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Abstract

We consider a monostable time-delayed reaction-diffusion equation

arising from population dynamics models. We let a small parameter tend

to zero and investigate the behavior of the solutions. We construct ac-

curate lower barriers — by using a non standard bistable approximation

of the monostable problem— and upper barriers. As a consequence, we

prove the convergence to a propagating interface.

Key Words: time-delayed reaction-diffusion equation, delay differential

equation, travelling wave, propagating interface.1

1 Introduction

In this work we investigate the singular limit, as ε→ 0+, of uε : [−ετ,∞)×R
N →

R the solution of the delayed reaction-diffusion equation

∂tu(t, x) = ε∆u(t, x) +
1

ε
[f(u(t− ετ, x))− u(t, x)] , t > 0, x ∈ R

N , (1.1)

supplemented with the initial data of delayed type

u (θ, x) = ϕ

(
θ

ε
, x

)
, −ετ ≤ θ ≤ 0, x ∈ R

N . (1.2)

Here τ > 0 is a given delay parameter; f : [0,∞) → [0,∞) is a given increasing
and monostable nonlinearity — see (1.4) for precise assumptions; the initial
data ϕ : [−τ, 0]× R

N → R is a given smooth function — see Assumption 1.1.
Equation (1.1) is widely used in population dynamics models. In this con-

text, u(t, x) denotes the density of individuals at time t and spatial location x.

1AMS Subject Classifications: 35K57, 35R10, 92D25.
The authors are supported by the French Agence Nationale de la Recherche within the

project IDEE (ANR-2010-0112-01).
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The function f is the birth rate of the population. Note that the birth feed-
back appears with some time delay in order to take into account the period of
maturation to become adult. Finally the term −u corresponds to a normalized
death rate, while ε > 0 is a scaling parameter.

When f takes the form of the so-called Ricker’s function

f(u) = α̂ue−u, α̂ > 1, (1.3)

equation (1.1) is commonly referred as the diffusive Nicholson’s blowflies equa-
tion. This kind of equation has been intensively studied in the literature. The
purely reactive part, namely the underlying delay differential equation, has at-
tracted the attention of many researchers during the past decades (see for in-
stance [15] and references cited therein). On the other hand, the diffusive equa-
tion has also been extensively investigated from the spatial propagation point
of view, that is speed of spread, travelling wave solutions (we refer for instance
to So and Zou [20], So, Wu and Zou [19], Thieme and Zhao [22], Fang and Zhao
[7], and the references therein).

In this work, we consider the monostable equation (1.1) in the so-called
monotonic regime. Precisely we assume that f : [0,∞) → [0,∞) is a function
of the class C2 such that





f(0) = 0, f(1) = 1, f ′(0) > 1, f ′(1) < 1,

f ′(u) > 0, ∀u ∈ (0, 1),

f(u) > u, ∀u ∈ (0, 1).

(1.4)

In particular, u ≡ 0 and u ≡ 1 solve (1.1). If we come back to example (1.3),
assuming α̂ ∈ (1, e) implies that f satisfies (1.4), with ln α̂ playing the role of 1.

Let us observe that, when τ = 0, equation (1.1) reduces to the monostable
reaction-diffusion equation

∂tu(t, x) = ε∆u(t, x) +
1

ε
F (u(t, x)) , (1.5)

with F (u) := f(u)−u. In view of (1.4), the nonlinearity F exhibits a monostable
dynamics, namely F (0) = F (1) = 0, F (u) > 0 for all u ∈ (0, 1), and F ′(0) > 0
while F ′(1) < 0. Under these assumptions, solutions of (1.5) with compactly
supported initial data have been considered first by Freidlin [9] with probabilis-
tic tools, then by Evans and Souganidis [6] with Hamilton-Jacobi techniques
(we also refer to [4, 5] and the references therein). This problem has been
recently revisited using comparison parabolic arguments in [2] (including the
case of compactly supported initial data), and [1] (for slowly decaying initial
data). Roughly speaking, for compactly supported initial data with convex and
bounded support, as ε → 0, the solution of (1.5) generates a sharp interface at
the very early stages of the dynamics. Then the interface propagates through
the spatial domain, according to a free boundary problem with constant speed
in the normal direction. This speed turns out to be the minimal speed of prop-
agation of some underlying travelling wave solutions.

In the delayed case (τ > 0) that we consider, we will show that the above
scenario remains valid under the following assumption on the initial data ϕ
arising in (1.2).

Assumption 1.1. We assume that ϕ : [−τ, 0] × R
N → [0, 1] is a uniformly

continuous function satisfying the following.
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(i) There exists w0 ∈ BUC2(RN ,R) such that

Ω0 := {x ∈ R
N : w0(x) > 0}

is a nonempty smooth bounded and convex domain, and

w0(x) ≤ ϕ(θ, x), ∀(θ, x) ∈ [−τ, 0]× R
N . (1.6)

(ii) There exists δ > 0 such that

|∇w0(x).ν∂Ω0
(x)| ≥ δ, ∀x ∈ Γ0 := ∂Ω0, (1.7)

wherein ν∂Ω0
(x) denotes the outward unit normal vector to Ω0 at x ∈ Γ0.

(iii) There exists v0 ∈ BUC(RN , [0, 1)) such that

supp v0 = Ω0 , (1.8)

and
ϕ(θ, x) ≤ v0(x), ∀(θ, x) ∈ [−τ, 0]× R

N . (1.9)

Remark 1.2. The hypothesis ‖v0‖∞ < 1 in (iii) shall be used in the construction
of upper barriers in Section 5. Nevertheless, when ‖v0‖∞ = 1, our main result
remains valid under the additional assumption that f satisfies

f(K0u) ≤ K0f(u), ∀u ∈ [0, 1], (1.10)

for some constant K0 > 1. See Remark 5.2 for details.

Before stating our main convergence result let us give some notations. Under
assumption (1.4), we denote by c∗ > 0 the minimal speed of the underlying
delayed travelling waves (see Lemma 2.3 for details). In particular, there is
(U∗, c∗) ∈ C2(R)× (0,∞) such that U∗ is nonincreasing and

{
(U∗)′′(z) + c∗(U∗)′(z) + f (U∗(z + c∗τ)) − U∗(z) = 0, ∀z ∈ R,

U∗(−∞) = 1 and U∗(∞) = 0.

Next, for c > 0, we denote by Γc :=
⋃

t≥0({t} × Γc
t) the smooth solution of the

free boundary problem (see subsection 4.1 for details)

(P c)

{
V = c on Γc

t

Γc
t

∣∣
t=0

= Γ0,

with V the normal velocity of Γc
t in the exterior direction, and Γ0 the initial

interface defined in (1.7). Also, we denote by Ωc
t the region enclosed by the

hypersurface Γc
t .

Here is the main result of the present paper (see subsection 2.1 for the well-
posedness of the initial value problem (1.1)–(1.2)).

