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Abstract

An ω-language is a set of infinite words over a finite alphabet X . We consider the class

of recursive ω-languages, i.e. the class of ω-languages accepted by Turing machines with

a Büchi acceptance condition, which is also the class Σ1

1
of (effective) analytic subsets of

Xω for some finite alphabet X . We investigate the notion of ambiguity for recursive ω-

languages with regard to acceptance by Büchi Turing machines. We first show that the class

of unambiguous recursive ω-languages is the class ∆1

1
of hyperarithmetical sets. We obtain

also that the ∆1

1
-subsets of Xω are the subsets of Xω which are accepted by strictly recursive

unambiguous finitely branching Büchi transition systems; this provides an effective analogue

to a theorem of Arnold on Büchi transition systems [Arn83]. Moreover, using some effective

descriptive set theory, we prove that recursive ω-languages satisfy the following dichotomy

property. A recursive ω-language L ⊆ Xω is either unambiguous or has a great degree of

ambiguity in the following sense: for every Büchi Turing machine T accepting L, there exist

infinitely many ω-words which have 2ℵ0 accepting runs by T . We also show that if L ⊆ Xω

is accepted by a Büchi Turing machine T and L is an analytic but non Borel set, then the set

of ω-words, which have 2ℵ0 accepting runs by T , has cardinality 2ℵ0 . In that case we say

that the recursive ω-language L has the maximum degree of ambiguity. We prove that it is

Π1

2
-complete to determine whether a given recursive ω-language is unambiguous and that it is

Σ1

2
-complete to determine whether a given recursive ω-language has the maximum degree of

ambiguity. Moreover, using some results of set theory, we prove that it is consistent with the

axiomatic system ZFC that there exists a recursive ω-language in the Borel class Π0

2
, hence

of low Borel rank, which has also this maximum degree of ambiguity.

1998 ACM Subject Classification: F.1.1 Models of Computation; F.4.1 Mathematical Logic.

Keywords: Automata and formal languages; infinite words; Turing machines; Büchi transition systems;

ambiguity; degrees of ambiguity; logic in computer science; effective descriptive set theory; models of set

theory.

1 Introduction

Languages of infinite words, also called ω-languages, accepted by finite automata were first

studied by Büchi to prove the decidability of the monadic second order theory of one succes-

sor over the integers. Since then regular ω-languages have been much studied and many ap-

plications have been found for specification and verification of non-terminating systems, see

[Tho90, Sta97, PP04] for many results and references. Other finite machines, like pushdown

automata, multicounter automata, Petri nets, have also been considered for the reading of infinite

words, see [Sta97, EH93, Fin06].
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Turing invented in 1937 what we now call Turing machines. This way he made a unique impact

on the history of computing, computer science, and the mathematical theory of computability.

Recall that the year 2012 is the Centenary of Alan Turing’s birth and that many scientific events

will commemorate this year Turing’s life and work.

Cohen and Gold studied in [CG78] the acceptance of infinite words by Turing machines via

several acceptance conditions, like the Büchi or Muller ones. It turned out that the classes of ω-

languages accepted by Büchi or Muller acceptance conditions were the same class, the class of

effective analytic sets [CG78, Sta99]

We consider in this paper the class of recursive ω-languages, i.e. the class of ω-languages

accepted by Turing machines with a Büchi acceptance condition, which is also the class Σ1
1 of

(effective) analytic subsets of Xω for some finite alphabet X.

The notion of ambiguity is very important in formal language and automata theory and has

been much studied for instance in the case of context-free finitary languages accepted by pushdown

automata or generated by context-free grammars, [ABB97], and in the case of context-free ω-

languages, [Fin03, FS03]. In the case of Turing machines reading finite words, it is easy to see that

every Turing machine is equivalent to a deterministic, hence also unambiguous, Turing machine.

Thus every recursive finitary language is accepted by an unambiguous Turing machine.

We investigate here the notion of ambiguity for recursive ω-languages with regard to accep-

tance by Büchi Turing machines, and we make use of results and methods of effective descriptive

set theory to obtain our new results.

Notice that this study may first seem to be of no practical interest, but in fact non-deterministic

Turing machines over infinite data seem to be relevant to real-life algorithmics over streams, where

non-determinism may appear either by choice or because of physical constraints and perturbation.

We first show that the class of unambiguous recursive ω-languages is the class ∆1
1 of hyper-

arithmetical sets. On the other hand, Arnold studied Büchi transition systems in [Arn83]. In

particular, he proved that the analytic subsets of Xω are the subsets of Xω which are accepted by

finitely branching Büchi transition systems, and that the Borel subsets ofXω are the subsets ofXω

which are accepted by unambiguous finitely branching Büchi transition systems. Some effective

versions of Büchi transition systems were studied by Staiger in [Sta93]. In particular, he proved

that the subsets of Xω which are accepted by strictly recursive finitely branching Büchi transition

systems are the effective analytic subsets of Xω. We obtain also here that the ∆1
1-subsets of Xω

are the subsets of Xω which are accepted by strictly recursive unambiguous finitely branching

Büchi transition systems. This provides an effective analogue to the above cited result of Arnold.

Next, we prove that recursive ω-languages satisfy the following dichotomy property. A re-

cursive ω-language L ⊆ Xω is either unambiguous or has a great degree of ambiguity: for every

Büchi Turing machine T accepting L, there exist infinitely many ω-words which have 2ℵ0 accept-

ing runs by T .

We also show that if L ⊆ Xω is accepted by a Büchi Turing machine T and L is an analytic

but non Borel set, then the set of ω-words, which have 2ℵ0 accepting runs by T , has cardinality

2ℵ0 . This extends a similar result of [FS03] in the case of context-free ω-languages and infinitary

rational relations. In that case we say that the recursive ω-language L has the maximum degree of

ambiguity.

Castro and Cucker studied decision problems for ω-languages of Turing machines in [CC89].

They gave the (high) degrees of many classical decision problems like the emptiness, the finiteness,

the cofiniteness, the universality, the equality, the inclusion, problems. In [Fin09b] we obtained

many new high undecidability results about context-free ω-languages and infinitary rational rela-

tions. We prove here new high undecidability results about ambiguity of recursive ω-languages:

it is Π1
2-complete to determine whether a given recursive ω-language is unambiguous and it is
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Σ1
2-complete to determine whether a given recursive ω-language has the maximum degree of am-

biguity.

