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Fast input-free observers for LPV discrete-time systems

Mirko Fiacchint? and Gilles Millerioux-2

Abstract— This paper deals with fast input-free partial state  input (if known) and a finite number of shifts in the discrete-
estimation for discrete-time LPV systems through functioml time case [18] [10]. Let us notice that different terms arecus

observers. The system inputs are assumed to be unknown and i, e |iterature to define the same concept: non-asymptotic
then the observers reduce to functions of finite sequences of S
dead-beat, finite-time, fast.

the output only. The existence of the observer is proved by
resorting to both the notion of inverse system and the concep

of maximal A-invariant subspaces. A constructive approachto in thi r for th ian of
derive the explicit equations of the observer is provided. A The approach proposed this paper for the design o

example illustrates the efficiency and the computational geects dead-beat funCt'Onf'il obs_erver is based on re;ults_of set-
of the method. theory for control, in particular the concept of invariance
Invariance of a set or a subspace of the state space is
. INTRODUCTION related to many classical topic in control, such as stabilit
Reconstructing the state vector of a system from itkyapunov theory, constrained control. Invariance and set-
accessible outputs is an important issue in automatic ebntrtheoretic methods in control appeared at the end of the
in particular for state feedback control law synthesis osixties, see the pioneering work [5], and they raised an
diagnosis. In order to estimate the state of a system, iiicreasing interest in the last decades, see in particular
may be assumed that all system inputs are measurabiee recent monograph [6] and references therein for an
On the other hand, for systems with some unmeasuratdghaustive overview on the topic. The characterization of
inputs, specific methods should be used. A first solution isvariant subspaces, strongly related also with the ptagser
to assume that the unmeasurable quantities satisfy a givehcontrollability and observability, has been treated 2§+
dynamics. That amounts to modeling the unknown inputs &4]. More recently, invariant subspaces have been useckin th
the response of a suitable a priori chosen dynamical systeoantext of LPV systems in [1], and for unknow input state
An augmented system is then constructed and an obsereatimation for a particular class of nonlinear continutioe
estimates the augmented state. On the other hand, we nsygtems, see [12].
face the situation when the inputs are completely unknown

and not measurable. In such a case, we can resort 10 afrhis paner deals with discrete-time LPV systems with
unknown input, also called input-free, state reconstancti v nown inputs. The objective is two-fold. First, we want
The issue of designing such observers goes back to the 7S yerive existence conditions under which a given state

with & pioneering work [11]'_ ) ) variable (or a linear combination of the state variables)lna
In th|s_ paper, we are interested In functional non'expressed as a function of a finite number of shifted outputs.

asymptotic input-free observers. Functional 0bservess aiyq jn accordance with algebraic observability. Seconalty

observers which aim at reconstructing a particular (0ft€gy, ot providing an explicit solution to the problem, that is

linear) function of the state (possibly of the input as We")deriving the equations of the state reconstructor.

Functional observers for linear systems have been widely

addressed since the pioneering work [14]. A complete . . ) i )
framework providing necessary and sufficient conditions of 1he outline of the paper is the following. Section Il is
stability and design procedure has been reported in [g]. THi€Voted to the problem statement, namely the issue of fast
books [7] and more recently [20] present a state of the art §jPut-free reconstruction. In Section Ill, the existenée
research in this field. The consideration of nonlinear diger reéconstructor is proved and its equations are derived. The
time systems with unknown inputs is rather scarce anfpe notions of inverse system and invariant sub_space.s are
motivate the present work. The concept of non-asymptotitS€d. Two approaches are presented. Computational issues
reconstruction (with known or unknown inputs) has beef"® addressed in Section IV. Finally, an example illusgrate
mainly investigated through the algebraic framework. 1§he efficiency and the computational aspects of the method.
short, algebraic observability means that, each statelsari Notation N is the set of natural numbers. Giver N denote

can be expressed as an algebraic function of the output, tNg: {X,G N:l<x<njandNn= N”U.{O}' We denote .With
x thei-th entry of the vectok. NotationP, denotes thé-th
This work was partially supported by the CPER MISN Régionraime  element of a set of matrices amd is the realization of the

