So usually a group of complex matrices defined by
an equation involving the conjugate is not a complex Lie group, but can be a
real Lie group (example : U(n) see below).

Remark : if F is continuous then the set F~1(0) is closed in L(K,n), but
this is not sufficient : it should be closed in the Lie group GL(K,n), which is an
open subset of L(K,n).

If G,H are Lie group of matrices, then GN H is a Lie group of matrices with
Lie algebra TG N'Th H

Connectedness

The connected component of the identity Gy is a normal Lie subgroup of G,
with the same dimension as G. The quotient set G/Gy is a finite group. The
other components of G can be written as : ¢ = grx = ygr where x,y are in one
of the other connected components, and gg, gr run over Go.

If G is connected there is always a universal covering group G which is a Lie
group. It is a compact group if G is compact. It is a group of matrices if G is a
a complex semi simple Lie group, but otherwise G is not necessarily a group of
matrices (ex : GL(R,n)).

If G is not connected we can consider the covering group of the connected
component of the identity Gy.

Translations
The translations are La (M) = [A] [M], Ra (M) = [M] [4]
The conjugation is : ConjaM = [A] [M][A]""
VX € L(K,n) : Ly (M) (X) = [4][X],
—M1XM!
So: AdyX = Conjy X = [M][X][M]™

[ and the derivatives :
Ry (M) = [X][A], (3(M))' (X) =

Lie algebra
The Lie algebra is a subalgebra of L(K,n)
If the Lie group is defined through a matrix equation involving M, M*, M*, M :
P (M,M*,Mt,M) =0
Take a path : M : R — G such that M(0)=I. Then X = M’'(0) € T1G
satisfies the polynomial equation :

O X 4 x4 QP Xt 4 2 X) |ni=r =0
Then a left invariant vector ﬁeld is Xp (M)=MX
The exponential is computed as the exponential of a matrix : exptX =

>oto g XV

Complex structures
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Theorem 1796 (Knapp p.442) For any real compact connected Lie group of
matrices G there is a unique (up to isomorphism) closed complex Lie group of
matrices whose Lie algebra is the complexified T1G & iT1G of ThG.

Cartan decomposition

Theorem 1797 (Knapp p.445) Let be the maps :

©: GL(K,n) = GL(K,n) = © (M) = (M~1)",

0:L(K,n)— L(K,n):60(X)=-X*

If G is a connected closed semi simple Lie group of matrices in GL(K,n),
invariant under © | then :

i) its Lie algebra is invariant under 0,

it) T1G = lo ® po where ly, po are the eigenspaces corresponding to the eigen
values +1,-1 of 6

iii) the map : K Xpg — G ::g=kexpX where K={x € G: Oz =1z} isa
diffeomorphism onto.

Groups of tori
A group of tori is defined through a family [ej],~, of commuting matrices in
L(K,n) which is a basis of the abelian algebra. Then the group G is generated
by : [g]), = expt[ex] = Z;O:o tp_p! lex]”,t € K
A group of diagonal matrices is a group of tori, but they are not the only
ones.
The only compact complex Lie group of matrices are groups of tori.

22.6 List of classical Lie groups and algebras

See also Knapp (annex C) for all detailed information related to the roots sys-
tems and the exceptional groups.

22.6.1 GL(K,n)

K=R,C

If n=1 we have the trivial group G={1} so we assume that n>1

The square nxn matrices on K which are inversible are a closed Lie group
GL(K,n) of dimension n? over K, with Lie algebra L(K n).

The center of GL(K,n) is comprised of scalar matrices k [[]

GL(K,n) is not semi simple, not compact, not connected.
GL(C,n) is the complexified of GL(R,n)

SL(K,n) SL(K,n) is the Lie subgroup of GL(K,n) comprised of matrices such
that detM=1. It has the dimension n2-1 over K, and its Lie algebra is: sl(K,n)={
XeL(K,n):Trace(X)=0}.

They are connected, semi-simple, not compact groups.

SL(C,n) is simply connected, and simple for n>1
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SL(R,n) is not simply connected. For n>1 the universal covering group of
SL(R,n) is not a group of matrices.

The complexified of sl(R,n) is si(C,n), and SL(C,n) is the complexified of
SL(R,n)

The Cartan algebra of si(C,n) is the subset of diagonal matrices.

The simple root system of sl(C,n) is A,_1,n > 2:

V=3 Tk, Yy Tk =0

A= €e; — ej,i }é j

IT={e; —eg,e2 —e€3,..0-1—€n}

22.6.2 Orthogonal groups O(K,n)

K=R,C

If n=1 we have the trivial group G={1} so we assume that n>1

O(K,n) is the Lie subgroup of GL(K,n) comprised of matrices such that
MM = I, .Its dimension is n(n-1)/2 over K, and its Lie algebra is: o(K,n)={
XeL(Kn):X+X'=0}.

O(K,n) is semi-simple for n>2

O(K,n) is compact.

O(K,n) has two connected components, with detM=+1 and detM=-1. The
connected components are not simply connected.

SO(K,n)

SO(K,n) is the Lie subgroup of O(K,n) comprised of matrices such that
det M =1 . Tts dimension is n(n-1)/2 over K, and its Lie algebra is : o(K,n)={
XeL(Kn):X+X'=0}.

SO(K,n) is semi-simple for n>2

SO(K,n) is compact.

SO(K,n) is the connected component of the identity of O(K,n)

SO(K,n) is not simply connected. The universal covering group of SO(K,n)
is the Spin group Spin(K,n) (see below) which is a double cover.

s0(C,n) is the complexified of so(R,n), SO(C,n) is the complexified of SO(R,n)

Roots system of so(C,n) : it depends upon the parity of n

For so(C,2n +1),n > 1: B, system:

V=R"

A ={te, tej,i<j}U{ter}

IT={e; —e9,e2 —€3,..n_1 — €n,€n}

For so(C,2n),n > 2: D,, system:

V=R"

A= {:I:ei:I:ej,i < j}

IT={e1 —ez,e2—€3,..n—1 — €n,€n_1+€n}

SO(R,3)
This is the group of rotations in the euclidean space. As it is used very often
in physics it is good to give more details and some useful computational results.
1. The algebra o(R;3) is comprised of 3x3 skewsymmetric matrices.
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Take as basis for o(R;3) the matrices :

0 0 O 0 01 0 -1 0
=10 0 —1|:e0=1]0 0 0|;e5=1{1 0 0
01 0 -1 0 O 0 0 O
then a matrix of o(3) reads with the operator :
™ 0 —Ts3 ]
R(3,1) = o(R;3) :: 5 | [re =\ r3 0 -n
T3 —T9 T1 0

which has some nice properties :

j(r)t=—j(r) =j(=r)

@y =—jlyr=xxy

(this is just the ”vector product x” of elementary geometry)
ytj (z) = -2 "3 (y)

y) = ywt wyt =j(@)j(y) — j(y)i(x)
(y)j(@) = = (y'z) j(x)
L(R,3): M'j(Mx)M = (det M) j(x)
OR,3) : j(Mz)My = Mj(z)y & Mx x My =M (x x y)
k> 0:(r) = (=r'r)" " j(r)i(r)
k>0 J(r)2H = (—rtr)* j(r)
2. The group SO(R, 3) is compact, thus the exponential is onto and any
matrix can be written as :

exp (j(r)) = Is + §(r) 2L 4 (1) (r) 1=cen s

The eigen values of g=expj(r) are (1,expi\/r1 + 73 4+ 13 exp ( NG rg))

The vector r of components 1; is the axis of the rotation in R3 whose matrix
is g in an orthonoral basis.

3. The universal covering group of SO (R, 3) is Spin(R,3) isomorphic to
SU(2).

If we take as basis of su(2) the matrices :

o i o -1 oo
GL=9 0 o272 o "B T 20 —i

then the cover is :
Y su(2) = o (R,3) ::1p (rier + roex +13e3) = j(r)
U : SU(2) = SO(R,3) :: U (& (rieq + raes + r3e3)) = expj(r)

22.6.3 Unitary groups U(n)

The matrices of GL(C,n) such that M*M = I, are a real Lie subgroup of
GL(C,n) denoted U(n), with dimension n? over R, and Lie algebra : u(n)={
XeL(Cn):X+X*=0}. So U(n) is not a complex Lie group, even if its elements
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comprise complex matrices. The algebra u(n) is a real Lie algebra and not a
complex Lie algebra.

U(n) is not semi simple. The center of U(n) are the purely imaginary scalar
matrices kil,

U(n) is compact.

U(n) is connected but not simply connected. Its universal covering group is
T x SU(n) = {e",t € R} x SU(n) with 7 : T — U(n) =: 7 ((e" x [g])) = it [g]
so for n=1 the universal cover is (R, +).

The matrices of U(n) NGL(R,n) comprised of real elements are just O(R,n).

SU(n)

The matrices of U(n) such that detM=1 are a real Lie subgroup of U(n) de-
noted SU(n), with dimension n?-1 over R, and Lie algebra : su(n)={ X€L(C,n):X+X*=0,
TrX=0}. So SU(n) is not a complex Lie group, even if its elements comprise
complex matrices. The algebra su(n) is a real Lie algebra and not a complex
Lie algebra.

SU(n) is not semi simple.

SU(n) is compact.

SU(n) is connected and simply connected.

The complexified of the Lie algebra sl (C,n)s = sl (C,n) and the complexi-
fied SU (n). = SL(C,n).

22.6.4 Special orthogonal groups O(K,p,q)

K=R,C

p>0,9>0, p+q=n>1

Let I, ; be the matrix : I, ; = Diag(+1,...+1,-1,...— 1) (p + and q -)

The matrices of GL(K,n) such that M'I, ,M = I,, are a Lie subgroup of
GL(K,n) denoted O(K,p,q), with dimension n(n-1)/2 over K, and Lie algebra :
o(K,p,q) ={X € L(K,n) : I, X + X'I,, , = 0}.

For K=C the group O(C, p, q) is isomorphic to O(C,p + q)

O(K,p,q),0 (K, q,p) are identical : indeed I, g = —I; p

O(K,p,q) has four connected components, and each component is not simply
connected.

O(K,p,q) is semi-simple for n>2

O(K,p,q) is not compact. The maximal compact subgroup is O (K,p)xO(K,q).

O(C,p + q) is the complexified of O(R, p, q).

SO(Kapaq)
The matrices of O(K,p,q) such that detM=1 are a Lie subgroup of O(K,p,q)

denoted SO(K,p,q), with dimension n(n-1)/2 over K, and Lie algebra : o(K, p,q) =
{XeL(K,n):I,,X +X"'I, ,=0}.

