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Nilpotent semigroups for the characterization of flat outputs of
discrete-time switched linear and LPV systems

Jérémy Parriaux? and Gilles Millérioux

Abstract— This paper addresses the problem of flat output
characterization for switched linear systems along with an
extension to LPV systems. A condition which has a polynomial
complexity with respect to the dimension of the system and a
practical approach for checking this condition are provided.

I. INTRODUCTION

Flatness is an important control-theoretical concept in-
troduced in [1]. For a flat discrete-time system (linear or
nonlinear), the state variable as well as the input to the
system can be written as some function of the output
(including forward and backward shifts in the output). Such a
property is especially interesting both for state reconstruction
and for control perspectives. As for the state reconstruction
context, it is clear from the definition that flatness provides a
generic way of reconstructing the state vector despite possi-
bly unknown inputs. Even more is true, flatness is a structural
property of a dynamical system and so provides conditions
for the existence of an unknown input observer without
any a priori structure of the observer. For control purposes,
flatness is also relevant insofar as, from the definition again,
it provides a constructive way of designing a feedforward
control to track a prescribed trajectory of the plant output.
An overview along with applications can be found in the
book [2]. This being the case, an important issue related to
flatness is the problem of checking whether a given output
of a dynamical system is flat or not. An interesting approach
has been proposed in [3] for continuous linear systems. Flat
output characterization has been addressed for the first time
for discrete-time switched linear systems in [4]. However,
the condition was not, in general, tractable. The purpose
of this paper is to give a new criterion for discrete-time
switched linear systems with better tractability. It is based
on the notion of nilpotent semigroups. The corresponding
algorithm for checking the conditions is given. Furthermore,
an extension to LPV systems is proposed. The layout is the
following. In Section II, we recall some basics on flatness for
switched linear systems. Section III is devoted to flat output
characterization as well as the corresponding algorithm. An
extension to LPV systems is proposed in Section IV. Finally,
Section V is devoted to illustrative examples.
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II. PRELIMINARIES AND DEFINITIONS

We shall examine throughout this paper switched linear
systems in the form

Te+1 =
Yk =

The state vector is x; € R", the input is ux € R" and the
output is yx € RP. All the matrices, namely Ay ) € R"*",
Bo’(k) e Rxm™, Co’(k) € RP*™ and Da(k) € Rpxm
belong to the respective finite sets of cardinality J: A =
{41,...,A;}, B = {By,...,B;}, C = {Cy,...,Cy}
and D = {Ds,...,D;}. At a given time k, the mode is
delivered by a switching function o : k € N — o(k) €
{1,...,J} = J. A sequence of modes (also called path)
over an interval of time [kq, k2], that is {o(k1),...,0(k2)},
is denoted by {o },.k,. For a given switching rule o, the set
of corresponding mode sequences over an interval of time
of length T + 1 belongs to J7*!. This set has cardinality
JT*1if o is arbitrary since, in this case, it is composed of
all the possible mode sequences. Otherwise, the cardinality
is lower because there may exist some forbidden patterns.
Let U be the space of input sequences over the time interval
[0,00) and Y the corresponding output space. At time k, for
each initial state z;, € R", when the system (1) is driven by
the input sequence {u}y.xr7 = {Uk,...,up+r} € U, for a
mode sequence {o}g.kr1, {2(Tk, 0, )}t refers to the
solution of (1) in the interval of time [k, k+ T starting from
x and {y(zg,0,u) }kprr € Y refers to the corresponding
output sequence in the same interval of time [k, k + T7.
We introduce the subsequent vectors and matrices. For any
integer n, 1, refers to the n—dimensional identity matrix
and 0,,%,, stands for the n X m zero matrix. If irrelevant,
the dimension of the zero matrix will be omitted and we
shall merely write 0.