(AOC Project 2011), Federation Charles Hermite, ESSTAN BNRIA. time-dependent vectorat timek. We assume the convention
Universite de Lorraine, CRAN, UMR 7039, ESSTIN, 2 rue Jean

d _ i T
Lamour, Vandceuvre-les-Nancy Cedex, 54506, France that ni:OPl =Fy...R. For a matrlxX,_X stands for the
2 CNRS, CRAN, UMR 7039, France classical Moore-Penrose generalized invers of



Il. PROBLEM STATEMENT A straightforward extension of the inverse system, given
in [15], [19] for switched linear ones, obeys for LPV systems

Consider discrete-time LPV systems obeying the following state space description

X1 = A(6) X+ B(6k) uk o P o
- . . . 4
{ Vi = C(B)Xc+ D(B) Uy 1) Ricrr+1 = Pa(Blekrr ) Rrr + Qo (Ockr)Yick-r (4)
where x, € R" is the state vectony, € R™ is the control with
input, yx € RP is the output vector. The matricése R™", Pa (Bckr) = A(6k) — Qo(Okkir) O (Bkksr)s
t (5)
Be R™M C e RP*" andD € RP*™ depend on the parameter Qo (Bckrr) = B(B)lmxr M (Bcicrr)-
vector 6 € R' belonging to a known sefg, possibly  Following the same lines as in [15] [19], definireg =
unbounded. We are interested in the following issue. X< — %e.r @s the state error reconstruction, it can be shown,

Problem 1: Given G € R9", provide a condition for the from (1) and (4) that
existence of a functiorig such that
&+1 = Po(Bckrr )& (6)

OHe= fo ety Yrto) @ under the conditions of invertibility, [19]. Hence, é& = 0,

for everyk > 0, everyx, € R" and every possible realization that is X = Xo, thene, = 0 and soxg,, = x¢ for any k >
of the parametef, € Qg, with appropriate integers, t,. 0, in accordance with Definition 1. The matrB(Gckir)

It is noteworthy to point out that this problem is rathercorresponds to the inverse dynamics. Hence, Problem 1 can
general. Indeed, iG is the matrix which selects a part of be reformulated as follows.
the components of the state vector, the problem boils down Problem 2: Given G € R%", provide a condition for the
to an analysis issue, that is checking whether the compsnegiistence of a functiorig such that
of xx are algebraically observable. I& is the identit .
matrix, the pr%blem amyounts to check whether the syst)ém is G = fo (Yicry -+ Yoayy): @
algebraically observable. Furthermore, any explicit 8otu for everyk > 0, everyxg € R" and every possible realization
to Problem 1 providedg andty, tp, besides guaranteeing of the parametef € Qg, with appropriate integerg, t;.
their existence. Then a fast input-free observer is obthine
for reconstructing either a part or the full state or a linear
combination of its elements, depending on the structure of First, notice that the parametric dependence of the matrice

I1l. DESCRIPTION OF THE APPROACH

G. in (4) and (5) with respect t6x.r € Q{jl is not linear in
general. However, given the s&ty, there always exists a
A. Inverse system function p such that the system (4) depends linearly on the

- _ d
The proposed approach to solve Problem 1 rests on tR@rametepy defined a$kr:1p(9k:k+r)- A setQp C R such
notion of inverse system of (1) whose definition and strieturth@t Pk € Qp if Bckyr € Qg™ can always be determined as
are borrowed from [19]. Define well. To simplify the notation, we define

C(6) P(ox) = Po(Bkksr): Qo) = Qa(Bckir), Yk = Yicksr-
C(6k+1)A(6k) Following the considerations above, the assumption below
O (Bkksi) = : , (3) can be posed.
i—1 Assumption 1:Suppose tha®(pyx) depends on the param-
C(9k+i)l|-|OA(9k+l) eterpx € Qp as
= g _
the vectors Plok) = P|P|£|)-
Yickti = | Yoo Yot +os Yiui ]T, Hereafter, unless otherwise stated, Assumption 1 will hold
R T Jfr fr' T Remark 1:Notice that no assumptions are done @g,
Bk *[ B> O1 - B } )

then nor onQ,. In fact Q, can be whatever subset in the
and the matriximyr = [Im 0mx<m_r)}_ Define alsoM(6,i) SPace of the parametgr Furthermore, the approach could be

in the following recursive way easily generalized to more general parameter dependencies
polynomial ones for instance.
M (Bieics )= D(6k) Opxm(i-1) A sufficient condition for Problem 2 to have a solution
O (Bkck+i)B(6) M(Bcr1si)] follows.

