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Abstract: In this paper we first study observability conditions on networks. Based on spectral properties
of graphs, we state new sufficient or necessary conditions for observability. These conditions are based
on properties of the Khatri-Rao product of matrices. Then we consider the problem of estimating
the eigenvalues of the Laplacian matrix associated with the graph modeling the interconnections
between the nodes of a given network. Eventually, we extend the study to the identification of
the network topology by estimating both eigenvalues and eigenvectors of the network matrix. In
addition, we show how computing, in finite-time, some linear functionals of the state initial condition,
including average consensus. Specifically, based on properties of the observability matrix, we show that
Laplacian eigenvalues can be recovered by solving a local eigenvalue decomposition on an appropriately
constructed matrix of observed data. Unlike FFT based methods recently proposed in the literature, in
the approach considered herein, we are also able to estimate the multiplicities of the eigenvalues. Then,
for identifying the network topology, the eigenvectors are estimated by means of a consensus-based least
squares method.
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1. INTRODUCTION

Identification of large-scale graphs or networks of systems is an
important task for solving many problems arising in different
science and engineering domains. Indeed, complex networks
widely exist in both natural and man-made systems. Several
current research works are focused on studying the impact of
the network topology on the network dynamic behavior. In
particular, several recent contributions are related to stability
of networks, convergence study in consensus networks, among
others. The reverse side of the interaction between the network
structure and the network dynamics allows inferring the net-
work topology from the observations of the network dynamics.

Many network dynamics can be modeled as linear dynamic
systems where the interaction matrix, the state matrix in a state-
space representation, is related to the network topology. There-
fore, from a system theory point of view, the question of net-
work topology identification is strongly related to that of state
matrix identification with unknown inputs and initial condition.
Such a problem is also called a blind identification problem.
Sometimes, instead of identifying the overall network matrix,
important informations on the properties of the network topol-
ogy, or equivalently of the underlying graph, can be extracted
from the eigenvalues of the associated adjacency, Laplacian, or
any other type of matrix associated with the graph, Godsil and
Royle (2001). Indeed, from the graph spectrum, one can infer
the algebraic connectivity that influences the performance and
robustness of network controlled systems, the graph diameter,
and the connectedness of the graph among others.

The eigenvalues of the adjacency matrix and that of the Lapla-
cian matrix were particularly investigated in the recent past (see
for example Chung (1997) and Merris (1994)). Most of the
algorithms for estimating the Laplacian eigenvalues are based
on centralized methods requiring the knowledge of the overall
network matrix. Some contributions for decentralizing such
an estimation have been recently reported in the literature. In
Yang et al. (2008), a power iteration based method is proposed.
Due to approximations for decentralizing the power iteration
method, only approximate solution can be guaranteed. More re-
cently, FFT based methods have been proposed in Franceschelli
et al. (2009) and in Sahai et al. (2010). The main idea is: based
on a specific interaction protocol, the time series observed at
each node exhibit a harmonic behavior related to the Lapla-
cian spectrum. As a consequence, by performing a local FFT,
the locations of the peaks on the computed spectrogram are
related to the Laplacian eigenvalues whereas their magnitudes
can serve to retrieve some components of the eigenvectors (in
Sahai et al. (2010)). With such approaches, the estimation of
the Laplacian spectrum is incomplete since the multiplicities of
the eigenvalues cannot be inferred. Moreover, the resolution of
the estimated eigenvalues is strongly dependent on that of the
FFT method.

In contrast to these approaches, in this paper, we resort to an
algebraic method using observability properties of the network.
The observability of networks, and consensus networks in par-
ticular, is the topic of several recent contributions. In Ji and
Egerstedt (2007), necessary conditions for observability are de-
rived based on equitable partitions of a graph and the interlacing



theory. More recently, in Parlangeli and Notarstefano (2012),
necessary and sufficient conditions have been provided for path
and cycle graphs. Based on some of these observability proper-
ties, we show that the eigenvalues of the network matrix can be
recovered by solving a local eigenvalue decomposition on an
appropriately constructed matrix of observed data. Obviously,
the proposed method is well indicated for networks having
nodes with sufficient storage and computation capabilities.