ATk + Boryur

1
Cok)Tk + Doryur M

Uk Yk
Uk+1 Yk+1
Uk:kti = s Ykikti = : 2
Uk +i Yk+i
Im><r - (]-m Omx(mr))
Co(k)
Co (k1) Ao (k)
Oa’(k:k+i) = : 3)
o(k+i—1)
Co‘(k—‘ri)Ao-(k)



The matrix O, (1544 involves the transition matrix

Ao'(kl)

o (ko) As(k)Ao(ki—1)  Ag(ro) I k1 > Ko

= 1, if ki <k

Finally, we recursively define the matrix

D 0
M, s = o (k) ) 4
(k:k+1) (Od(k:kH)Bg(k) Mo (k1 1:144) @
with
My (k:k) = Do(r)

Let us notice that the notation o(k : k + i), which
points out that the related matrix depends on the sequence
{o(k),...,0(k+1)} is somehow abusive since o is defined
over IN and not over IN“t1. However, since it does not induce
confusion, such a notation will be used accordingly.
Flatness is closely related to the notion of left invertibility.
Left invertibility for switched linear systems has been ad-
dressed in [5] for continuous-time systems and in [6], [4]
for discrete-time systems.

Definition 1 ([6], [4]): A system is a left r-delay inverse
for (1) if, under identical initial conditions zy and identical
sequences {o }o.00, there exists a non negative integer 7 such
that, when driven by yy.x+,, the equalities Zy,, = ) and
Ukt = ug hold for all k& > 0, uy being its output at time
k. The non negative integer r is called the inherent delay.

Theorem 1 ([6], [4]): The system

Thors1 =  Po(oktr)Thar
+Bo (i) Imxr (Mo (ko)) Yheshtr
Uk+r = _Imxv'(Ma(k:k+r)) Oo(k:k+r)zk+7“

+Im><r(M0'(k:k+r))Tyk:k+r
&)
with

P(T(k:k+7') = Ao(k) - BU(k)ImXT(Ma(k:k+7'))TOU(k:k+T')
(6)

is a left r-delay inverse system for (1).
The matrix (Mo (g1, M))Jr is the classical Moore-Penrose
generalized inverse of Mg (j.x4r). The matrices Py (x:rqr)
are called the left-inverse dynamical matrices.

Remark 1: In Definition 1, the initial condition is consid-
ered at the particular discrete time k = 0 but can be replaced
by any other initial condition x; considered at time k.

A. Flatness

Definition 2 ([4]): A square (p = m) dynamical system
is said to be flat if there exists a set of independent variables
yi, referred to as flat outputs, such that all system variables
can be expressed as a function of the flat output and a finite
number of its backward and/or forward shifts. In particular,
there exist two functions F and G which obey

T =
U =

where kx, k'z, kg and kg are Z-valued integers.
Considering the expression of wug in (7), it is clear that left
invertibility is a necessary condition for flatness.

]:(y;ka, e

B yk+k’];)
G(Yk+hgs - - - @

9 yk+k}/g)

The issue of flat output characterization consists in checking
whether a given output of a dynamical system is flat. Theo-
rem 2 stated in [4] and recalled below gives a characterization
by considering the left-inverse dynamical matrices.
Theorem 2 ([4]): An output y;, of the system (1) assumed
to be square, with left inherent delay 7, is a flat output if there
exists a positive integer K < oo such that, for all sequences
in J"tX, the following equality, involving the product of
left-inverse dynamical matrices, applies for all k£ > 0:

Pr(ir k—1:h+ K —14r) Po(hr K =2+ K—247) * " Po(kibgr)y =0

(®)

The point is that the computational cost of the test (8) grows
exponentially with respect to the number K of matrices
involved in (8). Besides, no upper bound for K is given.
The first objective of the paper is to propose an alternative
condition with a reduction of the computational cost. As the
condition only involves the left-inverse dynamical matrices
of the left r-delay inverse system, we define below an
auxiliary system and rewrite Theorem 2.

B. Auxiliary system

Let us define the auxiliary system of (1) as the switched
linear system given by

Qk+1 = Qo (k) Ik )

with ¢, € R™ and ¢’ a switching rule defined as follows.
Consider the mapping ¢ : J™™ — H = {1,...,J7"1}
that assigns to each possible sequence {o(k),...,o(k+7)}
an integer h from the set H which uniquely identifies the
sequence. Then, the switching rule o’ is defined as the
function from IN to # which associates to each integer £ € IN
the quantity o’(k) = ¢(o(k),...,0(k +1)) € H. The value
o'(k) is the mode of the auxiliary switched linear system (9)
and Qo (k) = Py(k:k+r).- We denote by Q the set of all the
matrices Qp, (h € H).

