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We consider a monostable time-delayed reaction-diffusion equation arising from population dynamics models. We let a small parameter tend to zero and investigate the behavior of the solutions. We construct accurate lower barriers -by using a non standard bistable approximation of the monostable problem-and upper barriers. As a consequence, we prove the convergence to a propagating interface.

Introduction

In this work we investigate the singular limit, as ε → 0 + , of u ε : [-ετ, ∞)×R N → R the solution of the delayed reaction-diffusion equation

∂ t u(t, x) = ε∆u(t, x) + 1 ε [f (u(t -ετ, x)) -u(t, x)] , t > 0, x ∈ R N , (1.1) 
supplemented with the initial data of delayed type

u (θ, x) = ϕ θ ε , x , -ετ ≤ θ ≤ 0, x ∈ R N . (1.2)
Here τ > 0 is a given delay parameter; f : [0, ∞) → [0, ∞) is a given increasing and monostable nonlinearity -see (1.4) for precise assumptions; the initial data ϕ : [-τ, 0] × R N → R is a given smooth function -see Assumption 1.1. Equation (1.1) is widely used in population dynamics models. In this context, u(t, x) denotes the density of individuals at time t and spatial location x.

The function f is the birth rate of the population. Note that the birth feedback appears with some time delay in order to take into account the period of maturation to become adult. Finally the term -u corresponds to a normalized death rate, while ε > 0 is a scaling parameter.

When f takes the form of the so-called Ricker's function

f (u) = αue -u , α > 1, (1.3) 
equation (1.1) is commonly referred as the diffusive Nicholson's blowflies equation. This kind of equation has been intensively studied in the literature. The purely reactive part, namely the underlying delay differential equation, has attracted the attention of many researchers during the past decades (see for instance [START_REF] Ruan | Delay differential equations in single species dynamics[END_REF] and references cited therein). On the other hand, the diffusive equation has also been extensively investigated from the spatial propagation point of view, that is speed of spread, travelling wave solutions (we refer for instance to So and Zou [START_REF] So | Traveling waves for the diffusive Nicholson's blowflies equation[END_REF], So, Wu and Zou [START_REF] So | A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains[END_REF], Thieme and Zhao [START_REF] Thieme | Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction diffusion models[END_REF], Fang and Zhao [START_REF] Fang | Existence and uniqueness of traveling waves for non-monotone integral equations with applications[END_REF], and the references therein).

In this work, we consider the monostable equation (1.1) in the so-called monotonic regime. Precisely we assume that f

: [0, ∞) → [0, ∞) is a function of the class C 2 such that      f (0) = 0, f (1) = 1, f ′ (0) > 1, f ′ (1) < 1, f ′ (u) > 0, ∀u ∈ (0, 1), f (u) 
> u, ∀u ∈ (0, 1).

(

In particular, u ≡ 0 and u ≡ 1 solve (1.1). If we come back to example (1.3), assuming α ∈ (1, e) implies that f satisfies (1.4), with ln α playing the role of 1.

Let us observe that, when τ = 0, equation (1.1) reduces to the monostable reaction-diffusion equation

∂ t u(t, x) = ε∆u(t, x) + 1 ε F (u(t, x)) , (1.5) 
with F (u) := f (u)-u. In view of (1.4), the nonlinearity F exhibits a monostable dynamics, namely F (0) = F (1) = 0, F (u) > 0 for all u ∈ (0, 1), and F ′ (0) > 0 while F ′ (1) < 0. Under these assumptions, solutions of (1.5) with compactly supported initial data have been considered first by Freidlin [START_REF] Freidlin | Limit theorems for large deviations and reactiondiffusion equations[END_REF] with probabilistic tools, then by Evans and Souganidis [START_REF] Evans | A PDE approach to geometric optics for certain semilinear parabolic equations[END_REF] with Hamilton-Jacobi techniques (we also refer to [START_REF] Barles | Wavefront propagation for reaction-diffusion systems of PDE[END_REF][START_REF] Barles | A remark on the asymptotic behavior of the solution of the KPP equation[END_REF] and the references therein). This problem has been recently revisited using comparison parabolic arguments in [START_REF] Alfaro | Sharp interface limit of the Fisher-KPP equation[END_REF] (including the case of compactly supported initial data), and [START_REF] Alfaro | Sharp interface limit of the Fisher-KPP equation when initial data have slow exponential decay[END_REF] (for slowly decaying initial data). Roughly speaking, for compactly supported initial data with convex and bounded support, as ε → 0, the solution of (1.5) generates a sharp interface at the very early stages of the dynamics. Then the interface propagates through the spatial domain, according to a free boundary problem with constant speed in the normal direction. This speed turns out to be the minimal speed of propagation of some underlying travelling wave solutions.

In the delayed case (τ > 0) that we consider, we will show that the above scenario remains valid under the following assumption on the initial data ϕ arising in (1.2). Assumption 1.1. We assume that ϕ : [-τ, 0] × R N → [0, 1] is a uniformly continuous function satisfying the following.

(i) There exists w 0 ∈ BU C 2 (R N , R) such that

Ω 0 := {x ∈ R N : w 0 (x) > 0}
is a nonempty smooth bounded and convex domain, and

w 0 (x) ≤ ϕ(θ, x), ∀(θ, x) ∈ [-τ, 0] × R N .
(1.6)

(ii) There exists δ > 0 such that

|∇w 0 (x).ν ∂Ω0 (x)| ≥ δ, ∀x ∈ Γ 0 := ∂Ω 0 , (1.7) 
wherein ν ∂Ω0 (x) denotes the outward unit normal vector to Ω 0 at x ∈ Γ 0 .

(iii) There exists

v 0 ∈ BU C(R N , [0, 1)) such that supp v 0 = Ω 0 , (1.8 
)

and ϕ(θ, x) ≤ v 0 (x), ∀(θ, x) ∈ [-τ, 0] × R N .
(1.9)

Remark 1.2. The hypothesis v 0 ∞ < 1 in (iii) shall be used in the construction of upper barriers in Section 5. Nevertheless, when v 0 ∞ = 1, our main result remains valid under the additional assumption that f satisfies

f (K 0 u) ≤ K 0 f (u), ∀u ∈ [0, 1], (1.10) 
for some constant K 0 > 1. See Remark 5.2 for details.

Before stating our main convergence result let us give some notations. Under assumption (1.4), we denote by c * > 0 the minimal speed of the underlying delayed travelling waves (see Lemma 2.3 for details). In particular, there is

(U * , c * ) ∈ C 2 (R) × (0, ∞) such that U * is nonincreasing and (U * ) ′′ (z) + c * (U * ) ′ (z) + f (U * (z + c * τ )) -U * (z) = 0, ∀z ∈ R, U * (-∞) = 1 and U * (∞) = 0.
Next, for c > 0, we denote by Γ c := t≥0 ({t} × Γ c t ) the smooth solution of the free boundary problem (see subsection 4.1 for details)

(P c ) V = c on Γ c t Γ c t t=0 = Γ 0 ,
with V the normal velocity of Γ c t in the exterior direction, and Γ 0 the initial interface defined in (1.7). Also, we denote by Ω c t the region enclosed by the hypersurface Γ c t . Here is the main result of the present paper (see subsection 2.1 for the wellposedness of the initial value problem (1.1)-(1.2)).