The paper is organized as follows. We first study the case where
the unknown network is a Laplacian consensus network. Then,
we extend the study to any arbitrary network. As in Sundaram
and Hadjicostis (2008), we show how computing eigenvalues
and some linear functionals of the initial condition with a finite
number of observations. While the above mentioned quantities
can be computed strictly locally, we show that estimating the
network eigenvectors necessitates collaboration among nodes.

Notations: Vectors are written as boldface lower-case letters
(a,b,· · · ) and matrices as boldface capitals (A,B,· · · ). Ai. and A. j
denote respectively the ith row and the jth column of the I× J
matrix A. diag(.) is the operator that forms a diagonal matrix
from its vector argument whereas vec(.) forms a vector by
stacking the columns of its matrix argument. vecd(.) represents
the vector formed with the diagonal entries of the matrix in
argument. ei,N stands for the ith vector of the canonical basis
of ℜN .
Definition 1. For X ∈ CI×R, and Y ∈ CJ×R, the Khatri-Rao
product, denoted by �, is defined as follows:

X�Y =


Ydiag(X1.)
Ydiag(X2.)

...
Ydiag(XI.)

 ∈ CIJ×R. (1)

It can be viewed as a columnwise Kronecker product:
X�Y = ( X.1⊗Y.1 · · · X.R⊗Y.R )

where ⊗ denotes the Kronecker product.

The vec(.) operator and both Kronecker and Khatri-Rao prod-
ucts are related through the following properties:

vec(ABC) =
(
CT ⊗A

)
vec(B) (2)

vec(Adiag(b)C) =
(
CT �A

)
b (3)

Definition 2. The k-rank (Kruskal rank), kX, of an I×R matrix
X is the maximal number k such that any set of k columns of X
is linearly independent.

The rank and the k-rank of an I×R matrix X are related through
the following inequality:

kX ≤ rank(X)≤min{I,R}.
Now, let us recall the following lemma stated in Sidiropoulos
et al. (2000):
Lemma 1. Consider the matrices X∈ℜI×R and Y∈ℜJ×R with
respective k-rank kX and kY. The khatri-Rao product X�Y
results on a full rank matrix if kX + kY ≥ R+1.

2. ON OBSERVABILITY OF DISCRETE-TIME
NETWORKED SYSTEMS

Let us consider a network of N distributed nodes. The inter-
actions, or information exchanges, between these nodes are
modeled with a connected undirected graph G = (V ,E ), where
V = {1, · · · ,N} denotes the vertex set whereas E ⊆ V ×V is

the set of edges. We denote by Ni the set of nodes that interact
with the ith node. Its cardinality, denoted Ni, is called the degree
of the ith node. On important matrix characterizing a graph is
the so called graph Laplacian matrix L, with entries li j, defined
as,

li, j =

{ Ni if i = j
−1 if j ∈Ni
0 elsewhere

Suppose that each node i has some initial values organized
in a M-length row vector xi(0). We assume that M ≥ N. At
each time-step k, the nodes exchange and update their values
following a linear iteration scheme, i.e.

xi(k +1) = wiixi(k)+ ∑
j∈Ni

wi jx j(k), (4)

where the wi, j are the entries of a consensus matrix W, which
is consistent with the graph G . W is assumed to be symmetric.
In matrix form, equation (4) can be written as:

X(k +1) = WX(k), (5)
where X(k) denotes the N×M matrix with xi(k), i = 1, · · · ,N,
as rows.

Now, let us define by Ei the Ni×N row selection matrix such
that Yi(k) = EiX(k) be the outputs or node values that are
seen by node i at the kth time-step. Note that Ni is bounded as
0 < Ni ≤ Ni + 1. We get the following dynamic representation
of the network as viewed by node i:

X(k +1) = WX(k)

Yi(k) = EiX(k). (6)

From observability theory, it is well known that the pair (W,Ei)
is observable if and only if the observability matrix Oi ∈
ℜNNi×N defined as

Oi =


Ei

EiW
EiW2

...
EiWN−1

 (7)

is full column rank, i.e. rank(Oi) = N.