Proposition 1: There is a solution to Problem 2 with=

with M(8ci) = D(6). K—r—1andt)=—1if K andR, fori e Ny, are such that

Definition 1: An inverse system of (1) is a system for
which, when driven by a sequence of outgutof (1), the K
trajectory of its state vectog toincides with the trajectong G rLP|k =0, (8)
of (1) (possibly up to a delay referred to as inherent delay) k:_
whenever both state vectors share the same initialization. for all .% = [ig, ...,ik]" € Ng“.



Proof: By definition we have Moreover, denote wittM € R"*9 a basis matrix of%#? and
N € R™("-9) a basis of its complement.

o _ (0p ¢ 3
e = Gioesz A RoXicrr + Gk, Notice that the definition o above involves the trans-
R L oGie o _ poses of the matriceR for all i € Ng.
Gitri2 = GJZNZIHOPHIP'IXKH + GQ(P+1) Y+ 1+ Proposition 3: The set? as in Definition 3 is A-invariant
eNzl=

(io) _ for the parameter-dependent system given by
+G 3 AP QP Y .
JeN ;
’ Z1=Pr(pJzc with Pr(pg) = Z}pﬁ')F’F =P(p)". (11)
i=

Ko _
GRrrik+1=0C ZK ) P1£I+|)|F)I|)2k+r + GQ(PwK) Ytk + Proof: From Proposition 227 is an A-invariant for every
1 JGNJK':O PT with i € Ng andM a basis matrix of?2. By definition, 2
< (ir) N . is A-invariant also for the system whose dynamics is given
+G P Q(Pkik-1-1) kiK1 i, y y g
JZO feﬁiﬁl':l’zlfjpkﬂ  QUPksk-1-1) Herk-t- by (11) if and only if there existX such that
where .7 = [ig, ...,ix]" € I\_I'é” for all k € N. If for every _ d ot _
# € NS condition (8) holds, then 0= i;pk R'M =MX,
+Gy Y Pﬁ'ﬁ R Q(Pkrk—1-j) Ykrk—1-j-
=0 gen)rH=K~] A. Kernel-based approach

)
Finally, after a suitable shift, we get that (9) completes th
proof and shows thafg involves the outputi (and the
parameteif,) for —K —r—-1<1 < -1,

Remark 2: Some sequence among all the admissible on
are not allowed since, by definitiol(p;i;1) is not inde-
pendent with respect t&(p;). Such sequences could be
discarded from the analysis.

In the following, two computation-oriented conditions forihen there exists a solution of Problem 2 wigh= 1.

(8) to hold are presented. They involve the concept of proof. The result stems directly from definition o, as
invariant subspaces. First we introduce the concept of A¢ the rows of G are in # then

invariant subspace, see the monograph [4] for details.

A sufficient condition for Proposition 1 to hold, and hence
an admissible solution to Problem 2, follows.

Proposition 4: Consider the system (4), the s&? and
ége matrixM as in Definition 3. IfG € R%<" is such that the
columns ofG' are in 2, i.e. there isX € R9%9 such that

G=XMT,

Definition 2 (A-invariant subspace)aiven a linear trans- GR =0, Vi € Ng,
formationA:R" — R" an A-invariant is a subspacé C R"
such that and then the condition (8), sufficient for solving the Praoble
Ay CV. 2, holds withK = 1. [ |