Theorem 1.3 (Convergence to a propagating interface). Let the nonlinearity f be as in (1.4). Let the initial data ϕ satisfy Assumption 1.1. For each ε > 0, let u ε : [-ετ, ∞) × R N → R be the solution of (1.1)-(1.2). Then the following convergence results hold.

(i) For each c ∈ (0, c * ) and each t 0 > 0, we have

lim ε→0 + sup t≥t0 sup x∈Ω c t |1 -u ε (t, x)| = 0.
(ii) For each c > c * and each t 0 > 0, we have

lim ε→0 + sup t≥t0 sup x∈R N \Ω c t u ε (t, x) = 0.
A first step towards Theorem 1.3 consists in proving that, as ε → 0, the initial value problem (1.1)-(1.2) generates a sharp interface after a very small time of order O (ε| ln ε|). Then, to analyze the propagation of the interface, we aim at constructing suitable sub-and super-solutions. This step is strongly related to the existence of travelling wave solutions. While the upper barriers are directly constructed by using monostable travelling fronts, the construction of lower barriers is much more delicate. This kind of problem has been solved in several situations. In [START_REF] Hilhorst | Interface dynamics of the Fisher equation with degenerate diffusion[END_REF], the authors consider a degenerate reaction-diffusion equation, and take advantage of the existence of sharp travelling fronts to construct subsolutions. In [START_REF] Alfaro | Sharp interface limit of the Fisher-KPP equation[END_REF], the standard Fisher-KPP case is considered. The construction of lower barriers of propagation is performed by using the existence of nonmonotone (and also not everywhere positive) travelling waves with speeds c < c * . In the non delayed case, the existence of such a connection easily follows from a phase plane analysis. In the delayed case we consider, the existence of similar waves is far from obvious. The key idea of the present paper is to construct sub-solutions of propagation by using travelling waves for a modified time delayed reaction-diffusion equation with a bistable dynamics. We hope that such a strategy could be used to understand better the classical non delayed Fisher-KPP case and also to analyze a larger class of equations.

The organization of the present paper is as follows. In Section 2, we recall known facts on the well-posedness of the initial value problem (1.1)-(1.2). We also discuss the links between monostable travelling waves associated with f , and bistable ones associated with approximations f η of f . This is necessary to develop the key strategy mentioned above. In Section 3, we investigate the generation of a sharp interface in the very early stages of the dynamics. This is strongly related with the underlying delay differential equation. Section 4 is concerned with the study of the propagation of interface from below. We shall construct accurate lower barriers by using a bistable approximation. As a result of Sections 3 and 4, we shall prove Theorem 1.3 (i). Section 5 deals with the construction of upper barriers to control the propagation from above. This will imply Theorem 1.3 (ii).

Preliminary

Existence and comparison for (1.1)-(1.2)

We first state the following comparison principle for monotone delayed reactiondiffusion equations.

Proposition 2.1 (Comparison principle). Let τ > 0, T > 0 and g : R → R an increasing and continuous function be given. Let (u, v) ∈ C [-τ, T ] × R N be two bounded functions satisfying

∂ t u, ∂ t v, ∇u, ∇v, D 2 u, D 2 v ∈ L 2 loc (0, T ) × R N .
Assume

(∂ t -∆ + 1) u(t, x) -g (u(t -τ, x)) ≤ 0 (∂ t -∆ + 1) v(t, x) -g (v(t -τ, x)) ≥ 0, (2.1) 
for almost every (t, x) ∈ (0, T ) × R N , and

u(θ, x) ≤ v(θ, x) for all (θ, x) ∈ [-τ, 0] × R N . (2.2) Then u(t, x) ≤ v(t, x), for all (t, x) ∈ [-τ, T ] × R N .
Proof. Let us consider the map w Since w(0, •) ≤ 0, the weak comparison principle [14, Proposition 52.8] implies w ≤ 0 in (0, min(T, τ )) × R N . If T > τ , one can repeat the argument on (τ, min(T, 2τ )) × R N . This proves the proposition.

:= u -v ∈ C [-τ, T ] × R N .
We now introduce some notations. Let X := BUC R N , R be the Banach space of bounded and uniformly continuous functions from R N to R, endowed with the usual supremum norm. Define also the Banach spaces C := C ([-τ, 0], X) and C 0 := C ([-τ, 0], R). For convenience, we identify ψ ∈ C as a function from [-τ, 0] × R N into R defined by ψ(θ, x) = ψ(θ)(x). For each α < β, we define

[α, β] C := ψ ∈ C : α ≤ ψ(θ, x) ≤ β, ∀(θ, x) ∈ [-τ, 0] × R N , and [α, β] C0 := C 0 ∩ [α, β] C . Next, for any continuous function w : [-τ, ∞) × R N → R, we define w t ∈ C, t ≥ 0, by w t : (θ, x) ∈ [-τ, 0] × R N → w t (θ, x) = w(t + θ, x).
The well-posedness of the initial value problem (1.1)-(1.2) can classically be investigated via the theory of abstract functional differential equations: since the initial data ϕ ∈

[0, 1] C , the initial value problem (1.1)-(1.2) admits a unique mild solution u ε : [0, ∞) × R N → [0, 1], which is actually classical on [ετ, ∞) × R N .
For more details, we refer the reader to the monograph of Wu [START_REF] Wu | Theory and Applications of Partial Functional-Differential Equations[END_REF] and the references cited therein.

Monostable and bistable delayed travelling waves

As explained in the introduction, the construction of lower barriers is far from obvious when τ > 0. A key idea of the present paper is to derive the monostable propagation of the interface from below from the bistable case. To perform this in Section 4, let us first define a family of bistable approximations by extending the monostable nonlinearity f for negative values of u.

Bistable approximations of f . For η ∈ (0, 1], we introduce an increasing and bounded map f η : R → R of the class C 2 such that

f η (u) = f (u) ∀u ∈ [0, 1] f η (-η) = -η and f η ′ (-η) < 1 f η (u) < u ∀u ∈ (-η, 0) ∪ (1, ∞) and f η (u) > u ∀u ∈ (-∞, -η) ∪ (0, 1). (2.3)
Observe that f η has exactly three fixed points

-η < 0 < 1, f η ′ (-η) < 1 and f η ′ (1) = f ′ (1) < 1.
We also require that the family {f η } η∈(0,1] is ordered in the sense that:

∀ (η, η ′ ) ∈ (0, 1] 2 , η < η ′ ⇒ f η ′ (u) ≤ f η (u) ∀u ∈ R. (2.4)
Travelling waves. We consider the one dimensional reaction-diffusion equation with time delay

(∂ t -∂ xx + 1) u(t, x) = f η (u(t -τ, x)) , t > 0, x ∈ R. (2.5)
We denote by

u η ≡ u η (t, x; ψ) : [-τ, ∞) × R N → [-η, 1
] the solution of (2.5) with the initial condition

u 0 (θ)(x) = u(θ, x) = ψ ∈ [-η, 1] C . (2.6) 
Let us notice that the above initial value problem generates a strongly continuous and increasing semiflow {Q η (t)} t≥0 defined by

[Q η (t)ψ] (θ, x) = (u η ) t (θ, x; ψ) , (θ, x) ∈ [-τ, 0] × R N ,
and acting [-η, 1] C into itself. Also, it follows from (2.3) that, for each t ≥ 0,

Q η (t)[0, 1] C ⊂ [0, 1] C and that Q(t) := (Q η (t)) | [0,1]C does not depend upon η. Note that Q η exhibits a bistable dynamics while Q is of monostable type.
Let us state some basic facts on travelling waves sustained by (2.5).