Theorem 1.3 (Convergence to a propagating interface). Let the nonlinearity
f be as in (1.4). Let the initial data ϕ satisfy Assumption 1.1. For each ε > 0,
let uε : [−ετ,∞) × R

N → R be the solution of (1.1)–(1.2). Then the following
convergence results hold.
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(i) For each c ∈ (0, c∗) and each t0 > 0, we have

lim
ε→0+

sup
t≥t0

sup
x∈Ωc

t

|1− uε(t, x)| = 0.

(ii) For each c > c∗ and each t0 > 0, we have

lim
ε→0+

sup
t≥t0

sup
x∈RN\Ωc

t

uε(t, x) = 0.

A first step towards Theorem 1.3 consists in proving that, as ε→ 0, the initial
value problem (1.1)–(1.2) generates a sharp interface after a very small time of
order O (ε| ln ε|). Then, to analyze the propagation of the interface, we aim at
constructing suitable sub- and super-solutions. This step is strongly related to
the existence of travelling wave solutions. While the upper barriers are directly
constructed by using monostable travelling fronts, the construction of lower
barriers is much more delicate. This kind of problem has been solved in several
situations. In [11], the authors consider a degenerate reaction-diffusion equation,
and take advantage of the existence of sharp travelling fronts to construct sub-
solutions. In [2], the standard Fisher-KPP case is considered. The construction
of lower barriers of propagation is performed by using the existence of non-
monotone (and also not everywhere positive) travelling waves with speeds c <
c∗. In the non delayed case, the existence of such a connection easily follows
from a phase plane analysis. In the delayed case we consider, the existence
of similar waves is far from obvious. The key idea of the present paper is to
construct sub-solutions of propagation by using travelling waves for a modified
time delayed reaction-diffusion equation with a bistable dynamics. We hope
that such a strategy could be used to understand better the classical non delayed
Fisher-KPP case and also to analyze a larger class of equations.

The organization of the present paper is as follows. In Section 2, we recall
known facts on the well-posedness of the initial value problem (1.1)–(1.2). We
also discuss the links between monostable travelling waves associated with f ,
and bistable ones associated with approximations fη of f . This is necessary
to develop the key strategy mentioned above. In Section 3, we investigate the
generation of a sharp interface in the very early stages of the dynamics. This
is strongly related with the underlying delay differential equation. Section 4 is
concerned with the study of the propagation of interface from below. We shall
construct accurate lower barriers by using a bistable approximation. As a result
of Sections 3 and 4, we shall prove Theorem 1.3 (i). Section 5 deals with the
construction of upper barriers to control the propagation from above. This will
imply Theorem 1.3 (ii).

2 Preliminary

2.1 Existence and comparison for (1.1)–(1.2)

We first state the following comparison principle for monotone delayed reaction-
diffusion equations.
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Proposition 2.1 (Comparison principle). Let τ > 0, T > 0 and g : R → R an
increasing and continuous function be given. Let (u, v) ∈ C

(
[−τ, T ]× R

N
)
be

two bounded functions satisfying

∂tu, ∂tv, ∇u, ∇v, D
2u, D2v ∈ L2

loc

(
(0, T )× R

N
)
.

Assume

(∂t −∆+ 1)u(t, x)− g (u(t− τ, x)) ≤ 0

(∂t −∆+ 1) v(t, x) − g (v(t− τ, x)) ≥ 0,
(2.1)

for almost every (t, x) ∈ (0, T )× R
N , and

u(θ, x) ≤ v(θ, x) for all (θ, x) ∈ [−τ, 0]× R
N . (2.2)

Then u(t, x) ≤ v(t, x), for all (t, x) ∈ [−τ, T ]× R
N .

Proof. Let us consider the map w := u − v ∈ C
(
[−τ, T ]× R

N
)
. Since g is

increasing, it follows from (2.1) and (2.2) that w satisfies

(∂t −∆+ 1)w(t, x) ≤ 0 a.e. in (0,min(T, τ))× R
N .

Since w(0, ·) ≤ 0, the weak comparison principle [14, Proposition 52.8] implies
w ≤ 0 in (0,min(T, τ)) × R

N . If T > τ , one can repeat the argument on
(τ,min(T, 2τ))× R

N . This proves the proposition.

We now introduce some notations. Let X := BUC
(
R

N ,R
)
be the Ba-

nach space of bounded and uniformly continuous functions from R
N to R, en-

dowed with the usual supremum norm. Define also the Banach spaces C :=
C ([−τ, 0], X) and C0 := C ([−τ, 0],R). For convenience, we identify ψ ∈ C as a
function from [−τ, 0]×R

N into R defined by ψ(θ, x) = ψ(θ)(x). For each α < β,
we define

[α, β]C :=
{
ψ ∈ C : α ≤ ψ(θ, x) ≤ β, ∀(θ, x) ∈ [−τ, 0]× R

N
}
,

and [α, β]C0
:= C0 ∩ [α, β]C . Next, for any continuous function w : [−τ,∞) ×

R
N → R, we define wt ∈ C, t ≥ 0, by

wt : (θ, x) ∈ [−τ, 0]× R
N 7→ wt(θ, x) = w(t + θ, x).

The well-posedness of the initial value problem (1.1)–(1.2) can classically be
investigated via the theory of abstract functional differential equations: since the
initial data ϕ ∈ [0, 1]C, the initial value problem (1.1)–(1.2) admits a uniquemild
solution uε : [0,∞) × R

N → [0, 1], which is actually classical on [ετ,∞) × R
N .

For more details, we refer the reader to the monograph of Wu [23] and the
references cited therein.

2.2 Monostable and bistable delayed travelling waves

As explained in the introduction, the construction of lower barriers is far from
obvious when τ > 0. A key idea of the present paper is to derive the monostable
propagation of the interface from below from the bistable case. To perform this
in Section 4, let us first define a family of bistable approximations by extending
the monostable nonlinearity f for negative values of u.
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Bistable approximations of f . For η ∈ (0, 1], we introduce an increasing
and bounded map fη : R → R of the class C2 such that

fη(u) = f(u) ∀u ∈ [0, 1]

fη(−η) = −η and fη
′(−η) < 1

fη(u) < u ∀u ∈ (−η, 0) ∪ (1,∞) and fη(u) > u ∀u ∈ (−∞,−η) ∪ (0, 1).

(2.3)

Observe that fη has exactly three fixed points −η < 0 < 1, fη
′(−η) < 1 and

fη
′(1) = f ′(1) < 1. We also require that the family {fη}η∈(0,1] is ordered in the

sense that:

∀ (η, η′) ∈ (0, 1]2, η < η′ ⇒ fη′(u) ≤ fη(u) ∀u ∈ R. (2.4)

Travelling waves. We consider the one dimensional reaction-diffusion equation
with time delay

(∂t − ∂xx + 1)u(t, x) = fη (u(t− τ, x)) , t > 0, x ∈ R. (2.5)

We denote by uη ≡ uη(t, x;ψ) : [−τ,∞) × R
N → [−η, 1] the solution of (2.5)

with the initial condition

u0(θ)(x) = u(θ, x) = ψ ∈ [−η, 1]C. (2.6)

Let us notice that the above initial value problem generates a strongly con-
tinuous and increasing semiflow {Qη(t)}t≥0 defined by

[Qη(t)ψ] (θ, x) = (uη)t (θ, x;ψ) , (θ, x) ∈ [−τ, 0]× R
N ,

and acting [−η, 1]C into itself. Also, it follows from (2.3) that, for each t ≥ 0,
Qη(t)[0, 1]C ⊂ [0, 1]C and that Q(t) := (Qη(t)) |[0,1]C does not depend upon η.
Note that Qη exhibits a bistable dynamics while Q is of monostable type.