. . . The result in Proposition 4 is implicitly based on the fact
Given the parameter-dependent family of linear transfort-hat the set? is an A-invariant for the system (4) as proved
mationsA(p) : R" — R", for p € Qp, a subspace” C R" is y P

a robust A-invariant if in Proposition 3. On the other hand, this condition requires
that the dynamics of the system (4) would reach the particula

Alp)Y CV, Vp € Qp. A-invariant subspace in one step. This is obviously retsigc
but provides an interesting insight on the problem and a clue

Geometrically, 7 is an A-invariant subspace if every ~" , X
on its possible alternative as shown below.

trajectory starting inside it, remains confined within it.
Proposition 2: Given a linear transformatiof: R" — R", _ ]
its kernelker(A) is an A-invariant. B. A-invariant-based approach

Proof: Denote with T a basis matrix ofker(A). By An alternative to Proposition 4 for condition (8) to hold
definition (see [4]),ker(A) is A-invariant for the linear js now provided.

transformatiorA: R" — R" if and only if there exists a matrix  pefinition 4: Let Assumption 1 hold for the system (4).

X such that Denote with% the maximal A-invariant subspace fBr, for
AT=TX (10) i e Ny, contained inker(G), with g = dim(#), T € R™Y its
. . 2 h . - — A
SinceT is a basis oker(A) it follows thatAT =0, and then Pasis matrix and € R™" a matrix such thall = [T, T]
iy — R™" is nonsingular.
(10) holds merely posing = 0. ] ) k )
Definition 3: Given P(py) as in Assumption 1, define An interesting property, based on the results presented in
§ [4], is the fact that the dynamics of a system on every A-
P — ﬂker(PiT). invariant subspace can be decoupled by the dynamics on

o complementary subspace.



T

Proposition 5: Let Assumption 1 hold for the system (4) for all .# = [io, ...,ik]' € I§T§, we have

and considery and T as in Definition 4. Ther¢ is A- K K 5 B
invariant for P(px) and there exisP(pox) € R9*9, P(px) € GMNR.=6GNT [ (')k K ]Tl =
RI*M and P(py) € R™M, linear in py such that: < s s
e (| o |)T-
Flo) Bloy ool ot
Plo) =T AL 12 _ P11 e D | -1
(Px) [ 0 Blp } ; (12) kDO[oqxg, GT][ o B }T
= |Ogxg, GT R |T =0
for every px € Qp. { 9 D Ik]

Proof: First notice that, by definition of A-invariant sub- The last equality precisely stems from the fact tiat
spaces, if¢ is an A-invariant for allR with i € Ng then  with i € Ng generate a nilpotent semigroup of cla&sThus

it is A-invariant for every singleR. This implies that for condition (8) is satisfied for al” = [ig, ...,ik]" € N, which
all i € Ny there existR € R99, B € R, B e R™" and s sufficient for the existence of a solution to Problem 2.
T € R9%9, T € R™N such that Furthermore, the solution is explicit since the functity

that is the input-free reconstructor, obeys (9) in this case
— Remark 3:It can be shown, see [16], that the condition
5 } TT], (13) s also necessary for at least two particular cases: when the
inherent delay is equal to zero or if it is equal to one and
thatC is constant. These two cases encompass a large class
of systems.
Remark 4:Clearly, the class of nilpotenct; and soK
d — i) = d Do d i is smaller than or equal td, that is the dimension of
P(A) :éo 0 Po :éo 0. P(o) :.Zo 0 the subspace complementary@in R". Then, the bigger
the dimension of¢, the smaller such a bound, in general.
Moreover, notice that for lower values af, number of
rows of G, the dimension of¢4 can be higher and then
) , the dimension of matriceR is smaller. This is conceptually
We must further consider the concept of nilpotent S€Mkaasonable, as the smaller is the partial state to be estimat

groups_to derive the resuI.t which finally -solves Proplem 2rhe smaller is the subspace within which the system dynamics
Let us first recall some basics related to nilpotent semjggou must converge to zero in finite time