By considering the auxiliary system (9), we are now in
position of reformulating Theorem 2 which turns into

Theorem 3: An output yj of the system (1) assumed to
be square, with left inherent delay r, is a flat output if there
exists a positive integer K < oo such that, for all admissible
sequences {o’(k),...,0'(k+ K —1)} € HX, the following
equality, involving the product of the dynamical matrices of
the auxiliary system (9), applies for all £ > 0:

Qo' (kyk-1)Qo'(ktk—2) Qo) =0 (10)

Proof: The proof is a straightforward consequence of
the definition of the auxiliary system. [ ]
We are now in position to give an alternative condition to
(8). It is based on the consideration of (10) and the notion
of nilpotent semigroups as presented in the next section.



III. FLAT OUTPUT CHARACTERIZATION AND NILPOTENT
SEMIGROUPS

A. Main result

Basics related to nilpotent semigroups are first recalled.

Definition 3 (Semigroup): A semigroup S is a set together

with an associative internal law.
S is said to be finite if it has a finite number of elements.
If S is a set of matrices, the associative internal law is the
matrix multiplication. We denote by 0 the absorbing element
of a semigroup when it exists.

Definition 4 (Nilpotent semigroup): A semigroup S with
an absorbing element 0O is said to be nilpotent if there is an
integer t € IN* such that the internal law applied to any ¢
elements of S is always equal to 0. The smallest integer ¢ is
called the nilpotency class of S.

If S is a set of matrices, applying the internal law to any
t elements of & amounts to performing the product of ¢
matrices of S. The absorbing element is, in this case, the
null matrix. Here, the elements of S are the matrices of Q.

Theorem 4: If the matrices of Q of the auxiliary sys-
tem (9) generate a nilpotent semigroup, then y; is a flat
output.

Proof: 1If the matrices of Q of the auxiliary system (9)
generate a nilpotent semigroup, by definition, for any t—uple
(h1,...,hs) € H?, t being the class of nilpotency of Q, one

has .
H Qn, =0
i=1

Hence, (10) is fulfilled with K = ¢. As a result, Theorem 3
holds and means that y;, is a flat output. [ ]

Corollary 1: If the matrices of O generate a nilpotent
semigroup, the integer K is finite and is upper bounded by
the dimension n of the system (1).

Proof: If the matrices of Q generate a nilpotent
semigroup, the integer K is equal to the class of nilpotency
t of the semigroup. The class of nilpotency being actually
bounded by the dimension of the matrices involved in the
semigroup, K is bounded by the dimension of the matrices
of Q, that is precisely n, the dimension of the system (1).

|

Remark 2: A necessary condition for the matrices of Q
to generate a nilpotent semigroup is that all the matrices of
@ are nilpotent, that is all their eigenvalues are zero. Indeed,
(11) must hold in particular for the t—uples (h, ..., h;) with
h; = hy for all i,1 € {1,...,t}.

Remark 3: It is worth pointing out that different se-
quences {o(k),...,0(k+7)} of (1) and so different modes
(k) = ¢(o(k),...,0(k+r)) of (9) might lead to identical
matrices Qu/(). As a result, Q is a multiset' and we
should consider only distinct matrices of Q to reduce the
computational cost. We denote by Z the set of distinct
matrices of Q@ and by L its cardinality. Its elements are
denoted by Z; (I = 1,...,L). Clearly, Z C Q, L < J"+!
and Theorem 4 still applies by considering Z instead of Q.

(1)

IThe notion of multiset is a generalization of the notion of set in which
elements are allowed to appear more than once.