Lemma 2.2 (Bistable Travelling waves).

For η ∈ (0, 1] arbitrary, the following holds.

(i) There exists a unique speed c η such that (2.5) has a travelling wave solution

(U η , c η ) ∈ C 2 (R) × R whose profile U η is nonincreasing, that is U η ′′ (z) + c η U η ′ (z) + f η (U η (z + c η τ )) -U η (z) = 0, ∀z ∈ R, U η (-∞) = 1 and U η (∞) = -η. (2.7) (ii) There exist two constants (µ, M ) ∈ (0, ∞) 2 such that |1 -U η (z)| + |-η -U η (-z)| ≤ M e µz , ∀z ≤ 0, |U η ′ (z)| + |U η ′′ (z)| ≤ M e -µ|z| , ∀z ∈ R.
(iii) There exists some constant γ > 0 such that, for any ψ ∈

[-η, 1] C with lim inf x→-∞ min θ∈[-τ,0] ψ(θ, x) > 0 and lim sup x→+∞ max θ∈[-τ,0] ψ(θ, x) < 0, (2.8 
) We recall that f satisfies (1.4). As far as monostable travelling waves sustained by

one can find K = K(ψ) > 0 and ξ = ξ(ψ) ∈ R such that |u η (t, x; ψ) -U η (x -c η t + ξ)| ≤ Ke -γt , ∀(t, x) ∈ [0, ∞) × R.
(∂ t -∂ xx + 1) u(t, x) = f (u(t -τ, x)) , t > 0, x ∈ R, (2.9) 
are concerned, we quote the following result from Schaaf [16, Theorem 2.7] (see also [START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[END_REF]).

Lemma 2.3 (Monostable travelling waves).

There exists c * > 0 such that (2.9) has a travelling wave solution

(U c , c) ∈ C 2 (R) × (0, ∞) with 0 ≤ U c ≤ 1, if and only if c ≥ c * .
In addition, when c ≥ c * the waves are nonincreasing.

In the sequel we denote by (U * , c * ) the monostable wave with minimal speed, that is

(U * ) ′′ (z) + c * (U * ) ′ (z) + f (U * (z + c * τ )) -U * (z) = 0, ∀z ∈ R, U * (-∞) = 1 and U * (∞) = 0.
(2.10)

To conclude this preliminary, we prove the following result on the convergence of the bistable speeds c η .

Lemma 2.4 (Convergence of speeds). Let f satisfy (1.4). Let {f η } η∈(0,1] satisfy (2.3) and (2.4). Then the family {c η } η∈(0,1] is decreasing and

c η ր c * , as η ց 0. Proof. Let η ∈ (0, 1] be given. Since 0 ≤ U * ≤ 1 and f η | [0,1] = f , U * (x -c * t) solves (2.5). We can select a ψ ∈ [-η, 1] C such that (2.8) holds together with ψ(θ, x) ≤ U * (x -c * θ), ∀(θ, x) ∈ [-τ, 0] × R N . The comparison principle yields u η (t, x; ψ) ≤ U * (x -c * t), so that Lemma 2.2 (iii) implies U η (x -c η t + ξ) -Ke -γt ≤ U * (x -c * t),
for some constants γ > 0, K > 0 and ξ ∈ R.

Choosing x = c * t, we get U η ((c * -c η )t + ξ) -Ke -γt ≤ U * (0); if c * < c η then letting t → ∞, we collect 1 ≤ U * (0), a contradiction. Hence, we have c η ≤ c * . Now, let us take η < η ′ in (0, 1].
In view of (2.4), the comparison principle implies u η ′ (t, x; ψ) ≤ u η (t, x; ψ) for any ψ ∈ [-η, 1] C . Choosing ψ given by ψ(θ, x) = U η (x -c η θ) and using Lemma 2.2 (iii), we infer that

U η ′ (x -c η ′ t + ξ ′ ) -K ′ e -γ ′ t ≤ U η (x -c η t), for some given constants γ ′ > 0, K ′ > 0 and ξ ∈ R. Choosing h ∈ R such that U η ′ (h) = 0, x = c η ′ t -ξ ′ + h, we get -K ′ e -γ ′ t ≤ U η ((c η ′ -c η )t -ξ ′ + h)); if c η ′ > c η then letting t → ∞, we collect 0 ≤ -η, a contradiction. Hence, we have c η ′ ≤ c η .
As a result, there is ĉ ≤ c * such that c η ր ĉ, as η ց 0. To conclude let us make the normalization U η (0) = 1/2 for each η. Classically, by the interior elliptic estimates and Sobolev embedding theorem, we may assume that, modulo extraction, U η → Û strongly in C 1,β loc (R) and weakly in W 2,p loc (R), 1 < p < ∞. Then ( Û , ĉ) satisfies (2.10) with c * replaced by ĉ. Lemma 2.3 then enforces ĉ ≥ c * . The lemma is proved.

Lower barriers for small times

The goal of this section is to prove that, after a very short time as ε → 0, the solution

u ε : [-ετ, ∞) × R N → [0, 1] of (1.1)-(1.
2) is very close to 1 in Ω 0 (roughly speaking). Precisely, the following holds. Proposition 3.1 (Generation of interface from below). Let the initial data ϕ satisfy Assumption 1.1 (i) -(ii). Denote by d(0, x) the smooth cut-off signed distance function to Γ 0 as defined in subsection 4.1 (in particular, d(0, x) < 0 if and only if x ∈ Ω 0 ). Then there exist δ 0 > 0, α 0 > 0, ρ 0 > 0 and ε 0 > 0 such that, for all ε ∈ (0, ε 0 ) and all (θ, x) ∈ [-τ, 0] × R N , the following holds.

If d(0, x) ≤ -δ 0 ε| ln ε| then 1 -ε ρ0 ≤ u ε (α 0 ε| ln ε| + ετ + εθ, x) ≤ 1.
The proof shall be given in the end of the present section. The idea is to construct a sub-solution based upon the delay differential equation obtained by neglecting diffusion in (1.1).