Let us state some basic facts on travelling waves sustained by (2.5).

Lemma 2.2 (Bistable Travelling waves). For η ∈ (0, 1] arbitrary, the following
holds.

(i) There exists a unique speed cη such that (2.5) has a travelling wave solution
(Uη, cη) ∈ C2(R)× R whose profile Uη is nonincreasing, that is

{
Uη

′′(z) + cηUη
′(z) + fη (Uη(z + cητ))− Uη(z) = 0, ∀z ∈ R,

Uη(−∞) = 1 and Uη(∞) = −η.
(2.7)

(ii) There exist two constants (µ,M) ∈ (0,∞)2 such that
{
|1− Uη(z)|+ |−η − Uη(−z)| ≤Meµz, ∀z ≤ 0,

|Uη
′(z)|+ |Uη

′′(z)| ≤Me−µ|z|, ∀z ∈ R.

(iii) There exists some constant γ > 0 such that, for any ψ ∈ [−η, 1]C with

lim inf
x→−∞

min
θ∈[−τ,0]

ψ(θ, x) > 0 and lim sup
x→+∞

max
θ∈[−τ,0]

ψ(θ, x) < 0, (2.8)

one can find K = K(ψ) > 0 and ξ = ξ(ψ) ∈ R such that

|uη(t, x;ψ) − Uη(x− cηt+ ξ)| ≤ Ke−γt, ∀(t, x) ∈ [0,∞)× R.
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Proof. Part (i) comes from Schaaf [16, Theorem 3.13] (see also Fang and Zhao
[8, Theorem 6.4]). The behavior of the profile (ii) can be found in Hupkes and
Lunel [12, Proposition 2.2.5]. Finally the global asymptotic stability with phase
shift of the wave (iii) is due to Smith and Zhao [18, Theorem 3.3].

We recall that f satisfies (1.4). As far as monostable travelling waves sus-
tained by

(∂t − ∂xx + 1)u(t, x) = f (u(t− τ, x)) , t > 0, x ∈ R, (2.9)

are concerned, we quote the following result from Schaaf [16, Theorem 2.7] (see
also [13]).

Lemma 2.3 (Monostable travelling waves). There exists c∗ > 0 such that (2.9)
has a travelling wave solution (Uc, c) ∈ C2(R) × (0,∞) with 0 ≤ Uc ≤ 1, if and
only if c ≥ c∗. In addition, when c ≥ c∗ the waves are nonincreasing.

In the sequel we denote by (U∗, c∗) the monostable wave with minimal speed,
that is

{
(U∗)′′(z) + c∗(U∗)′(z) + f (U∗(z + c∗τ)) − U∗(z) = 0, ∀z ∈ R,

U∗(−∞) = 1 and U∗(∞) = 0.
(2.10)

To conclude this preliminary, we prove the following result on the conver-
gence of the bistable speeds cη.

Lemma 2.4 (Convergence of speeds). Let f satisfy (1.4). Let {fη}η∈(0,1] satisfy
(2.3) and (2.4). Then the family {cη}η∈(0,1] is decreasing and

cη ր c∗, as η ց 0.

Proof. Let η ∈ (0, 1] be given. Since 0 ≤ U∗ ≤ 1 and fη|[0,1] = f , U∗(x − c∗t)
solves (2.5). We can select a ψ ∈ [−η, 1]C such that (2.8) holds together with

ψ(θ, x) ≤ U∗(x− c∗θ), ∀(θ, x) ∈ [−τ, 0]× R
N .

The comparison principle yields uη(t, x;ψ) ≤ U∗(x − c∗t), so that Lemma 2.2
(iii) implies

Uη(x− cηt+ ξ)−Ke−γt ≤ U∗(x − c∗t),

for some constants γ > 0, K > 0 and ξ ∈ R. Choosing x = c∗t, we get
Uη((c

∗ − cη)t + ξ) −Ke−γt ≤ U∗(0); if c∗ < cη then letting t → ∞, we collect
1 ≤ U∗(0), a contradiction. Hence, we have cη ≤ c∗.

Now, let us take η < η′ in (0, 1]. In view of (2.4), the comparison principle
implies uη′(t, x;ψ) ≤ uη(t, x;ψ) for any ψ ∈ [−η, 1]C . Choosing ψ given by
ψ(θ, x) = Uη(x− cηθ) and using Lemma 2.2 (iii), we infer that

Uη′(x− cη′t+ ξ′)−K ′e−γ′t ≤ Uη(x− cηt),

for some given constants γ′ > 0, K ′ > 0 and ξ ∈ R. Choosing h ∈ R such that
Uη′(h) = 0, x = cη′t − ξ′ + h, we get −K ′e−γ′t ≤ Uη((cη′ − cη)t − ξ′ + h)); if
cη′ > cη then letting t → ∞, we collect 0 ≤ −η, a contradiction. Hence, we
have cη′ ≤ cη.
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As a result, there is ĉ ≤ c∗ such that cη ր ĉ, as η ց 0. To conclude let
us make the normalization Uη(0) = 1/2 for each η. Classically, by the interior
elliptic estimates and Sobolev embedding theorem, we may assume that, modulo
extraction, Uη → Û strongly in C1,β

loc (R) and weakly in W 2,p
loc (R), 1 < p < ∞.

Then (Û , ĉ) satisfies (2.10) with c∗ replaced by ĉ. Lemma 2.3 then enforces
ĉ ≥ c∗. The lemma is proved.

3 Lower barriers for small times

The goal of this section is to prove that, after a very short time as ε → 0,
the solution uε : [−ετ,∞)× R

N → [0, 1] of (1.1)–(1.2) is very close to 1 in Ω0

(roughly speaking). Precisely, the following holds.

Proposition 3.1 (Generation of interface from below). Let the initial data ϕ
satisfy Assumption 1.1 (i) − (ii). Denote by d(0, x) the smooth cut-off signed
distance function to Γ0 as defined in subsection 4.1 (in particular, d(0, x) < 0
if and only if x ∈ Ω0). Then there exist δ0 > 0, α0 > 0, ρ0 > 0 and ε0 > 0 such
that, for all ε ∈ (0, ε0) and all (θ, x) ∈ [−τ, 0]× R

N , the following holds.

If d(0, x) ≤ −δ0ε| ln ε| then 1− ερ0 ≤ uε (α0ε| ln ε|+ ετ + εθ, x) ≤ 1.

The proof shall be given in the end of the present section. The idea is to
construct a sub-solution based upon the delay differential equation obtained by
neglecting diffusion in (1.1).