Owing to the symmetry of W, considering its eigenvalue
decomposition W = UDUT , where the eigenvectors and the
eigenvalues are respectively organized in the orthogonal matrix
U and the diagonal matrix D, we can rewrite the observability
matrix as

Oi = OiUT , with Oi =


Vi

ViD
ViD2

...
ViDN−1

 and Vi = EiU.

One can note that rank(Oi) = rank(Oi). Thereferore, observ-
ability properties of the system (6) can be derived by studying
the matrix Oi.

Indeed, from the definition of the Khatri-Rao product (1),
we can rewrite the matrix Oi as the Khatri-Rao product of a
Vandermonde matrix
∆∆∆ =

(
vecd(D0)T vecd(D)T vecd(D2)T · · · vecd(DN−1)T )T



with Vi, i.e. Oi = ∆∆∆�Vi. Therefore, we can rewrite the observ-
ability matrix Oi as

Oi = (∆∆∆�Vi)UT . (8)

The direct consequence of the above rewriting of the observ-
ability matrix is stated in the following lemma:
Lemma 2. The pair (W,Ei) is observable if and only if the
Khatri-Rao product ∆∆∆�Vi is full column rank.

Now, from lemmas 1 and 2, we can deduce the following
theorem:
Theorem 1. Consider the system (6) where all the eigenvalues
of W are simple and nonzero. The pair (W,Ei) is observable if
the matrix EiU, with U the matrix of eigenvectors of W, has no
column with all zero elements.

Proof : From Lemma 2, the pair (W,Ei) is observable if ∆∆∆�
Vi is full column rank. From Lemma 1, we also know that a
sufficient condition to get a full rank Khratri-Rao product is
to have k∆∆∆ + kVi ≥ N + 1. Since all the eigenvalues of W are
all simple and nonzero the Vandermonde matrix ∆∆∆ is not only
full column rank but also full k-rank, i.e. k∆∆∆ = N. Therefore
it suffices to have kVi ≥ 1 to ensure a full rank Khatri-Rao
product. Such a condition is fulfilled if all the columns of Vi are
nonzero. �

We can also derive the following corollaries for the specific case
where each node does not observe the values of its neighbors.
In this case, the observation matrix Ei is restricted to a vector
eT

i,N , which is the transpose of the ith vector of the canonical
basis of ℜN .
Corollary 1. Consider the system (6) where all the eigenvalues
of W are simple and nonzero. The system (6) is observable from
a single node i if and only if the ith row of eigenvector matrix
of W, i.e. eT

i,NU, has no zero elements.
Corollary 2. Consider the system (6). If all the eigenvalues
of W are simple and nonzero and if all the entries of the
eigenvector matrix are nonzero then the system is observable
from any single node.

The results above give some sufficient conditions ensuring
observability in graphs where the matrix W has only simple
eigenvalues. That is the case of paths. Indeed, it can be shown
that the eigenvalues of a path are all simple. Therefore, the
matrix W = I− εL, with ε an arbitrary nonzero scalar, has
nonzero simple eigenvalues.
Example 1. Let us consider a consensus protocol through a
path with 5 nodes. The consensus matrix being W = I−0.2L.
The corresponding eigenvalues are 0.2764; 0.4764; 0.7236;
0.9236; 1.0000. The corresponding matrix of eigenvectors is
given by:

U =


0.1954 −0.3717 −0.5117 −0.6015 0.4472
−0.5117 0.6015 0.1954 −0.3717 0.4472
0.6325 0 0.6325 0 0.4472
−0.5117 −0.6015 0.1954 0.3717 0.4472
0.1954 0.3717 −0.5117 0.6015 0.4472


Applying Corrollary 1, we can deduce that the third node can-
not observe the system using only its own observations. How-
ever, if observations of at least one of its neighbors are available
then applying Theorem 1, the system is now observable. In Fig.
1, a circle represents a node that is able to observe the system
from its own observations while a circle with a square inside

represents a node that is unable to observe the system without
the observations of at least one of its neighbors.

Fig. 1. Observability in a path with five nodes.

