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Fast input-free observers for LPV discrete-time systems

Mirko Fiacchini1,2 and Gilles Millérioux1,2

Abstract— This paper deals with fast input-free partial state
estimation for discrete-time LPV systems through functional
observers. The system inputs are assumed to be unknown and
then the observers reduce to functions of finite sequences of
the output only. The existence of the observer is proved by
resorting to both the notion of inverse system and the concept
of maximal A-invariant subspaces. A constructive approachto
derive the explicit equations of the observer is provided. An
example illustrates the efficiency and the computational aspects
of the method.

I. I NTRODUCTION

Reconstructing the state vector of a system from its
accessible outputs is an important issue in automatic control,
in particular for state feedback control law synthesis or
diagnosis. In order to estimate the state of a system, it
may be assumed that all system inputs are measurable.
On the other hand, for systems with some unmeasurable
inputs, specific methods should be used. A first solution is
to assume that the unmeasurable quantities satisfy a given
dynamics. That amounts to modeling the unknown inputs as
the response of a suitable a priori chosen dynamical system.
An augmented system is then constructed and an observer
estimates the augmented state. On the other hand, we may
face the situation when the inputs are completely unknown
and not measurable. In such a case, we can resort to an
unknown input, also called input-free, state reconstruction.
The issue of designing such observers goes back to the 70’s
with a pioneering work [11].

In this paper, we are interested in functional non-
asymptotic input-free observers. Functional observers are
observers which aim at reconstructing a particular (often
linear) function of the state (possibly of the input as well).
Functional observers for linear systems have been widely
addressed since the pioneering work [14]. A complete
framework providing necessary and sufficient conditions of
stability and design procedure has been reported in [8]. The
books [7] and more recently [20] present a state of the art of
research in this field. The consideration of nonlinear discrete-
time systems with unknown inputs is rather scarce and
motivate the present work. The concept of non-asymptotic
reconstruction (with known or unknown inputs) has been
mainly investigated through the algebraic framework. In
short, algebraic observability means that, each state variable
can be expressed as an algebraic function of the output, the
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input (if known) and a finite number of shifts in the discrete-
time case [18] [10]. Let us notice that different terms are used
in the literature to define the same concept: non-asymptotic,
dead-beat, finite-time, fast.

The approach proposed in this paper for the design of
dead-beat functional observer is based on results of set-
theory for control, in particular the concept of invariance.
Invariance of a set or a subspace of the state space is
related to many classical topic in control, such as stability,
Lyapunov theory, constrained control. Invariance and set-
theoretic methods in control appeared at the end of the
sixties, see the pioneering work [5], and they raised an
increasing interest in the last decades, see in particular
the recent monograph [6] and references therein for an
exhaustive overview on the topic. The characterization of
invariant subspaces, strongly related also with the properties
of controllability and observability, has been treated in [2]–
[4]. More recently, invariant subspaces have been used in the
context of LPV systems in [1], and for unknow input state
estimation for a particular class of nonlinear continuous-time
systems, see [12].

This paper deals with discrete-time LPV systems with
unknown inputs. The objective is two-fold. First, we want
to derive existence conditions under which a given state
variable (or a linear combination of the state variables) can be
expressed as a function of a finite number of shifted outputs.
This in accordance with algebraic observability. Secondly, we
aim at providing an explicit solution to the problem, that is
deriving the equations of the state reconstructor.

The outline of the paper is the following. Section II is
devoted to the problem statement, namely the issue of fast
input-free reconstruction. In Section III, the existence of the
reconstructor is proved and its equations are derived. The
the notions of inverse system and invariant subspaces are
used. Two approaches are presented. Computational issues
are addressed in Section IV. Finally, an example illustrates
the efficiency and the computational aspects of the method.
Notation: N is the set of natural numbers. Givenn∈N denote
Nn = {x∈N : 1≤ x≤ n} andN̄n =Nn∪{0}. We denote with
x(i) the i-th entry of the vectorx. NotationPi denotes thei-th
element of a set of matrices andxk is the realization of the
time-dependent vectorx at timek. We assume the convention
that ∏d

i=0Pi = Pd . . .P0. For a matrixX, X† stands for the
classical Moore-Penrose generalized inverse ofX.