B. Equivalence on conditions

Let us first point out that the switching rule ¢’ of the
auxiliary system (9) is constrained. Indeed, since o’(k) =
o(o(k),...,o(k+r))and o' (k+1) = ¢(o(k+1),...,0(k+
r + 1)), o/(k) and o'(k + 1) depend on the common
subsequence {o(k+1),...,0(k—+r)} and thereby are related
one another. Hence, even in the case when the switching rule
o of (1) is arbitrary, given a matrix Qu/(r)y = Po(kiktr)
the matrix Qo (r+1) = Po(ks1:ks14r) 1S constrained. To
formalize this constraint, it is convenient to introduce a so-
called set of feasible transitions.

Definition 5: The set I'(¢’(k)) of feasible transitions from
mode o’ (k) is the set defined by

I'(oc'(k)) = {heH:h=¢(c(k+1),...,
olk+r+1),Vo(k+r+1)€ j}(u)
In other words, I'(¢”(k)) is the set h € H which can be
reached when o(k + r + 1) varies over the whole range 7,
o'(k) and so the sequence {o(k +1),...,0(k + r)} being
imposed. One has I'(¢’(k)) C H which clearly formalizes
that ¢’ is constrained. It is clear that I'(¢’(k)) can never be
the empty set.
Definition 6: A sequence {hy, ha,...} is said admissible
if for any ¢ > 0
hit1 € T'(h;) (13)
Let us introduce the map p : H — Q which assigns to each
integer h € H the matrix @), € Q. The restriction of y to a
particular subset I'(h) of H is denoted by pr(s).
Definition 7: A sequence of matrices {Qp,, Qn,,---}
(h; € H) is said admissible if for any h; € H

th+1 € R(/u'l"(hi)) (14)

where the notation R denotes the range of the function. The
following proposition applies:

Proposition 1: The conditions (10) and (11) are equiva-
lent if and only if

Proof: The statement (11) = (10) is always true
regardless of the condition (15). Still, it must be shown
that (10) implies (11) provided that (15) is fulfilled. The
condition Yh;, R(pr(n,)) = Q means that, for any arbitrary
mode h; € H, Qp,,, can be any matrix in Q. Hence, for
any t—uple (hq,...,h:), the sequence {Qp,,...,Qp,} is
an admissible sequence for (9). Finally, the set of products
Qn, - -~ Qp, for all t—uples (hq,...,h:) coincides with the
set of products (10) for all £ > 0. That completes the proof.

|

Similarly to Remark 3, if different sequences
{o(k),...,o(k + r)} and so different o'(k) =
¢(o(k),...,0(k + r)) lead to identical matrices Qo ().
Proposition 1 still can be applied with a lower computational
cost if the multiset Q is replaced by the set Z of distinct
elements of Q. Hence, we will consider hereafter the set Z.
Remark 4: 1t can be easily seen that (15) is always satis-
fied for at least two particular cases: when the inherent delay



r is equal to zero or if it is equal to one and that C' does
not depend on o. These two cases encompass a large class
of systems and we will illustrate in Section V that (15) also
applies in other cases.

C. Computational issues

In this section, we propose an algorithm that allows to
check whether or not a set of matrices generates a nilpotent
semigroup that is, if Theorem 4 is fulfilled. It is shown that
it has a polynomial complexity and is theoretically motivated
by Levitsky’s theorem (Theorem 2.1.7 stated in [7]).

Theorem 5 (Levitsky’s theorem): Any  semigroup  of
nilpotent matrices can be triangularized.

In other words, all the matrices of a same nilpotent semi-
group can be rewritten as upper triangular matrices with
zeros on the diagonal up to a common change of basis. The
consequence of this theorem is central for our purpose. In-
deed, determining whether or not the matrices of Z generate
a nilpotent semigroup amounts to checking whether or not
Z can be simultaneously triangularized. It is a necessary
and sufficient condition. The approach we propose to check
Theorem 5 is inspired from the general triangularization
method provided in [8] and corresponds to Algorithm 1.
Next, some peculiarities that apply to our special case will
be addressed to provide a fully-specified algorithm for flat
output characterization.
The algorithm is expected to return a change of basis S that
simultaneously triangularizes the set Z composed of the L
matrices Z;, I € {1,...,L} of dimension n. According to
Remark 2, Z;, l € {1,..., L} are assumed to be nilpotent.