For K=C the group SO(C, p, q) is isomorphic to SO(C,p + q)

SO(R,p,q) is not connected, and has two connected components. Usually one
considers the connected component of the identity SOo(R,p,q). The universal
covering group of SOg(R,p,q) is Spin(R,p,q).
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SO(R,p,q) is semi-simple for n>2
SO(R,p,q) is not compact. The maximal compact subgroup is SO(K,p)xSO(K,q).
SO(C,p + q) is the complexified of SO(R, p, q).

SO(R,p,q)
O(R, p, q) is invariant by transpose, and admits a Cartan decomposition :

. M 0 0 P
o T T )
axq

axp

Lo, lo] C lo,[lo, o] C po, [po, o] C lo

So the maps :

Al x po = SO(R, p,q) :: A(l,p) = (expl) (expp) ;

p:po xlo— SOR,p,q) :: p(p,1) = (expp) (expl);

are diffeomorphisms;

It can be proven (see Algebra - Matrices) that :

i) the Killing form is B (X,Y) = 2Tr (XY)

. _ I, + H(coshD — I,) H* H(sinh D)U*

i) expp = Ul(sinh D)H* U(cosh D)U*
H'H = I,,P = HDU" where D is a real diagonal gxq matrix and U is a gxq
real orthogonal matrix. The powers of exp(p) can be easily deduced.

with Hj,, such that :

SO(R,3,1)
This is the group of rotations in the Minkovski space (one considers also
SO(R, 1, 3) which is the same).
1. If we take as basis of the algebra the matrices :

00 0 0 0 0 1 0 0 -1 0 0
e — |00 =1 of . fo 000 {1 0 00
01 0 o] 1.0 0 o]’ 0 0 0 0
00 0 0 0 0 0 0 0 0 0 0
000 1 0000 000 0
000 0 00 0 1 0000
Porea="1g 0 0 0/’ o 0 0 o[’ |00 o0 1
1000 0100 00 10

It is easy to show that the map j of SO(3) extends to a map :

0 —T3 T2 0
k r 0O —-r O
J:R(3,1) = oR;3,1)=J [ |ra] | =] 3 !
r —T9 1 0 0
s 0 0 0 0
with the same identities as above with j.
We have similarly :
0 0 0 v
v 0 0 0 w
K:R(3,1) = 0o(R;3,1) : K Zz =10 0 0 v
3
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AndVX e OR,3,1):Ir,veR(3,1): X = J(r) + K(v)
The identities above read:

I3 + (cosh Voly — 1) % \/;}Tv (sinh \/vtv)

exp K (v) = ¢

®) (sinh \/vtv) UTtv cosh vVvtv
that is :
expK(v) = I, + %K(W + %K(U)K(U)
Similarly :
exp J(r) = Ly + XL () + Lo O g (1) ] (1)

2. The universal covering group of SOy(R,3,1) is Spin(R,3,1) which is iso-

morphic to SL(C, 2). It is more explicit with the map :
3 1 23 21+ 122 R . .
¢:C° = sl(C,2):9(2) =35 . which is an isomorphism
Z1 — 122 —2Z3

between vector spaces.

Then the map : @ : sl(2,C) — 0(3,1) : ¥ (¢ (2)) = K(Rez) + J(Im=z) is a
Lie algebra real isomorphism and the map :

U:SL(C,2) = SOy (R,3,1) ::

U (£ (expid (Imz))exp ¢ (Rez)) = (exp J (Im 2)) (exp K (Re z))

is a double cover of SOq (R, 3,1) and ¢ = ¥’(1)

22.6.5 Special unitary groups U(p,q)

p>0,9>0, p+q=n>1
Let I, ; be the matrix : I, , = Diag(+1,...+1,-1,...— 1) (p + and q -)
The matrices of GL(C,n) such that M*I, ,M = I,, are a real Lie sub-
group of GL(C,n) denoted U(p,q), with dimension n? over R, and Lie algebra
u(p,q)={ Xe€L(Cn):I, (X+X*I, ,=0}. So U(n) is not a complex Lie group,
even if its elements comprise complex matrices. The algebra u(p,q) is a real Lie
algebra and not a complex Lie algebra.
U(p,q),U (¢,p) are identical : indeed I, ; = —I,,
U(p,q) is semi-simple
U(p,q) is not compact.
U(p,q) has two connected components.

)

SU(p,q)
The matrices of U(p,q) such that detM=1 are a real Lie subgroup of U(n) de-

noted SU(p,q), with dimension n? over R, and Lie algebra : u(p,q)={ X€L(C,n):I, ,X+X*I, ,=0}.
So SU(n) is not a complex Lie group, even if its elements comprise complex ma-
trices.

SU(p,q),SU (q,p) are identical.

SU(p,q) is a semi-simple, connected, non compact group

SU(p,q) is the connected component of the identity of U(p,q).
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22.6.6 Symplectic groups Sp(K,n)
K=R,C

Let J, be the 2nx2n matrix : J,, = I 0

The matrices of GL(K,2n) such that M'J,M = J are a Lie subgroup
of GL(K,2n) denoted Sp(K,n) over K, and Lie algebra : sp(K,p,q) = {X €
L(K,n) : JX + X*J = 0}. Notice that we have either real or complex Lie
groups.

Sp(K,n) is a semi-simple, connected, non compact group.

Root system for sp(C,n),n>3:C,

V=R"

A={te;te;,i<jtU{£2es}

IT={e1 —ez,ex —e€3,..€n_1 — €n,2€,}

0 In]

22.6.7 Pin and Spin groups

These groups are defined starting from Clifford algebra over a finite dimensional
vector space F on a field K, endowed with a bilinear symmetric form g (valued
in K) (see the Algebra part).

1. All Clifford algebras on vector spaces with the same dimension on the
same field, with bilinear form of the same signature are isomorphic. So we can
speak of Pin(K,p,q), Spin(K,p,q).

There are groups morphism :

Ad :Pin(K,p,q) = O (K,p,q)

Ad :Spin(K,p,q) — SO (K, p,q)

with a double cover (see below) : for any g € O (K, p, q) (or SO(K,p,q) there
are two elements +w of Pin(K,p,q) (or Spin(K,p,q) such that : Ad,, = h.

They have the same Lie algebra : o(K,p,q) is the Lie algebra of Pin(K,p,q)
and so(K,p,q) is the Lie algebra of Spin(K,p,q).

2. The situation with respect to the cover is a bit complicated. We have
always two elements of the Pin or Spin group for one element of the orthogonal
group, and they are a cover as a manifold, but not necessarily the universal cover
as Lie group, which has been defined only for connected Lie groups. O(K,p,q)
or SO(K,p,q) are Lie groups, but not necessarily connected.

When they are connected, they have a unique universal cover as a topological
space, which has a unique Lie group structure G which is a group of matrices,
which can be identified to Pin(K,p,q) or Spin(K,p,q) respectively.

When they are disconnected, the same result is valid for their connected
component, which is a Lie subgroup. One can take the same cover as topologi-
cal spaces on the other connected components (which are principal homogeneous
spaces for the identity component) but the group structure on the other com-
ponents is not uniquely determined in general.

For all practical purposes one consider usually only the connected compo-
nent, from which some simple construct can be found for the others when nec-
essary.
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3. f K=C:

Pin(C, p,q) ~ Pin(C,p+q)

Spin(C, p, q) ~ Spin(C,p + q)

Spin(C, n) is connected, simply connected.

SO(C,n) ~ SO (C, p, q) is a semi simple, complex Lie group, thus its univer-
sal covering group is a group of matrices which can be identified with Spin(C,n) .

Spin(C,n) and SO(C, n) have the same Lie algebra which is compact, thus
Spin(C, n) is compact.

We have the isomorphisms :

SO(C,n,) ~ Spin(C,n)/U(1)

Spin(C, 2) ~C

Spin(C,3) ~ SL(C,2)

Spin(C,4) ~ SL(C,2) x SL(C,2)
Spin(C,5) ~ Sp (C,4)

Spin(C, 6) ~ SL(C,4)

5. If K=R

Pin(R,p,q),Pin(R,q,p) are not isomorphic if p # ¢

Pin(R,p,q) is not connected, it maps to O(R,p,q) but the map is not surjec-
tive and it is not a cover of O(R,p,q)

Spin(R,p,q) and Spin(R,q,p) are isomorphic, and simply connected if p+q>2

Spin(R,0,n) and Spin(R,n,0) are equal to Spin(R,n)

For n>2 Spin(R,n) is connected, simply connected and is the universal cover
of SO(R,n) and has the same Lie algebra, so it is compact.

If p+q>2 Spin(R,p,q) is connected, simply connected and is a double cover
of SOy(R,p,q) and has the same Lie algebra, so it is not compact.

We have the isomorphisms :

Spin(R,1) ~ O(R,1)

Spin(R,2) ~ U(1) ~ SO(R,2)
Spin(R,3) ~ Sp( ) ~ SU(2)
Spin(R,4) ~ Sp(1) x Sp(1)
Spin(R,5) ~ Sp(2)

Spin(R,6) ~ SU(4)
Spin(R,1,1) ~ R

Spin(R,2,1) = SL(2,R)
Spin(R,3,1) = SL(C,2)
Spin(R,2,2) = SL(R,2) x SL(R,2)
Spin(R,4,1) = Sp(1,1)
Spin(R,3,2) = Sp(4)
Spin(R,4,2) = SU(2,2)

22.7 Heisenberg group

The Heisenberg group is met in quantum theory.
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22.7.1 Definition

Let be E a symplectic vector space, meaning a real finite n-dimensional vector
space endowed with a non degenerate 2-form h € AsE. So n must be even :
n=2m

Take the set E' x R, endowed with its natural structure of vector space £ HR
and the internal product - :

Vu,v € E,z,y € R: (u,z) - (v,y) = (u—i—v,x—l—y—i— %h(u,v))

The product is associative

the identity element is (0,0) and each element has an inverse :

(u, I)71 = (—u,—x)

So it has a group structure. £ x R with this structure is called the Heisen-
berg group H(E h).

As all symplectic vector spaces with the same dimension are isomorphic, all
Heisenberg group for dimension n are isomorphic and the common structure is
denoted H(n).