II. PROBLEM STATEMENT

Consider discrete-time LPV systems obeying
{

xk+1 = A(θk)xk+B(θk)uk

yk =C(θk)xk+D(θk)uk
(1)

where xk ∈ R
n is the state vector,uk ∈ R

m is the control
input, yk ∈ R

p is the output vector. The matricesA∈ R
n×n,

B∈R
n×m, C∈R

p×n andD∈R
p×m depend on the parameter

vector θk ∈ R
t belonging to a known setΩθ , possibly

unbounded. We are interested in the following issue.
Problem 1: Given G∈ R

q×n, provide a condition for the
existence of a functionfθ such that

Gxk = fθ (yk+t1, . . . ,yk+t2), (2)

for everyk≥ 0, everyxk ∈R
n and every possible realization

of the parameterθk ∈ Ωθ , with appropriate integerst1, t2.
It is noteworthy to point out that this problem is rather

general. Indeed, ifG is the matrix which selects a part of
the components of the state vector, the problem boils down
to an analysis issue, that is checking whether the components
of xk are algebraically observable. IfG is the identity
matrix, the problem amounts to check whether the system is
algebraically observable. Furthermore, any explicit solution
to Problem 1 providesfθ and t1, t2, besides guaranteeing
their existence. Then a fast input-free observer is obtained
for reconstructing either a part or the full state or a linear
combination of its elements, depending on the structure of
G.

A. Inverse system

The proposed approach to solve Problem 1 rests on the
notion of inverse system of (1) whose definition and structure
are borrowed from [19]. Define

O(θk:k+i) =















C(θk)
C(θk+1)A(θk)

...

C(θk+i)
i−1
∏
l=0

A(θk+l )















, (3)

the vectors

yk:k+i =
[

yT
k , yT

k+1, . . . , yT
k+i

]T
,

θk:k+i =
[

θ T
k , θ T

k+1, . . . , θ T
k+i

]T
,

and the matrixIm×r =
[

Im 0m×(m·r)

]

. Define alsoM(θk:k+i)
in the following recursive way

M(θk:k+i)=

[

D(θk) 0p×m·(i−1)
O(θk:k+i)B(θk) M(θk+1:k+i)

]

,

with M(θk:k) = D(θk).
Definition 1: An inverse system of (1) is a system for

which, when driven by a sequence of outputyk of (1), the
trajectory of its state vector ˆxk coincides with the trajectoryxk

of (1) (possibly up to a delayr referred to as inherent delay)
whenever both state vectors share the same initialization.

A straightforward extension of the inverse system, given
in [15], [19] for switched linear ones, obeys for LPV systems
the following state space description

x̂k+r+1 = Pθ (θk:k+r )x̂k+r +Qθ (θk:k+r)yk:k+r , (4)

with

Pθ (θk:k+r) = A(θk)−Qθ (θk:k+r)O(θk:k+r),
Qθ (θk:k+r) = B(θk)Im×rM†(θk:k+r).

(5)

Following the same lines as in [15] [19], definingek =
xk− x̂k+r as the state error reconstruction, it can be shown,
from (1) and (4) that

ek+1 = Pθ (θk:k+r)ek, (6)

under the conditions of invertibility, [19]. Hence, ife0 = 0,
that is x̂r = x0, then ek = 0 and so ˆxk+r = xk for any k >

0, in accordance with Definition 1. The matrixPθ (θk:k+r )
corresponds to the inverse dynamics. Hence, Problem 1 can
be reformulated as follows.

Problem 2: Given G∈ R
q×n, provide a condition for the

existence of a functionfθ such that

Gx̂k = fθ (yk+t′1
, . . . ,yk+t′2

), (7)

for everyk≥ 0, every ˆxk ∈R
n and every possible realization

of the parameterθk ∈ Ωθ , with appropriate integerst ′1, t ′2.