Then, using some recent results from [Fin09a] and some results of set theory, we prove that

it is equiconsistent with the axiomatic system ZFC that there exists a recursive ω-language in the

Borel class Π0
2, hence of low Borel rank, which has also the maximum degree of ambiguity.

The paper is organized as follows. We recall some known notions in Section 2. We study

unambiguous recursive ω-languages in Section 3 and inherently ambiguous recursive ω-languages

in Section 4. Some concluding remarks are given in Section 5.

2 Reminder of some well-known notions

We assume the reader to be familiar with the theory of formal (ω-)languages [Sta97, PP04].

We recall the usual notations of formal language theory.

If Σ is a finite alphabet, a non-empty finite word over Σ is any sequence x = a1 . . . ak, where

ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length of x is k, denoted by |x|. The empty

word has no letter and is denoted by λ; its length is 0. Σ⋆ is the set of finite words (including the

empty word) over Σ. A (finitary) language V over an alphabet Σ is a subset of Σ⋆.

The first infinite ordinal is ω. An ω-word over Σ is an ω-sequence a1 . . . an . . ., where for all

integers i ≥ 1, ai ∈ Σ. When σ = a1 . . . an . . . is an ω-word over Σ, we write σ(n) = an,

σ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 and σ[0] = λ.

The concatenation of two finite words u and v is denoted u · v (and sometimes just uv). This

operation is extended to the product of a finite word u and an ω-word v: the infinite word u · v is

then the ω-word such that:

(u · v)(k) = u(k) if k ≤ |u| , and (u · v)(k) = v(k − |u|) if k > |u|.
The set of ω-words over an alphabet Σ is denoted by Σω. An ω-language V over an alphabet

Σ is a subset of Σω, and its complement (in Σω) is Σω − V , denoted V −.

We assume the reader to be familiar with basic notions of topology, which may be found in

[Kec95, LT94, Sta97, PP04]. There is a natural metric on the set Σω of infinite words over a

finite alphabet Σ containing at least two letters, which is called the prefix metric, and is defined as

follows. For u, v ∈ Σω and u 6= v let δ(u, v) = 2−lpref(u,v) where lpref(u,v) is the first integer n
such that the (n + 1)st letter of u is different from the (n + 1)st letter of v. This metric induces

on Σω the usual Cantor topology in which the open subsets of Σω are of the form W · Σω, for

W ⊆ Σ⋆. A set L ⊆ Σω is a closed set iff its complement Σω − L is an open set.

We now recall the definition of the Borel Hierarchy of subsets of Xω .

Definition 2.1 For a non-null countable ordinal α, the classes Σ0
α and Π

0
α of the Borel Hierarchy

on the topological space Xω are defined as follows: Σ0
1 is the class of open subsets of Xω , Π0

1 is

the class of closed subsets of Xω, and for any countable ordinal α ≥ 2:

Σ
0
α is the class of countable unions of subsets of Xω in

⋃
γ<α Π

0
γ .

Π
0
α is the class of countable intersections of subsets of Xω in

⋃
γ<α Σ

0
γ .

A set L ⊆ Xω is Borel iff it is in the union
⋃

α<ω1
Σ

0
α =

⋃
α<ω1

Π
0
α, where ω1 is the first

uncountable ordinal.

For a countable ordinal α, a set L ⊆ Xω is a Borel set of rank α iff it is in Σ
0
α ∪Π

0
α but not

in
⋃

γ<α(Σ
0
γ ∪Π

0
γ).

There are also some subsets of Xω which are not Borel. In particular the class of Borel subsets of

Xω is strictly included into the class Σ1
1 of analytic sets which are obtained by projection of Borel
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sets. The co-analytic sets are the complements of analytic sets.

Definition 2.2 A subset A of Xω is in the class Σ1
1 of analytic sets iff there exist a finite alphabet

Y and a Borel subset B of (X × Y )ω such that x ∈ A ↔ ∃y ∈ Y ω such that (x, y) ∈ B, where

(x, y) is the infinite word over the alphabet X × Y such that (x, y)(i) = (x(i), y(i)) for each

integer i ≥ 1.

We now define completeness with regard to reduction by continuous functions. For a countable

ordinal α ≥ 1, a set F ⊆ Xω is said to be a Σ
0
α (respectively, Π0

α, Σ1
1)-complete set iff for any

set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ
0
α (respectively, E ∈ Π

0
α, E ∈ Σ

1
1) iff there exists

a continuous function f : Y ω → Xω such that E = f−1(F ), i.e. such that (x ∈ E iff f(x) ∈ F ).

We now recall the definition of the arithmetical hierarchy of ω-languages which form the

effective analogue to the hierarchy of Borel sets of finite ranks, see [Sta97].

Let X be a finite alphabet. An ω-language L ⊆ Xω belongs to the class Σn if and only if

there exists a recursive relation RL ⊆ (N)n−1 ×X⋆ such that

L = {σ ∈ Xω | ∃k1 . . . Qnkn (k1, . . . , kn−1, σ[kn + 1]) ∈ RL}

whereQi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order). An ω-language L ⊆
Xω belongs to the class Πn if and only if its complement Xω − L belongs to the class Σn. The

inclusion relations that hold between the classes Σn and Πn are the same as for the corresponding

classes of the Borel hierarchy. The classes Σn and Πn are included in the respective classes Σ
0
n

and Π
0
n of the Borel hierarchy, and cardinality arguments suffice to show that these inclusions are

strict.

As in the case of the Borel hierarchy, projections of arithmetical sets lead beyond the arith-

metical hierarchy, to the analytical hierarchy of ω-languages. The first class of this hierarchy is the

(lightface) class Σ1
1 of effective analytic sets which are obtained by projection of arithmetical sets.

In fact an ω-language L ⊆ Xω is in the class Σ1
1 iff it is the projection of an ω-language over the

alphabet X ×{0, 1} which is in the class Π2. The (lightface) class Π1
1 of effective co-analytic sets

is simply the class of complements of effective analytic sets. We denote as usual ∆1
1 = Σ1

1 ∩Π1
1.