22.7.2 Properties

The Heisenberg group is a connected, simply-connected Lie group. It is isomor-
phic (as a group) to the matrices of GL(R,n + 1) which read :

[p]lxn [c]lxl

1
0 In [Q]nxl
0 0 1

E xR is a vector space and a Lie group. Its Lie algebra denoted also H(E,h)
is the set E x R itself with the bracket:

[(u,z), (v,y)] = (u, ) - (v,y) — (v,y) - (u,z) = (0, h (u,v))

Take a canonical basis of E : (e;, f;);~, then the structure coefficients of the
Lie algebra H(n) are :

[(ei,1),(f5,1)] = (0,0;;) all the others are null

It is isomorphic (as Lie algebra) to the matrices of L(R,n + 1) :

0 [Plixn lelixa
0 [O]nxn q nx1
0 0 0

There is a complex structure on E defined from a canonical basis (g5, ¢;)i,

by taking a complex basis (aj,igpj);n:l with complex components. Define the
new complex basis :

ap = % (e —ipx) ,al, = % (ek +ipr)
and the commutation relations becomes : [a;, ax] = {a}, aH =0; [aj, aH =
0;k called CAR
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22.7.3 Representations

Allirreducible finite dimensional linear representation of H(n) are 1-dimensional.
The character is :

Xab (@, y,t) = e~ 2702 +b) where (a,b) € R” x R™

The only unitary representations are infinite dimensional over F' = L2 (R")

AN£0€r feL?R),(xy,t) € H(n)

= px (z,y,t) f(s) = (exp (—2im At — iw (z,y) + 2iwA (s,9))) f(s — )

Two representations py, p,, are equivalent iff A = p. Then they are unitary
equivalent.

22.7.4 Heisenberg group on Hilbert space

There is a generalization of the previous definition for complex Hilbert spaces
H (possibly infinite dimensional) (Neeb p.102)

The Heisenberg group ”Heis” is R x H endowed with the product :

(t,v) (s,w) = (t+s— 3 Im (v,w) , v+ w)

o (t,v) (u) = u + v defines a continuous action of Heis on H

The Heisenberg group is a topological group and has unitary representations
on the Fock space.
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23 REPRESENTATION THEORY

23.1 Definitions and general results

Let E be a vector space on a field K. Then the set L(E;E) of linear endomor-
phisms of E is : an algebra, a Lie algebra and its subset GL(E;E) of inversible
elements is a Lie group. Thus it is possible to consider morphisms between
algebra, Lie algebra or groups and L(E;E) or GL(E;E). Moreover if E is a Ba-
nach vector space then we can consider continuous, differentiable or smooth
morphisms.

23.1.1 Definitions

Definition 1798 A linear representation of the Banach algebra (A,)
over a field K is a couple (E,f) of a Banach vector space E over K and a smooth
map f: A— L(E; E) which is an algebra morphism :

VX, Ye A kK e K: f(kX+FY)=kf(X)+kf(T)

VX, YA : f(X-Y)=f(X)o f(Y)

feL(AL(EE))

If A is unital (there is a unit element I) then we require that f(I)=Idg

Notice that f must be K linear.

The representation is over an algebra of linear maps, so this is a geometrical
representation (usually called linear representation). A Clifford algebra is an
algebra, so it enters the present topic, but morphisms of Clifford algebras have
some specificities which are addressed in the Algebra part.

The representation of Banach algebras has been addressed in the Analysis
part. So here we just recall some basic definitions.

Definition 1799 A linear representation of the Banach Lie algebra (A,[])
over a field K is a couple (E,f) of a Banach vector space E over K and a smooth
map f: A— L(F; E) which is a Lie algebra morphism:

VXY e A kK e K: f(EX+EKY)=kf(X)+Kf(Y)

VX,V € A f (X Y]) = f(X)o f(Y) = f (V) o f (X) = [f (X), f (V)] (m:m)
f € L(AL(E;E))

Notice that f must be K linear.

If E is a Hilbert space H then £ (H; H) is a C*-algebra.

Definition 1800 A linear representation of the topological group G is
a couple (E,f) of a topological vector space E and a continuous map f : G —
GL (E; E) which is a continuous group morphism :

9. h € G f(gh)=f(g)of(h).f(g7") =(f(9))" 5/ (1) =1Idp
f€Co(G;GL(E;E))
f is usually not linear but f(g) must be inversible. E can be over any field.
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Definition 1801 A linear representation of the Lie group G over a field K
is a couple (E,f) of a Banach vector space E over the field K and a differentiable
class r > 1 map [ : G — GL (FE; E) which is a Lie group morphism :

Y. h € G f(gh)=f(g)of(h),f(97") =(f(9) " 5f (1) =1Idp
f el (GGL(E;E))
a continuous Lie group morphism is necessarily smooth

Definition 1802 A representation (E,f) is faithful if the map f is bijective.

Then we have an isomorphism, and conversely if we have an isomorphism
with some subset of linear maps over a vector space we have a representation.

Definition 1803 The trivial representation (E.f) of an algebra or a Lie
algebra is f(X) =0 with any E.
The trivial representation (E.f) of a group is f (g) = Id with any E.

Definition 1804 The standard representation of a Lie algebra of matrices
(resp.of a Lie group of matrices) in L(K,n) is (K™, f) where f(X) (resp.f(g)) is
Just the linear map in L (K™; K™) whose matriz is X (resp.g) in the canonical
basis .

Matrix representation : any representation (E,f) on a finite dimensional
vector space E becomes a representation on a set of matrices by choosing a
basis. But a representation is not necessarily faithful, and the algebra ot the
group may not to be isomorphic to a set of matrices. The matrix representation
depends on the choice of a basis, which can be specific (usually orthonormal).

Definition 1805 An interwiner between two representations (E1, f1), (E2, f2)
of a set X is a morphism : ¢ € L (E1; E2) such that :

Vo e X:gofi(a)=fal(w)od

If ¢ is an isomorphism then the two representations are said to be equiva-
lent.

Conversely, if there is an isomorphism ¢ € GL (E1; E3) between two vector
spaces E1, Fs and if (Ey, f1) is a representation, then with f2 () = ¢ o f1 (z) o
¢, (Ea, f2) is an equivalent representation. Two vector spaces on the same
field and same finite dimension are isomorphic so, representation wise, the
nature of E does not matter, and for a finite dimensional representation we can
take £ = K™. But we can wish to endow E with some additional structure
(usually an internal product) and then it becomes more complicated.

Definition 1806 An invariant vector space in a representation (E,f) is a
vector subspace F of E such that: Vo € X,Yu € F: f () (u) € F

If V is a closed vector subspace of E, invariant in the representation, then
(V.fjr) where fy is the restriction of f to £(V;V), is still a representation.
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Definition 1807 A representation (E,f) is irreducible if the only closed in-
variant vector subspaces are 0 and F.

Irreducible representations are useful because many representations can be
built from simpler irreducible representations.

Definition 1808 If H is a Lie subgroup of G, (E.f) a representation of G, then
(E, fu) where fg is the restriction of f to H, is a representation of H, called a
subrepresentation.

Similarly If B is a Lie subalgebra of A, (E,f) a representation of A, then
(E, fp) where fp is the restriction of f to B, is a representation of B.

23.1.2 Complex and real representations

These results seem obvious but are very useful, as many classical representa-
tions can be derived from each other by using simultaneously complex and real
representations.

1. For any complex representation (E,f), with E a complex vector space and
f a C-differentiable map, (Eg @ iER, f) is a real representation with any real
structure on E.

So if (E,f) is a complex representation of a complex Lie algebra or Lie group
we have easily a representation of any of their real forms.

2. There is a bijective correspondance between the real representations of
a real Lie algebra A and the complex representations of its complexified A¢c =
A @®iA. And one representation is irreducible iff the other is irreducible.

A real representation (E,f) of a Lie algebra A can be extended uniquely in
a complex representation (Eg, fc) of Ac by fo (X +iY) = f(X)+if (V)

Conversely if A is a real form of the complex Lie algebra B=A & iA, any
complex representation (E,f) of B gives a representation of A by taking the
restriction of f to the vector subspace A.

3. If (E,f) is a complex representation of a Lie group G and o a real struc-
ture on E, there is always a conjugate complex vector space E and a bijective
antilinear map : o : E — E. To any f (g) € L (E; E) we can associate a unique
conjugate map :

flg)=0of(9)oo ! € L(BE) :: flgu= f(9)u

If f is a real map then f(g) = f(g). If not they are different maps, and
we have the conjugate representation (also called contragrediente) : (E ,7)
which is not equivalent to (E,f).

23.1.3 Sum and product of representations

Given a representation (E,f) we can define infinitely many other representations,
and in physics finding the right representation is often a big issue (exemple in
the standard model).
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Lie algebras - Sum of representations

Definition 1809 The sum of the representations (E;, f;)i_, of the Lie algebra
(A,[]), is the representation (Bi_, E;, ®I_ fi)

For two representations :

fi®dfai A= L(E1® B2 E1 ® E2) = (f1 ® f2) (X) = f1 (X) + f2 (X)

So: (f1 @ f2) (X) (u1 ®uz) = f1 (X)u1 + f2 (X)uz

The bracket on Fy & Fs is [u1 + ug, v1 + ve] = [ug, v1] + [u2, v2]

The bracket on £ (Ey @ Eo; E1 @ E3) is [p1 @ 2,11 © ¥a] = [p1, 1]+ [02, ¥2] =
p1oY1 —P1op1 + 202 — 1209

The direct sum of representations is not irreducible. Conversely a represen-
tation is said to completely reducible if it can be expressed as the direct sum
of irreducible representations.

Lie algebras - tensorial product of representations

Definition 1810 The tensorial product of the representations (E;, f;)7_,
of the Lie algebra (A,[]) is a representation (E = Ey @ Es...® E,, D) with the
morphism D defined as follows : for any X € A, D(X) is the unique extension
of p(X)=31_,1d®.® f(X)®..®Id € L" (Ey,..E; E) to a map L (E; E)

T

such that : ¢ (X) = D (X) o with the canonical map : +: [ E" = FE
k=1

As ¢ (X) is a multilinear map such an extension always exist.

So for two representations :

D (X) (u1 @ uz) = (f1 (X)u1) @ uz + u1 @ (f2 (X) u2)

The bracket on L (Fy ® Es; Eq ® Es) is

[f1 (X) @ Idy + 1dy @ f2 (X)), f1 (V) ® Idy + Idy @ f2 (V)]

= (L (X)®@Idy + Idy ® fo(X))o(f1 (V) ® Idy + Idy ® fo (Y))—(f1 (Y) © Ida + Id1 ® fa (Y))o
(fi(X)®Idy+1dy @ f2 (X))

=[A(X), (V)@ 1dy+ Tdy @ [f2(X), f2 (V)] = (f1 x f2) ([X,Y])
If all representations are irreducible, then their tensorial product is irre-

ducible.
If (E,f) is a representation the procedure gives a representation (" E, D" f)

Definition 1811 If (E.f) is a representation of the Lie algebra (A, []) the repre-
sentation (N\"E;, D", f) is defined by extending the antisymmetric map : ¢4 (X) €
L™ (E"NE) i ga(X)=> 0 IdN . ANF(X)N..ATd

Definition 1812 If (E.f) is a representation of the Lie algebra (A,[]) the rep-
resentation (O"E;, D% f) is defined by extending the symmetric map ¢g (X) €
L (E"S™(E)) :¢s(X)=> 3 1dO...0 f(X)O..0Id
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Remarks :

i) @"E,AN"E C @"E as vector subspaces.

ii) If a vector subspace F of E is invariant by f, then ®"F is invariant by
D"f, as ©"E,N"F for DL f, DL f.

iii) If all representations are irreducible, then their tensorial product is irre-
ducible.