A delay differential equation

Let us consider the delay differential equation

   dv dt (t) = f (v t (-τ )) -v(t), t > 0, v 0 (•) = φ(•) ∈ [0, 1] C0 , (3.1) 
where f satisfies (1.4) (recall that C 0 = C ([-τ, 0], R)). Because of the aforementioned reason, we also need to consider, for η ∈ (0, 1], the delay differential equation

   dv dt (t) = f η (v t (-τ )) -v(t), t > 0, v 0 (•) = φ(•) ∈ [-η, 1] C0 , (3.2) 
where f η was defined in (2.3). From standard results for delay differential equation with quasi-monotone nonlinearity -see for instance the monograph of Smith [START_REF] Smith | Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems[END_REF]-the following holds. 

i) For each t ≥ 0, V η (t)[-η, 1] C0 ⊂ [-η, 1] C0 . (ii) For each t ≥ 0, V η (t)[0, 1] C0 ⊂ [0, 1] C0 . The restriction V (t) := V η (t)| [0,1]C 0 does not depend upon η and, for φ ∈ [0, 1] C0 , the map t → V (t)φ = V (t; φ)
is the mild solution v t (• ; φ) of (3.1).

Dynamics of the DDE. We start with a lemma on the global dynamics of (3.1) on [0, 1] C0 .

Lemma 3.3 (Stability of 1). The following holds.

(i) For φ ∈ [0, 1] C0 \ {0}, we have lim t→∞ V (t)φ = 1 in C 0 .
(ii) There exist δ 1 > 0, M > 0 and λ > 0 such that, for all φ ∈ C 0 ,

1 -φ L ∞ (-τ,0) ≤ δ 1 ⇒ 1 -V (t)φ L ∞ (-τ,0) ≤ M e -λt , ∀t ≥ 0.
Proof. Let us prove (i), that is the global stability of the stationary point v = 1. First, we consider the case where there is ζ ∈ (0, 1) such that φ(θ) ≥ ζ, for all θ ∈ [-τ, 0]. Since the semiflow associated with (3.1) is monotone increasing and since V (t)[0, 1] C0 ⊂ [0, 1] C0 , it is enough to consider the solution with the constant ζ as initial data, that is

V (t; ζ) = v t (• ; ζ). Since f (ζ) > ζ, the map t → v(t; ζ) is nondecreasing. Hence we get lim t→∞ v(t; ζ) = 1, which in turn implies V (t)ζ -1 ∞ = sup -τ ≤θ≤0 |v(t + θ, ζ) -1| → 0, as t → ∞.
This concludes the proof of (i) for this first case. Let us now consider the general case. Since φ ∈ [0, 1] C0 \ {0}, there exist -τ < a < b < 0 and β > 0 such that

φ(θ) ≥ β1 [a,b] (θ), ∀θ ∈ [-τ, 0].
From (3.1), we obtain that, for all t ∈ (0, τ ],

d dt e t v(t; φ) ≥ e t f (β)1 [τ +a,τ +b] (t) ≥ f (β)1 [τ +a,τ +b] (t).
Integrating this from 0 to τ yields v(τ ; φ) ≥ f (β)(b -a). Now, for all t ∈ (τ, 2τ ], (3.1) implies d dt (e t v(t; φ)) ≥ 0. Hence

v(t; φ) ≥ e τ -t v(τ ; φ) ≥ ζ := e -τ f (β)(b -a) > 0, ∀t ∈ [τ, 2τ ],
and we are back to the first case. This completes the proof of (i).

The proof of (ii) is a direct consequence of the exponential local stability of v. Indeed, at this point the characteristic equation associated to (3.1) reads as

∆(λ) := λ + 1 -f ′ (1)e -λτ = 0.
Since f ′ (1) < 1, all roots have strictly negative real parts and the result follows (see for instance [START_REF] Thieme | Semiflows generated by Lipschitz perturbations of nondensely defined operators[END_REF], [START_REF] Hale | Introduction to Functional Differential Equations[END_REF] and the references therein).

Next, we shall prove the following important result. Proposition 3.4 (Convergence to 1). Let φ ≥ 0 in C 0 \ {0} be given. There exists λ > 0 such that, for all α > 0 there exists ε 0 = ε 0 (α) > 0 such that, for all ε ∈ (0, ε 0 ),

1 -ε αλ/2 ≤ V (α| ln ε| + t; ε| ln ε|φ) (θ) ≤ 1, ∀(θ, t) ∈ [-τ, 0] × [0, ∞). Proof. Let φ ≥ 0 in C 0 \ {0} be given. Recalling that f ′ (0) > 1, let δ ∈ (0, 1) and ρ > 1 be such that f (u) ≥ ρu, ∀u ∈ [0, δ]. (3.3) 
Applying Lemma 3.3 with δ as initial data, we have the existence of constants M > 0 and λ > 0 such that

0 ≤ 1 -V (t; δ)(θ) ≤ M e -λt , ∀(θ, t) ∈ [-τ, 0] × [0, ∞). (3.4) 
Let α > 0 be given. Consider ε 0 > 0 small enough so that ε| ln ε|φ ∈ [0, δ] C0 for all ε ∈ (0, ε 0 ). Since φ ≥ 0 is in C 0 \ {0}, there exist -τ < a < b < 0 and β > 0 such that ε| ln ε|φ(θ)

≥ ε| ln ε|β1 [a,b] (θ), ∀θ ∈ [-τ, 0].
Arguing as in the proof of Lemma 3.3 and using (3.3), we discover that there is ζ > 0 such that, for ε > 0 small enough,

v ε (t) := v(t; ε| ln ε|φ) ≥ ζε| ln ε|, ∀t ∈ [τ, 2τ ]. (3.5)
Next, observe that, for all 0 < t ≤ τ ,

d dt e t v ε (t) = e t f (ε| ln ε|φ(t -τ )) ≤ e τ ε| ln ε| φ ∞ f ′ ∞ =: Cε| ln ε|.
Integrating this from 0 to τ , we have v ε (τ ) ≤ e -τ (φ(0) + Cτ )ε| ln ε| < δ, for ε > 0 small enough. Therefore we can define

t ε := sup {t > 2τ : v ε (s -τ ) ≤ δ, ∀s ∈ [2τ, t]} .
It then follows from the DDE (3.1) and (3.3) that In view of v ε (t ε -τ ) = δ, we have

v ε ′ (t) ≥ ρv ε (t -τ ) -v ε (t), ∀t ∈ [2τ, t ε ]. ( 3 
t ε ≤ τ + 1 a ln δ Aε| ln ε| . (3.8) Now since the map t → v ε (t) is increasing, we deduce from v ε (t ε -τ ) = δ that v ε (t ε + t + θ) ≥ δ, ∀(θ, t) ∈ [-τ, 0] × [0, ∞).
In view of (3.8), we have t ε ≤ α| ln ε| for ε > 0 small enough so that

v ε (α| ln ε| + t + θ) ≥ δ, ∀(θ, t) ∈ [-τ, 0] × [0, ∞).
Since the semiflow associated with (3.1) is monotone increasing on C 0 , we thus have 0 ≤ 1 -v ε (α| ln ε| + t + θ) ≤ 1 -V (α| ln ε| + t; δ)(θ), which combined with (3.4) yields, for ε > 0 small enough,

0 ≤ 1 -v ε (α| ln ε| + t + θ) ≤ M e -λ(α| ln ε|+t) ≤ M ε αλ ≤ ε αλ/2 .
This completes the proof of Proposition 3.4.