3.1 A delay differential equation

Let us consider the delay differential equation





dv

dt
(t) = f (vt(−τ))− v(t), t > 0,

v0(·) = φ(·) ∈ [0, 1]C0
,

(3.1)

where f satisfies (1.4) (recall that C0 = C ([−τ, 0],R)). Because of the afore-
mentioned reason, we also need to consider, for η ∈ (0, 1], the delay differential
equation 




dv

dt
(t) = fη (vt(−τ)) − v(t), t > 0,

v0(·) = φ(·) ∈ [−η, 1]C0
,

(3.2)

where fη was defined in (2.3). From standard results for delay differential equa-
tion with quasi-monotone nonlinearity — see for instance the monograph of
Smith [17]— the following holds.

Lemma 3.2 (Well-posedness). For each φ ∈ C0, (3.2) has a unique global (mild)
solution vη = vη(· ;φ) : [−τ,∞) → R and the semiflow Vη(t)φ = Vη(t;φ) :=
(vη)t(· ;φ) is strongly continuous and monotone increasing on C0. It furthermore
satisfies the following properties.

(i) For each t ≥ 0, Vη(t)[−η, 1]C0
⊂ [−η, 1]C0

.
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(ii) For each t ≥ 0, Vη(t)[0, 1]C0
⊂ [0, 1]C0

. The restriction V (t) := Vη(t)|[0,1]C0

does not depend upon η and, for φ ∈ [0, 1]C0
, the map t 7→ V (t)φ = V (t;φ)

is the mild solution vt(· ;φ) of (3.1).

Dynamics of the DDE. We start with a lemma on the global dynamics of
(3.1) on [0, 1]C0

.

Lemma 3.3 (Stability of 1). The following holds.

(i) For φ ∈ [0, 1]C0
\ {0}, we have limt→∞ V (t)φ = 1 in C0.

(ii) There exist δ1 > 0, M > 0 and λ > 0 such that, for all φ ∈ C0,

‖1− φ‖L∞(−τ,0) ≤ δ1 ⇒ ‖1− V (t)φ‖L∞(−τ,0) ≤Me−λt, ∀t ≥ 0.

Proof. Let us prove (i), that is the global stability of the stationary point v = 1.
First, we consider the case where there is ζ ∈ (0, 1) such that φ(θ) ≥ ζ, for all
θ ∈ [−τ, 0]. Since the semiflow associated with (3.1) is monotone increasing
and since V (t)[0, 1]C0

⊂ [0, 1]C0
, it is enough to consider the solution with the

constant ζ as initial data, that is V (t; ζ) = vt(· ; ζ). Since f(ζ) > ζ, the map
t 7→ v(t; ζ) is nondecreasing. Hence we get limt→∞ v(t; ζ) = 1, which in turn
implies ‖V (t)ζ − 1‖∞ = sup−τ≤θ≤0 |v(t + θ, ζ) − 1| → 0, as t → ∞. This
concludes the proof of (i) for this first case. Let us now consider the general
case. Since φ ∈ [0, 1]C0

\ {0}, there exist −τ < a < b < 0 and β > 0 such that

φ(θ) ≥ β1[a,b](θ), ∀θ ∈ [−τ, 0].

From (3.1), we obtain that, for all t ∈ (0, τ ],

d

dt

(
etv(t;φ)

)
≥ etf(β)1[τ+a,τ+b](t) ≥ f(β)1[τ+a,τ+b](t).

Integrating this from 0 to τ yields v(τ ;φ) ≥ f(β)(b−a). Now, for all t ∈ (τ, 2τ ],
(3.1) implies d

dt (e
tv(t;φ)) ≥ 0. Hence

v(t;φ) ≥ eτ−tv(τ ;φ) ≥ ζ := e−τf(β)(b − a) > 0, ∀t ∈ [τ, 2τ ],

and we are back to the first case. This completes the proof of (i).
The proof of (ii) is a direct consequence of the exponential local stability of

v. Indeed, at this point the characteristic equation associated to (3.1) reads as

∆(λ) := λ+ 1− f ′(1)e−λτ = 0.

Since f ′(1) < 1, all roots have strictly negative real parts and the result follows
(see for instance [21], [10] and the references therein).

Next, we shall prove the following important result.

Proposition 3.4 (Convergence to 1). Let φ ≥ 0 in C0 \ {0} be given. There
exists λ > 0 such that, for all α > 0 there exists ε0 = ε0(α) > 0 such that, for
all ε ∈ (0, ε0),

1− εαλ/2 ≤ V (α| ln ε|+ t; ε| ln ε|φ) (θ) ≤ 1, ∀(θ, t) ∈ [−τ, 0]× [0,∞).
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Proof. Let φ ≥ 0 in C0 \ {0} be given. Recalling that f ′(0) > 1, let δ ∈ (0, 1)
and ρ > 1 be such that

f(u) ≥ ρu, ∀u ∈ [0, δ]. (3.3)

Applying Lemma 3.3 with δ as initial data, we have the existence of constants
M > 0 and λ > 0 such that

0 ≤ 1− V (t; δ)(θ) ≤Me−λt, ∀(θ, t) ∈ [−τ, 0]× [0,∞). (3.4)

Let α > 0 be given. Consider ε0 > 0 small enough so that ε| ln ε|φ ∈ [0, δ]C0
for

all ε ∈ (0, ε0). Since φ ≥ 0 is in C0 \ {0}, there exist −τ < a < b < 0 and β > 0
such that

ε| ln ε|φ(θ) ≥ ε| ln ε|β1[a,b](θ), ∀θ ∈ [−τ, 0].

Arguing as in the proof of Lemma 3.3 and using (3.3), we discover that there is
ζ > 0 such that, for ε > 0 small enough,

vε(t) := v(t; ε| ln ε|φ) ≥ ζε| ln ε|, ∀t ∈ [τ, 2τ ]. (3.5)

Next, observe that, for all 0 < t ≤ τ ,

d

dt

(
etvε(t)

)
= etf(ε| ln ε|φ(t− τ)) ≤ eτε| ln ε|‖φ‖∞‖f ′‖∞ =: Cε| ln ε|.

Integrating this from 0 to τ , we have vε(τ) ≤ e−τ (φ(0) + Cτ)ε| ln ε| < δ, for
ε > 0 small enough. Therefore we can define

tε := sup {t > 2τ : vε(s− τ) ≤ δ, ∀s ∈ [2τ, t]} .

It then follows from the DDE (3.1) and (3.3) that

vε
′(t) ≥ ρvε(t− τ) − vε(t), ∀t ∈ [2τ, tε]. (3.6)

Since ρ > 1, there is a > 0 such that a + 1 = ρe−aτ . Then the map h : t 7→
Aε| ln ε|eat, A := ζ/e2aτ satisfies

h′(t) = ρh(t− τ) − h(t), ∀t ∈ [2τ, tε], and h(t) ≤ ζε| ln ε|, t ∈ [τ, 2τ ]. (3.7)

It follows from (3.6), (3.5) and (3.7) that

vε(t) ≥ Aε| ln ε|eat, ∀t ∈ [2τ, tε].