Groups - sum of representations

Definition 1813 The sum of the representations (E;, f;)7_, of the group
G, is a representation (®I_ E;, ®1_, [i)

For two representations : (fi1 @ f2) (¢) (u1 & u2) = f1 (9) w1 + f2 (9) w2

The direct sum of representations is not irreducible. Conversely a represen-
tation is said to completely reducible if it can be expressed as the direct sum
of irreducible representations.

Groups - tensorial product of representations

Definition 1814 The tensorial product of the representations (E;, f;)I_,;
of the group G is a representation

(F =E1 ® Fs...® E,., D) with the morphism D defined as follows : for any
g € G, D(g) is the unique extension of ¢(g) (u1,.,ur) = fi(gu1 ® ... ®
fr(9)ur € L7 (Er,..,E; E) to D(g) € L(E;E) such that ¢ (g) = D (g) o
with the canonical map : v: [[E" — E

k=1
As ¢ (g) is a multilinear map such an extension always exist.
If (E,f) is a representation the procedure gives a representation (" E, D" f)

Definition 1815 If (E.f) is a representation of the group G the representa-
tion (N"E;, D" f) is defined by extending the antisymmetric map : ¢4 (g) €
LT (E"5N'E) : ¢a(9) = 24y F(O) A AT (9) Ao A f(g)

Definition 1816 If (E.f) is a representation of the group G the representation
(OTE;, D f) is defined by extending the symmetric map ¢g(g) € L™ (E™; 8" (E)) =
6s(9) =221 f(9) © .. © f(9) © ... © f(9)

Remarks :

i) ®"E,A"E C ®"F as vector subspaces.

ii) If a vector subspace F of E is invariant by f, then ®"F is invariant by
D" f, as ©"E,N"F for DL f, D] f.

iii) If all representations are irreducible, then their tensorial product is irre-
ducible.
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23.1.4 Representation of a Lie group and its Lie algebra
From the Lie group to the Lie algebra

Theorem 1817 If (E,f) is a representation of the Lie group G then (E,f’(1))
is a representation of TiG and Vu € ThG : f (expg u) = expg(p;p) /(1)U

Proof. fis a smooth morphism f € C (G; GL (E; E)) and its derivative {’(1)
is a morphism : f/(1) € L(T1G;L(E;E)) =
The exponential on the right side is computed by the usual series.

Theorem 1818 If (E1, f1), (Fa, f2) are two equivalent representations of the
Lie group G, then (E1, f1(1)), (Es2, f5 (1)) are two equivalent representations of
TG

Theorem 1819 If the closed vector subspace F' is invariant in the representa-
tion (E.,f) of the Lie group G, then F is invariant in the representation (E,f’(1))
Of TlG .

Proof. (F,f) is a representation is a representation of G, so is (F,{’(1)) =

Theorem 1820 If the Lie group G is connected, the representation (E,f) of G
is irreducible (resp.completely reducible) iff the representation (E,f’(1)) of its
Lie algebra is irreducible (resp.completely reducible)

Remark :

If (E1, f1), (B9, f2) are two representations of the Lie group G, the derivative
of the product of the representations is :

(fl ® fz)/ (1) : G — L (El ® FEy; B ® Ez) s (i® fz)l (1) (u1 ®ug) =
(1 (D ur) @ uz +ur @ (f3 (1) uz)

that is the product (F1®FEs, f1 (1)x f5 (1)) of the representations (E1, f1 (1)), (E2, f45 (1))
of TlG

We have similar results for the sum of representations.

From the Lie algebra to the Lie group
The converse is more restrictive.

Theorem 1821 If (E.f) is a representation of the Lie algebra T'G of a con-
nected finite dimensional Lie group, G a universal covering group of G with
the smooth morphism :w : G — G , there is a smooth Lie group morphism

Fe Cw ((N?;GE (E,E)) such that F’(1)=f and (E,F) is a representation of G,
(E,F o) is a representation of G.

Proof. G and G have the same Lie algebra, f is a Lie algebra morphism T,.G —
L (E; E) which can be extended globally to G' because it is simply connected.
As a product of Lie group morphisms F o 7 is still a smooth morphism in
Cox (G;GL(E;E)) m

F can be computed from the exponential : Yu € T1G : exp f'(1)u =
Flexpgu) = F (7).
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Weyl’s unitary trick
(Knapp p.444)

It allows to go from different representations involving a semi simple Lie
group. The context is the following :

Let G be a semi simple, finite dimensional, real Lie group. This is the case
if G is a group of matrices closed under negative conjugate transpose.There is
a Cartan decomposition : T1G = lg ® po. If lp Nipg = 0 the real Lie algebra
ug = lo @ ipo is a compact real form of the complexified (71G) . So there is a
compact, simply connected real Lie group U with Lie algebra wug.

Assume that there is a complex Lie group G¢ with Lie algebra (T1G) which
is the complexified of G. Then G¢ is simply connected, semi simple and G,U
are Lie subgroup of Gc.

We have the identities : (T1G)e = (T1G) @ i (ThG) = up ® iug

Then we have the trick :

1. If (E,f) is a complex representation of G¢ we get real representations
(E,f) of G,U by restriction to the subgroups.

2. If (E,f) is a representation of G we have a the representation (E,f’(1)) of
TG or uyp.

3. If (E,f) is a representation of U we have a the representation (E,f’(1)) of
TlG or Ug

4. If (E,f) is a representation of T1G or uy we have a the representation
(E,£'(1)) of (ThG)¢

5. A representation (E,f) of (T1G) lifts to a representation of G¢

6. Moreover in all these steps the invariant subspaces and the equivalences
of representations are preserved.

23.1.5 Universal envelopping algebra

Principle

Theorem 1822 (Knapp p.216) : The representations (E,f) of the Lie algebra
A are in bijective correspondance with the representations (E,F) of its universal
envelopping algebra U(A) by : f = F o1 wherev: A — U(A) is the canonical
mjection.

If V is an invariant closed vector subspace in the representation (E,f) of the
Lie algebra A, then V is invariant for (E,F)
So if (E,F) is irreducible iff (E,f) is irreducible.

Components expressions
If (e;);c; is a basis of A then a basis of U(A) is given by monomials :
(1(ei)™ (1(e))™ oo (1(es,))"™ yin < iz <ip € I,my,..mp €N
and F reads :

F (((e))" ((ei))" woee ((e5,))™) = (F ((ex)) ™ o(f ((€ix)))™ oo (f ((e1,)))™

On the right hand side the powers are for the iterates of f.
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F(lg) = Idg = Vk € K : F(k) (U) = kU
If the representation (E,f) is given by matrices [f (X)] then F reads as a
product of matrices :

F (1 (e))™ (1 ei))™ oo (1(e5,))"™) = [F (lea D™ IF ((ea))]"™ v [F (1 (e3,))] ™

Casimir elements
The Casimir elements of U(A) are defined as :

Q=30 =1 Tr(plei, - eipe - eq,)) 1 (Biy) o (Bs,) €U (A)

where the basis (E;);_, is a basis of A such that B (E;,e;) = d;; with the
Killing form B.

They do not depend on the choice of a basis and belongs to the center of
U(A).

They have for images in the representation (E,F) of U(A) :

F Q) =30 in=1 Tr (f (i) o f (ei,) 0 f(ei,)) f (Eiy) .f (Ei,) € L(E; E)

As F (Q,) commutes with each f(X), they acts by scalars in any irreducible
representation of A which can be used to label the irreducible representations.

Infinitesimal character
If (E,F) is an irreducible representation of U(A) there is a function y, called
the infinitesimal character of the representation, such that : x : Z (U (4)) —
K :: F(U)=x(U)Idg where Z(U(A)) is the center of U(A).
U is in the center of U(A) iff VX € A: XU =UX or exp (ad (X)) (U) =U.

Hilbertian representations
U(A) is a Banach C*-algebra with the involution : U* = U?! such that :

1(X)" = —1(X)

If (H,f) is a representation of the Lie algebra over a Hilbert space H, then
L(H;H) is a C*-algebra.

(H,f) is a representation of the Banach C*-algebra U(A) if VU € U (4) :
F(U*) = F(U)" and this condition is met if : f(X)" = —f (X) : the represen-
tation of A must be anti-hermitian.

23.1.6 Adjoint representations

Lie algebras

Theorem 1823 For any Lie algebra A (A, ad) is a representation of A on itself.

This representation is extended to representations (U, (A4), fn) of A on its
universal envelopping algebra U(A):

U, (A) is the subspace of homogeneous elements of U(A) of order n

fon i A= LU, (A);Up (A)) = fr(X)u = Xu—uX is a Lie algebra mor-
phism.

For n=1 we have the adjoint represention.
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Theorem 1824 (Knapp p.291) If A is a Banach algebra there is a representa-
tion (U(A),f) of the component of identity Int(A) of GL(A;A)

If A is a Banach algebra, then GL(A;A) is a Lie group with Lie algebra
L(A;A), and it is the same for its component of the identity Int(A). With any
automorphism ¢g € Int(A) and the canonical map : 2 : A — U(A) the map :
10g: A— U(A) issuch that : iog(X)10og(Y)—iog(Y)iog(X)=109[X,Y]
and 2 o g can be extended uniquely to an algebra morphism f (g) such that :
flg) : UA) - U(A) :1og = f(g) or .Each f(g)e GL(U (A);U (A4)) is an
algebra automorphism of U(A) and each U, (A) is invariant.

The map : f: Int(A) = L (U (A);U (A)) is smooth and we have : f(g) o
f(h)=f(goh)so (U(A),f) is a representation of Int(A).

Lie groups

Theorem 1825 For any Lie group G the adjoint representation is the rep-
resentation (T1G, Ad) of G on its Lie algebra

The map : Ad: G — GL (T1G;T1G) is a smooth Lie group homorphism

This representation is not necessarily faithful.

It is irreducible iff G has no normal subgroup other than 1. The adjoint rep-
resentation is faithful for simple Lie groups but not for semi-simple Lie groups.

It can be extended to a representation on the universal envelopping algebra
U(T1QG).

