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The photothermal heterodyne imaging technique enabled studies of individual weakly absorbing nano-objects in various environments. It uses a photo-induced change in the refractive index of the environment. Taking advantage of the dramatic index of refraction change occurring around a thermotropic liquid crystalline phase transition, we demonstrate a 40-fold signal-to-noise ratio enhancement for gold nanoparticles imaged in 4-Cyano-4'-pentylbiphenyl (5CB) liquid crystals over those in a water environment. We studied the photothermal signal as a function of probe laser polarization, heating power, and sample temperature quantifying the optimal enhancement. This study established photothermal microscopy as a valuable technique for inducing and/or detecting local phase transitions at the nanometer scales.

With growing research in nanoparticles and their uses in nanosystems such as biological sensing and therapeutics [START_REF]Nanoparticle Technology Handbook[END_REF] , there is a need for developing simple, versatile methods to characterize them at the single-nano-object level. The most common techniques are based on luminescence but are often subject to photobleaching or blinking. Alternative, more stable techniques have been developed relying solely on absorption of nano-objects [START_REF] Van Dijk | Absorption and Scattering Microscopy of Single Metal Nanoparticles[END_REF] . One such highly sensitive technique is photothermal heterodyne imaging (PHI) [START_REF] Berciaud | Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals[END_REF] , which has been shown to image Au nanoparticles as small as 1.4 nm, semiconductor nanocrystals [START_REF] Berciaud | Photothermal Absorption Spectroscopy of Individual Semiconductor Nanocrystals[END_REF] or single molecules of Black-Hole-Quencher-DNA construct [START_REF] Gaiduk | Room-Temperature Detection of a Single Molecule's Absorption by Photothermal Contrast[END_REF] . To further improve the sensitivity of PHI [START_REF] Gaiduk | Detection Limits in Photothermal Microscopy[END_REF] , it is important to choose a medium that has the greatest refractive index variations with temperature ∂ T n [START_REF] Boyer | Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers[END_REF][START_REF] Berciaud | Photothermal Heterodyne Imaging of Individual Metallic Nanoparticles: Theory Versus Experiments[END_REF] . In this context, a medium displaying sudden refractive index variations around a phase transition should offer high signal sensitivities.

Moreover, PHI enables probing of temperature dependent effects at sub-wavelength length scales around heated nanoparticles. Indeed, many new materials with advantageous physical properties are produced by incorporating nanostructures. PHI can thus offer unique insights into how the material surrounding a nanostructure behaves at the nanoscale [START_REF] Rings | Hot Brownian Motion[END_REF] , which becomes very interesting when the material undergoes a phase transition.

Herein, we show that thermotropic phase transitions in 4-Cyano-4'-pentylbiphenyl (5CB) liquid crystals can provide a 40-fold enhancement of the photothermal signals. Moreover, using the temperature dependence of the signal enhancement measured on individual gold nanoparticles we probe the nematic-to-isotropic phase transition occurring at the nanoscale level. PHI microscopy uses a tightly focused time-modulated heating beam (532 nm) superimposed with a non-resonant probe beam (633 nm) [START_REF] Berciaud | Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals[END_REF][START_REF] Berciaud | Photothermal Heterodyne Imaging of Individual Metallic Nanoparticles: Theory Versus Experiments[END_REF] . An absorbing nano-object in the focal volume produces a timemodulated refractive index profile of amplitude Δn(r) with r the distance to the nanoparticle center. This profile is given by Δn(r) = ΔT (r)∂ T n(r) with ΔT (r) = ΔT S f (r) the temperature profile around the particle, ΔT S the temperature rise at the surface of the particle (proportional to the absorbed power P abs ), and f (r) a function which depends on the heat diffusion properties in the medium. The interaction of the probe beam with the refraction index profile produces a scattered field with sidebands at the modulation frequency. A lock-in detection system is used to detect the beatnote of the forward scattered field with the transmitted probe field at the modulation frequency.