Note that necessary and sufficient observability conditions of
paths have been recently proposed by Parlangeli and Notarste-
fano (2012) for systems whose state matrix is given by the
graph Laplacian. Herein, for a more general state matrix we
get similar results.

Now, let us consider the case of state matrices having at least
one eigenvalue with multiplicity higher than 1. We state the
following necessary condition:
Theorem 2. The system (6) with matrix W having D distinct
nonzero eigenvalues is observable from node i only if

DNi ≥ N, (9)
with 0 < Ni ≤ Ni +1.

Proof : Knowing that a Khatri-rao product corresponds to a
columnwise Kronecker product, it exists a column selection
matrix SN2,N such that ∆∆∆�Vi = (∆∆∆⊗Vi)SN2,N . As a conse-
quence rank(Oi) ≤ min(rank(∆∆∆)rank(Vi),rank(SN2,N)). One
can note that the rank of the Vandermonde matrix ∆∆∆ is equal to
the number of distinct generators, or equivalently the number
of distinct entries in D. Hence, rank(∆∆∆) = D. We also have
rank(Vi) = rank(Ei) = Ni and rank(SN2,N) = N. If the observ-
ability matrix is full rank, then N ≤ min(DNi,N) that yields
(9). �

As shown in Parlangeli and Notarstefano (2012), we can con-
clude that if W has at least one eigenvalue with multiplicity
higher or equal to 2, then the graph is not observable from a
single node. Indeed, studying observability from a single node
implies Ni = 1. Thus condition (9) yields D≥N; condition that
is violated if at least one eigenvalue has multiplicity higher than
one.

An application of theorem 2 concerns strongly regular graphs.
Recall that a strongly regular graph (SRG) with parameters
(n,k,a,c) is a graph on n vertices which is regular with valency
(degree) k and has the following properties:

• any two adjacent vertices have exactly a common neigh-
bors;

• any two nonadjacent vertices have exactly c common
neighbors.

It is well known that a SRG has exactly 3 distinct eigenvalues,
Godsil and Royle (2001). Therefore, the necessary condition
(9) becomes:

k +1≥ n
3
.

For some families of SRGs we can draw the following conclu-
sions:

• A n× n Rook’s graph (also known as two-dimensional
Hamming graph or Latin square), a SRG with parameters
(n2,2n− 2,n− 2,2) is not observable from any node if
n≥ 6.

• The following SRGs are not observable: Brouwer-Haemers
(SRG(81,20,1,6)), Higman-Sims (SRG(100,22,0,6)), M22
(SRG(77,16,0,4)), Hoffman-Singleton (SRG(50,7,0,1)),



Sims-Gewirtz (SRG(56,10,0,2)). (see Godsil and Royle
(2001) and Brouwer et al. (1989) for more descriptions
of these graphs).

Now, based on observability properties of consensus systems,
we derive in the two next sections new methods for computing
the eigenvalues of a consensus matrix in a decentralized way.
We first start on the crucial issue of estimating the Laplacian
eigenvalues before considering a more general setup.

3. DECENTRALIZED ESTIMATION OF LAPLACIAN
EIGENVALUES

In this section, we investigate solutions for a given node i
to estimate the eigenvalues λi, i = 1, · · · ,N, of the Laplacian
matrix from its observations.

Recently Franceschelli et al. (2009) and Sahai et al. (2010)
have proposed methods based on FFT using the observations
associated with specific data exchange protocols. These meth-
ods lead to decentralized estimation of Laplacian eigenvalues.
However, the main drawbacks of FFT based methods is the
impossibility to estimate the multiplicity of the eigenvalues. In
addition, these methods inherit of the drawbacks of FFT based
methods concerning the resolution between two peaks. In what
follows, we show that based on a consensus protocol, each node
i can estimate the Laplacian eigenvalues and their multiplicities
using local observations. For this purpose, we consider system
(6) with a consensus matrix given by

W = I− εL.