The (lightface) class Σ1
1 of effective analytic sets is strictly included into the (boldface) class

Σ
1
1 of analytic sets.

We assume the reader to be familiar with the arithmetical and analytical hierarchies on sub-

sets of N, these notions may be found in the textbooks on computability theory [Rog67] [Odi89,

Odi99].

We shall consider in the sequel some Σ1
1 or Π1

1 subsets of product spaces like Xω × Y ω or

N×Y ω. Moreover, in effective descriptive set theory one often considers the notion of relativized

class Σ1
1(w): for w ∈ Xω, a set L ⊆ Y ω is a Σ1

1(w)-set iff there exists a Σ1
1-set T ⊆ Xω × Y ω

such that L = {y ∈ Y ω | (w, y) ∈ T}. A set L ⊆ Y ω is a Π1
1(w)-set iff its complement is a

Σ1
1(w)-set. A set L ⊆ Y ω is a ∆1

1(w)-set iff it is in the class Σ1
1(w)∩Π1

1(w). We say that y ∈ Y ω

is in the class ∆1
1 (respectively, ∆1

1(w)) iff the singleton {y} is a ∆1
1-set (respectively, ∆1

1(w)-set).

Recall now the notion of acceptance of infinite words by Turing machines considered by Cohen

and Gold in [CG78].

Definition 2.3 A non deterministic Turing machine M is a 5-tuple M = (Q,Σ,Γ, δ, q0), where

Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet satisfying Σ ⊆ Γ, q0
is the initial state, and δ is a mapping fromQ×Γ to subsets ofQ×Γ×{L,R, S}. A configuration
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of M is a triplet (q, σ, i), where q ∈ Q, σ ∈ Γω and i ∈ N. An infinite sequence of configurations

r = (qi, αi, ji)i≥1 is called a run of M on w ∈ Σω iff:

(a) (q1, α1, j1) = (q0, w, 1), and

(b) for each i ≥ 1, (qi, αi, ji) ⊢ (qi+1, αi+1, ji+1),

where ⊢ is the transition relation of M defined as usual. The run r is said to be complete if every

position is visited, i.e. if (∀n ≥ 1)(∃k ≥ 1)(jk ≥ n). The run r is said to be oscillating if some

position is visited infinitely often, i.e. if (∃k ≥ 1)(∀n ≥ 1)(∃m ≥ n)(jm = k).

Definition 2.4 Let M = (Q,Σ,Γ, δ, q0) be a non deterministic Turing machine and F ⊆ Q,

F ⊆ 2Q. The ω-language 1′-accepted (respectively, 2-accepted) by (M, F ) is the set of ω-words

σ ∈ Σω such that there exists a complete non oscillating run r = (qi, αi, ji)i≥1 of M on σ such

that, for all i, qi ∈ F (respectively, for infinitely many i, qi ∈ F ). The ω-language 3-accepted by

(M,F) is the set of ω-words σ ∈ Σω such that there exists a complete non oscillating run r of M
on σ such that the set of states appearing infinitely often during the run r is an element of F .

The 1′-acceptance condition is also considered by Castro and Cucker in [CC89]. The 2-acceptance

and 3-acceptance conditions are now usually called Büchi and Muller acceptance conditions. Co-

hen and Gold proved the following result in [CG78, Theorem 8.2].

Theorem 2.5 (Cohen and Gold [CG78]) An ω-language is accepted by a non deterministic Tur-

ing machine with 1′-acceptance condition iff it is accepted by a non deterministic Turing machine

with Büchi (or Muller) acceptance condition.

Notice that this result holds because Cohen and Gold’s Turing machines accept infinite words

via complete non oscillating runs, while 1′, Büchi or Muller acceptance conditions refer to the

sequence of states entered during an infinite run. For other approaches, acceptance is based only

on the sequence of states entered by the machine during an infinite computation [Sta97], or one

requires also that the machine reads the whole infinite tape [EH93]. See [SW78, Sta99, FS00,

Sta00] for a study of these different approaches.

From now on we shall consider Turing machines accepting ω-words via acceptance by com-

plete runs (i.e., not necessarily non oscillating). By [Sta99, Theorem 16] (see also [Sta00, The-

orem 5.2]) we have the following characterization of the class of ω-languages accepted by these

non deterministic Turing machines.

Theorem 2.6 ([Sta99]) The class of ω-languages accepted by non deterministic Turing machines

with 1′ (respectively, Büchi, Muller) acceptance condition is the class Σ1
1 of effective analytic sets.

In the sequel we shall also restrict our study to the Büchi acceptance condition. But all the

results of this paper can easily seen to be true for any other acceptance condition leading to the

class Σ1
1 of effective analytic sets. For instance it follows from [CG78, Note 2 page 12] and from

Theorem 2.6 that the class of ω-languages accepted by Cohen’s and Gold’s non deterministic Tur-

ing machines with 1′ (respectively, Büchi, Muller) acceptance condition is the class Σ1
1. Moreover

the class Σ1
1 is also the class of ω-languages accepted by Turing machines with Büchi acceptance

condition if we do not require that the Turing machine reads the whole infinite tape but only that

it runs forever, [Sta97].

Due to the above results, we shall say, as in [Sta97], that an ω-language is recursive iff it

belongs to the class Σ1
1. Notice that in another presentation, as in [Rog67], the recursive ω-

languages are those which are in the class Σ1 ∩Π1, see also [LT94].
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3 Unambiguous recursive ω-languages

In the sequel a Büchi Turing machine will be a Turing machine reading infinite words and accept-

ing ω-words with a Büchi acceptance condition via complete runs.

Definition 3.1 A Büchi Turing machine M reading ω-words over an alphabet Σ is said to be

unambiguous iff every ω-word x ∈ Σω has at most one accepting run by M.

Definition 3.2 Let Σ be a finite alphabet. A recursive ω-language L ⊆ Σω is said to be unam-

biguous iff it is accepted by (at least) one unambiguous Büchi Turing machine. Otherwise the

recursive ω-language L is said to be inherently ambiguous.

We can now state our first result.

Proposition 3.3 If Σ is a finite alphabet and L ⊆ Σω is an unambiguous recursive ω-language

then L belongs to the (effective) class ∆1
1.