Algorithm 1: 1: > Initialization

2: for 1=1 to L do

3: T+ 7,

4: end for

RE SQ — 1, Sl — 071,><O

6: > Triangularization

7. for i <~ 1ton—1do

8: v; < One eigenvector common to the matrices
{T;},1=1,...,L

9: if v; does not exist then

10: > No triangularization basis exists

11: return

12: end if

13: w; < So - v;

14: Sy (51 wy)

15: So < matrix whose column vectors are vectors that

extend S; to a basis
16: S+ (81 S9)
172 I (0 1)

0;
18: Iy + <1nz>

19: S~ « inverse of S
20: for [+ 1to L do
21: T %1157121512
22: end for

23: end for

24: return S

The following comments are in order:

e Line 1 to Line 5 corresponds to the initialization.
Matrices 7; (I = 1,..., L) play the role of the auxiliary
variables and are initialized at the beginning with the
matrices Z; of the set Z.

o At most n — 1 successive loops from Line 7 to Line 23
are performed as stressed by Corollary 1.

o Line 8 corresponds to the first step of a given loop . It
consists in finding out a eigenvector v; which is com-
mon to the matrices 7; (I = 1,...,L). Consequently,
in the first loop, v; is a common eigenvector of the
matrices Z; of Z. It is worth pointing out that if this
step fails in the loop i, it means that the matrices 7;
(I=1,...,L) do not have any common eigenvector v;
and the algorithm stops. Levitsky’s theorem stating a
necessary and sufficient condition, it can be concluded
that Z does not generate a nilpotent semigroup and
Theorem 4 is not fulfilled.

o Line 14 describes the fact that the final change of basis
S is built column after column. Each new vector v;
carried out in the loop wv; is added (actually after a
change of basis notified at Line 13) resulting in a matrix
Sl = (Ul UZ) When ¢ = n then S = (Sl SQ), Sl
and Sy resulting from the loop n — 1.

e At Line 15, S; must be extended to a basis. By
extension, it is meant a set of n — 4 vectors w; so that
S = (S1 wy - wp—;) is full rank. The matrix Sy is
precisely S = (wy -+ Wp—;).

e Line 21 performs the current change of basis S to the
matrices Z;. The multiplications by I; and I, merely
corresponds to the extraction of a square matrix of
dimension n — ¢ from the matrix S~1Z;9, that the first
i rows and columns of S™'Z;S are removed. A new
set of matrices 7; is thereby obtained. A new loop can
restart from Line 7.

Such an algorithm is quite general. However, the determina-
tion of a common eigenvector at Line 8 and the extension
to a basis at Line 15 can be particularized to our special
context.

1) Determination of a common eigenvector: According to
Remark 2, a necessary condition for the set Z to generate
a nilpotent semigroup is that all the matrices Z; of Z are
nilpotent, that is all their eigenvalues are zero. The set
T ={T;},1 = 1,...,L corresponds exactly to Z at the
initialization and it is updated at each loop ¢ through a linear
change of basis .S at Line 21 which preserves the eigenvalues.
Hence, the eigenvalues of the 7;’s are all zero whatever the
loop ¢ > 0 is. Consequently, for any v; (i = 1,...,n) and
VT, € T, Tiv; = 0 holds. Hence, v; is a non zero solution
of

T
Rv; =0 with R = : (16)
11,
As a result, v; is a non zero vector of the null space of R
denoted ker(R).



2) Extension to a basis: At Line 15, S must be extended
to a basis. We must thereby find out a set of n—1¢ vectors w;
so that S = (S1 wy wy,—;) is full rank. It can be
obtained by determining a basis of the kernel of the transpose
of S;. In other words, Sy = (w; - - - w,—;) can be any basis
of ker(S7) where the symbol ' stands for transposition.