Our aim is then to estimate the eigenvalues of the Laplacian
matrix from the observations Yi(k), k = 0,1, · · · ,Ki, where
Ki stands for the observability index of the pair (W,Ei). We
define by Oi,Ki ∈ ℜ(Ki+1)Ni×N the following sub-matrix of the
observability matrix Oi:

Oi,Ki =


Ei

EiW
EiW2

...
EiWKi

 . (10)

By considering the eigenvalue decomposition of the Laplacian
matrix, we get the following factorization: L = UΛΛΛUT , where U
and ΛΛΛ denote respectively the orthogonal matrix of eigenvectors
and the diagonal matrix of eigenvalues ordered in ascending
order. Therefore we get:

Oi,Ki =


Vi

ViD
ViD2

...
ViDKi

UT = Oi,KiU
T , (11)

with Vi = EiU and D = I− εΛΛΛ.

Let us now construct the matrices Yi and Yi with the available
observations {Yi(k)}, k = 0,1, · · · ,Ki +1:

Yi =


Yi(0)
Yi(1)

...
Yi(Ki)

 Yi =


Yi(1)
Yi(2)

...
Yi(Ki +1)

 (12)

We can show that:
Yi = Oi,KiC

T

and
Yi = Oi,KiDCT ,

with CT = UT X(0).

Let us state the following theorem:
Theorem 3. Consider the observations {Yi(k)}k=0,1,··· ,Ki+1, at

node i, organized in matrices Yi and Y i defined in (12), and the

matrix Ũ of left singular vectors of the matrix (YT
i Y

T
i )T . If

the pair (W,Ei), with W = I− εL, is observable with Ki as
observability index and if C is full column rank then node i
can compute all the eigenvalues of the Laplacian matrix L as
ΛΛΛ = 1

ε
(I−D), where D results on the eigenvalues decomposi-

tion of the matrix
(

ŨT
1 Ũ2

)(
ŨT

1 Ũ1

)−1
, with Ũ =

(
ŨT

1 ŨT
2

)T
,

the two sub-matrices Ũ1 and Ũ2 having the same number of
rows.

Proof : From observability theory, if the pair (W,Ei) is observ-
able with Ki as observability index, it is well known that Oi,Ki is
full column rank. According to the results of section 2, Oi,Ki is
also full column rank. Therefore, if C is also full column rank,
knowing that Yi = Oi,KiCT , we can can conclude that the block

matrix
(

YT
i Y

T
i

)T
is full column rank. Now, let us consider

the singular value decomposition (SVD) of the above defined
matrix: (

Yi

Yi

)
=
(

Oi,Ki

Oi,KiD

)
CT = ŨΣΣΣṼT .

C being full column rank then span(Ũ) = span(
(

Oi,Ki

Oi,KiD

)
).

As a consequence, there exists a nonsingular matrix T such that:

Ũ =
(

Oi,Ki

Oi,KiD

)
TT

Let us denote by Ũ1 and Ũ2 respectively the top and the bottom
parts of Ũ corresponding to: Ũ1 = Oi,KiTT and Ũ2 = Oi,KiDTT .
We can also construct the matrices: R1 = ŨT

1 Ũ1 and R2 =
ŨT

1 Ũ2. By defining G = TOT
i,Ki

Oi,Ki , we get:

R1 = GTT and R2 = GDTT (13)
Since by construction R1 is nonsingular, we can define the ma-
trix R = R2R−1

1 . By replacing R1 and R2 by their definitions,
we get RG = GD, which is a standard eigenvalue problem. In
other words, the consensus matrix and the matrix R built from
the observations have exactly the same spectrum. �

As shown in Sundaram and Hadjicostis (2008), the observabil-
ity index of node i is upper-bounded by N−Ni. Now, based on
the constructive proof of Theorem 3, the proposed procedure
for computing the Laplacian eigenvalues is described in algo-
rithm 1.
Example 2. Let us consider the graph with 20 nodes depicted in
figure 2. The corresponding graph Laplacian matrix has the fol-
lowing eigenvalues: eig(L)= {0;0.4601;1.0056;1.7629;2.9291;
3.5859;3.8435;5.0246; 5.7592;6.2389;6.9647;7.5740;8.0000;
8.2203;8.4202;9.0000;9.4384;10.0000;10.3097;11.4631}.
Applying results of section 2, we note that only the nodes with
a red asterisk can observe the system. As a consequence, these
nodes can compute exactly the eigenvalues of the consensus



Algorithm 1 :Decentralized Laplacian eigenvalues estimation
Given the observations {Yi(k)}k=0,1,··· ,Ki+1, resulting from the
linear dynamical system (6) with W = I− εL, the Laplacian
eigenvalues can be computed by following the steps below:
(1) Construct the matrices Yi and Yi as in (12).
(2) Compute the matrix Ũ of left singular vectors of the matrix(

YT
i Y

T
i

)T
.