There is a representation (U(A),f) of the component of identity Int(A) of
GL(AA)). Ad, € Int(T1G) so it gives a family of representations (U, (T1G) , Ad)
of G on the universal envelopping algebra.

23.1.7 Unitary and orthogonal representations

Definition
Unitary or orthogonal representations are considered when there is some

scalar product on E. It has been required that E is a Banach space, so the
norm on E should come from the scalar product, and E must be a real or com-
plex Hilbert space H, finite or infinite dimensional. So we will assume that H is
a complex Hilbert space (the definitions and results are easily adjusted for the
real case) with scalar product (), antilinear in the first variable.

Each operator X in £(H;H) (or at least defined on a dense domain of H) has
an adjoint X* in £(H;H) such that :

(Xu,v) = (u, X*v)

The map *:L(H;H)—L(H;H) is an involution, antilinear, bijective, continu-
ous, isometric and if X is invertible, then X* is invertible and (X *1)* =(x9!
.With this involution £(H;H) is a C*-algebra.

Definition 1826 A unitary representation (H,f) of a group G is a repre-
sentation on a Hilbert space H such thatVg € G : f(9)" f(9)=f(9) f(g)" =1
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If H is finite dimensional then f(g) is represented in a Hilbert basis by a
unitary matrix. In the real case it is represented by an orthogonal matrix.
This is equivalent to : f preserves the scalar product : Vg € G,u,v € H :

(f (@ u, f(g)v) = (u,v)
Remark : if f there is a dense subsace E of H such that :Vu,v € E the map
G — K :: (u, f (g)v) is continuous then f is continuous.

Sum of unitary representations of a group

Theorem 1827 (Neeb p.2/) The Hilbert sum of the unitary representations
(Hi, fi);c; is a unitary representation (H, f) where :
H = ®,c1H; the Hilbert sum of the spaces

f:G— L(H;H) : f(Z'LGIu'L) :Zielfi(ui)

This definition generalizes the sum for any set I for a hilbert space.

Representation of the Lie algebra

Theorem 1828 If (H,f) is a unitary representation of the Lie group G, then
(H,f’(1)) is an anti-hermitian representation of T'G

Proof. (H,{’(1)) is a representation of T1G. The scalar product is a continuous
form so it is differentiable and :

VX € TG u,v € H: (f' (1) (X) u,v)+(u, f/ (1) (X)v) =0 (f (1) (X)) =
—F () (X)

(H,f’(1)) is a representation of the C*-algebra U(A).

Dual representation

Theorem 1829 If (H,f) is a unitary representation of the Lie group G, then
there is a unitary representation (H,f) of G

Proof. The dual H’ of H is also Hilbert. There is a continuous anti-isomorphism
7: H — H such that :
VAe H Vue H:(1(p),u) =¢(u)

fis defined by : f(9)p =77 (f(9)7(9)) & flg)=7""of(g)oT
Which is C linear. If (H,f) is unitary then (H’, f) is unitary:
(F@efov) =(refl@erofl@v) =(f@ere (g ord), =

<T(p7 Tw>H = <907 w>H* u
The dual representation is also called the contragredient representation.
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23.2 Representation of Lie groups

The representation of a group is a rich mathematical structure, so there are
many theorems which gives a good insight of what one could expect, and are
useful tools when one deals with non specified representations.

23.2.1 Action of the group

A representation (E,f) of G can be seen as a left (or right) action of G on E:
p:ExG—=E:pug)=f(gu
AMGXE—FE:Ag,u)=f(9u

Theorem 1830 The action is smooth and proper

Proof. As f:G— L (F; E) is assumed to be continuous, the map ¢ : L (E; E) X
E — F is bilinear, continuous with norm 1, so A (g,u) = ¢ (f (9) ,u) is continu-
ous.

The set GxE has a trivial manifold structure, and group structure. This is
a Lie group. The maps A is a continuous Lie group morphism, so it is smooth
and a diffeomorphism. The inverse if continuous, and A is proper. m

An invariant vector space is the union of orbits.

The representation is irreducible iff the action is transitive.

The representation is faithful iff the action is effective.

The map : R = GL(E; E) :: f(exptX) is a diffeomorphism in a neighbor-
hood of 0, thus f’(1) is inversible.

We have the identities :

Vge G, X e ThG:

flg)=f(g)of(1)oLi g

f'(9) (Ry1) X = f'(1)(X) o f(g)

Adgg f' (1) = f' (1) Ad,

The fundamental vector fields are :

(TG — L(EE) = (L (X)=f(1)X

23.2.2 Functional representations

A functional representation (E,f) is a representaion where E is a space of func-
tions (or even maps). Then the action of the group is usually on the variable of
the function. Functional representations are the paradigm of infinite dimensional
representations of a group. They exist for any group, and there are ”standard”
functional representations which have nice properties.

Right and left representations

Definition 1831 The left representation of a topological group G on a Hilbert
space of maps H C C(E; F) is defined, with a continuous left action X of G
on the topological space E by : A : G — L(H;H) :: A(g)p = A;,lcp with

/\g—l = (gil, )
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So G acts on the variable inside ¢ : A (g) ¢ (z) = ¢ (A (971, 2))
Proof. A is a morphism:
For g fixed in G consider the map : H — H :: ¢ (z) = ¢ (A (¢71, 2))

A(gh) e =X 0= (M1 0Ag-1) ¢ = (A}l o /\;;71) p=(A(g)oA(h) ¢
A)p=¢

-1
Alg ) e=Xop= (/\_j;fl) o =
We have similarly the right representation with a right action :
H—=H:op(@) = o(p(x9))
P:G— L(H;H)::P(g)p=pyp

P(g) e () =¢(p(z,9)
Remark : some authors call right the left representation and vice versa.

Theorem 1832 If there is a finite Haar Radon measure p on the topological
group G any left representation is unitary

Proof. as H is a Hilbert space there is a scalar product denoted (p, 1)

Vge G,pe H:A(g)p € Hso(A(g)p,A(g)v) is well defined

(o, 9) = [ (A(g) e, A(g)9)p is well defined and <oo. This is a scalar
product (it has all the properties of ()) over H

It is invariant by the action of G, thus with this scalar product the repre-
sentation is unitary. m

Theorem 1833 A left representation (H,A) of a Lie group G on a Hilbert
space of differentiables maps HC Cy (M; F), with a differentiable left action A
of G on the manifold M, induces a representation (H, A’ (1)) of the Lie algebra
TG where TG acts by differential operators.

Proof. (H,A’ (1)) is a representation of T1 G

By the differentiation of : A (g) ¢ (z) =¢ (A (g1, z))

N (9) o @) lg=1 = ¢ (A (9712)) lomaXy (97,2) [g=1 (=R (1) 0 Ly 1(9) ) [y

N (1) (2) = —' (@) X, (1,2)

XenG:NQ)p(r) X =—¢ (x) N, (1,) X

A (1) ¢ (z) X is a local differential operator (x does not change) m

Similarly : P’ (1) ¢ (z) = ¢’ (z) p;, (2, 1)

It is usual to write these operators as :

N (D) g (@)X = o\ ((exp (X)), 2)) li=o

P (D) (2) X = o (p(z,exp (tX))) [0

These representations can be extended to representations of the universal
envelopping algebra U (T1G) . We have differential operators on H of any order.
These operators have an algebra structure, isomorphic to U (T1G) .
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Polynomial representations
If G is a set of matrices in K(n) and A the action of G on E = K™ associated

to the standard representation of G, then for any Hilbert space of functions of
n variables on K we have the left representation (H,A) :

AN:G— L(H;H)::A(g)p(x1,22,..0) = ¢ (Y1, .-Yn) with [Y] = [gr1 [X]

The set K, [z1, ...2»] of polynomials of degree p with n variables over a field
K has the structure of a finite dimensional vector space, which is a Hilbert
vector space with a norm on KP*1. Thus with H=K, [z1, ...z,,] we have a finite
dimensional left representation of G.

The tensorial product of two polynomial representations :

(Kp 21, -wp], Ap) s (Kq [y1,--yq] s Ag)

is given by :

the tensorial product of the vector spaces, which is : Kpyq [21,...2p, Y1, ---Yq)
represented in the canonical basis as the product of the polynomials

the morphism : (A, ® A,) (9) (2 (X) ® 24 (V) = 05 (Io) ™ [X]) ¢4 (191 [¥1)

Representations on LP spaces
See Functional analysis for the properties of these spaces.
The direct application of the previous theorems gives :

Theorem 1834 (Neeb p.45) If G is a topological group, E a topological locally
compact space, N : G X E — E a continuous left action of G on E, p a G
invariant Radon measure on E, then the left representation (L2 (E,,u,(C),f)
with (9) ¢ (x) = ¢ (A (g7', x)) is an unitary representation of G.

Theorem 1835 (Neeb p.49) For any locally compact, topological group G, left
invariant Haar Radon measure pr, on G

the left regular representation of G is (L? (G, pur,C), A) with : A(g) ¢ (x) =
(97 x)

the right regular representation of G is (L* (G, ug,C), P) with : P (g)¢ (z) =

VA (9)¢ (zg)

which are both unitary.

The left regular representation is injective.
So any locally compact, topological group has a least one faithful unitary
representation (usually infinite dimensional).

Averaging

With a unitary representation (H,f) of a group it is possible to define a rep-
resentation of the *-algebra L' (G, S, u, C) of integrable functions on G. So this
is different from the previous cases where we build a representation of G itself
on spaces of maps on any set E.

Theorem 1836 (Knapp p.557, Neeb p.134,143) If (H,f) is a unitary repre-
sentation of a locally compact topological group G endowed with a finite Radon
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Haar measure i, and H a Hilbert space, then the map :F : L' (G, S, u,C) —
L(H;H):: F(p) = [o¢(9) f(9)n(g) gives a representation (H,F) of the Ba-
nach *-algebra L' (G, S, u, C) with convolution as internal product. The repe-
sentations (H,f),(H,F) have the same invariant subspaces, (H,F) is irreducible
iff (H,f) is irreducible.

Conversely for each non degenerate Banach *-algebra representation (H,F)
of L' (G, S, i, C) there is a unique unitary continuous representation (H,f) of

G such that : f(g9)F(p) = F(A(g9)p) where A is the left regular action :

Ag)p(z) =@ (g 'z).

F is defined as follows :
For any ¢ € L' (G, S, u,C) fixed, the map : B: Hx H — C :: B(u,v) =

J (w0 (9) f (9) v) pis sesquilinear and bounded because | B (u, v)| < [If (9|l [[ul 0]l [ ¢ (9)] 1

and there is a unique map : A € L(H;H) : Yu,v € H : B (u,v) = (u, Av) . We
put A= F (p). It is linear continuous and ||F (¢)| < ¢l

F () € L(H; H) and can be seen as the integral of f(g) ”averaged” by ¢.