III. D ESCRIPTION OF THE APPROACH

First, notice that the parametric dependence of the matrices
in (4) and (5) with respect toθk:k+r ∈ Ωr+1

θ is not linear in
general. However, given the setΩθ , there always exists a
function p such that the system (4) depends linearly on the
parameterρk defined asρk = p(θk:k+r). A setΩρ ⊆R

d such
that ρk ∈ Ωρ if θk:k+r ∈ Ωr+1

θ can always be determined as
well. To simplify the notation, we define

P(ρk) = Pθ (θk:k+r), Q(ρk) = Qθ (θk:k+r), ȳk = yk:k+r .

Following the considerations above, the assumption below
can be posed.

Assumption 1:Suppose thatP(ρk) depends on the param-
eterρk ∈ Ωρ as

P(ρk) =
d

∑
i=0

Piρ
(i)
k .

Hereafter, unless otherwise stated, Assumption 1 will hold.
Remark 1:Notice that no assumptions are done onΩθ ,

then nor onΩρ . In fact Ωρ can be whatever subset in the
space of the parameterρ . Furthermore, the approach could be
easily generalized to more general parameter dependencies,
polynomial ones for instance.

A sufficient condition for Problem 2 to have a solution
follows.

Proposition 1: There is a solution to Problem 2 witht ′1 =
−K− r −1 andt ′2 =−1 if K andPi, for i ∈ N̄d, are such that

G
K

∏
k=0

Pik = 0, (8)

for all I = [i0, . . . , iK ]T ∈ N̄
K+1
d .



Proof: By definition we have

Gx̂k+r+1 = G ∑
i0∈N̄d

ρ (i0)
k Pi0x̂k+r +GQ(ρk)ȳk,

Gx̂k+r+2 = G ∑
I∈N̄2

d

1
∏
l=0

ρ (i l )
k+l Pi l x̂k+r +GQ(ρk+1)ȳk+1+

+G ∑
I∈N1

d

ρ (i0)
k Pi0 Q(ρk) ȳk,

· · ·

Gx̂k+r+K+1 = G ∑
I∈N̄K+1

d

K
∏
l=0

ρ (i l )
k+l Pi l x̂k+r +GQ(ρk+K) ȳk+K+

+G
K−1
∑
j=0

∑
I ∈N̄

j+1
d

K
∏

l=K− j
ρ (i l )

k+l Pi l Q(ρk+K−1− j) ȳk+K−1− j ,

whereI = [i0, . . . , ik]T ∈ N̄
k+1
d for all k ∈ N̄K . If for every

I ∈ N̄
K+1
d condition (8) holds, then

Gxk+K+1 = Gx̂k+r+K+1 = GQ(ρk+K) ȳk+K+

+G
K−1
∑
j=0

∑
I ∈N̄

j+1
d

K
∏

l=K− j
ρ (i l )

k+l Pi l Q(ρk+K−1− j) ȳk+K−1− j .

(9)
Finally, after a suitable shift, we get that (9) completes the
proof and shows thatfθ involves the outputyk+l (and the
parameterθk+l ) for −K− r −1≤ l ≤−1.

Remark 2:Some sequence among all the admissible ones
are not allowed since, by definition,P(ρi+1) is not inde-
pendent with respect toP(ρi). Such sequences could be
discarded from the analysis.

In the following, two computation-oriented conditions for
(8) to hold are presented. They involve the concept of
invariant subspaces. First we introduce the concept of A-
invariant subspace, see the monograph [4] for details.

Definition 2 (A-invariant subspace):Given a linear trans-
formationA : Rn →R

n an A-invariant is a subspaceV ⊆R
n

such that
AV ⊆ V .

Given the parameter-dependent family of linear transfor-
mationsA(ρ) : Rn →R

n, for ρ ∈ Ωρ , a subspaceV ⊆R
n is

a robust A-invariant if

A(ρ)V ⊆ V , ∀ρ ∈ Ωρ .

Geometrically,V is an A-invariant subspace if every
trajectory starting inside it, remains confined within it.