Derivatives of the semiflow. Let us now provide some estimates on the derivatives of the semiflow V η with respect to the state variable. Our first result is a consequence of the well-known differentiability result of semiflows generated by delay differential equations (see for instance [START_REF] Hale | Introduction to Functional Differential Equations[END_REF], see also [START_REF] Thieme | Semiflows generated by Lipschitz perturbations of nondensely defined operators[END_REF] for results on abstract semilinear problems with Hille-Yosida non-densely defined operator).

Lemma 3.5 (Derivatives). For each t > 0, the map φ

∈ C 0 → V η (t; φ) ∈ C 0 provided by Lemma 3.2 is of the class C 2 . For each φ 0 ∈ C 0 and each φ ∈ C 0 , the map t ∈ [0, ∞) → ∂ φ V η (t; φ 0 )•φ ∈ C 0 is the mild solution of the non-autonomous equation    dv dt (t) = L(t, φ 0 )v t , t > 0, v(θ) = φ(θ), θ ∈ [-τ, 0], (3.9) 
wherein, for each t > 0, L(t, φ 0 ) : C 0 → R is defined by

L(t, φ 0 )φ := f η ′ (V η (t; φ 0 )(-τ )) φ(-τ ) -φ(0). (3.10) 
Moreover, for each φ 0 ∈ C 0 and each φ ∈ C 0 , the map t

→ ∂ 2 φ,φ V η (t; φ 0 ) • (φ, φ) is the solution of    dv dt (t) = L(t, φ 0 )v t + G(t; φ 0 ; φ), t > 0, v(θ) = 0, θ ∈ [-τ, 0], (3.11) 
wherein the map t → G(t; φ 0 ; φ) is defined by

G(t; φ 0 ; φ) := f η ′′ (V η (t; φ 0 )(-τ )) [∂ φ V η (t; φ 0 ) • φ(-τ )] 2 . (3.12)
Here is an estimate on the first derivative.

Lemma 3.6 (First derivative).

There exist constants M + > 1 and γ + > 0 such that, for all φ 0 ∈ C 0 ,

e -τ e -(t+θ) ≤ ∂ φ V η (t; φ 0 ) • 1(θ) ≤ M + e γ + (t+θ) , ∀(θ, t) ∈ [-τ, 0] × [0, ∞).
Proof. Let φ 0 ∈ C 0 be given. First, the semiflow V η (t) being monotone increasing on C 0 , observe that

∂ φ V η (t; φ 0 ) • 1(θ) ≥ 0, ∀(θ, t) ∈ [-τ, 0] × [0, ∞). (3.13)
Hence, in view of (3.9) and (3.10), the function w(t) := ∂ φ V η (t; φ 0 )•1(0) satisfies w ′ (t) ≥ -w(t), ∀t ≥ 0, so that w(t) ≥ e -t , for all t ≥ 0, which in turn implies

∂ φ V η (t; φ 0 ) • 1(θ) ≥ e -(t+θ) , for all (θ, t) ∈ [-τ, 0] × [0, ∞) such that t + θ ≥ 0. For the remaining (θ, t) ∈ [-τ, 0] × [0, ∞) such that t + θ < 0, we have ∂ φ V η (t; φ 0 ) • 1(θ) = 1 ≥ e -(τ +t+θ) .
This completes the proof of the left-hand side of the estimate of the lemma. Next, choosing a constant Ñ > 1 such that

0 ≤ f η ′ (u) ≤ Ñ , ∀u ∈ R, (3.14) 
we infer from (3.9) and (3.10) that

w ′ (t) ≤ Ñ w(t -τ ) -w(t), t > 0, and w(θ) = 1, θ ∈ [-τ, 0]. (3.15)
Observe that the map h : t → e ( Ñ -1)τ e ( Ñ -1)t satisfies

h ′ (t) ≥ Ñ h(t -τ ) -h(t), t > 0, and h(θ) ≥ 1, θ ∈ [-τ, 0]. (3.16)
It follows from (3.15) and (3.16) that w(t) ≤ e ( Ñ-1)τ e ( Ñ -1)t , for all t ≥ 0.

Arguing as above we get the right-hand side of the estimate of the lemma.

We pursue with the following estimate on the second derivative.

Lemma 3.7 (Second derivative).

There exist constants K > 0 and µ > 0 such that, for all φ 0 ∈ C 0 ,

|∂ φφ V η (t; φ 0 ) • (1, 1)(θ)| ≤ Ke µ(t+θ) , ∀(θ, t) ∈ [-τ, 0] × [0, ∞).
Proof. In view of (3.12) and Lemma 3.6, there exists a constant A > 0 such that, for all φ 0 ∈ C 0 , |G(t; φ 0 ; 1)| ≤ Ae 2γ + (t-τ ) , ∀t ≥ 0.

Hence, the function w(t)

:= ∂ φφ V η (t; φ 0 ) • (1, 1)(0) satisfies w ′ (t) ≤ Ñ w(t -τ ) -w(t) + Ae 2γ + (t-τ ) , t > 0, and w(θ) = 0, θ ∈ [-τ, 0]. ( 3 
.17) We look for a super-solution of (3.17) in the form t → Ke μt , for some constants K > 0 and μ > 0 to be determined. This leads us to

μ ≥ Ñ e -μτ -1 + A K e -2γ + τ +(2γ + -μ)t , ∀t > 0, (3.18) 
which can be achieved by choosing μ > 2γ + and K > 0 both large enough. Arguing as in the proof of Lemma 3.6, we end up with constants K > 0 and µ > 0 such that, for all φ 0 ∈ C 0 , all θ ∈ [-τ, 0], all t ≥ 0,

∂ φφ V η (t; φ 0 ) • (1, 1)(θ) ≤ Ke µ(t+θ) .
Next, select C > 0 such that f η ′′ (u) ≥ -C, for all u ∈ R. Then we get τ ) , for which we can construct a subsolution t → -Ke μt as above. This completes the proof of the lemma.

w ′ (t) ≥ -Cw(t -τ ) -w(t) -Ae 2γ + (t-
As a direct consequence of Lemma 3.6 and Lemma 3.7, we obtain the following estimate. Proposition 3.8 (Estimate on derivatives). There exist constants K > 0 and γ > 0 such that, for all φ 0 ∈ C 0 ,

|∂ φφ V η (t; φ 0 ) • (1, 1)(θ)| ≤ Ke γt ∂ φ V η (t; φ 0 ) • 1(θ), for all (θ, t) ∈ [-τ, 0] × [0, ∞).