For convolution see Integration in Lie groups.

F has the following properties :

F(p)" =F(¢) with ¢* (9) = ¢ (97")

F(px9)=F(p)oF(¢)

||F(<P)H£(H m < [l 2

F(g)F(p) (z) = F( (97))

F(p) F(9) (z) = A (9) F ( (29))

For the commutants : (F (L' (G, S, u,(C)))/ = (f (@)

Representations given by kernels
(Neeb p.97)

1. Let (H,A) be a left representation of the topological group G, with H a
Hilbert space of functions on a topological space, valued in a field K and a left
action \:G X E— FE

H can be defined uniquely by a definite positive kernel N : Ex E — K. (see
Hilbert spaces).

So let J be a map (which is a cocycle) :J : G x E — K¥ such that :

J(gh,x) =J(g,2)J (h, A (g_l,x))

Then (H, f) with the morphism : f (g) (¢) (z) = J (g,2) ¢ (A (g7}, z)) is a
unitary representation of G iff :

N (A(g,2),A(9,9)) = J (9. A (g9, 2)) N (z,y) J (9. A (9, )

If J, N, A are continuous, then the representation is continuous.

Any G invariant closed subspace A C H has for reproducing kernel P which
satisfies :

P (Mg, 2),A(9,9) = J (9, A (9,%)) P (2, 9) J (9, A (9,9))

Remarks :

i) if N is G invariant then take J=1
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i) if N 0b lizati = —Lfls___ =
( 11)) if N(x,x)# y normalization Q (z,y) e ING U@ (g9,)
J(g,x

, we have an equivalent representation where all the maps of Hgy are
[J(g,2)]
valued in the circle T.

2. Example : the Heisenberg group Heis(H) has the continuous unitary
representation on the Fock space given by :

F(tv) ¢ (u) = exp (it + (u,v) — 5 (v,0)) ¢ (u—v)

23.2.3 Irreducible representations

General theorems
The most important theorems are the following:

Theorem 1837 Schur’s lemna : An interwiner ¢ € L (F1;Es2) of two irre-
ducible representations (E1, f1), (E2, fa) of a group G is either 0 or an isomor-
phism.

Proof. From the theorems below:

ker ¢ is either 0,and then ¢ is injective, or F; and then ¢ =0

Im ¢ is either 0, and then ¢ = 0, or Fs and then ¢ is surjective

Thus ¢ is either 0 or bijective, and then the representations are isomorphic :

VgeG:fi(g)=¢ 'ofa(g)od m

Therefore for any two irreducible representations either they are not equiv-
alent, or they are isomorphic, and we can define classes of irreducible rep-
resentations. If a representation(E,f) is reducible, we can define the number
of occurences of a given class j of irreducible representation, which is called the
multiplicity d; of the class of representations j in (E.,f).

Theorem 1838 If(E, f1), (E, f2) are two irreducible equivalent representations
of a Lie group G on the same complex space then I € C and an interwiner
¢ =Ad

Proof. There is a bijective interwiner ¢ because the representations are equiv-
alent. The spectrum of ¢ € GL(E; E) is a compact subset of C with at least a
non zero element A, thus ¢ — AId is not injective in L(E;E) but continuous, it
is an interwiner of (E, f1), (E, f2), thus it must be zero. m

Theorem 1839 (Kolar p.131) If F is an invariant vector subspace in the finite
dimensional representation (E.f) of a group G, then any tensorial product of
(E.f) is completely reducible.

Theorem 1840 If (E.,f) is a representation of the group G and F an invariant
subspace, then : Yu € F,3g € G,v € F : u= f(g)v

and (E/F7 f) is a representation of G, with : f: G — GL (E/F;E/F) =
£ (9) ([u]) = [f (9) u]
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Proof. Yv € F,Vg € G : f(g)v € F = v = f(g9) (f(g7Hv) = f(g9)w with
w=(flg~"))

u~vesu—v=weF=f(gu—f(gJv=f(gweF

and if F is a closed vector subspace of E, and E a Banach, then E/F is still
a Banach space. m

Theorem 1841 If¢ € L (E1; Es) is an interwiner of the representations (E1, f1), (Ea, f2)
of a group G then : ker ¢, Im ¢ are invariant subspaces of Eq, Eo respectively

Proof. Vg € G : ¢o f1(g9) = f2(g) oo

u € kerg = o fi(g)u = fa(g)ogu =0 = f1(g9)u € ker¢p < ker¢ is
invariant for f;

veEImg = Ju€e Er:v=20odu= ¢(filg)u) = fa(g)odu = fa(g)v =
f2(g)v € Im¢ < Im ¢ is invariant for fo m

Theorems for unitary representations
The most important results are the following:

Theorem 1842 (Neeb p.77) If (H,f) is a unitary representation of the topo-
logical group G, Hy the closed vector subspace generated by all the irreducible
subrepresentations in (H,f), then :

i) Hq is invariant by G, and (Hq .f) is a unitary representation of G which
is a direct sum of irreducible representations

it) the orthogonal complement H, j‘ does not contain any irreducible repre-
sentation.

So : a unitary representation of a topological group can be written as the
direct sum (possibly infinite) of subrepresentations :

H = (®;d;H;) ® H.

each H; is a class of irreducible representation, and d; their multiplicity in
the representation (H,f)

H. does not contain any irreducible representation.

the components are mutually orthogonal : H; L Hy, for j # k,H; L H,

the representation (H,f) is completely reducible iff H, =0

Are completely reducible in this manner :

- the continuous unitary representations of a topological finite or compact
group;

- the continuous unitary finite dimensional representations of a topological
group

Moreover we have the important result for compact groups :

Theorem 1843 (Knapp p.559) Any irreducible unitary representation of a com-

pact group is finite dimensional. Any compact Lie group has a faithful finite di-
mensional representation, and thus is isomorphic to a closed group of matrices.
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Thus for a compact group any continuous unitary representation is com-
pletely reducible in the direct sum of orthogonal finite dimensional irreducible
unitary representations.

The tensorial product of irreducible representations is not necessarily irre-
ducible. But we have the following result :

Theorem 1844 (Neeb p.91) If (Hu, f1),(Ha, f2) are two irreducible unitary
infinite dimensional representations of G, then (Hy ® Ha, f1 ® fo) is an irre-
ducible representation of G.

This is untrue if the representations are not unitary or infinite dimensional.

Theorem 1845 (Neeb p.76) A unitary representation (H,f) of the topological
group G on a Hilbert space over the field K is irreducible if the commutant S’
of the subset S={f (g9),g € G} of L(H;H) is trivial : S’=KzId

Theorem 1846 If E is an invariant vector subspace in a unitary representation
(H,f) of the topological group G, then its orthogonal complement ETis still a
closed invariant vector subspace.

Proof. The orthogonal complement ET is a closed vector subspace, and also a
Hilbert space and H = E @ ET
Let be u € E,v € ET, then (u,v) =0,Yg € G: f(g)u € FE

(F(@)u,w) =0=(u,f(9)"v) = <u7f(g)_1v> =(u,f(g7)v)=>Vgeq:
flgue E- m

Definition 1847 A unitary representation (H,f) of the topological group G is
cyclic if there is a vector u in H such that F(u) = {f(g)u,g € G} is dense in
H.

Theorem 1848 (Neeb p.117) If (H,fu),(H’,f’,u’) are two continuous unitary
cyclic representations of the topological group G there is a unitary interwining

operator F with w'=F(u) iff Vg : (u, f (9)u) g = (', f' (g)u') g

Theorem 1849 If F is a closed invariant vector subspace in the unitary repre-
sentation (H,f) of the topological group G, then each vector of F is cyclic in F,
meaning that Vu # 0 € F : F(u) = {f(g9)u,g € G} is dense in F

Proof. Let S={f(9),9 € G} T GL(H;H). We have S=S* because f(g) is
unitary, so f(g)*=f(g~!) € S.

F is a closed vector subspace in H, thus a Hilbert space, and is invariant by
S. Thus (see Hilbert spaces) :

YVu #0 € F : Fu) = {f(9)u,g € G} is dense in F and the orthogonal
complement F’(u) of F(u) in Fis 0. m

Theorem 1850 (Neeb p.77) If (Hy, f), (Ha, f) are two inequivalent irreducible
subrepresentations of the unitary representation (H,f) of the topological group
G, then Hl 1 HQ.
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Theorem 1851 (Neeb p.24) Any unitary representation (H,f) of a topological
group G is equivalent to the Hilbert sum of mutually orthogonal cyclic subrepre-
sentations: (H, f) = @ier (Hy, flu,)

23.2.4 Character

Definition 1852 The character of a finite dimensional representation (E.,f)
of the topological group G is the function :

Xr:G—= K :xp(g) =Tr(f(g))

The trace of any endomorphism always exists if E is finite dimensional. If
E is an infinite dimensional Hilbert space H there is another definition, but a
unitary operator is never trace class, so the definition does not hold any more.

The character reads in any orthonormal basis : xr(g) = >, (ei, f (g) €i)

Properties for a unitary representation

Theorem 1853 (Knapp p.242) The character x of the unitary finite dimen-
sional representation (H,f) of the group G has the following properties :
xf(1)=dimE
Vg,h € G:xs(ghg™) = xs(h)
xr+(9) =xs(97")

Theorem 1854 (Knapp p.243) If (H1, f1), (Ha, f2) are unitary finite dimen-
sional representations of the group G :
For the sum (E1 & Ea, f = f1 @ fa) of the representations : x5 = X + Xfa
For the tensorial product (F1 ® Eo, f = f1 ® fa) of the representations :

Xf1®f2 = XfXf2
If the two representations (Eq, f1), (E2, f2) are equivalent then : x5, = X/,

So if (H,f) is the direct sum of (Hj, f;)}_; : xy = .- dgxy, where x;,
is for a class of equivalent representations, and d,, called the multiplicity, is
the number of representations in the family (Hj, fj)§7:1 which are equivalent to
(qu fq)

If G is a compact connected Lie group, then there is a maximal torus T and
any element of G is conjugate to an element of T : Vg € G,Ix € G,t €T : g =
xtz~! thus : xf (9) = xs (t). So all the characters of the representation can be
obtained by taking the characters of a maximal torus.