Proof. Let L ⊆ Σω be an ω-language accepted by an unambiguous Büchi Turing machine

(M, F ), where M = (Q,Σ,Γ, δ, q0) is a Turing machine and F ⊆ Q. Recall that a configuration

of the Turing machine M is a triple (q, σ, i), where q ∈ Q, σ ∈ Γω and i ∈ N. It can be coded by

the infinite word qi ·σ over the alphabet Q∪Γ, where we have assumed without loss of generality

that Q and Γ are disjoint. Then a run of M on w ∈ Σω is an infinite sequence of configurations

r = (qi, αi, ji)i≥1 which is then coded by an infinite sequence of ω-words (ri)i≥1 = (qjii · αi)i≥1

over Q ∪ Γ. Using now a recursive bijection b : (N \ {0})2 → N \ {0} and its inverse b−1 we

can effectively code the sequence (ri)i≥1 by a single infinite word r′ ∈ (Q ∪ Γ)ω defined by:

for every integer j ≥ 1 such that b−1(j) = (i1, i2), r
′(j) = ri1(i2). Moreover the infinite word

r′ ∈ (Q ∪ Γ)ω can be coded in a recursive manner by an infinite word over the alphabet {0, 1}.

We can then identify r with its code r̄ ∈ {0, 1}ω and this will be often done in the sequel. Let now

R be defined by:

R = {(w, r) | w ∈ Σω and r ∈ {0, 1}ω is an accepting run of (M, F ) on the ω-word w}.

The set R is a ∆1
1-set, and even an arithmetical set: it is easy to see that it is accepted by a

deterministic Muller Turing machine and thus it is a ∆0
3-subset of the space (Σ × {0, 1})ω , see

[Sta97].

Consider now the projection PROJΣω : Σω×{0, 1}ω → Σω defined by PROJΣω(w, r) = w
for all (w, r) ∈ Σω × {0, 1}ω . This projection is a recursive function, i.e. “there is an algorithm

which given sufficiently close approximations to (w, r) produces arbitrarily accurate approxima-

tions to PROJΣω(w, r)”, see [Mos09]. Moreover it is injective on the ∆1
1-set R because the Büchi

Turing machine (M, F ) is unambiguous. But the image of a ∆1
1-set by an injective recursive func-

tion is a ∆1
1-set, see [Mos09, page 169] and thus the recursive ω-language L = PROJΣω(R) is a

∆1
1-subset of Σω. �

In order to prove a converse statement we now first recall the notion of Büchi transition system.

Definition 3.4 A Büchi transition system is a tuple T = (Σ, Q, δ, q0, Qf ), where Σ is a finite input

alphabet, Q is a countable set of states, δ ⊆ Q × Σ × Q is the transition relation, q0 ∈ Q is the

initial state, and Qf ⊆ Q is the set of final states. A run of T over an infinite word σ ∈ Σω is an

infinite sequence of states (ti)i≥0, such that t0 = q0, and for each i ≥ 0, (ti, σ(i+1), ti+1) ∈ δ.
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The run is said to be accepting iff there are infinitely many integers i such that ti is in Qf . An

ω-word σ ∈ Σω is accepted by T iff there is (at least) one accepting run of T over σ. The ω-

language L(T ) accepted by T is the set of ω-words accepted by T . The transition system is said to

be unambiguous if each infinite word σ ∈ Σω has at most one accepting run by T . The transition

system is said to be finitely branching if for each state q ∈ Q and each a ∈ Σ, there are only

finitely many states q′ such that (q, a, q′) ∈ δ.

Arnold proved the following theorem in [Arn83].

Theorem 3.5 Let Σ be an alphabet having at least two letters.

1. The analytic subsets of Σω are the subsets of Σω which are accepted by finitely branching

Büchi transition systems.

2. The Borel subsets of Σω are the subsets of Σω which are accepted by unambiguous finitely

branching Büchi transition systems.

It is also very natural to consider effective versions of Büchi transition systems where the sets

Q, δ, and Qf are recursive. Such transition systems are studied by Staiger in [Sta93] where Q is

actually either the set N of natural numbers or a finite segment of it, and they are called strictly

recursive. It is proved by Staiger that the subsets of Σω which are accepted by strictly recursive

finitely branching Büchi transition systems are the effective analytic subsets of Σω.

On the other hand, the Büchi transition systems are considered by Finkel and Lecomte in

[FL09] where they are used in the study of topological properties of ω-powers. Using an effective

version of a theorem of Kuratowski, it is proved in [FL09] that every ∆1
1-subset of {0, 1}ω is

actually accepted by an unambiguous strictly recursive finitely branching Büchi transition system

(where the degree of branching of the transition system is actually equal to 2). Using an easy

coding this is easily extended to the case of any ∆1
1-subset of Σω , where Σ is a finite alphabet.

Using the fact that every recursive set of finite words over a finite alphabet Γ is accepted by a

deterministic hence also unambiguous Turing machine reading finite words, we can easily see that

every ω-language which is accepted by an unambiguous strictly recursive finitely branching Büchi

transition system is also accepted by an unambiguous Büchi Turing machine. This shows that the

converse of Proposition 3.3 holds and thus we have the following characterization of unambiguous

recursive ω-languages.

Theorem 3.6 Let Σ be an alphabet having at least two letters. An ω-language L ⊆ Σω is an

unambiguous recursive ω-language iff L belongs to the (effective) class ∆1
1.

Notice that we have also the effective analogue to Arnold’s Theorem 3.5

Theorem 3.7 Let Σ be an alphabet having at least two letters.

1. The effective analytic subsets of Σω are the subsets of Σω which are accepted by strictly

recursive finitely branching Büchi transition systems.

2. The ∆1
1-subsets of Σω are the subsets of Σω which are accepted by strictly recursive unam-

biguous finitely branching Büchi transition systems.

Proof. Item 1 is proved in [Sta93]. To prove that every ω-language which is accepted by a strictly

recursive unambiguous finitely branching Büchi transition system is a ∆1
1-set we can reason as

in the case of Turing machines (see the proof of Proposition 3.3). As said above, the converse

statement is proved in [FL09]. �
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4 Inherently ambiguous recursive ω-languages

The notion of ambiguity for context-free ω-languages has been studied in [Fin03, FS03]. In partic-

ular it was proved in [FS03] that every context-free ω-language which is non-Borel has a maximum

degree of ambiguity. This was proved by stating firstly a lemma, using a theorem of Lusin and

Novikov. We now recall this lemma and its proof.