In view of vε(t
ε − τ) = δ, we have

tε ≤ τ +
1

a
ln

δ

Aε| ln ε|
. (3.8)

Now since the map t 7→ vε(t) is increasing, we deduce from vε(t
ε − τ) = δ that

vε(t
ε + t+ θ) ≥ δ, ∀(θ, t) ∈ [−τ, 0]× [0,∞).

In view of (3.8), we have tε ≤ α| ln ε| for ε > 0 small enough so that

vε(α| ln ε|+ t+ θ) ≥ δ, ∀(θ, t) ∈ [−τ, 0]× [0,∞).
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Since the semiflow associated with (3.1) is monotone increasing on C0, we thus
have

0 ≤ 1− vε(α| ln ε|+ t+ θ) ≤ 1− V (α| ln ε|+ t; δ)(θ),

which combined with (3.4) yields, for ε > 0 small enough,

0 ≤ 1− vε(α| ln ε|+ t+ θ) ≤Me−λ(α| ln ε|+t) ≤Mεαλ ≤ εαλ/2.

This completes the proof of Proposition 3.4.

Derivatives of the semiflow. Let us now provide some estimates on the
derivatives of the semiflow Vη with respect to the state variable. Our first result
is a consequence of the well-known differentiability result of semiflows generated
by delay differential equations (see for instance [10], see also [21] for results on
abstract semilinear problems with Hille-Yosida non-densely defined operator).

Lemma 3.5 (Derivatives). For each t > 0, the map φ ∈ C0 7→ Vη(t;φ) ∈ C0
provided by Lemma 3.2 is of the class C2. For each φ0 ∈ C0 and each φ ∈ C0, the
map t ∈ [0,∞) 7→ ∂φVη(t;φ0)·φ ∈ C0 is the mild solution of the non-autonomous
equation 




dv

dt
(t) = L(t, φ0)vt, t > 0,

v(θ) = φ(θ), θ ∈ [−τ, 0],
(3.9)

wherein, for each t > 0, L(t, φ0) : C0 → R is defined by

L(t, φ0)φ := fη
′ (Vη(t;φ0)(−τ))φ(−τ) − φ(0). (3.10)

Moreover, for each φ0 ∈ C0 and each φ ∈ C0, the map t 7→ ∂2φ,φVη(t;φ0) · (φ, φ)
is the solution of





dv

dt
(t) = L(t, φ0)vt +G(t;φ0;φ), t > 0,

v(θ) = 0, θ ∈ [−τ, 0],
(3.11)

wherein the map t 7→ G(t;φ0;φ) is defined by

G(t;φ0;φ) := fη
′′ (Vη(t;φ0)(−τ)) [∂φVη(t;φ0) · φ(−τ)]

2 . (3.12)

Here is an estimate on the first derivative.

Lemma 3.6 (First derivative). There exist constants M+ > 1 and γ+ > 0 such
that, for all φ0 ∈ C0,

e−τe−(t+θ) ≤ ∂φVη(t;φ0) · 1(θ) ≤M+eγ
+(t+θ), ∀(θ, t) ∈ [−τ, 0]× [0,∞).

Proof. Let φ0 ∈ C0 be given. First, the semiflow Vη(t) being monotone increas-
ing on C0, observe that

∂φVη(t;φ0) · 1(θ) ≥ 0, ∀(θ, t) ∈ [−τ, 0]× [0,∞). (3.13)

Hence, in view of (3.9) and (3.10), the function w(t) := ∂φVη(t;φ0)·1(0) satisfies

w′(t) ≥ −w(t), ∀t ≥ 0,
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so that w(t) ≥ e−t, for all t ≥ 0, which in turn implies

∂φVη(t;φ0) · 1(θ) ≥ e−(t+θ),

for all (θ, t) ∈ [−τ, 0] × [0,∞) such that t + θ ≥ 0. For the remaining (θ, t) ∈
[−τ, 0]× [0,∞) such that t+ θ < 0, we have ∂φVη(t;φ0) · 1(θ) = 1 ≥ e−(τ+t+θ).
This completes the proof of the left-hand side of the estimate of the lemma.

Next, choosing a constant Ñ > 1 such that

0 ≤ fη
′(u) ≤ Ñ , ∀u ∈ R, (3.14)

we infer from (3.9) and (3.10) that

w′(t) ≤ Ñw(t− τ)− w(t), t > 0, and w(θ) = 1, θ ∈ [−τ, 0]. (3.15)

Observe that the map h : t 7→ e(Ñ−1)τe(Ñ−1)t satisfies

h′(t) ≥ Ñh(t− τ)− h(t), t > 0, and h(θ) ≥ 1, θ ∈ [−τ, 0]. (3.16)

It follows from (3.15) and (3.16) that w(t) ≤ e(Ñ−1)τe(Ñ−1)t, for all t ≥ 0.
Arguing as above we get the right-hand side of the estimate of the lemma.

We pursue with the following estimate on the second derivative.

Lemma 3.7 (Second derivative). There exist constants K > 0 and µ > 0 such
that, for all φ0 ∈ C0,

|∂φφVη(t;φ0) · (1, 1)(θ)| ≤ Keµ(t+θ), ∀(θ, t) ∈ [−τ, 0]× [0,∞).

Proof. In view of (3.12) and Lemma 3.6, there exists a constant A > 0 such
that, for all φ0 ∈ C0,

|G(t;φ0; 1)| ≤ Ae2γ
+(t−τ), ∀t ≥ 0.

Hence, the function w(t) := ∂φφVη(t;φ0) · (1, 1)(0) satisfies

w′(t) ≤ Ñw(t− τ) − w(t) +Ae2γ
+(t−τ), t > 0, and w(θ) = 0, θ ∈ [−τ, 0].

(3.17)
We look for a super-solution of (3.17) in the form t 7→ K̃eµ̃t, for some constants
K̃ > 0 and µ̃ > 0 to be determined. This leads us to

µ̃ ≥ Ñe−µ̃τ − 1 +
A

K̃
e−2γ+τ+(2γ+−µ̃)t, ∀t > 0, (3.18)

which can be achieved by choosing µ̃ > 2γ+ and K̃ > 0 both large enough.
Arguing as in the proof of Lemma 3.6, we end up with constants K > 0 and
µ > 0 such that, for all φ0 ∈ C0, all θ ∈ [−τ, 0], all t ≥ 0,

∂φφVη (t;φ0) · (1, 1)(θ) ≤ Keµ(t+θ).

Next, select C > 0 such that fη
′′(u) ≥ −C, for all u ∈ R. Then we get

w′(t) ≥ −Cw(t − τ) − w(t) − Ae2γ
+(t−τ), for which we can construct a sub-

solution t 7→ −K̃eµ̃t as above. This completes the proof of the lemma.
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As a direct consequence of Lemma 3.6 and Lemma 3.7, we obtain the fol-
lowing estimate.

Proposition 3.8 (Estimate on derivatives). There exist constants K̂ > 0 and
γ > 0 such that, for all φ0 ∈ C0,

|∂φφVη(t;φ0) · (1, 1)(θ)| ≤ K̂eγt∂φVη(t;φ0) · 1(θ),

for all (θ, t) ∈ [−τ, 0]× [0,∞).