Proposition 2: Given a linear transformationA :Rn →R
n,

its kernelker(A) is an A-invariant.
Proof: Denote with T a basis matrix ofker(A). By

definition (see [4]),ker(A) is A-invariant for the linear
transformationA :Rn→R

n if and only if there exists a matrix
X such that

AT = TX. (10)

SinceT is a basis ofker(A) it follows thatAT = 0, and then
(10) holds merely posingX = 0.

Definition 3: Given P(ρk) as in Assumption 1, define

P =
d
⋂

i=0

ker
(

PT
i

)

.

Moreover, denote withM ∈ R
n×g a basis matrix ofP and

N ∈ R
n×(n−g) a basis of its complement.

Notice that the definition ofP above involves the trans-
poses of the matricesPi for all i ∈ N̄d.

Proposition 3: The setP as in Definition 3 is A-invariant
for the parameter-dependent system given by

zk+1 =PT(ρk)zk with PT(ρk) =
d

∑
i=0

ρ (i)
k PT

i =P(ρk)
T
. (11)

Proof: From Proposition 2,P is an A-invariant for every
PT

i with i ∈ N̄d andM a basis matrix ofP. By definition,P
is A-invariant also for the system whose dynamics is given
by (11) if and only if there existsX such that

0=
d

∑
i=0

ρ (i)
k PT

i M = MX,

that holds posingX = 0.

A. Kernel-based approach

A sufficient condition for Proposition 1 to hold, and hence
an admissible solution to Problem 2, follows.

Proposition 4: Consider the system (4), the setP and
the matrixM as in Definition 3. IfG∈R

q×n is such that the
columns ofGT are inP, i.e. there isX ∈ R

d×g such that

G= XMT
,

then there exists a solution of Problem 2 withK = 1.
Proof: The result stems directly from definition ofP, as

if the rows ofG are inP then

GPi = 0, ∀i ∈ N̄d,

and then the condition (8), sufficient for solving the Problem
2, holds withK = 1.

The result in Proposition 4 is implicitly based on the fact
that the setP is an A-invariant for the system (4) as proved
in Proposition 3. On the other hand, this condition requires
that the dynamics of the system (4) would reach the particular
A-invariant subspace in one step. This is obviously restrictive
but provides an interesting insight on the problem and a clue
on its possible alternative as shown below.

B. A-invariant-based approach

An alternative to Proposition 4 for condition (8) to hold
is now provided.

Definition 4: Let Assumption 1 hold for the system (4).
Denote withG the maximal A-invariant subspace forPi, for
i ∈ N̄d, contained inker(G), with g= dim(G ), T̄ ∈R

n×g its
basis matrix and̂T ∈ R

n×h a matrix such thatT = [T̄, T̂] ∈
R

n×n is nonsingular.
An interesting property, based on the results presented in

[4], is the fact that the dynamics of a system on every A-
invariant subspace can be decoupled by the dynamics on
complementary subspace.



Proposition 5: Let Assumption 1 hold for the system (4)
and considerG and T as in Definition 4. ThenG is A-
invariant for P(ρk) and there existP̄(ρk) ∈ R

g×g, P̃(ρk) ∈
R

g×h and P̂(ρk) ∈ R
h×h, linear in ρk such that:

P(ρk) = T

[

P̄(ρk) P̃(ρk)
0 P̂(ρk)

]

T−1
, (12)

for everyρk ∈ Ωρ .

Proof: First notice that, by definition of A-invariant sub-
spaces, ifG is an A-invariant for allPi with i ∈ N̄d then
it is A-invariant for every singlePi. This implies that for
all i ∈ N̄d there existP̄i ∈ R

g×g, P̃i ∈ R
g×h, P̂i ∈ R

h×h and
T̄ ∈ R

g×g, T̂ ∈ R
h×h such that

Pi = [ T̄ T̂ ]

[

P̄i P̃i

0 P̂i

]

[ T̄ T̂ ]−1
, (13)

with T̄ basis ofG , see Theorem 3.2.1 in [4]. Posing

P̄(ρk) =
d
∑

i=0
P̄iρ

(i)
k , P̃(ρk) =

d
∑

i=0
P̃iρ

(i)
k , P̂(ρk) =

d
∑

i=0
P̂iρ

(i)
k ,

then (12) holds andG is a robust A-invariant forP(ρk)
according to (10).