Construction of lower barriers for small times

We now provide an accurate lower estimate, for small times, of

u ε : [-ετ, ∞) × R N → [0, 1] the solution of (1.1)-(1.2).
Proposition 3.9 (Sub-solutions). Let the initial data ϕ satisfy Assumption 1.1 (i). Then there exist K > 0, α > 0 and ε 0 > 0 such that, for all ε ∈ (0, ε 0 ),

max 0 ; v η t ε ; w 0 (x) -εKτ -Kt ≤ u ε (t, x), for all (t, x) ∈ [-ετ, αε| ln ε|] × R N . Here, v η = v η (• ; φ) : [-τ, ∞) → R denotes the solution of (3.
2) arising in Lemma 3.2 and the function w 0 is as in (1.6).

Proof. Let us consider the differential operator

L ε η [u](t, x) := ∂ t u(t, x) -ε∆u(t, x) - 1 ε f η (u(t -ετ, x)) -u(t, x) .
Since

f η = f on [0, 1], we have L ε η [u ε ] (t, x) ≡ 0.
We look for a sub-solution, at least for small times, u :

[-ετ, ∞) × R N → R in the form u(t, x) := v η t ε ; w 0 (x) -εKτ -Kt .
Straightforward computations yield, for each t > 0 and each x ∈ R N ,

L ε η [u] (t, x) = -V ε (t, x) K + ε∆w 0 (x) + ε W ε (t, x) V ε (t, x) |∇w 0 (x)| 2 + 1 ε dv η dt + v η t ε ; w 0 (x) -ετ -Kt -f η v η t ε -τ ; w 0 (x) -Kt where V ε (t, x) := ∂ φ V η t ε ; w 0 (x) -εKτ -Kt • 1(0) , W ε (t, x) := ∂ φφ V η t ε ; w 0 (x) -εKτ -Kt • (1, 1)(0) .
Since the semiflow arising in Lemma 3.2 is monotone increasing in C 0 and since f η is increasing, we have

dv η dt + v η t ε ; w 0 (x) -εKτ -Kt -f η v η t ε -τ ; w 0 (x) -Kt ≤ dv η dt + v η t ε ; w 0 (x) -εKτ -Kt -f η v η t ε -τ ; w 0 (x) -εKτ -Kt = 0, since v η solves (3.
2). Hence, using Proposition 3.8, we get, for all ε ∈ (0, 1),

t > 0, x ∈ R N , L ε η [u] (t, x) ≤ -V ε (t, x) K -ε ∆w 0 ∞ -ε ∇w 0 2 ∞ Ke γ t ε .
Looking at small times, the above implies, for all ε ∈ (0, 1), t ∈ 0, γ -1 ε| ln ε| ,

x ∈ R N , L ε η [u] (t, x) ≤ -V ε (t, x) K -ε ∆w 0 ∞ -∇w 0 2 ∞ K ≤ 0, if K > 0 is sufficiently large. Next, concerning initial data, we have, for all θ ∈ [-ετ, 0], u(θ, x) = w 0 (x) -εKτ -Kθ ≤ w 0 (x) ≤ ϕ θ ε , x = u ε (θ, x),
where we have used (1.6) and (1.2). The comparison principle in Proposition 2.1 thus implies that

u(t, x) ≤ u ε (t, x), ∀(t, x) ∈ -ετ, γ -1 ε| ln ε| × R N .
Recalling that u ε ≥ 0, this completes the proof of Proposition 3.9.

Proof of Proposition 3.1. Fix K > 0 and α > 0 as in Proposition 3.9. Define α 0 := α/2. For φ :≡ α 0 ∈ C 0 \ {0}, let us select λ > 0 as in Proposition 3.4 and define ρ 0 := α 0 λ/2. Also, it follows from Assumption 1.1 (ii) that there exists δ 0 > 0 such that, for ε > 0 small enough, d(0, x) ≤ -δ 0 ε| ln ε| =⇒ w 0 (x) ≥ 4α 0 ε| ln ε|.

Now, for any -τ ≤ θ ≤ 0, define s := α 0 ε| ln ε| + ετ + εθ and take x such that d(0, x) ≤ -δ 0 ε| ln ε|. Since, for ε > 0 small enough, 0 ≤ s ≤ αε| ln ε| and w 0 (x) -εKτ -Ks ≥ α 0 ε| ln ε|, we deduce from Proposition 3.9 and Proposition 3.4 that

u ε (s, x) ≥ v η (α 0 | ln ε| + τ + θ; α 0 ε| ln ε|) ≥ 1 -ε ρ0 ,
which concludes the proof.

Lower barriers via bistable approximation

As explained before, our analysis of the propagation of interface from below is performed by approximating the monostable function f in a bistable manner (see subsection 2.2). We start with some preliminaries on smooth signed distance functions associated with a family of free boundary problems.

Smooth cut-off signed distance functions

For c > 0, we denote by Γ c := t≥0 ({t} × Γ c t ) the smooth solution of the free boundary problem

(P c ) V = c on Γ c t Γ c t t=0 = Γ 0 ,
where V denotes the normal velocity of Γ c t in the exterior direction. Note that since the region enclosed by Γ 0 , namely Ω 0 , is convex, these solutions do exist for all t ≥ 0. Also we can naturally, i.e. in a reversible manner, extend these solutions for small negative times by letting Γ 0 evolve with speed -c. Hence, with a slight abuse of notation, we consider Γ c t for all t ≥ -ετ , with ε > 0 small enough. For each t ≥ -ετ , we denote by Ω c t the region enclosed by the hypersurface Γ c t . Let d be the signed distance function to Γ c defined by

d(t, x) := -dist(x, Γ c t ) for x ∈ Ω c t dist(x, Γ c t ) for x ∈ R N \ Ω c t , (4.1) 
where dist(x, Γ c t ) is the distance from x to the hypersurface Γ c t . We remark that d = 0 on Γ c and that |∇ d| = 1 in a neighborhood of Γ c .

We now introduce the "cut-off signed distance function" d, which is defined as follows. Let T > 0 be given. First, choose d 0 > 0 small enough so that d is smooth in the tubular neighborhood of Γ c

{(t, x) ∈ [-ετ, T ] × R N : | d(t, x)| < 3d 0 }. Next let ζ(s) be a smooth increasing function on R such that ζ(s) =      s if |s| ≤ d 0 -2d 0 if s ≤ -2d 0 2d 0 if s ≥ 2d 0 .
We Then the mean value theorem provides a constant N > 0 such that

|∂ t d(t, x) + c| ≤ N |d(t, x)| for all (t, x) ∈ [-ετ, T ] × R N . (4.5)
Moreover, there exists a constant C > 0 such that

|∇d(t, x)| + |∆d(t, x)| ≤ C for all (t, x) ∈ [-ετ, T ] × R N . (4.6)

Construction of lower barriers

Let us recall that {f η } η∈(0,1] denotes a family of bistable approximations of f such that (2.3) and (2.4) hold. Also, for η ∈ (0, 1], (U η , c η ) denotes the travelling wave solution (with time delay) associated with this bistable f η (see Lemma 2.2), namely