3.2 Construction of lower barriers for small times

We now provide an accurate lower estimate, for small times, of uε : [−ετ,∞)×
R

N → [0, 1] the solution of (1.1)–(1.2).

Proposition 3.9 (Sub-solutions). Let the initial data ϕ satisfy Assumption 1.1
(i). Then there exist K > 0, α > 0 and ε0 > 0 such that, for all ε ∈ (0, ε0),

max

{
0 ; vη

(
t

ε
;w0(x)− εKτ −Kt

)}
≤ uε(t, x),

for all (t, x) ∈ [−ετ, αε| ln ε|]× R
N . Here, vη = vη(· ;φ) : [−τ,∞) → R denotes

the solution of (3.2) arising in Lemma 3.2 and the function w0 is as in (1.6).

Proof. Let us consider the differential operator

Lε
η[u](t, x) := ∂tu(t, x)− ε∆u(t, x)−

1

ε

[
fη (u(t− ετ, x))− u(t, x)

]
.

Since fη = f on [0, 1], we have Lε
η [u

ε] (t, x) ≡ 0. We look for a sub-solution, at

least for small times, u : [−ετ,∞)× R
N → R in the form

u(t, x) := vη

(
t

ε
;w0(x) − εKτ −Kt

)
.

Straightforward computations yield, for each t > 0 and each x ∈ R
N ,

Lε
η [u] (t, x) = −V ε(t, x)

[
K + ε∆w0(x) + ε

W ε(t, x)

V ε(t, x)
|∇w0(x)|

2

]

+
1

ε

[(
dvη
dt

+ vη

)(
t

ε
;w0(x) − ετ −Kt

)
− fη

(
vη

(
t

ε
− τ ;w0(x)−Kt

))]

where

V ε(t, x) := ∂φVη

(
t

ε
;w0(x)− εKτ −Kt

)
· 1(0) ,

W ε(t, x) := ∂φφVη

(
t

ε
;w0(x)− εKτ −Kt

)
· (1, 1)(0) .

Since the semiflow arising in Lemma 3.2 is monotone increasing in C0 and since
fη is increasing, we have
(
dvη
dt

+ vη

)(
t

ε
;w0(x) − εKτ −Kt

)
− fη

(
vη

(
t

ε
− τ ;w0(x) −Kt

))

≤

(
dvη
dt

+ vη

)(
t

ε
;w0(x) − εKτ −Kt

)
− fη

(
vη

(
t

ε
− τ ;w0(x)− εKτ −Kt

))

= 0,

13



since vη solves (3.2). Hence, using Proposition 3.8, we get, for all ε ∈ (0, 1),
t > 0, x ∈ R

N ,

Lε
η [u] (t, x) ≤ −V ε(t, x)

[
K − ε‖∆w0‖∞ − ε‖∇w0‖

2
∞K̂e

γ t
ε

]
.

Looking at small times, the above implies, for all ε ∈ (0, 1), t ∈
(
0, γ−1ε| ln ε|

)
,

x ∈ R
N ,

Lε
η [u] (t, x) ≤ −V ε(t, x)

[
K − ε‖∆w0‖∞ − ‖∇w0‖

2
∞K̂

]
≤ 0,

if K > 0 is sufficiently large. Next, concerning initial data, we have, for all
θ ∈ [−ετ, 0],

u(θ, x) = w0(x) − εKτ −Kθ ≤ w0(x) ≤ ϕ

(
θ

ε
, x

)
= uε(θ, x),

where we have used (1.6) and (1.2). The comparison principle in Proposition
2.1 thus implies that

u(t, x) ≤ uε(t, x), ∀(t, x) ∈
[
−ετ, γ−1ε| ln ε|

]
× R

N .

Recalling that uε ≥ 0, this completes the proof of Proposition 3.9.

Proof of Proposition 3.1. Fix K > 0 and α > 0 as in Proposition 3.9. Define
α0 := α/2. For φ :≡ α0 ∈ C0 \ {0}, let us select λ > 0 as in Proposition 3.4 and
define ρ0 := α0λ/2. Also, it follows from Assumption 1.1 (ii) that there exists
δ0 > 0 such that, for ε > 0 small enough,

d(0, x) ≤ −δ0ε| ln ε| =⇒ w0(x) ≥ 4α0ε| ln ε|. (3.19)

Now, for any −τ ≤ θ ≤ 0, define s := α0ε| ln ε| + ετ + εθ and take x such
that d(0, x) ≤ −δ0ε| ln ε|. Since, for ε > 0 small enough, 0 ≤ s ≤ αε| ln ε| and
w0(x)−εKτ −Ks ≥ α0ε| ln ε|, we deduce from Proposition 3.9 and Proposition
3.4 that

uε(s, x) ≥ vη(α0| ln ε|+ τ + θ;α0ε| ln ε|) ≥ 1− ερ0 ,

which concludes the proof.

4 Lower barriers via bistable approximation

As explained before, our analysis of the propagation of interface from below is
performed by approximating the monostable function f in a bistable manner (see
subsection 2.2). We start with some preliminaries on smooth signed distance
functions associated with a family of free boundary problems.

4.1 Smooth cut-off signed distance functions

For c > 0, we denote by Γc :=
⋃

t≥0({t} × Γc
t) the smooth solution of the free

boundary problem

(P c)

{
V = c on Γc

t

Γc
t

∣∣
t=0

= Γ0,
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where V denotes the normal velocity of Γc
t in the exterior direction. Note that

since the region enclosed by Γ0, namely Ω0, is convex, these solutions do exist
for all t ≥ 0. Also we can naturally, i.e. in a reversible manner, extend these
solutions for small negative times by letting Γ0 evolve with speed −c. Hence,
with a slight abuse of notation, we consider Γc

t for all t ≥ −ετ , with ε > 0
small enough. For each t ≥ −ετ , we denote by Ωc

t the region enclosed by the
hypersurface Γc

t .

Let d̃ be the signed distance function to Γc defined by

d̃(t, x) :=

{
−dist(x,Γc

t ) for x ∈ Ωc
t

dist(x,Γc
t ) for x ∈ R

N \ Ωc
t ,

(4.1)

where dist(x,Γc
t ) is the distance from x to the hypersurface Γc

t . We remark that

d̃ = 0 on Γc and that |∇d̃| = 1 in a neighborhood of Γc.
We now introduce the “cut-off signed distance function” d, which is defined

as follows. Let T > 0 be given. First, choose d0 > 0 small enough so that d̃ is
smooth in the tubular neighborhood of Γc

{(t, x) ∈ [−ετ, T ]× R
N : |d̃(t, x)| < 3d0}.

Next let ζ(s) be a smooth increasing function on R such that

ζ(s) =





s if |s| ≤ d0

−2d0 if s ≤ −2d0

2d0 if s ≥ 2d0.