Lemma 4.1 ([FS03]) Let Σ and X be two finite alphabets having at least two letters and B be a

Borel subset of Σω ×Xω such that PROJΣω(B) is not a Borel subset of Σω. Then there are 2ℵ0

ω-words α ∈ Σω such that the section Bα = {β ∈ Xω | (α, β) ∈ B} has cardinality 2ℵ0 .

Proof. Let Σ and X be two finite alphabets having at least two letters and B be a Borel subset of

Σω ×Xω such that PROJΣω(B) is not Borel.

In a first step we prove that there are uncountably many α ∈ Σω such that the section Bα

is uncountable. Recall that by a Theorem of Lusin and Novikov, see [Kec95, page 123], if for

all α ∈ Σω, the section Bα of the Borel set B was countable, then PROJΣω(B) would be a

Borel subset of Σω. Thus there exists at least one α ∈ Σω such that Bα is uncountable. In

fact we have not only one α such that Bα is uncountable. For α ∈ Σω we have {α} × Bα =
B ∩ [{α} ×Xω]. But {α} ×Xω is a closed hence Borel subset of Σω ×Xω thus {α} × Bα is

Borel as intersection of two Borel sets. If there was only one α ∈ Σω such that Bα is uncountable,

then C = {α}×Bα would be Borel so D = B−C would be borel because the class of Borel sets

is closed under boolean operations. But all sections of D would be countable thus PROJΣω(D)
would be Borel by Lusin and Novikov’s Theorem. Then PROJΣω(B) = {α} ∪ PROJΣω(D)
would be also Borel as union of two Borel sets, and this would lead to a contradiction. In a similar

manner we can prove that the set U = {α ∈ Σω | Bα is uncountable } is uncountable, otherwise

U = {α0, α1, . . . αn, . . .} would be Borel as the countable union of the closed sets {αi}, i ≥ 0.

For each n ≥ 0 the set {αn} × Bαn
would be Borel, and C = ∪n∈ω{αn} × Bαn

would be

Borel as a countable union of Borel sets. So D = B − C would be borel too. But all sections

of D would be countable thus PROJΣω(D) would be Borel by Lusin and Novikov’s Theorem.

Then PROJΣω(B) = U ∪ PROJΣω(D) would be also Borel as union of two Borel sets, and this

would lead to a contradiction. So we have proved that the set {α ∈ Σω | Bα is uncountable } is

uncountable.

On the other hand we know from another Theorem of Descriptive Set Theory that the set

{α ∈ Σω | Bα is countable } is a Π
1

1
-subset of Σω , see [Kec95, page 123]. Thus its comple-

ment {α ∈ Σω | Bα is uncountable } is analytic. But by Suslin’s Theorem an analytic subset

of Σω is either countable or has cardinality 2ℵ0 , [Kec95, p. 88]. Therefore the set {α ∈ Σω |
Bα is uncountable } has cardinality 2ℵ0 . Recall now that we have already seen that, for each

α ∈ Σω, the set {α} ×Bα is Borel. Thus Bα itself is Borel and by Suslin’s Theorem Bα is either

countable or has cardinality 2ℵ0 . From this we deduce that {α ∈ Σω | Bα is uncountable } =
{α ∈ Σω | Bα has cardinality 2ℵ0} has cardinality 2ℵ0 . �

We can now apply this lemma to the study of ambiguity of Turing machines, in a similar way

as in [FS03] for context-free ω-languages. We can now state the following result.

Theorem 4.2 Let L ⊆ Σω be an ω-language accepted by a Büchi Turing machine (M, F ) such

that L is an analytic but non Borel set. The set of ω-words, which have 2ℵ0 accepting runs by

(M, F ), has cardinality 2ℵ0 .

Proof. Let L ⊆ Σω be an analytic but non-Borel ω-language accepted by a Büchi Turing machine

(M, F ), where M = (Q,Σ,Γ, δ, q0) is a Turing machine and F ⊆ Q. As in the proof of
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Proposition 3.3 we consider the set R defined by:

R = {(w, r) | w ∈ Σω and r ∈ {0, 1}ω is an accepting run of (M, F ) on the ω-word w}.

The set R is a ∆1
1-set, and thus it is a Borel subset of Σω × {0, 1}ω . But by hypothesis the set

PROJΣω(R) = L is not Borel. Thus it follows from Lemma 4.1 that the set of ω-words, which

have 2ℵ0 accepting runs by (M, F ), has cardinality 2ℵ0 . �

We now know that every recursive ω-language which is non-Borel has a maximum degree of

ambiguity. On the other hand Proposition 3.3 states that every recursive ω-language which does

not belong to the (effective) class ∆1
1 is actually inherently ambiguous. In fact we can prove a

stronger result, using the following effective version of a theorem of Lusin and Novikov:

Theorem 4.3 ( see 4.F.16 page 195 of [Mos09] ) Let Σ and X be two finite alphabets having at

least two letters and B be a ∆1
1-subset of Σω × Xω such that for all α ∈ Σω the section Bα =

{β ∈ Xω | (α, β) ∈ B} is countable. Then the set PROJΣω(B) is also a ∆1
1-subset of Σω.

We can now state the following result.

Theorem 4.4 Let L ⊆ Σω be an ω-language accepted by a Büchi Turing machine (M, F ) such

that L is not a ∆1
1-set. Then there exist infinitely many ω-words which have 2ℵ0 accepting runs by

(M, F ).

Proof. Let L ⊆ Σω be an ω-language which is not a ∆1
1-set and which is accepted by a Büchi

Turing machine (M, F ), where M = (Q,Σ,Γ, δ, q0) is a Turing machine and F ⊆ Q. As in the

proof of Proposition 3.3 we consider the set R defined by:

R = {(w, r) | w ∈ Σω and r ∈ {0, 1}ω is an accepting run of (M, F ) on the ω-word w}.

The set of accepting runs of (M, F ) on an ω-word w ∈ Σω is the section

Rw = {r ∈ {0, 1}ω | (w, r) ∈ R}.