U η ′′ (z) + c η U η ′ (z) + f η (U η (z + c η τ )) -U η (z) = 0, ∀z ∈ R, U η (-∞) = 1, U η (0) = 0, U η (∞) = -η. (4.7)
In the spirit of the sub-solutions constructed in [START_REF] Alfaro | The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system[END_REF] for bistable systems, we look for sub-solutions u - η in the form

u - η (t, x) := U η d η (t, x) + ε| ln ε|p(t) ε -q(t), (4.8) 
where p(t) := -e -βt/ε + e Lt + K, (4.9) q(t) := σ βe -βt/ε + εLe Lt . (4.10)

Here, σ, β, L and K are positive constants to be determined, and d η (t, x) denotes the cut-off signed distance function to the interface starting from Γ 0 and evolving with speed c η , that is the solution of (P cη ). As seen in the previous subsection, this allows to define u - η for all t ≥ -ετ , x ∈ R N . Proposition 4.1 (Sub-solutions). One can find positive constants β, σ and L such that, for all K > 1, the function u - η satisfies, for ε > 0 small enough,

εL ε η [u - η ](t, x) = ε∂ t u - η (t, x) -ε 2 ∆u - η (t, x) -f η u - η (t -ετ, x) + u - η (t, x) ≤ 0, for all t > 0, x ∈ R N .
Proof. For ease of notation, we drop most of the subscripts η. Also we define

z := d(t, x) + ε| ln ε|p(t) ε . (4.11) 
We start by evaluating εL ε η [u -](t, x). We compute

ε∂ t u -(t, x) = (∂ t d(t, x) + ε| ln ε|p ′ (t))U ′ (z) -εq ′ (t) ε 2 ∆u -(t, x) = |∇d| 2 (t, x)U ′′ (z) + ε∆d(t, x)U ′ (z).
Next, observe that the previous subsection enables to write

d(t -ετ, x) = d(t, x) + εcτ + εΘ ε (t, x),
where the correction Θ ε vanishes close to the interface and is O(1):

Θ ε (t, x) = 0 if |d(t, x)| ≤ d 0 , Θ ε L ∞ ≤ A, (4.12) 
for some constant A > 0. Hence, since p(t) increases and U (z) decreases, we have

u -(t -ετ, x) = U d(t, x) + ε| ln ε|p(t -ετ ) ε + cτ + Θ ε (t, x) -q(t -ετ ) ≥ U d(t, x) + ε| ln ε|p(t) ε + cτ + Θ ε (t, x) -q(t -ετ ).
Since f is increasing we get

f u -(t -ετ, x) ≥ f U (z + cτ + Θ ε (t, x)) -q(t -ετ ) = f U (z + cτ + Θ ε (t, x)) -q(t -ετ )f ′ (θ),
for some U (z + cτ + Θ ε (t, x)) -q(t -ετ ) ≤ θ ≤ U (z + cτ ). Hence, we have

f u -(t -ετ, x) ≥ f (U (z + cτ )) -q(t -ετ )f ′ (θ) +Θ ε (t, x)(f • U ) ′ (z + cτ + ωΘ ε (t, x)) ,
for some 0 ≤ ω ≤ 1. Combining the above estimates with

U ′′ (z) + cU ′ (z) + f (U (z + cτ )) -U (z) = 0, we obtain εL ε η [u -](t, x) ≤ E 1 + E 2 + E 3 where E 1 := ε| ln ε|p ′ (t)U ′ (z) + q(t -ετ )f ′ (θ) -q(t) -εq ′ (t) E 2 := (∂ t d(t, x) + c -ε∆d(t, x))U ′ (z) + 1 -|∇d(t, x)| 2 U ′′ (z) E 3 := -Θ ε (t, x)(f • U ) ′ (z + cτ + ωΘ ε (t, x)) .
Let us now analyze further the term E 1 . By using the expressions (4.9), (4.10) for p and q we obtain

E 1 = βe -βt/ε | ln ε|U ′ (z) + σ(e βτ f ′ (θ) -1 + β) +εLe Lt | ln ε|U ′ (z) + σ(e -εLτ f ′ (θ) -1 -εL) =: βe -βt/ε I 1 + εLe Lt I 2 .
Since f ′ (-η) < 1 and f ′ (1) < 1, we can fix small a > 0 and β > 0 such that

e βτ f ′ (u) -1 + β ≤ -β, ∀u ∈ [-η -a, -η + a] ∪ [1 -a, 1 + a]. In view of U (-∞) = 1, U (∞) = -η and inequality U (z + cτ + Θ ε (t, x)) -q(t - ετ ) ≤ θ ≤ U (z + cτ ), there exists a large z 0 such that θ ∈ [-η -a, -η + a] ∪ [1 - a, 1+a 
] as soon as |z| ≥ z 0 (by choosing σ small enough to control the -q(t-ετ ) term) and the above inequality applies for s = θ. It follows from U ′ (z) ≤ 0 that I 1 ≤ -σβ in the region {|z| ≥ z 0 }. In the compact region {|z| ≤ z 0 }, we have U ′ (z) ≤ -b for some b > 0 so that I 1 ≤ -b| ln ε| + C so that I 1 ≤ -σβ also holds true. The same argument yields I 2 ≤ -σβ. Hence E 1 ≤ -σβ 2 e -βt/ε -εσβLe Lt ≤ -εσβL.

We now conclude the proof of εL ε η [u -](t, x) ≤ Assume first that (t, x) lies in the tubular neighborhood {|d(t, x)| ≤ d 0 } of Γ t . In view of (4.3) and (4.4), the term E 2 reduces to -ε∆d(t, x)U ′ (z). In view of (4.12), the term E 3 vanishes. As a result, 

εL ε η [u -](t, x) ≤ -εσβL + ε ∆d L ∞ U ′ L ∞ (R) ≤ 0, if L > 0 is large enough. Next, if (t,
+ cτ + ωΘ ε (t, x)| ≥ d 0 2ε -cτ -ωA ≥ d 0 4ε , which in turn provides a bound |E 3 | ≤ C 3 e -C3 d 0 4ε
, for some C 3 > 0. As a result we collect, for a constant C > 0,

εL ε η [u -](t, x) ≤ -εσβL + Ce -C d 0 4ε ≤ 0,
if ε > 0 is small enough. This completes the proof of the lemma.

In order to apply the comparison principle, we need the following estimate.

Lemma 4.2 (Ordering initial data). One can find K > 1 such that, for ε > 0 small enough,

u - η (t, x) ≤ u ε (t + α 0 ε| ln ε| + ετ, x), for all -ετ ≤ t ≤ 0, x ∈ R N ,
where α 0 ε| ln ε| denotes the "generation of interface from below time" appearing in Proposition 3.1.