Definition 5 (Semigroup)A semigroup.” is a set to-
gether with an associative internal law. _ _IV‘ COMPUT_AT'ONAL 'S_SU_ES
It is said to be finite if it has a finite number of elements. 'N this section, we provide some insights on the compu-
If . is a set of matrices, the associative internal law is thé2tional procedures for obtaining the A-invariant subgsac

matrix multiplication. We denote by 0 the absorbing elemerf’rOPOSsition 5) and for determining whether a set of masrice
of a semigroup when it exists. generates a nilpotent semigroup (Theorem 1). According to

- . . . . Definition 2, a subspac¥ is A-invariant for a linear system
Definition 6 (Nilpotent semigroup)A semigroups with ... . P céf L YS!
. . ? : ) ._if its image through the linear transformation is contaiired
an absorbing element 0 is said to be nilpotent if there is

A . . . Well established results on how to generate A-invariant
positive integet such that the internal law applied to any 4 9

) . subspaces have been presented in literature, see in fearticu
glements OW.'S always equal to 0. The smallest integer [4]. We recall here the basic ideas and we provide some
is called the nilpotency class of.

practical details on the computation.

If " is a set of matrices, applying the internal low to any First, for a linear system whose dynamics is given by the

t elements of.”” amounts to performing the product of |inear transformation : R" — R", two trivial A-invariant

matrices of.”. The absorbing element is in this case th%ubspaces contained R are the origin and the spa@.

null matrix. In general, one can be interested either in the minimal A-
Let us notice that the property of nilpotency for a semiinvariant containing a given subspace or the maximal A-

group is less conservative than a closely related properityvariant contained in a subspace. The latter case enters

often encountered in control (see [13]), namely, solvgbili our concern. Denoting with # the maximal A-invariant

then (12) holds and/ is a robust A-invariant forP(py)
according to (10). ]

of a Lie algebra. contained in the subspacg, ¢ is computed as illustrated
Theorem 1:Let Assumption 1 hold for the system (4) andbelow.
consider¥ and T as in Definition 4. IfR for all i € Ny Algorithm 1: Given the subspac#” C R" and the linear
generate a nilpotent semigroup of clashen, Problem 2 is transformationA : R" — R" the maximal A-invariant sub-
solved withK =t. space_¢ is provided by the following iteration:
Proof: By construction,T is a basis of the A-invariant HSo=7, (14)
subspac¢/ that is contained itker(G) thenGT = 0. Hence, 1= 4//mA*1ji, i=0,...,n



The algorithm stops after a finite number of iterations ~ In other words, all the matrices of a same nilpotent
whose upper bound is—1. In particular, the iteration can semigroup can be triangularized by means of a common
be stopped as soon ggi.1 = _#i. change of basis. The triangularization can be performed for

Remark 5:Notice that, with a slight abuse of notation, theexample with the algorithm given in [9]. Such an algorithm
meaning of the symboA—! does not denote the inverse ofis quite appealing since it allows the triangularizatiorbt
matrix A, but it is the operator that associates to a subspaperformed with a complexity which is linear with respect
its inverse image, that is, given the subspageC R": to the number of matrices and polynomial with respect to

1 n. the dimension (see details for flat ouput characterization
AT = {xe R Axe i} purposes in [16](). P
Indeed, it is worth pointing out that the inverse image of
a subspace can be computed also for linear transformation
given by noninvertible matrices, as in our case. For inganc We consider the LPV system (1) whose dynamics is given
the inverse image of the origin is given by the kernelfof by the following matrices
Remark 6:1t can be proved that the same sequence of T

V. ILLUSTRATIVE EXAMPLE

subspaces#; with i =0,...,n is generated by the iteration: -4 10 0 1
_ B A=| & 0 1|,B=|1|,C=|0]| ,D=0.
Jipi= AiNA 4, =00 (15) -2 00 1 0

Remark 7:The Algorithm 1, either implementing the iter-  This system is a SISO one. Hence, sifize- 0, CB=0
ation (14) or (15), is based, substantially, on the commriat andCA(,)B + 0 for all k, it can be inferred that the inherent
of the intersection between subspaces and of the invergglay isr = 2. Hence, the related inverse systems (4) is

image of a subspace. We provide hereafter a sketch of tgaracterized (see (5)) by the parameter-dependent matrix
procedure. Consider two subspacése R" and % € R",

whose basis matrices aié C R™Y and U C R™Y. The —4 1 0
subspace¥ NA~1% is given by the vectors € R" that can P(6) = -16 4 0 |,
be expressed as a linear combination of the columisarid -14-6 4 -1

their image throug as a linear combination of those Bf  hat is affine in6 € R. Here, the functiorp such that the

ze RY such thatx =Vy and Ax = Uz, that means such that the functionp, = [1, 6. The matrice®, as in Assumption
AVy=Uz Hence,” NA~1% can be obtained by computing 1, are given by

the kernel of[AV, U].