We have seen that the set R is a ∆1
1-set hence also a Σ1

1-set, and thus for each ω-word w ∈ Σω the

setRw is in the relativized class Σ1
1(w). On the other hand it is known that a Σ1

1(w)-set is countable

if and only if all of its members are in the class ∆1
1(w), see [Mos09, page 184]. Therefore the set

Rw is countable iff for all r ∈ Rw r ∈ ∆1
1(w). Notice also that Rw is an analytic set thus it is

either countable or has the cardinality 2ℵ0 of the continuum.

Recall that Harrington, Kechris and Louveau obtained a coding of ∆1
1-subsets of {0, 1}ω in

[HKL90]. Notice that in the same way they obtained also a coding of the ∆1
1(w)-subsets of {0, 1}ω

which we now recall.

For each w ∈ Σω there esists a Π1
1(w)-set W (w) ⊆ N and a Π1

1(w)-set C(w) ⊆ N× {0, 1}ω

such that, if we denote Cn(w) = {x ∈ {0, 1}ω | (n, x) ∈ C(w)}, then {(n, α) ∈ N × {0, 1}ω |
n ∈W (w) and α /∈ Cn(w)} is a Π1

1(w)-subset of the product space N× {0, 1}ω and the ∆1
1(w)-

subsets of {0, 1}ω are the sets of the form Cn(w) for n ∈W (w).

We can now express [(∃n ∈W (w)) Cn(w) = {x}] by the sentence φ(x,w):

∃n [ n ∈W (w) and (n, x) ∈ C(w) and ∀y ∈ {0, 1}ω [(n ∈W (w) and (n, y) /∈ C(w)) or (y = x)]]
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But we know that C(w) is a Π1
1(w)-set and that {(n, α) ∈ N × {0, 1}ω | n ∈ W (w) and α /∈

Cn(w)} is a Π1
1(w)-subset of N × {0, 1}ω . Moreover the quantification ∃n in the above formula

is a first-order quantification therefore the above formula φ(x,w) is a Π1
1-formula. We can now

express that Rw is countable by the sentence ψ(w) :

∀x ∈ {0, 1}ω [(x /∈ Rw) or (∃n ∈W (w) Cn(w) = {x})]

that is,

∀x ∈ {0, 1}ω [(x /∈ Rw) or φ(x,w)]

This is a Π1
1-formula thus Rw is uncountable is expressed by a Σ1

1-formula and thus the set

D = {w | w ∈ Σω and there are uncountably many accepting runs of (M, F ) on w}.

is a Σ1
1-set.

Towards a contradiction, assume now that the set D is finite. Then for every x ∈ D the

singleton {x} is a ∆1
1-subset of {0, 1}ω because D is a countable Σ1

1-set. But D is finite so it

would be the unuion of a finite set of ∆1
1-sets and thus it would be also a ∆1

1-set. Consider now

the set R′ = R\(D×{0, 1}ω). This set would be also a ∆1
1-set and PROJΣω(R′) = L\D would

not be in the class ∆1
1 because by hypothesis L is not a ∆1

1-set. But then we could infer from

Theorem 4.3 that there would exist an ω-word w ∈ L \ D having uncountably many accepting

runs by the Büchi Turing machine (M, F ). This is impossible by definition of D and thus we can

conclude that D is infinite, i.e. that there exist infinitely many ω-words which have uncountably

many, or equivalently 2ℵ0 , accepting runs by (M, F ). �

Remark 4.5 We can not obtain a stonger result like “there exist 2ℵ0 ω-words which have 2ℵ0

accepting runs by (M, F )” in the conclusion of the above Theorem 4.4 because there are some

countable subsets of Σω which are in the class Σ1
1 \∆

1
1.

Remark 4.6 The result given by Theorem 4.4 is a dichotomy result for recursive ω-languages. A

recursive ω-language L is either unambiguous or has a great degree of ambiguity: for every Büchi

Turing machine (M, F ) accepting it there exist infinitely many ω-words which have 2ℵ0 accepting

runs by (M, F ). This could be compared to the case of context-free ω-languages accepted by

Büchi pushdown automata: it is proved in [Fin03] that there exist some context-free ω-languages

which are inherently ambiguous of every finite degree n ≥ 2 (and also some others of infinite

degree).

There are many examples of recursive ω-languages which are Borel and inherently ambiguous

of great degree since there are some sets which are (Σ1
1 \∆

1
1)-sets in every Borel class Σ0

α or Π0
α.

On the other hand recall that Kechris, Marker and Sami proved in [KMS89] that the supremum

of the set of Borel ranks of (effective) Σ1
1-sets is the ordinal γ12 . This ordinal is precisely defined

in [KMS89] where it is proved to be strictly greater than the ordinal δ12 which is the first non ∆1
2

ordinal. In particular it holds that ωCK
1 < γ12 , where ωCK

1 is the first non-recursive ordinal. On the

other hand it is known that the ordinals γ < ωCK
1 are the Borel ranks of (effective) ∆1

1-sets. Thus

we can state the following result.

Proposition 4.7 If Σ is a finite alphabet and L ⊆ Σω is a recursive ω-language which is Borel

of rank α greater than or equal to the ordinal ωCK
1 then for every Büchi Turing machine (M, F )

accepting it there exist infinitely many ω-words which have 2ℵ0 accepting runs by (M, F ).
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Notice that this can be applied in a similar way to context-free ω-languages accepted by Büchi

pushdown automata and to infinitary rational relations accepted by Büchi 2-tape automata, where

ambiguity refers here to acceptance by these less powerful accepting devices, see [Fin03, FS03].

If L ⊆ Σω is a context-free ω-language (respectively, L ⊆ Σω × Γω is an infinitary rational

relation) which is Borel of rank α greater than or equal to the ordinal ωCK
1 then L is an inherently

ambiguous context-free ω-language (respectively, infinitary rational relation) of degree 2ℵ0 as

defined in [Fin03, FS03].