We must further consider the concept of nilpotent semi-
groups to derive the result which finally solves Problem 2.
Let us first recall some basics related to nilpotent semigroups.

Definition 5 (Semigroup):A semigroupS is a set to-
gether with an associative internal law.

It is said to be finite if it has a finite number of elements.
If S is a set of matrices, the associative internal law is the
matrix multiplication. We denote by 0 the absorbing element
of a semigroup when it exists.

Definition 6 (Nilpotent semigroup):A semigroupS with
an absorbing element 0 is said to be nilpotent if there is a
positive integert such that the internal law applied to anyt
elements ofS is always equal to 0. The smallest integert
is called the nilpotency class ofS .

If S is a set of matrices, applying the internal low to any
t elements ofS amounts to performing the product oft
matrices ofS . The absorbing element is in this case the
null matrix.

Let us notice that the property of nilpotency for a semi-
group is less conservative than a closely related property
often encountered in control (see [13]), namely, solvability
of a Lie algebra.

Theorem 1:Let Assumption 1 hold for the system (4) and
considerG and T as in Definition 4. If P̂i for all i ∈ N̄d

generate a nilpotent semigroup of classt then, Problem 2 is
solved withK = t.

Proof: By construction,T̄ is a basis of the A-invariant
subspaceG that is contained inker(G) thenGT̄ = 0. Hence,

for all I = [i0, . . . , iK ]T ∈ N̄
K
d , we have

G
K
∏

k=0
Pik = G

K
∏

k=0
T

[

P̄ik P̃ik
0 P̂ik

]

T−1 =

= G[ T̄, T̂ ]

(

K
∏

k=0

[

P̄ik P̃ik
0 P̂ik

])

T−1 =

=
K
∏

k=0
[0q×g, GT̂ ]

[

P̄ik P̃ik
0 P̂ik

]

T−1 =

=

[

0q×g, GT̂
K
∏

k=0
P̂ik

]

T−1 = 0.

The last equality precisely stems from the fact thatP̂i

with i ∈ N̄d generate a nilpotent semigroup of classK. Thus
condition (8) is satisfied for allI = [i0, . . . , iK ]T ∈ N̄

K
d , which

is sufficient for the existence of a solution to Problem 2.
Furthermore, the solution is explicit since the functionfθ ,
that is the input-free reconstructor, obeys (9) in this case.

Remark 3: It can be shown, see [16], that the condition
is also necessary for at least two particular cases: when the
inherent delayr is equal to zero or if it is equal to one and
thatC is constant. These two cases encompass a large class
of systems.

Remark 4:Clearly, the class of nilpotencyt, and soK
is smaller than or equal toh, that is the dimension of
the subspace complementary toG in R

n. Then, the bigger
the dimension ofG , the smaller such a bound, in general.
Moreover, notice that for lower values ofq, number of
rows of G, the dimension ofG can be higher and then
the dimension of matriceŝPi is smaller. This is conceptually
reasonable, as the smaller is the partial state to be estimated,
the smaller is the subspace within which the system dynamics
must converge to zero in finite time.

IV. COMPUTATIONAL ISSUES

In this section, we provide some insights on the compu-
tational procedures for obtaining the A-invariant subspaces
(Proposition 5) and for determining whether a set of matrices
generates a nilpotent semigroup (Theorem 1). According to
Definition 2, a subspaceV is A-invariant for a linear system
if its image through the linear transformation is containedin
V . Well established results on how to generate A-invariant
subspaces have been presented in literature, see in particular
[4]. We recall here the basic ideas and we provide some
practical details on the computation.

First, for a linear system whose dynamics is given by the
linear transformationA : Rn → R

n, two trivial A-invariant
subspaces contained inRn are the origin and the spaceRn.
In general, one can be interested either in the minimal A-
invariant containing a given subspace or the maximal A-
invariant contained in a subspace. The latter case enters
our concern. Denoting withJ the maximal A-invariant
contained in the subspaceV , J is computed as illustrated
below.