Interestingly for our purpose, the Algorithm 1 can be -4 1 0 0 00
extended to the case of LPV systems, see [1], [4]. In Po=| -16 4 0|, =1 0 0 O/,
general, given a linear transformatiéfp) depending on the -14 4 -1 -1 00
parameterp, the maximal A-invariant subspace, referred to
as robust, containing” is given by the following algorithm. X3

Algorithm 2: Given the subspac#” C R" and the linear > P(p)
parameter dependent transformatiafp) : R" — R", with o
p € Qp the maximal robust A-invariant subspacg is s
provided by the following iteration: 7 | %o

Jo=7,
Siri= foN N A(p)ilfiv i=0,...,n \
PEQp

Similarly to the linear case, the algorithm stops after a

finite numbem of iterations, smaller or equal than- 1. The

problem for computing robust A-invariant subspaces appear

when the setQ, is uncountable. Approximation methods

are available. For the case of finife,, the Algorithm 2

provides the maximal robust A-invariant contained/irafter

a finite number of operations. This is precisely the case for  Fig. 1. Sequence of subspacgg and # for G=[1,0,0].

LPV systems considered in Assumption 1, for which the

Algorithm 2 delivers the A-invariant after a finite number of Consider Problem 2 witks = [1, O, 0]. Then the kernel of

iterations. G is the planexﬁl) = 0. A basis of the kernel is given by
As for the computational aspects regarding the nilpotendie vectors[0, 1,0]" and [0, 0, 1]T. Let us check whether

property, we must recall the Levitsky’s theorem (Theorentheorem 1 is fulfiled. To do so, and as explained in

2.1.7 stated in [17]). Section IV, we must resort to Algorithm 2. Iteration (15)
Theorem 2 (Levitsky’'s theoremfny  semigroup of leads to a sequence of subspadgsillustrated in Figure

nilpotent matrices can be triangularized. 1, and provides the maximal robust A-invariant subspace

G T~
X1




# in ker(G). The basis of # is T =[0,0,1]". After

Proposition 5 and is given by matrices

i) a-[00)

—-16 4 00
It turns out that Theorem 1 is fulfilled becaugeandP; are
both nilpotent (necessary condition) and generate a mifgot
semigroup with class of nilpotendy= 1. Hence,K = 1.
We obtain the same result if we consider Problem 2 wit
G =10, 1, 0]. Actually, it is worth noticing that the samg/

.|

system, invariant subspaces and nilpotent semigroups. The
computing the orthogonal basls the affine LPV subsystem proof is constructive since it provides a way of deriving
related to the orthogonal subspace is computed accordingttee equations of the reconstructor. The results apply for
SISO and MIMO systems and without restriction on the
relative degree. The results sound interesting to morergene
cases like LPV systems with polynomial dependence or LDI
systems.

(1]
h
(2]

is obtained for eveny\G whose columns lie in the subspace

spanned by1,0,0]" and [0, 1,0]". As stressed in the proof

(31

of Theorem 1, an explicit solution to Problem 2 can be
obtained through (9). Finally, by a direct consequence of4]

the definition of the inverse system, the equality, = Xk
applies and we can thereby directly infer an explicit soluti
to Problem 1. By considering respective®/= [1, 0, 0] and
G=0, 1, 0], the functionfg of the reconstructor obeys

® _
My — K (16)
X = Ykrrt+4¥k

(1)

The result is obvious fox,’ that is forG = [1, 0, 0].