(3) Partition Ũ as Ũ =
(

ŨT
1 ŨT

2

)T
, the two blocks having the

same number of rows.
(4) Compute the matrices R1 = ŨT

1 Ũ1, R2 = ŨT
1 Ũ2, and R =

R2R−1
1 .

(5) Compute the matrix D of the eigenvalues of the Laplacian
based consensus matrix by computing the eigenvalues of
R.

(6) Deduce the Laplacian eigenvalues as ΛΛΛ = 1
ε
(I−D).

matrix and then the Laplacian eigenvalues. Running algorithm
1 at each of these nodes we get exactly the expected result.

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

Fig. 2. Network with 20 nodes.

4. DECENTRALIZED ESTIMATION OF ARBITRARY
NETWORK MATRICES EIGENVALUES AND
CALCULATION OF AVERAGE CONSENSUS

In this section, we consider an arbitrary network matrix W.
Obviously, its eigenvalues can be estimated using the approach
proposed in the previous section. Indeed, by solving the eigen-
value problem, each node i obtain both matrices D and G.
Therefore, from (13) we can deduce that

TT = G−1R1.

Knowing that Ũ1 = Oi,KiTT , we can deduce that

Oi,Ki = R−1
1 GŨ1 (14)

and
CT = G−1R1Y1. (15)

Therefore, each node, from its observations, can estimate both
the eigenvalues of the network matrix W and a linear combina-
tion of the initial values of the network. The following connec-
tion could be done with the work in Sundaram and Hadjicostis
(2008):
Lemma 3. Node i can compute the linear functionals QUT X(0)
from its observations Yi, i = 0,1, · · · ,Ki, if and only if the row
space of Q is contained in the row space of the matrix R−1

1 GŨ1.

Proof :The proof of this lemma is similar to that of the Lemma
1 in Sundaram and Hadjicostis (2008). We have just replaced
the observability matrix by its estimate. �

Lemma 4. If the pair (W,Ei) is observable, if C is full column
rank and if W admits 1/

√
N as an eigenvector associated with

the simple eigenvalue 1 then the average consensus on initial
conditions, X = 1

N 11T X(0), can be computed in finite-time as

X =
(

1√
N

1 0N×(N−1)

)
G−1R1Y1 (16)

Proof : If 1/
√

N is an eigenvector of W associated with the sim-

ple eigenvalue 1 then U can be partitioned as U =
(

1√
N

1 U
)

with 1T U = 0 and UT U = I. Recalling that CT = UT X(0), we
can rewrite the right hand side of this equation as 1√

N
1T X(0)

UT X(0)

 .

Then, pre-multiplying CT by
(

1√
N

1 0N×(N−1)

)
and using

(15) we get the desired result (16). �

5. COLLABORATIVE NETWORK TOPOLOGY
IDENTIFICATION

In the previous sections, we have shown that each node can
compute both the eigenvalues of the network matrix and some
linear functionals of the initial condition of the network state.
Such computations are made using local observations. In addi-
tion, they can be easily implemented in anonymous network.
The only important information being the number of nodes in
the network. Knowing the network matrix spectrum, an impor-
tant question is how inferring the overall network structure?
To do so, the estimation of the network matrix eigenvectors
is crucial. For this purpose, let us recall that for node i the
observations at the time-step k i given by

Yi(k) = EiUDkCT .

Assuming that the nodes know their IDs and those of their
neighbors, we can conclude that, in addition of C and D, the
matrix Ei is also known by node i. However, these observations
are not sufficient for recovering all the eigenvectors. Hence the
necessity of resorting to a collaborative approach.