Proof. For ease of notation, we drop most of the subscripts η. If (t, x) is such that d(t, x) ≥ -ε| ln ε|p(t), then the decrease of the wave U yields u -(t, x) ≤ 0, and there is nothing to prove. Now let us take (t, x), with -ετ ≤ t ≤ 0 and d(t, x) ≤ -ε| ln ε|p(t). From the generation of interface from below analysis we know that (see Proposition 3.1)

d(0, x) ≤ -δ 0 ε| ln ε| =⇒ 1 -ε ρ0 ≤ u ε (α 0 ε| ln ε| + ετ + t, x) for -ετ ≤ t ≤ 0. ( 4 
.13) Writing d(0, x) = d(t, x) + O(t) and using the expression for p in (4.9), we get, for -ετ ≤ t ≤ 0, d(0, x) ≤ -ε| ln ε|p(t) + Cετ ≤ -ε| ln ε|(-e βτ + e -εLτ + K) + Cετ ≤ -δ 0 ε| ln ε|, for ε > 0 small enough, if K is chosen sufficiently large. In view of (4.13) it suffices to show that u -(t, x) ≤ 1 -ε ρ0 , which follows from the vertical shift q. Indeed, the expression for q in (4.10) shows that q(t) ≥ σβ for -ετ ≤ t ≤ 0, so that u -(t, x) ≤ 1 -σβ ≤ 1 -ε ρ0 . The lemma is proved.

Proof of Theorem 1.3 (i). From Proposition 4.1, Lemma 4.2 and the comparison principle, we infer that u - η (t -α 0 ε| ln ε| -ετ, x) ≤ u ε (t, x) for all t ≥ α 0 ε| ln ε| + ετ, x ∈ R N . (4.14)

Let us recall that u - η is defined in (4.8) and that U η (-∞) = 1. Hence, the convergence to 1 in Ω c * t , as expressed in Theorem 1.3 (i), is a direct consequence of both Lemma 2.4 and the lower estimate (4.14).

Global in time upper barriers

The aim of this section is to construct a super-solution in order to control the propagation of the solution from above. Let (U * , c * be the monostable When (x -x 0 ).n 0 ≤ 0, the above inequality follows from (5.1). When (xx 0 ).n 0 > 0, (1.8) and the convexity of Ω 0 implies v 0 (x) = 0 and (5.2) is clear. Hence, it follows from the comparison principle that

u ε (t, x) ≤ U * (x -x 0 ).n 0 -c * t ε , ∀(t, x) ∈ [-ετ, ∞) × R N ,
for each x 0 ∈ ∂Ω 0 . This completes the proof of the proposition.

Remark 5.2. If v 0 ∞ = 1 then, under assumption (1.10) of Remark 1.2, we have L ε [K 0 u + ](t, x) ≥ 0. Also, normalizing the travelling wave U * by 1 = K 0 U * (c * τ ) and arguing as above, we see that u ε (θ, x) ≤ K 0 u + (θ, x), for all (θ, x) ∈ [-ετ, 0] × R N . Hence, the comparison principle yields

u ε (t, x) ≤ K 0 U * (x -x 0 ).n 0 -c * t ε , ∀(t, x) ∈ [-ετ, ∞) × R N ,
for each x 0 ∈ ∂Ω 0 .

Proof of Theorem 1.3 (ii). The convergence to 0 outside Ω c * t , as expressed in Theorem 1.3 (ii), is a direct consequence of the control from above provided by Proposition 5.1.

Proof.

  Part (i) comes from Schaaf[START_REF] Schaaf | Asymptotic behavior and travelling wave solutions for parabolic functional differential equations[END_REF] Theorem 3.13] (see alsoFang and Zhao [8, Theorem 6.4]). The behavior of the profile (ii) can be found in Hupkes and Lunel [12, Proposition 2.2.5]. Finally the global asymptotic stability with phase shift of the wave (iii) is due to Smith and Zhao[START_REF] Smith | Global asymptotic stability of traveling waves in delayed reaction-diffusion equations[END_REF] Theorem 3.3].

Lemma 3 . 2 (

 32 Well-posedness). For each φ ∈ C 0 , (3.2) has a unique global (mild) solution v η = v η (• ; φ) : [-τ, ∞) → R and the semiflow V η (t)φ = V η (t; φ) := (v η ) t (• ; φ) isstrongly continuous and monotone increasing on C 0 . It furthermore satisfies the following properties.

(

  

  then define the cut-off signed distance function d by d(t, x) := ζ d(t, x) . (4.2) Note that if |d(t, x)| < d 0 then |∇d(t, x)| = 1, (4.3) and that the equation of motion (P c ) yields if |d(t, x)| < d 0 then ∂ t d(t, x) + c = 0. (4.4)

  travelling wave with the minimal speed c * > 0 (see Lemma 2.3), namely     (U * ) ′′ (z) + c * (U * ) ′ (z) + f (U * (z + c * τ )) -U * (z) = 0, ∀z ∈ R, (U * ) ′ (z) < 0, ∀z ∈ R, U * (-∞) = 1 and U * (∞) = 0.Then we shall prove the upper estimate onu ε : [-ετ, ∞) × R N → [0, 1] the solution of (1.1)-(1.2).Proposition 5.1 (Super-solutions). Let the initial data ϕ satisfy Assumption 1.1. Denote by d(0, x) the smooth cut-off signed distance function to Γ 0 as defined in subsection 4.1 (in particular, d(0, x) < 0 if and only if x ∈ Ω 0 ). Then there exists h ∈ R such that, for all ε > 0 small enough,u ε (t, x) ≤ U * d(0, x) -c * t ε + h , ∀(t, x) ∈ [-ετ, ∞) × R N .Proof. Since the function v 0 appearing in Assumption 1.1 (iii) satisfies v 0 ∞ < 1, we can choose h ∈ R such that v 0 ∞ ≤ U * (c * τ + h). Up to changing U * by U * (• + h), we can assume h = 0 so that v 0 ∞ ≤ U * (c * τ ).(5.1)Let x 0 ∈ ∂Ω 0 = Γ 0 be given and denote by n 0 the outward unit normal vector to Γ 0 at x 0 . Then consider the mapu + : [-ετ, ∞) × R N → R defined by u + (t, x) := U * (x -x 0 ).n 0 -c * t ε . Setting z = (x -x 0 ).n 0 -c * t ε , we compute L ε [u + ](t, x) := ∂ t u + (t, x) -ε∆u + (t, x) -1 ε f u + (t -ετ, x) * (z + c * τ )) + 1 ε U * (z) = 0, for all t > 0, x ∈ R N . Let us now prove that u ε (θ, x) = ϕ θ ε , x ≤ U * (x -x 0 ).n 0 -c * θ ε = u + (θ, x),for all (θ, x) ∈ [-ετ, 0] × R N In view od Assumption 1.1 (iii) and the decrease of U * , it is sufficient to check that v 0 (x) ≤ U * (x -x 0 ).n 0 ε + c * τ , ∀x ∈ R N .(5.2)

  x) is such that |d(t, x)| ≥ d 0 then we shall use the exponential decay of the derivatives of U -see Lemma 2.2 (ii)to control E 2 and E 3 . Indeed in this region, the argument z defined in (4.11) satisfies |z| ≥ d 0 /(2ε). Hence, combining the exponential decay of U ′ and U ′′ with (4.5) and (4.6), we get a bound |E 2 | ≤ C 2 e -C2 d 0 2ε , for some C 2 > 0. Also, it follows from (4.12) that

	|z
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