Algorithm 1: Given the subspaceV ⊆ R
n and the linear

transformationA : Rn → R
n the maximal A-invariant sub-

spaceJ is provided by the following iteration:

J0 = V ,

Ji+1 = V ∩A−1Ji , i = 0, . . . , n̄.
(14)



The algorithm stops after a finite number of iterations ¯n,
whose upper bound isn−1. In particular, the iteration can
be stopped as soon asJi+1 = Ji .

Remark 5:Notice that, with a slight abuse of notation, the
meaning of the symbolA−1 does not denote the inverse of
matrix A, but it is the operator that associates to a subspace
its inverse image, that is, given the subspaceJi ⊆ R

n:

A−1Ji = {x∈R
n : Ax∈ Ji}.

Indeed, it is worth pointing out that the inverse image of
a subspace can be computed also for linear transformation
given by noninvertible matrices, as in our case. For instance,
the inverse image of the origin is given by the kernel ofA.

Remark 6: It can be proved that the same sequence of
subspacesJi with i = 0, . . . , n̄ is generated by the iteration:

Ji+1 = Ji ∩A−1Ji , i = 0, . . . , n̄. (15)

Remark 7:The Algorithm 1, either implementing the iter-
ation (14) or (15), is based, substantially, on the computation
of the intersection between subspaces and of the inverse
image of a subspace. We provide hereafter a sketch of the
procedure. Consider two subspacesV ∈ R

n and U ∈ R
n,

whose basis matrices areV ⊆ R
n×v and U ⊆ R

n×u. The
subspaceV ∩A−1U is given by the vectorsx∈R

n that can
be expressed as a linear combination of the columns ofV and
their image throughA as a linear combination of those ofU .
Then, in practice,x∈ V ∩A−1U if there existsy∈ R

v and
z∈ R

u such thatx=Vy andAx=Uz, that means such that
AVy=Uz. Hence,V ∩A−1U can be obtained by computing
the kernel of[AV, U ].

Interestingly for our purpose, the Algorithm 1 can be
extended to the case of LPV systems, see [1], [4]. In
general, given a linear transformationA(ρ) depending on the
parameterρ , the maximal A-invariant subspace, referred to
as robust, containingV is given by the following algorithm.

Algorithm 2: Given the subspaceV ⊆ R
n and the linear

parameter dependent transformationA(ρ) : Rn → R
n, with

ρ ∈ Ωρ the maximal robust A-invariant subspaceJ is
provided by the following iteration:

J0 = V ,

Ji+1 = J0∩
⋂

ρ∈Ωρ
A(ρ)−1Ji , i = 0, . . . , n̄.

Similarly to the linear case, the algorithm stops after a
finite number ¯n of iterations, smaller or equal thann−1. The
problem for computing robust A-invariant subspaces appears
when the setΩρ is uncountable. Approximation methods
are available. For the case of finiteΩρ , the Algorithm 2
provides the maximal robust A-invariant contained inV after
a finite number of operations. This is precisely the case for
LPV systems considered in Assumption 1, for which the
Algorithm 2 delivers the A-invariant after a finite number of
iterations.

As for the computational aspects regarding the nilpotency
property, we must recall the Levitsky’s theorem (Theorem
2.1.7 stated in [17]).

Theorem 2 (Levitsky’s theorem):Any semigroup of
nilpotent matrices can be triangularized.

In other words, all the matrices of a same nilpotent
semigroup can be triangularized by means of a common
change of basis. The triangularization can be performed for
example with the algorithm given in [9]. Such an algorithm
is quite appealing since it allows the triangularization tobe
performed with a complexity which is linear with respect
to the number of matrices and polynomial with respect to
the dimension (see details for flat ouput characterization
purposes in [16]).