We have established in Theorem 4.2 that if L ⊆ Σω is an ω-language accepted by a Büchi

Turing machine (M, F ) such that L is an analytic but non Borel set, then the set of ω-words,

which have 2ℵ0 accepting runs by (M, F ), has cardinality 2ℵ0 . It is then very natural to ask

whether this very strong ambiguity property is characteristic of non Borel recursive ω-languages

or if some Borel recursive ω-languages could also have this strongest degree of ambiguity. We are

going to see that it is consistent with ZFC that some ω-languages in the Borel class Π0
2, hence of a

low Borel rank, can have this maximum degree of ambiguity. We first formally define this notion.

Definition 4.8 Let Σ be a finite alphabet and L ⊆ Σω be a recursive ω-language. Then the ω-

language L is said to have the maximum degree of ambiguity if, for every Büchi Turing machine

(M, F ) accepting L, the set of ω-words, which have 2ℵ0 accepting runs by (M, F ), has cardi-

nality 2ℵ0 . The set of recursive ω-languages having the maximum degree of ambiguity is denoted

Max-Amb.

We are firstly going to state some high undecidability properties. Recall that a Büchi Turing

machine has a finite description and thus one can associate in a recursive and injective manner a

positive integer z to each Büchi Turing machine T . The integer z is then called the index of the

machine T and we have a Gödel numbering of the Büchi Turing machines. In the sequel the Büchi

Turing machine of index z, reading words over the alphabet Γ = {a, b}, will be denoted Tz.

We recall the notions of 1-reduction and of Σ1
n-completeness (respectively, Π1

n-completeness)

for subsets of N (or of Nl for some integer l ≥ 2). Given two sets A,B ⊆ N we say A is 1-

reducible to B and write A ≤1 B if there exists a total computable injective function f from N

to N with A = f−1[B]. A set A ⊆ N is said to be Σ1
n-complete (respectively, Π1

n-complete) iff

A is a Σ1
n-set (respectively, Π1

n-set) and for each Σ1
n-set (respectively, Π1

n-set) B ⊆ N it holds

that B ≤1 A. It is known that, for each integer n ≥ 1, there exist some Σ1
n-complete and some

Π1
n-complete subsets of N; some examples of such sets are described in [Rog67, CC89].

Theorem 4.9 The unambiguity problem for ω-languages of Büchi Turing machines is Π1
2-complete,

i.e. : The set {z ∈ N | L(Tz) is non ambiguous } is Π1
2-complete.

Proof. We can first express “Tz is non ambiguous” by :

“∀x ∈ Γω ∀r, r′ ∈ {0, 1}ω [(r and r′ are accepting runs of Tz on x) → r = r′]”

which is a Π1
1-formula. Then “L(Tz) is non ambiguous” can be expressed by the following for-

mula: “∃y[L(Tz) = L(Ty) and (Ty is non ambiguous)]”. This is a Π1
2-formula because “L(Tz) =

L(Ty)” can be expressed by the Π1
2-formula

“∀x ∈ Γω [(x ∈ L(Tz) and x ∈ L(Ty)) or (x /∈ L(Tz) and x /∈ L(Ty))]”,

and the quantification ∃y is a first-order quantification bearing on integers. Thus the set {z ∈ N |
L(Tz) is non ambiguous } is a Π1

2-set.
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To prove completeness we use a construction we already used in [Fin09b]. We first define

the following operation on ω-languages. For x, x′ ∈ Γω the ω-word x ⊗ x′ is defined by: for

every integer n ≥ 1 (x ⊗ x′)(2n − 1) = x(n) and (x ⊗ x′)(2n) = x′(n). For two ω-languages

L,L′ ⊆ Γω, the ω-language L⊗ L′ is defined by L⊗ L′ = {x⊗ x′ | x ∈ L and x′ ∈ L′}.

We know that there is a simple example of Σ1
1-complete set L ⊆ Γω accepted by a Büchi

Turing machine. It is then easy to define an injective computable function θ from N into N such

that, for every integer z ∈ N, it holds that L(Tθ(z)) = (L ⊗ Γω) ∪ (Γω ⊗ L(Tz)). There are now

two cases.

First case. L(Tz) = Γω. Then L(Tθ(z)) = Γω and L(Tθ(z)) is unambiguous.

Second case. L(Tz) 6= Γω . Then there is an ω-word x ∈ Γω such that x /∈ L(Tz). But L(Tθ(z)) =
(L ⊗ Γω) ∪ (Γω ⊗ L(Tz)) thus {σ ∈ Γω | σ ⊗ x ∈ L(Tθ(z))} = L is a Σ

1
1-complete set.

Thus L(Tθ(z)) is not Borel and this implies, by Theorem 4.2, that L(Tθ(z)) is in Max-Amb and in

particular that L(Tθ(z)) is inherently ambiguous.

We have proved, using the reduction θ, that :

{z ∈ N | L(Tz) = Γω} ≤1 {z ∈ N | L(Tz) is non ambiguous }

Thus this latter set is Π1
2-complete because the universality problem for ω-languages of Turing

machines is itself Π1
2-complete, see [CC89, Fin09b]. �

Theorem 4.10 The set {z ∈ N | L(Tz) ∈ Max-Amb} is Σ1
2-complete.

Proof. We first show that the set {z ∈ N | L(Tz) ∈ Max-Amb} is in the class Σ1
2. In a similar

way as in the proof of Proposition 3.3 we consider the set Rz defined by:

Rz = {(w, r) | w ∈ Γω and r ∈ {0, 1}ω is an accepting run of Tz on the ω-word w}.

This set Rz is a ∆1
1-subset of Γω × {0, 1}ω . Notice that the set of accepting runs of Tz on an

ω-word w ∈ Γω is the section

Rz,w = {r ∈ {0, 1}ω | (w, r) ∈ Rz}.

It is a set in the relativized class Σ1
1(w) and thus it is uncountable iff it contains a point r0 such

that {r0} is not a ∆1
1(w)-subset of {0, 1}ω . Moreover we have already seen that the set

Dz = {w | w ∈ Γω and there are uncountably many accepting runs of Tz on w}.

is a Σ1
1-set. Thus it is uncountable iff it contains a member which is not in class ∆1

1. Recall now

that Harrington, Kechris and Louveau obtained a coding of ∆1
1-subsets (respectively, of ∆1

1(w)-
subsets) of {0, 1}ω in [HKL90], (see the proof of the above Theorem 4.4). Then there is a Π1

1-

formula Θ1(w) such that for every w ∈ Γω it holds that {w} is in the class ∆1
1 iff Θ1(w) holds.