(5]

(6]
(7]
(8]
El

Summarizing, it has been shown that the first two conyi0]
ponents ofxx are algebraically observable and (16) gives

an explicit fast input-free observer. Now, consideriBg=
[0, 0, 1], it turns out that, after applying the Algorithm 2, the
resulting maximal robust A-invariant contained in the larn
of G, that is ¢, is the origin, see Figure 2. As it turns out,
Theorem 1 is not fulfilled because the resulting matriggs

[11]

[12]

and P, do not generate a nilpotent semigroup. In fact, thié3l

is explained by noticing tha® is not nilpotent, having an
eigenvector 1.

X3

o

Fig. 2. Sequence of subspacgg and # for G=0, 0, 1].

VI. CONCLUSIONS

[14]

[15]

[16]

[17]

(18]

[19]

[20]

An approach for testing algebraic observability and de-

signing fast input-free state reconstructors for disctiete

LPV systems has been presented. The existence conditions
have been derived. They are based on the notion of inverse

REFERENCES

G. Balas, J. Bokor, and Z. Szabo. Invariant subspacetpfosystems
and their applications. IEEE Transaction on Automatic Control
48:2065-2069, 2003.

G. Basile and G. Marro. Controlled and conditioned imwat
subspaces in linear system theoryournal of Optimization Theory
and Applications 3:306-315, 1969.

G. Basile and G. Marro. On the robust controlled invariaBystems
and Control Letters9:191-195, 1987.

G. Basile and G Marro. Controlled and Conditioned Invariants in
Linear system TheoryPrentice Hall, 1992.

D. P. Bertsekas. Infinite-time reachability of statexsp regions by
using feedback control.IEEE Transactions on Automatic Control
17:604-613, 1972.

F. Blanchini and S. Miani.
Birkhauser, 2008.

C. T. Chen. Linear System Theory and DesigrOxford Series in
Electrical and Computer Engineering, 1984.

M. Darouach. Existence and design of functional obsarfer linear
systems.|[EEE Trans. Autom. Contrpi5(5):940-943, 2000.

C. Dubi. An algorithmic approach to simultaneous trialagization.
Linear Algebra and its Application®#30(11-12):2975 — 2981, 2009.
R. Germundsson and K. Forsman. A constructive apprtmelgebraic
observability. InProceedings. 30th IEEE Conference on Decision and
Control CDC 1991 Brighton, UK, December 1991.

R. Guidorzi and G. Marro. On wonham stabilizability dition in
the synthesis of observers for unknown-input systetisEE Trans.
on Automatic Contrgl AC16:499-500, October 1971.

H. Hammouri and Z. Tmar. Unknown input observer for estaffine
systems: A necessary and sufficient conditigkutomatica 46:271—
278, 2010.

D. Liberzon and A.S. Morse. Basic problems in stabibityd design
of switched systemsControl Systems Magazin&9:59-70, 1999.

D. G. Luenberger. Observers for multivariable systetEEE Trans.
Autom. Contral 11(2):190-197, 1966.

G. Millerioux and J. Daafouz. Flatness of switchedtlin discrete-time
systems. |[EEE Trans. on Automatic Controb4(3):615-619, March
2009.

J. Parriaux and G. Millerioux. Nilpotent semigroups foe characteri-
zation of flat outputs of discrete-time switched linear goddystems.

In Proc. of 51st IEEE Conference on Decision and Contftand
Wailea, Maui, Hawaii, December 2012.

H. Radjavi and P. Rosenthal. Simultaneous Triangularization
Springer, 2000.

E. Sontag. On the observability of polynomial systemsg;inite-time
problems.SIAM J. Control and Optimizatigril7(1):139-151, 1979.

S. Sundaram and C. Hadjicostis. Designing stable fevgrand state
observers for switched linear systems with unknown inpirsProc.

of the 45th IEEE Conference on Decision and Cont®an Diego,
CA, USA, December 2006.

H. Trinh and T. Fernando. Functional Observers for Dynamical
Systemsvolume 420 ofLecture Notes in Control and Information
Sciences springer, 2012.

Set-Theoretic Methods in Control