D. Complexity

All the operations can easily be performed by software
involving usual built-in functions. The complexity of the con-
dition (8) is O(J"+¥ Kn?). The point is that the complexity
is exponential with respect to the number of matrices K
involved in the product (8), which can be large. On the other
hand, let us assess the computational cost of the flat output
characterization approach based on nilpotent semigroups by
examining Algorithm 1. Considering a given loop, the most
complex operations are performed at Lines 8, 15, 19 and 21.
Lines 8 and 15 consist in determining the kernel of a matrix.
It is usually based on singular value decomposition of a
R%*® matrix for which known algorithms with complexity
O(4ab? + 8b%) exist. Line 19 has complexity O(n?) when
considering usual inversion algorithms. Line 21 is a change
of basis. The multiplications by I; and I can be avoided
since its purpose is merely to extract a square matrix of
dimension n — ¢ from the matrix S—'Z;S. Therefore, the
two operations to be considered are the two matrix multipli-
cations of Z; by S and S~!. Matrix multiplications have
complexity at most O(n?). Therefore, the complexity of
Lines 20 to 22 is O(Ln?) or O(J"+1n3) due to the inequality
L < Jrt! (recall Remark 3). This part of the code is the
one with the largest complexity. The operations are repeated
over at most n loops. Therefore, the global complexity of
Algorithm 1 is O(J"*1n%). There is no more exponential
complexity with respect to the number of matrices involved
in the product (8).

It is an improvement insofar as the complexity is no longer
exponential with respect to the parameter K.

IV. EXTENSION TO LPV SYSTEMS

The results stated in the previous sections can be
interestingly extended in a rather straightforward way to
LPV systems. Indeed, the system (1) can be viewed as an
LPV system as soon as we consider that the switching rule o
is replaced by a function which takes values in a continuum.
If so, the sets J, H, I'(o’(k)), Q and Z must be considered
as uncountable sets. The r—delay inverse system (5), the
auxiliary system (9) together with the mapping ¢ still make
sense as soon as ¢ is considered as a function, similarly to o,
taking values in a continuum. Besides and most importantly,
it turns out that both semigroups (Definition 3) and the
nilpotent semigroups (Definition 4) are still well defined
for an uncountable set S. As a result, Theorem 4 still applies.

On the other hand, Levitsky’s theorem, which allows for
checking whether Theorem 4 is fulfilled, applies for any
semigroup, including semigroups with infinite cardinality,
which is precisely the case here. It is recalled that Levitsky’s

theorem asserts that “Z generates a nilpotent semigroup if
the matrices of Z can be simultaneously triangularized”.
The key point is that, considering Z as an uncoutable set
of matrices, it can be reformulated in a strictly equivalent
way stating that “the matrices Z,/(;) must be simultane-
ously triangularized with a change of basis that does not
depend on o’(k)”. Taking into acount the aforementionned
considerations and combining Theorem 4 and Theorem 5,
the following theorem holds for characterizing flat outputs
of LPV systems

Theorem 6: 1If the matrices of Z of the auxiliary sys-
tem (9) can be simultaneously triangularized independently
of o’(k), then yy, is a flat output.
Algorithm 1 still applies up to some minor modifications.
The loops at Line 2 and Line 20 can be removed or equiv-
alently, L can be set to L = 1. Besides, the determination
of a common eigenvector at Line 8, that is the search for a
non zero vector v; of ker(R) as explained in Subsection III-
C.1 turns into the search for a non zero vector v; of ker(77)
(since L =1 and so R = T3) independent of ¢’ (k). Line 8
has to be replaced by

8: v; < One eigenvector of 77 independent of o’ (k)

The flat output characterization based on nilpotent semi-
groups for LPV systems is valuable for two major reasons.
First, flat outputs characterization of LPV systems has never
been addressed so far in the literature. Secondly, the charac-
terization through (8) or equivalently (3) cannot be done for
LPV systems since that requires to check an infinite number
of possible products. Indeed, o taking values in a continuum,
the number of sequences {o} in Theorem 2 or sequences
{¢’} in Theorem 3 would be infinite.