V. I LLUSTRATIVE EXAMPLE

We consider the LPV system (1) whose dynamics is given
by the following matrices

A=





−4 1 0
θk 0 1
−2 0 0



 , B=





0
1
1



 , C=





1
0
0





T

, D = 0.

This system is a SISO one. Hence, sinceD = 0, CB= 0
andCA(θk)B 6= 0 for all k, it can be inferred that the inherent
delay is r = 2. Hence, the related inverse systems (4) is
characterized (see (5)) by the parameter-dependent matrix

P(θk) =





−4 1 0
−16 4 0

−14−θk 4 −1



 ,

that is affine inθk ∈ R. Here, the functionp such that the
matrix Pθ (θk) depends linearly on a parameterρk is merely
the functionρk = [1, θk]

T . The matricesPi , as in Assumption
1, are given by

P0 =





−4 1 0
−16 4 0
−14 4 −1



 , P1 =





0 0 0
0 0 0
−1 0 0



 ,

x1

x2

x3

G

P(ρ)J0

P−1
ρ J0

J

Fig. 1. Sequence of subspacesJi andJ for G= [1, 0, 0].

Consider Problem 2 withG= [1, 0, 0]. Then the kernel of
G is the planex(1)k = 0. A basis of the kernel is given by
the vectors[0, 1, 0]T and [0, 0, 1]T . Let us check whether
Theorem 1 is fulfilled. To do so, and as explained in
Section IV, we must resort to Algorithm 2. Iteration (15)
leads to a sequence of subspacesJi , illustrated in Figure
1, and provides the maximal robust A-invariant subspace



J in ker(G). The basis ofJ is T̄ = [0, 0, 1]T . After
computing the orthogonal basiŝT, the affine LPV subsystem
related to the orthogonal subspace is computed according to
Proposition 5 and is given by matrices

P̂0 =

[

−4 1
−16 4

]

, P̂1 =

[

0 0
0 0

]

.

It turns out that Theorem 1 is fulfilled becauseP̂0 andP̂1 are
both nilpotent (necessary condition) and generate a nilpotent
semigroup with class of nilpotencyt = 1. Hence,K = 1.
We obtain the same result if we consider Problem 2 with
G= [0, 1, 0]. Actually, it is worth noticing that the sameJ
is obtained for everyG whose columns lie in the subspace
spanned by[1, 0, 0]T and [0, 1, 0]T . As stressed in the proof
of Theorem 1, an explicit solution to Problem 2 can be
obtained through (9). Finally, by a direct consequence of
the definition of the inverse system, the equality ˆxk+r = xk

applies and we can thereby directly infer an explicit solution
to Problem 1. By considering respectivelyG= [1, 0, 0] and
G= [0, 1, 0], the function fθ of the reconstructor obeys

x(1)k = yk

x(2)k = yk+1+4yk
(16)

The result is obvious forx(1)k that is forG= [1, 0, 0].
Summarizing, it has been shown that the first two com-

ponents ofxk are algebraically observable and (16) gives
an explicit fast input-free observer. Now, consideringG =
[0, 0, 1], it turns out that, after applying the Algorithm 2, the
resulting maximal robust A-invariant contained in the kernel
of G, that isJ , is the origin, see Figure 2. As it turns out,
Theorem 1 is not fulfilled because the resulting matricesP0

and P1 do not generate a nilpotent semigroup. In fact, this
is explained by noticing thatP0 is not nilpotent, having an
eigenvector 1.

x1

x2

x3

J P(ρ)

P(ρ)J0

P−1
ρ J0

J1

P−1
ρ J1

G

Fig. 2. Sequence of subspacesJi andJ for G= [0, 0, 1].

VI. CONCLUSIONS

An approach for testing algebraic observability and de-
signing fast input-free state reconstructors for discrete-time
LPV systems has been presented. The existence conditions
have been derived. They are based on the notion of inverse

system, invariant subspaces and nilpotent semigroups. The
proof is constructive since it provides a way of deriving
the equations of the reconstructor. The results apply for
SISO and MIMO systems and without restriction on the
relative degree. The results sound interesting to more general
cases like LPV systems with polynomial dependence or LDI
systems.
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