We then define the cut-off signed distance function d by

d(t, x) := ζ
(
d̃(t, x)

)
. (4.2)

Note that
if |d(t, x)| < d0 then |∇d(t, x)| = 1, (4.3)

and that the equation of motion (P c) yields

if |d(t, x)| < d0 then ∂td(t, x) + c = 0. (4.4)

Then the mean value theorem provides a constant N̄ > 0 such that

|∂td(t, x) + c| ≤ N̄ |d(t, x)| for all (t, x) ∈ [−ετ, T ]× R
N . (4.5)

Moreover, there exists a constant C > 0 such that

|∇d(t, x)| + |∆d(t, x)| ≤ C for all (t, x) ∈ [−ετ, T ]× R
N . (4.6)

4.2 Construction of lower barriers

Let us recall that {fη}η∈(0,1] denotes a family of bistable approximations of f
such that (2.3) and (2.4) hold. Also, for η ∈ (0, 1], (Uη, cη) denotes the travelling
wave solution (with time delay) associated with this bistable fη (see Lemma 2.2),
namely

{
Uη

′′(z) + cηUη
′(z) + fη (Uη(z + cητ)) − Uη(z) = 0, ∀z ∈ R,

Uη(−∞) = 1, Uη(0) = 0, Uη(∞) = −η.
(4.7)
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In the spirit of the sub-solutions constructed in [3] for bistable systems, we
look for sub-solutions u−η in the form

u−η (t, x) := Uη

(
dη(t, x) + ε| ln ε|p(t)

ε

)
− q(t), (4.8)

where

p(t) := −e−βt/ε + eLt +K, (4.9)

q(t) := σ
(
βe−βt/ε + εLeLt

)
. (4.10)

Here, σ, β, L andK are positive constants to be determined, and dη(t, x) denotes
the cut-off signed distance function to the interface starting from Γ0 and evolving
with speed cη, that is the solution of (P cη ). As seen in the previous subsection,
this allows to define u−η for all t ≥ −ετ , x ∈ R

N .

Proposition 4.1 (Sub-solutions). One can find positive constants β, σ and L
such that, for all K > 1, the function u−η satisfies, for ε > 0 small enough,

εLε
η[u

−
η ](t, x) = ε∂tu

−
η (t, x)− ε2∆u−η (t, x) − fη

(
u−η (t− ετ, x)

)
+ u−η (t, x) ≤ 0,

for all t > 0, x ∈ R
N .

Proof. For ease of notation, we drop most of the subscripts η. Also we define

z :=
d(t, x) + ε| ln ε|p(t)

ε
. (4.11)

We start by evaluating εLε
η[u

−](t, x). We compute

ε∂tu
−(t, x) = (∂td(t, x) + ε| ln ε|p′(t))U ′(z)− εq′(t)

ε2∆u−(t, x) = |∇d|2(t, x)U ′′(z) + ε∆d(t, x)U ′(z).

Next, observe that the previous subsection enables to write

d(t− ετ, x) = d(t, x) + εcτ + εΘε(t, x),

where the correction Θε vanishes close to the interface and is O(1):

Θε(t, x) = 0 if |d(t, x)| ≤ d0, ‖Θε‖L∞ ≤ A, (4.12)

for some constant A > 0. Hence, since p(t) increases and U(z) decreases, we
have

u−(t− ετ, x) = U

(
d(t, x) + ε| ln ε|p(t− ετ)

ε
+ cτ +Θε(t, x)

)
− q(t− ετ)

≥ U

(
d(t, x) + ε| ln ε|p(t)

ε
+ cτ +Θε(t, x)

)
− q(t− ετ).

Since f is increasing we get

f
(
u−(t− ετ, x)

)
≥ f

(
U (z + cτ +Θε(t, x))− q(t− ετ)

)

= f
(
U(z + cτ +Θε(t, x))

)
− q(t− ετ)f ′(θ),
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for some U(z + cτ +Θε(t, x)) − q(t− ετ) ≤ θ ≤ U(z + cτ). Hence, we have

f
(
u−(t− ετ, x)

)
≥ f (U(z + cτ)) − q(t− ετ)f ′(θ)

+Θε(t, x)(f ◦ U)′ (z + cτ + ωΘε(t, x)) ,

for some 0 ≤ ω ≤ 1. Combining the above estimates with U ′′(z) + cU ′(z) +
f(U(z + cτ))− U(z) = 0, we obtain εLε

η[u
−](t, x) ≤ E1 + E2 + E3 where

E1 := ε| ln ε|p′(t)U ′(z) + q(t− ετ)f ′(θ)− q(t)− εq′(t)

E2 := (∂td(t, x) + c− ε∆d(t, x))U ′(z) +
(
1− |∇d(t, x)|2

)
U ′′(z)

E3 := −Θε(t, x)(f ◦ U)′ (z + cτ + ωΘε(t, x)) .

Let us now analyze further the term E1. By using the expressions (4.9),
(4.10) for p and q we obtain

E1 = βe−βt/ε
(
| ln ε|U ′(z) + σ(eβτf ′(θ) − 1 + β)

)

+εLeLt
(
| ln ε|U ′(z) + σ(e−εLτf ′(θ)− 1− εL)

)

=: βe−βt/εI1 + εLeLtI2.

Since f ′(−η) < 1 and f ′(1) < 1, we can fix small a > 0 and β > 0 such that

eβτf ′(u)− 1 + β ≤ −β, ∀u ∈ [−η − a,−η + a] ∪ [1− a, 1 + a].

In view of U(−∞) = 1, U(∞) = −η and inequality U(z+ cτ +Θε(t, x))− q(t−
ετ) ≤ θ ≤ U(z+ cτ), there exists a large z0 such that θ ∈ [−η−a,−η+a]∪ [1−
a, 1+a] as soon as |z| ≥ z0 (by choosing σ small enough to control the −q(t−ετ)
term) and the above inequality applies for s = θ. It follows from U ′(z) ≤ 0 that
I1 ≤ −σβ in the region {|z| ≥ z0}. In the compact region {|z| ≤ z0}, we have
U ′(z) ≤ −b for some b > 0 so that I1 ≤ −b| ln ε| + C so that I1 ≤ −σβ also
holds true. The same argument yields I2 ≤ −σβ. Hence

E1 ≤ −σβ2e−βt/ε − εσβLeLt ≤ −εσβL.

We now conclude the proof of εLε
η[u

−](t, x) ≤ 0. Assume first that (t, x)
lies in the tubular neighborhood {|d(t, x)| ≤ d0} of Γt. In view of (4.3) and
(4.4), the term E2 reduces to −ε∆d(t, x)U ′(z). In view of (4.12), the term E3

vanishes. As a result,

εLε
η[u

−](t, x) ≤ −εσβL+ ε‖∆d‖L∞‖U ′‖L∞(R) ≤ 0,

if L > 0 is large enough. Next, if (t, x) is such that |d(t, x)| ≥ d0 then we
shall use the exponential decay of the derivatives of U — see Lemma 2.2 (ii)—
to control E2 and E3. Indeed in this region, the argument z defined in (4.11)
satisfies |z| ≥ d0/(2ε). Hence, combining the exponential decay of U ′ and U ′′

with (4.5) and (4.6), we get a bound |E2| ≤ C2e
−C2

d0
2ε , for some C2 > 0. Also,

it follows from (4.12) that

|z + cτ + ωΘε(t, x)| ≥
d0
2ε

− cτ − ωA ≥
d0
4ε
,
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which in turn provides a bound |E3| ≤ C3e
−C3

d0
4ε , for some C3 > 0. As a result

we collect, for a constant C > 0,

εLε
η[u

−](t, x) ≤ −εσβL+ Ce−C
d0
4ε ≤ 0,

if ε > 0 is small enough. This completes the proof of the lemma.