Compact Lie groups

Theorem 1855 Schur’s orthogonality relations (Knapp p.239) : Let G be a
compact Lie group, endowed with a Radon Haar measure p.
i) If the unitary finite dimensional representation (H,f) is irreducible :

Vuy, vy, uz,v2 € H : fG (w1, f () v1) (uz, f (g) vo)p = ﬁ (w1, v1) (u2,v2)
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Xr € c? (G,/L,(C) and HXf” =1

ii) If (H1, f1), (Ha, f2) are two inequivalent irreducible unitary finite dimen-
sional representations of G :

Yui,v1 € Hi,ug,v9 € Hy : fG (ur, f (g)v1) (ua, f(g)v2)pp =0

fG XHXf2H =0

Xf * Xf, = 0 with the definition of convolution above.

iii) If (Hy, f1), (Ha, f2) are two equivalent irreducible unitary finite dimen-
stonal representations of G : xf, * Xf, = d;llel where dy, is the multiplicity of
the class of representations of both (Hy, f1), (Ha, f2).

Theorem 1856 Peter-Weyl theorem (Knapp p.245) : For a compact Lie group
G the linear span of all matriz coefficients for all finite dimensional irreducible
unitary representation of G is dense in L? (G, S, u,C)

If (H,f) is a unitary representation of G, u,v€ H, a matrix coefficient is a
map : G = C(G;C) : m(g) = {u, f (9)v)

Thus if (Hj, fj)§:1 is a family of mutually orthogonal and inequivalent
unitary, finite dimensional representations, take an orthonormal basis (g,) in
each H; and define : ¢;ag(9) = (€a, fj (9) €5), then the family of functions
(\/d_j‘/’jaﬁ)j,a,ﬁ is an orthonormal basis of L2 (G, S, u,C) .

23.2.5 Abelian groups

Fundamental theorem
The main feature of representations of abelian groups is that irreducible rep-
resentations are unidimensional. More precisely :

Theorem 1857 (Neeb p.76) Any irreducible unitary representation of a topo-
logical abelian group is one dimensional.

Theorem 1858 (Duistermaat p.213) Any finite dimensional irreducible repre-
sentation of an abelian group is one dimensional.

A one dimensional representation (E,f) takes the form v € E : f(g)v =
X (g) u where u is some vector and x : G — K : x(g + h) = x(9)x(h),x(1) =1
is a homomorphism from G to the abelian group (K,x). The character is just
Xf = x. Thus the classes of irreducible representations of an abelian group are
given by the characters.

If the irreducible representation is unitary, then x : G — T where T is the
torus {z € C: |z| = 1} and x € G the Pontryagin dual of G.

Any unitary representation takes the form :

(H - (®xeédxex) ©He, f= (@Xeédxxex) Gch)

where the vectors e; are orthonormal, and orthogonal to H.. The irreducible
representations are given with their multiplicity by the e,, indexed by the char-
acters, and H. does not contain any irreducible representation. It can happen
that H. is non trivial, so a unitary representation of an abelian group is not
necessarily completely reducible.
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So the problem is to define precisely such sums of representations. Roughly
we can see that a representation will be on the space generated by the eigen-
vectors of f. The spectral theory is well suited for that.

Fourier transform
If (G,+) is a locally compact, abelian, topological group we have more results.
G is isomorphic to its bidual by the Gelf’and transform (see Group structure) :
T:GxG—=T:7(9,x)=x(9) R
Tg:GoTur(x)=x(9)=17€G=G
A:G—)@:G::ﬁzTg
VxeG:g(x)=x(9)
There is a Haar measure u, which is both left and right invariant and is a

Radon measure, so the spaces LP (G, 11,C),1 < p < oo are well defined (see
Functional analysis) and are Banach vector spaces, L? is a Hilbert space.

Theorem 1859 (Neeb p.150-163) If G is a locally compact, abelian, topolog-
ical group, endowed with a Haar measure i , G its Pontryagin dual, then we
define the Fourier transform of a function ¢ € L' (G,u,C) by : $(x) =
Jax(9)¢(9) 1

i) @ is well defined, continuous and vanishes at infinity : ¢ € Co, (CA?, (C)

ii) the map : F: G — L' (G, S, 1, C) :: F (x) () = @ (x) is bijective

iii) If P is a regular spectral measure on G , valued in L(H;H) for a Hilbert
space H,A(H,f) is a unitary representation of G with : f(g) = P og where
G:G—=G:g(x)=x(9)

iv) Conversely, for any unitary continuous representation (H,f) of G there
is a unique reqular spectral measure P such that :

PiS— L(HH) 5 P(x) = P(x) = P* (x)

f(g) =P(g) whereg:G — G g (x) = x(9)

Moreover any operator in L(H;H) commutes with f iff it commutes with each
P (x).
(’Ui L' (G, S, u,C) is a commutative C*-algebra with convolution product as
internal operation

Remarks :
i) If we come back to the fundamentals (see Set theory), a map x is a subset
X (G, T) = {(9:x(9)),9 € G} of (GxT)

A regular spectral measure P on G is defined on the o—algebra o (é) of G

. SowEa(é) ={(g,x(g)} cGxT

f(g) is the set w N {g}

ii) the theorem establishes a bijective correspondance between unitary rep-
resentations of G and spectral measures on its dual.

For any fixed character y, we have the projection : x (¢) P (x) : H — H,
where H,, is an eigenspace of f(g) with eigenvalue x (g) . For any unitary vector
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win H, (u, P (x)u) = ||P (x)ul® is a probability on G, which gives a weigth to
each character y, specific to f. Notice that the measure P does not need to be
absolutely continuous : it can have discrete components.

Abelian Lie groups are isomorphic to the products of vector spaces and tori.
It is useful to see what happens in each of these cases.

Compact abelian Groups

Theorem 1860 (Neeb p.79) For any compact abelian group G there is a Haar
measure  such that 1 (G) =1 and a family (xn),cyn of functions which consti-
tute a Hermitian basis of L? (G, C, u) so that every function o € L? (G,C, u) is

represented by the Fourier Series : ¢ =) (fG xn(9)p (9) u) Xn

Proof. If G is compact (it is isomorphic to a torus) then it has a finite Haar
measure 4, which can be normalized to 1= fG 1. And any continuous unitary
representation is completely reducible in the direct sum of orthogonal one di-
mensional irreducible representations.
GCCw(G;C)soVp:1<p<oo:GCLP(G,C,pu)
Moreover G is s an orthonormal subset of L? (G, C, 1) with the inner product
(xasx2) = Jo x1(9)x2 (9) b = 0xy xe

@G is discrete so : G = {xn,n € N} and we can take y, as a Hilbert basis of
L*(G,C,p)

The Fourier transform reads : @, = [, xn (9)¢ (9) 1

€ L*(G,S,Cop) i 0 =Y en (Xn ) Xn = Donen (IG xn(9)¢ (9) u) Xn =

2nen PrXn
which is the representation of ¢ by a Fourier series. m

For any unitary representation (H,f) of G, then the spectral measure is :
P:S=0(N) = LH;H):: Py= [gxn(9)f(9)n

Finite dimensional vector space

Theorem 1861 A unitary representation (H,f) of an abelian topological group
G, isomorphic to a m dimensional vector space F reads :

Theorem 1862 f (g) = [,.. (expip(g)) P (p) where P is a spectral measure on
the dual E*.

Proof. There is an isomorphism between the dual E* of E and G :

O:E*— G:x(g) =expip(g)

So any unitary representation (H,f) of G can be written :

f(9) = [g. (expip(g)) P (p)

where P : o (E*) — L(H;H) is a spectral measure and o (E*) the Borel
o—algebra of the dual E*, m
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P is such that:

i)V € 0 (E*) : P(w) = P(w)" = P(w)” : P(w) is a projection

ii) P(E*)=I

i) Vu € H the map : @ — (P(w)u,u) = |P(w)ul> € Ry is a finite
measure on (E¥,0 (E*)). Thus if (u,u)=1 ||P (@) u|® is a probability

If H is finite dimensional then the representation can be decomposed in a
sum of orthogonal irreducible one dimensional representations and we have with
a basis (ex);_, of H: P (p) = > ,_, T (p) ex where 7 is a measure on E* and

79) =iy (J, expip (9) 7 (p) ex.

23.2.6 Induced representations

Induced representations are representations of a subgroup H of Lie group G
which are extended to G.

Theorem 1863 (Knapp p.564) A unitary representation (H,f) of a closed Lie
subgroup S of a Lie group G endowed with a left invariant Haar measule wy, ,
can be extended to a unitary representation (W,Aw) of G where W is a subset
of L? (G;wr; S) and Ay the left regular representation on W.

The set L? (G;wy; H) is a Hilbert space is H is separable.
W is the set of continuous maps ¢ in L? (G;wr; H) such that :

W ={peL*(Gwr; H)NCy(G;H):¢(gs) = f(s7) ¢(9)}
Aw :G = L(W;W) = Aw (9) (9) (9) = ¢ (9719)

23.3 Representation of Lie algebras

Lie algebras are classified, therefore it is possible to exhibit almost all their
representations, and this is the base for the classification of the representation
of groups.

23.3.1 Irreducible representations
The results are similar to the results for groups.

Theorem 1864 (Schur’s lemna) Any interwiner ¢ € L (E1; E2) between the
irreducible representations (E1, f1), (E2, f2) of the Lie algebra A are either 0 or
an isomorphism.

Proof. with the use of the theorem below
ker ¢ is either 0,and then ¢ is injective, or F; and then ¢ =0
Im ¢ is either 0, and then ¢ = 0, or Fs and then ¢ is surjective
Thus ¢ is either 0 or bijective, and then the representations are isomorphic :
VX EX:fi(X)=¢ o fr(X)o m

Theorem 1865 If (E, f1), (E, f2) are two irreducible equivalent representations
of a Lie algebra A on the same complex space then I\ € C and an interwiner
¢ =Ad
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Proof. The spectrum of ¢ € GL(E; F) is a compact subset of C with at least
a non zero element A, thus ¢ — A\Id is not injective in L(E;E) but continuous, it
is an interwiner of (E, f1), (E, f2), thus it must be zero. m

Therefore for any two irreducible representations either they are not equiv-
alent, or they are isomorphic, and we can define classes of irreducible rep-
resentations. If a representation (E,f) is reducible, we can define the number
of occurences of a given class j of irreducible representation, which is called the
multiplicity d; of the class of representations j in (E.,f).

Theorem 1866 (Knapp p.296) Any finite dimensional representation (E.f) of
a complex semi-simple finite dimensional Lie algebra A is completely reducible:

E =&} _,Ey, (E, f|E,) is an irreducible representation of A

Theorem 1867 If ¢ € L (E1; E2) is an interwiner between the representations
(E1, f1), (Ea, f2) of a Lie algebra A, then : ker ¢,Im ¢ are invariant subspaces
of E1, E5 respectively

Proof. u cker¢p = ¢po fi (X)u= fo(X)opu=0= f1(X)u € kerp & ker¢
is invariant for f;

veEImp =FueFE :v=9qu=¢(fr(X)u) = fa(X)ogu= fo(X)v=
f2 (X)v € Im¢ < Im ¢ is invariant for fo m

Theorem 1868 (Knapp p.250) Any 1 dimensional representation of a semi
simple Lie algebra is trivial (=0). Any 1-dimensional representation of a con-
nected semi simple Lie group is trivial (=1).