V. ILLUSTRATIVE EXAMPLES
A. Example 1: switching systems

Consider the SISO switched linear system of the form (1).
The dimension is n = 4, the switching rule o, not detailed
here, is assumed to deliver arbitrary sequences and the
number of modes is J = 3. According to the mode, the
state space matrices numerically read

~1 —05 -05 0 1 -1 -1 -05
(1 15 15 o0 1 2 2 05
Av=11 05 05 1]0%2=|1 1 1 15 |°
10 1 0 1 0 1 0
~1 —25 -—25 -2
PN TR LR
371 1 2.5 2.5 3
10 10

Dy =Dy = D3

Il
o

Since it is a SISO system, that for all i € J, D; # 0,
for all (i,7) € J? C;B; = 0 and that for all (i,5,1) €
T3, C;A;B; # 0, the inherent delay is r = 2. Let us derive



the corresponding auxiliary system as defined in Section II-
B. To this end, we must define the mapping ¢. The number
of possible sequences over any interval of time [k : k4 7] is
Jrtl =32+ = 27 and

o({1,1,1}) =1
o({1,1,2}) =2 ({3,3,1}) =25
o({1,1,3}) =3 #({3,3,2}) =26
- ?({3,3,3}) =27
The set " of feasible transitions obeys
1) ={1,2,3}
I'(2) ={4,5,6} T(26)={23,24,25}
I'(27) = {25,26,27}
It turns out that the multiset @ has L = 3 distinct matrices

and the matrices Z; of the corresponding set Z numerically
read

-1 —-05 —-05 0 -1 -1 -1 =05
1 15 15 0 1 2 2 05
1= 1 0.5 0.5 1] %2= 1 1 1 1.5
-2 -2 -2 -1 -2 -3 -3 =2
-1 -25 —-25 =2
2. 1 35 35 2
3= 1 2.5 2.5 3
-2 -6 -6 =5
One has
p(L(1) = - = u((27)) = {Z1, Z2, Z3}

Hence, condition (15) of Proposition 1 is fulfilled and so
applies beyond the particular cases mentioned in Remark 4.
Finally, it turns out that Algorithm 1 succeeds and returns
the following change of basis S

0 0.3780 —0.9258 0
g - 0.7071 —0.3780 —0.1543 0.5774
—-0.7071 —0.3780 —0.1543 0.5774
0 0.7559  0.3086 0.5774

As a consequence, based on Theorem 4 and Theorem 5, we
conclude that yy, is a flat output.

B. Example 2: LPV systems
We investigate an LPV system given by the following

form?
Trk4+1
Yk

where 2, € R*, ui, € R, yi € R and the state space matrices
numerically read

ATk + Bo(r) Uk
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Cok)yTk + Doryur an

Ag(k) = ) Bd(k) =

) )

T O = O
TN o o
_ O = O
o R OO
O = OO

g g

2In the framework of LPV systems, the notation X (py,) is often used and
refers to matrices which depend on a time-varying parameter pj. Hence
here, by X, (1), it must be understood a matrix X which depends on a
time-varying parameter o (k) with o (k) taking values in a continuum. a,(;>
will denote the i—th component of o (k)

)

Comry = (1 0 1 0) y Doy =0

As stressed in Section IV, o must be considered here as
a function which takes values in a continuum. Since it
is a SISO system, that D,y = 0 for all £ and that
Co(k+1)Bo(ky = 1 independently of o, the inherent delay
is 1. The set Q of the dynamical matrices of the left-inverse
system (5) are the matrices Qu(x) = Py (k:x+1) Which read
for all o’(k) = {o(k),o(k+ 1)}

0O 1 00
1 0 10
Qw=|09 -1 0 0
J,(Cl) al(f) 1 0

It turns out that Theorem 6 is fulfilled with a triangularization
basis S which numerically reads

0 1 01
0 0 1 0
5= 0 -1 0 0
1 0 00

Finally, since Q,(x) only depends on ¢’ at time k, it is clear
that condition (15) of Proposition 1 is fulfilled, guaranteeing
that conditions (10) and (11) are equivalent. The interest
of the result stated in this paper is that (11) provides an
alternative to (10), hence solving the intractability of (10)
for LPV systems.

VI. CONCLUSION

We have provided a condition to characterize flat outputs
of switched linear discrete-time systems. Then, the condition
is extended to LPV discrete-time systems. The condition is
based on the notion of nilpotent semigroups. A tractable
fully-specified algorithm, with polynomial complexity with
respect to the dimension of the system, has been provided
to check the condition.
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