Let us reorganize the data in Yi(k) in a vector by using the
vec(.) operator. We get:

vec(Yi(k)) =
(

CDk⊗Ei

)
vec(U).

Stacking these observations yields:
ΦΦΦivec(U) = ψψψ i (17)

where

ΦΦΦi =


C⊗Ei

CD⊗Ei
...

CDKi ⊗Ei

 ψψψ i =


vec(Yi(0))
vec(Yi(1))

...
vec(Yi(Ki))

 (18)

Since the node i is not connected to all the remaining nodes in
the network, then one can check that ΦΦΦ is rank deficient. As
a consequence node i can only carry out a partial estimation
of the network eigenvectors. If all the local measurements



were available at a given point then estimating the eigenvectors
should resort to solving the least-squares problem

ΦΦΦ1
ΦΦΦ2

...
ΦΦΦN

vec(U) =


ψψψ1
ψψψ2

...
ψψψN

 (19)

The least squares solution is obtained by solving
ΦΦΦvec(U) = ψψψ

where

ΦΦΦ =
1
N

N

∑
i=1

ΦΦΦ
T
i ΦΦΦ, ψψψ =

1
N

N

∑
i=1

ΦΦΦ
T
i ψi.

Obviously, ΦΦΦ and ψψψ can be computed as average values of local
quantities. Such a computation can be carried out by means of
average consensus algorithms. In particular, one can make use
of the finite-time average consensus algorithm recently intro-
duced in Kibangou (2011a, 2012b). In these algorithms, exact
average consensus is achieved using a set of Graph Laplacian
based matrices parameterized by the Laplacian eigenvalues.
Consensus is achieved in a number of steps equal to the number
of distinct nonzero graph Laplacian eigenvalues. These meth-
ods are particularly suitable for estimating ΦΦΦ and ψψψ in a dis-
tributed way since we have shown how estimating the Laplacian
eigenvalues in the previous section.

The proposed collaborative network topology identification
method is summarized in algorithm 2.

Algorithm 2 : Network topology identification
For each node i, given the matrices C, D, Ei, Yi(k)
(1) Build the matrices ΦΦΦi and the vectors ψψψ i as defined in (18).
(2) Compute the local quantities ΦΦΦT

i ΦΦΦi and ΦΦΦT
i ψψψ i.

(3) Run the average consensus algorithm to get ΦΦΦ =
1
N

N
∑

i=1
ΦΦΦT

i ΦΦΦ and ψψψ = 1
N

N
∑

i=1
ΦΦΦT

i ψi.

(4) Compute the matrix U by solving ΦΦΦvec(U) = ψψψ .
(5) Each node can then estimate the matrix topology as W =

UDUT .

6. CONCLUSION

In this paper, we have first stated some observability conditions
for distributed systems modeled with graphs, then we have
proposed some algorithms for estimating the eigenvalues of
the consensus matrix, including the Laplacian eigenvalues, and
some linear functionals of initial conditions. Eventually, we
have shown how estimating the network matrix in a collab-
orative way. The observability conditions derived herein are
essentially based on spectral properties of the state matrix. In
particular, we have shown that observability depends on the
rank of a Khatri-Rao product of two matrices. The first one is
a Vandermonde matrix built with the eigenvalues of the state
matrix whereas the second one is the eigenvector matrix. There-
fore, based on the properties of the Khatri-Rao product, we
have derived some sufficient observability conditions when all
the eigenvalues are simple and nonzero. Then a new necessary
condition has been proposed for a more general case.

Based on the observability properties sharing by some nodes,
we have shown how estimating the Laplacian eigenvalues in
a decentralized way. Unlike FFT based methods recently pro-
posed in the literature, in the approach considered herein, we

are also able to estimate the multiplicities of the eigenvalues.
Several linear functionals of the initial condition can then be
computed in a finite number of steps. That is the case of the
average consensus on initial conditions. Once the consensus
matrix eigenvalues have been estimated in a decentralized way,
the nodes have to collaborate for estimating the eigenvectors in
order to reconstitute the overall network topology. In the future,
we intend to study the impact of imperfect communications
in the estimation of both Laplacian eigenvalues and network
matrix identification.
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