In order to apply the comparison principle, we need the following estimate.

Lemma 4.2 (Ordering initial data). One can find K > 1 such that, for ε > 0
small enough,

u−η (t, x) ≤ uε(t+ α0ε| ln ε|+ ετ, x), for all − ετ ≤ t ≤ 0, x ∈ R
N ,

where α0ε| ln ε| denotes the “generation of interface from below time” appearing
in Proposition 3.1.

Proof. For ease of notation, we drop most of the subscripts η. If (t, x) is such
that d(t, x) ≥ −ε| ln ε|p(t), then the decrease of the wave U yields u−(t, x) ≤ 0,
and there is nothing to prove. Now let us take (t, x), with −ετ ≤ t ≤ 0 and
d(t, x) ≤ −ε| ln ε|p(t). From the generation of interface from below analysis we
know that (see Proposition 3.1)

d(0, x) ≤ −δ0ε| ln ε| =⇒ 1− ερ0 ≤ uε(α0ε| ln ε|+ ετ + t, x) for − ετ ≤ t ≤ 0.
(4.13)

Writing d(0, x) = d(t, x) +O(t) and using the expression for p in (4.9), we get,
for −ετ ≤ t ≤ 0,

d(0, x) ≤ −ε| ln ε|p(t) + Cετ

≤ −ε| ln ε|(−eβτ + e−εLτ +K) + Cετ

≤ −δ0ε| ln ε|,

for ε > 0 small enough, if K is chosen sufficiently large. In view of (4.13) it
suffices to show that u−(t, x) ≤ 1− ερ0 , which follows from the vertical shift q.
Indeed, the expression for q in (4.10) shows that q(t) ≥ σβ for −ετ ≤ t ≤ 0, so
that u−(t, x) ≤ 1− σβ ≤ 1− ερ0 . The lemma is proved.

Proof of Theorem 1.3 (i). From Proposition 4.1, Lemma 4.2 and the com-
parison principle, we infer that

u−η (t−α0ε| ln ε| − ετ, x) ≤ uε(t, x) for all t ≥ α0ε| ln ε|+ ετ, x ∈ R
N . (4.14)

Let us recall that u−η is defined in (4.8) and that Uη(−∞) = 1. Hence, the

convergence to 1 in Ωc∗

t , as expressed in Theorem 1.3 (i), is a direct consequence
of both Lemma 2.4 and the lower estimate (4.14).

5 Global in time upper barriers

The aim of this section is to construct a super-solution in order to control
the propagation of the solution from above. Let (U∗, c∗) be the monostable
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travelling wave with the minimal speed c∗ > 0 (see Lemma 2.3), namely




(U∗)′′(z) + c∗(U∗)′(z) + f (U∗(z + c∗τ)) − U∗(z) = 0, ∀z ∈ R,

(U∗)′(z) < 0, ∀z ∈ R,

U∗(−∞) = 1 and U∗(∞) = 0.

Then we shall prove the upper estimate on uε : [−ετ,∞) × R
N → [0, 1] the

solution of (1.1)–(1.2).

Proposition 5.1 (Super-solutions). Let the initial data ϕ satisfy Assumption
1.1. Denote by d(0, x) the smooth cut-off signed distance function to Γ0 as
defined in subsection 4.1 (in particular, d(0, x) < 0 if and only if x ∈ Ω0). Then
there exists h ∈ R such that, for all ε > 0 small enough,

uε(t, x) ≤ U∗

(
d(0, x)− c∗t

ε
+ h

)
, ∀(t, x) ∈ [−ετ,∞)× R

N .

Proof. Since the function v0 appearing in Assumption 1.1 (iii) satisfies ‖v0‖∞ <
1, we can choose h ∈ R such that ‖v0‖∞ ≤ U∗(c∗τ + h). Up to changing U∗ by
U∗(·+ h), we can assume h = 0 so that

‖v0‖∞ ≤ U∗(c∗τ). (5.1)

Let x0 ∈ ∂Ω0 = Γ0 be given and denote by n0 the outward unit normal vector
to Γ0 at x0. Then consider the map u+ : [−ετ,∞)× R

N → R defined by

u+(t, x) := U∗

(
(x− x0).n0 − c∗t

ε

)
.

Setting z =
(x− x0).n0 − c∗t

ε
, we compute

Lε[u+](t, x) := ∂tu
+(t, x)− ε∆u+(t, x)−

1

ε
f
(
u+(t− ετ, x)

)
+

1

ε
u+(t, x)

= −
c∗

ε
(U∗)

′
(z)−

1

ε
(U∗)

′′
(z)−

1

ε
f (U∗(z + c∗τ)) +

1

ε
U∗(z)

= 0,

for all t > 0, x ∈ R
N . Let us now prove that

uε(θ, x) = ϕ

(
θ

ε
, x

)
≤ U∗

(
(x − x0).n0 − c∗θ

ε

)
= u+(θ, x),

for all (θ, x) ∈ [−ετ, 0]×R
N . In view od Assumption 1.1 (iii) and the decrease

of U∗, it is sufficient to check that

v0(x) ≤ U∗

(
(x − x0).n0

ε
+ c∗τ

)
, ∀x ∈ R

N . (5.2)

When (x − x0).n0 ≤ 0, the above inequality follows from (5.1). When (x −
x0).n0 > 0, (1.8) and the convexity of Ω0 implies v0(x) = 0 and (5.2) is clear.
Hence, it follows from the comparison principle that

uε(t, x) ≤ U∗

(
(x− x0).n0 − c∗t

ε

)
, ∀(t, x) ∈ [−ετ,∞)× R

N ,

for each x0 ∈ ∂Ω0. This completes the proof of the proposition.
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Remark 5.2. If ‖v0‖∞ = 1 then, under assumption (1.10) of Remark 1.2, we
have Lε[K0u

+](t, x) ≥ 0. Also, normalizing the travelling wave U∗ by 1 =
K0U

∗(c∗τ) and arguing as above, we see that uε(θ, x) ≤ K0u
+(θ, x), for all

(θ, x) ∈ [−ετ, 0]× R
N . Hence, the comparison principle yields

uε(t, x) ≤ K0U
∗

(
(x− x0).n0 − c∗t

ε

)
, ∀(t, x) ∈ [−ετ,∞)× R

N ,

for each x0 ∈ ∂Ω0.

Proof of Theorem 1.3 (ii). The convergence to 0 outside Ωc∗

t , as expressed
in Theorem 1.3 (ii), is a direct consequence of the control from above provided
by Proposition 5.1.
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