And there is a Π1
1-formula Θ2(w, r) such that for every w ∈ Γω and r ∈ {0, 1}ω it holds that {r}

is in the class ∆1
1(w) iff Θ2(w, r) holds. We can now express the sentence “the set of ω-words,

which have 2ℵ0 accepting runs by Tz, has cardinality 2ℵ0” by the following formula Ω(z):

∃w∃r[¬Θ1(w) ∧ ¬Θ2(w, r) ∧ (w, r) ∈ Rz]

This formula Ω(z) is clearly a Σ1
1-formula. We can now express the sentence “L(Tz) ∈ Max-Amb”

by the following sentence:

∀z′ ∈ N[L(Tz) 6= L(Tz′) or Ω(z′)]
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This is a Σ1
2-formula because “L(Tz) 6= L(Tz′)” is easily espressed by a Σ1

2-formula (see the proof

of Theorem 4.9), the formula Ω(z) is a Σ1
1-formula, and the first-order quantification ∀z′ bears on

integers. Thus we have proved that the set {z ∈ N | L(Tz) ∈ Max-Amb} is in the class Σ1
2.

To prove the completeness part of the theorem we can use the same reduction θ as in the proof

of the preceding theorem and the fact that the universality problem for ω-languages of Turing

machines is Π1
2-complete. �

We now briefly recall some notions of set theory which will be useful for the next result and

refer the reader to a textbook like [Jec02] for more background on set theory.

The usual axiomatic system ZFC is Zermelo-Fraenkel system ZF plus the axiom of choice

AC. The axioms of ZFC express some natural facts that we consider to hold in the universe of

sets. A model (V, ∈) of an arbitrary set of axioms A is a collection V of sets, equipped with the

membership relation ∈, where “x ∈ y” means that the set x is an element of the set y, which

satisfies the axioms of A. We often say “ the model V” instead of ”the model (V, ∈)”.

We say that two sets A and B have same cardinality iff there is a bijection from A onto B and

we denote this by A ≈ B. The relation ≈ is an equivalence relation. Using the axiom of choice

AC, one can prove that any set A can be well-ordered so there is an ordinal γ such that A ≈ γ.

In set theory the cardinal of the set A is then formally defined as the smallest such ordinal γ. The

infinite cardinals are usually denoted by ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . . The continuum hypothesis CH

says that the first uncountable cardinal ℵ1 is equal to 2ℵ0 which is the cardinal of the continuum.

If V is a model of ZF and L is the class of constructible sets of V, then the class L is a model

of ZFC + CH. Notice that the axiom V=L, which means “every set is constructible”, is consistent

with ZFC because L is a model of ZFC + V=L.

Consider now a model V of ZFC and the class of its constructible sets L ⊆ V which is another

model of ZFC. It is known that the ordinals of L are also the ordinals of V, but the cardinals in

V may be different from the cardinals in L. In particular, the first uncountable cardinal in L is

denoted ℵL

1 , and it is in fact an ordinal of V which is denoted ωL

1 . It is well-known that in general

this ordinal satisfies the inequality ωL

1 ≤ ω1. In a model V of the axiomatic system ZFC + V=L

the equality ωL

1 = ω1 holds, but in some other models of ZFC the inequality may be strict and

then ωL

1 < ω1.

The following result was proved in [Fin09a].

Theorem 4.11 There exists a real-time 1-counter Büchi automaton A, which can be effectively

constructed, such that the topological complexity of the ω-language L(A) is not determined by

the axiomatic system ZFC. Indeed it holds that :

(1) (ZFC + V=L). The ω-language L(A) is an analytic but non-Borel set.

(2) (ZFC + ωL

1 < ω1). The ω-language L(A) is a Π
0
2-set.

We can now state the announced result.

Theorem 4.12 (ZFC + ωL

1 < ω1). There exists an ω-language accepted by a real-time 1-counter

Büchi automaton which belongs to the Borel class Π
0
2 and which has the maximum degree of

ambiguity with regard to acceptance by Turing machines, i.e. which belongs to the class Max-

Amb.

Proof. Consider the real-time 1-counter Büchi automaton A given by Theorem 4.11. It may be

seen as a Turing machine which has an index z0 so that L(A) = L(Tz0). Let now V be a model
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of (ZFC + ωL

1 < ω1). In this model L(A) is a Borel set in the class Π0
2. We are going to show that

it is also in the class Max-Amb.

Consider the model L which is the class of constructible sets of V. The class L is a model of

(ZFC + V=L) and thus by Theorem 4.11 the ω-language L(A) is an analytic but non-Borel set in

L. Then it follows from Theorem 4.2 that in L the ω-language L(Tz0) is in the class Max-Amb.

On the other hand, the set {z ∈ N | L(Tz) ∈ Max-Amb} is a Σ1
2-set by Theorem 4.10. Thus by

the Shoenfield’s Absoluteness Theorem (see [Jec02, page 490]) this set is the same in the model V

and in the model L. This implies that the ω-language L(A) = L(Tz0) has the maximum degree

of ambiguity with regard to acceptance by Turing machines in the model V too. �

Remark 4.13 In order to prove Theorem 4.12 we do not need to use any large cardinal axiom or

even the consistency of such an axiom, because it is known that (ZFC + ωL

1 < ω1) is equiconsistent

with ZFC. However it is known that the existence of a measurable cardinal (or even of a larger

one), or the axiom of analytic determinacy, imply the strict inequality ωL

1 < ω1 and thus the

existence of the ω-language in the class Max-Amb given by Theorem 4.12.

5 Concluding remarks

We have investigated the notion of ambiguity for recursive ω-languages. In particular Theorem

4.4 gives a remarkable dichotomy result for recursive ω-languages: a recursive ω-language L is

either unambiguous or has a great degree of ambiguity.

On the other hand, Theorem 4.12 states that it is consistent with ZFC that there exists a re-

cursive ω-language which belongs to the Borel class Π
0
2 and which has the maximum degree

of ambiguity. The following question now naturally arises: “Does there exist such a recursive

ω-language in every model of ZFC ?”
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