23.3.2 Classification of representations

Any finite dimensional Lie algebra has a representation as a matrix space over
a finite dimensional vector space. All finite dimensional Lie algebras are classi-
fied, according to the abstract roots system. In a similar way one can build any
irreducible representation from such a system. The theory is very technical (see
Knapp) and the construction is by itself of little practical use, because all com-
mon Lie algebras are classified and well documented with their representations.
However it is useful as a way to classify the representations, and decompose
reducible representations into irreducible representations. The procedure starts
with semi-simple complex Lie algebras, into which any finite dimensional Lie
algebra can be decomposed.

Representations of a complex semi-simple Lie algebra
(Knapp p.278, Fulton p.202)

Let A be a complex semi-simple n dimensional Lie algebra., B its Killing
form and B* the form on the dual A*. There is a Cartan subalgebra h of
dimension r, the rank of A. Let h* be its dual.

The key point is that in any representation (E,f) of A, for any element H
of h, f(H) acts diagonally with eigen values which are linear functional of the
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H € h. As the root-space decomposition of the algebra is just the representation
(A,ad) of A on itself, we have many similarities.

i) So there are forms A\ € h*, called weights, and eigenspaces, called weigth
spaces, denoted E) such that :

Ex={ueE:VHeh: f(Hu=AUH)u}

we have similarly :

Ay ={Xe€eA:VHeh:ad(H) X =a(H)X}

The set of weights is denoted A (\) € h* as the set of roots A («)

Whereas the A, are one dimensional, the F) can have any dimension < n
called the multiplicity of the weight

ii) E is the direct sum of all the weight spaces :

E = ®\F)

we have on the other hand : A = hé) Ay because 0 is a common eigen value
for h.

iii) every weight A is real valued on hgy and algebraically integral in the
meaning that :

Vae A : 2§83; S/

where hg = ) . k% H, is the real vector space generated by H,, the vectors
of A, dual of each root o with respect to the Killing form : VH € h: B (H, H,) =
a(H)

iv) for any weigth A : Va € A: f (Hy) Ex C Exia

As seen previously it is possible to introduce an ordering of the roots and
compute a simple system of roots : II (a) = II (e, ...a;) and distinguish positive
roots AT (a) and negative roots A~ («)

Theorem 1869 Theorem of the highest weigth : If (E,f) is an irreducible
finite dimensional representation of a complex semi-simple n dimensional Lie
algebra A then there is a unique vector V € E, called the highest weigth vector,
such that :

i) V € E, for some p € A(X) called the highest weigth

it) E,, is one dimensional

i) up to a scalar, V is the only vector such that : Voo € AT () ,VH € A, :
fH)V =0

Then :

i) successive applications of V8 € A~ (a) to V generates E:

E = Span (f (Hg,) f (Hp,) ...f (Hs,) V. Br € A™ (a))

ii) all the weights A of the representation are of the form : A = u—Zﬁczl NE O
with n, € N and [A] < ||

ili) © depends on the simple system II («) and not the ordering

Conversely :

Let A be a finite dimensional complex semi simple Lie algebra. We can

use the root-space decomposition to get A (o). We know that a weight for any
representation is real valued on hg and algebraically integral, that is: 2 g* Eizg €

Z.
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So choose an ordering on the roots, and on a simple system II (aq,...cq)
D) B* (w;,a5)

B*(a;,a;)
highest weight will be of the form : u = Y%, ngwy, with nj, € N

The converse of the previous theorem is that, for any choice of such highest
weight, there is a unique irreducible representation, up to isomorphism.

The irreducible representation (E;, f;) related to a fundamental weight w;
is called a fundamental representation. The dimension p; of E; is not a
parameter : it is fixed by the choice of w;.

To build this representation the procedure, which is complicated, is, starting
with any vector V which will be the highest weight vector, compute successively
other vectors by successive applications of f (8) and prove that we get a set of
independant vectors which consequently generates E. The dimension p of E is
not fixed before the process, it is a result. As we have noticed, the choice of the
vector space itself is irrelevant with regard to the representation problem, what
matters is the matrix of f in some basis of E.

From fundamental representations one can build other irreducible represen-
tations, using the following result

define the fundamental weights : (wi)izl by : = J;;. Then any

Theorem 1870 (Knapp p.341) If (E1, f1), (E2, f2) are irreducible representa-
tions of the same algebra A, associated to the highest weights 1, po. then the
tensorial product of the representations, (E1 ® Ea, fi X f2) is an irreducible rep-
resentation of A, associated to the highest weight p1 + pa.

Notation 1871 (E;, f;) denotes in the following the fundamental representa-
tion corresponding to the fundamental weight w;

Practically

Any finite dimensional semi simple Lie algebra belongs to one the 4 general
families, or one of the 5 exceptional algebras. And, for each of them, the funda-
mental weigths (wi)li:1 (expressed as linear combinations of the roots) and the
corresponding fundamental representations (F;, f;), have been computed and
are documented. They are given in the next subsection with all the necessary
comments.

Any finite dimensional irreducible representation of a complex semi simple
Lie algebra of rank 1 can be labelled by 1 integers (ni)izl : Ty, .., identifies
the representation given by the highest weight : w = Zﬁc:l npwg. It is given
by the tensorial product of fundamental representations. As the vector spaces
FE; are distinct, we have the isomorphism F; ® Fy ~ F; ® E; and we can
collect together the tensorial products related to the same vector space. So the
irreducible representation labelled by w = 22:1 NEwWy 18 :

Fnlmﬂl = (®£:1 (®21:1E1) ’ ><é:l (Xzizl 1))

And any irreducible representation is of this kind.

Each F; has its specific dimension, thus if we want an irreducible represen-
tation on a vector space with a given dimension n, we have usually to patch
together several representations through tensorial products.
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Any representation is a combination of irreducible representations, however
the decomposition is not unique. When we have a direct sum of such irreducible
representations, it is possible to find equivalent representations, with a different
sum of irreducible representations. The coefficients involved in these decom-
positions are called the Clebsh-Jordan coefficients. There are softwares which
manage most of the operations.

Representation of compact Lie algebras

Compact complex Lie algebras are abelian, so only real compact Lie algebras
are concerned. A root-space decomposition on a compact real Lie algebra A can
be done (see Compact Lie groups) by : choosing a maximal Cartan subalgebra
t (for a Lie group it comes from a torus, which is abelian, so its Lie subalgebra
is also abelian), taking the complexified Ac,tc of A and t , and the roots « are
elements of {7 such that :

Ay ={X € Ac:VH €tc:ad(H)X =a(H) X}

AC =1tc Do Ao

For any H € t: a (H) € iR : the roots are purely imaginary.

If we have a finite dimensional representation (E,f) of A, then we have
weights with the same properties as above (except that t replaces h): there
are forms A € t¢,, called weights, and eigenspaces, called weigth spaces, denoted
FE)\ such that :

Ex={ueE:VHetc: f(Hu=XH)u}

The set of weights is denoted A (\) € t¢,.

The theorem of the highest weight extends in the same terms. In addition
the result stands for the irreducible representations of compact connected Lie
group, which are in bijective correspondance with the representations of the
highest weight of their algebra.

23.4 Representation of classical groups
23.4.1 General rules

We recall the main general results :

- any irreducible representation of an abelian group is unidimensional (see
the dedicated subsection)

- any continuous unitary representation of a compact or a finite group is com-
pletely reducible in the direct sum of orthogonal finite dimensional irreducible
unitary representations.

- any continuous unitary finite dimensional representation of a topological
group is completely reducible

- any 1 dimensional representation of a semi simple Lie algebra is trivial
(=0). Any 1-dimensional representation of a connected semi simple Lie group
is trivial (=1).

- any topological, locally compact, group has a least one faithful unitary
representation (usually infinite dimensional) : the left (right) regular represen-
tations on the spaces L% (G, ur,C).
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- any Lie group has the adjoint representations over its Lie algebra and its
universal envelopping algebra

- any group of matrices in K(n) has the standard representation over K"
where the matrices act by multiplication the usual way.

- there is a bijective correspondance between representations of real Lie al-
gebras (resp real groups) and its complexified. And one representation is irre-
ducible iff the other is irreducible.

- any Lie algebra has the adjoint representations over itself and its universal
envelopping algebra

- any finite dimensional Lie algebra has a representation as a matrix group
over a finite dimensional vector space.

- the finite dimensional representations of finite dimensional semi-simple
complex Lie algebras are computed from the fundamental representations, which
are documented

- the finite dimensional representations of finite dimensional real compact
Lie algebras are computed from the fundamental representations, which are
documented.

- Whenever we have a representation (E1, f1) and ¢ : E1 — FEs is an isomor-
phism we have an equivalent representation (Fz, f2) with fa (g) = ¢o f1 (g)od~L.
So for finite dimensional representations we can take K™ = FE.

23.4.2 Finite groups

The cas of finite groups, meaning groups with a finite number of elements (which
are not usual Lie groups) has not been studied so far. We denote #G the number
of its elements (its cardinality).

Standard representation

Definition 1872 The standard representation (E.f) of the finite group G is :
E is any #G dimensional vector space (such as K#) on any field K
f:G— L(E;E):: f(g)en = egn with any basis of E : (ey)

f(9) (ZheG xheh) = ZheG Lhegh
) =1,

flgh)u =73 rcaTregnk = D peq Thf (9) o f(R)exr = f(g) o f (h) (u)

geG

Unitary representation

Theorem 1873 For any representation (E.f) of the finite group G, and any
hermitian sequilinear form () on E, the representation (E.f) is unitary with the

scalar product : (u,v) = # >gec (f(@)u fg)v)

Endowed with the discrete topology G is a compact group. So we can use
the general theorem :
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Theorem 1874 Any representation of the finite group G is completely reducible
in the direct sum of orthogonal finite dimensional irreducible unitary represen-
tations.

Theorem 1875 (Kosmann p.35) The number N of irreducible representations
of the finite group G is equal to the number of conjugacy classes of G

So there is a family (E;, fz)fil of irreducible representations from which is
deduced any other representation of G and conversely a given representation can
be reduced to a sum and tensorial products of thse irreducible representations.

Irreducible representations

The irreducible representations (E;, fz)f\;l are deduced from the standard rep-
resentation, in some ways. A class of conjug