5CB is a well-characterized liquid crystal, in both thermal and optical properties as well as phase behavior with advantageous photothermal properties [START_REF] Ahlers | Thermal Conductivity of the Nematic Liquid Crystal 4-n-pentyl-4'-cyanobiphenyl[END_REF][START_REF] Horn | Refractive Indices and Order Parameters of Two Liquid Crystals[END_REF] . As shown in Figure 1a, its index of refraction is highly dependent on both temperature and polarization with respect to the nematic axis. Indeed in the isotropic phase ∂ T n iso ∼ -6 10 -4 K -1 a value significantly larger than that of water (∼ -10 -4 K -1 ) and comparable to that of viscous silicone oils (between -3.5 10 -4 K -1 to -5.0 10 -4 K -1 ). Well below the phase transition temperature (T C ∼ 32°C, see methods) [START_REF] Li | High Temperature-Gradient Refractive Index Liquid Crystals[END_REF] , a linearly polarized beam parallel or orthogonal to the nematic axis will experience distinct indexes of refraction n // and n ⊥ respectively. Interestingly, ∂ T n // is four times larger than in the isotropic phase while ∂ T n ⊥ is weaker and have opposite sign. Around T C the index of refraction displays sharp variations with T where large PHI signal enhancements are expected.

Figure 1 d-e shows PHI images of 28 nm diameter gold beads spin coated on a glass coverslip and covered by an aligned 7-10 µm thick layer of 5CB (see methods). The PHI signal S PHI represents the magnitude of demodulated signal by the lock-in amplifier. Images are recorded with a probe beam polarized along the nematic axis at sample temperature T sample of 23°C (Figure 1d) and 31°C (Figure 1e).

The heating intensity was 10 kW/cm 2 corresponding to an absorbed power of P abs ∼ 100 nW for an average size bead and an average temperature rise at the surface of the particle 13 of ΔT S ∼ 2.5 °C. This implies that, in the case of Figure 1d the maximum temperature at the vicinity of the particles T sample + ΔT S does not reach T C , while in Figure 1e the temperature is modulated around T C such that the liquid crystal experiences a local phase transition in the vicinity of the heated beads. In order to compare the signal enhancement due to the use of the liquid crystal we recorded images of the same size particles covered by silicone oil instead of 5CB. For quantitative comparison, the images are recorded at the same ΔT S , i.e. the same absorbed power P abs (Figure 1c) and not at the same heating intensity, since the gold nanoparticle absorption cross-section depends on the medium index of refraction [START_REF] Kreibig | Optical properties of metal clusters[END_REF] . For this purpose, we record direct absorption images of the heating beam by the nanoparticles in the different media and adjust the heating intensity to achieve the desired P abs . A clear signal enhancement is observed with liquid crystals. In the case of Figure 1d (well below phase transition), the enhancement is due to the fact that 5CB has ∂ T n four times larger than silicone oil. Figure 1e reveals that around the transition an additional enhancement is obtained. The signal enhancement is more striking if the signals obtained with 5CB are compared to that obtained in water. At the same P abs the nanoparticles cannot be detected in water and one needs to increase the heating intensity by four fold to barely image them (Figure 1b). We obtained that the observed enhancement between water medium and 5CB reaches 40-folds in average. The heating intensity was adjusted in silicone oil and 5CB to induce an absorption power leading to 2.5°C temperature rise of at the surface of the nanoparticle. In water, the absorbed power is 3 times larger. (f) Photothermal normalized signal magnitude and phase as a function probe beam polarization with respect to the nematic axis.

Figure 1f shows the signal magnitude dependence on the probe beam polarization orientation of nanoparticles imaged in 5CB medium. As expected, the maximum signal is obtained along the nematic axis (the reference orientation), drops to the noise level at ±70° and then increases to a lower maximum for orthogonal orientations. Furthermore, the phase of the demodulated signal delivered by the lock-in amplifier displays a π shift at ±70° (Figure 1f). These observations are a consequence of the opposite variations of n // and n ⊥ with temperature (Figure 1a). The detailed modelization of the signal is out of the scope of this letter and will be published elsewhere.

In order to unambiguously state that the local phase transition contributes to the observed signal enhancement, we now study the signal dependence with ΔT S (i.e. with P abs ). Within the simplified model of a plane wave at the focus of the beams and of small index of refraction variations, the PHI signal can be approximated to S PHI ∝ d 3  r ∫ Δn(r) . For single-phase mediums (silicone oils, water), the index of refraction gradient can be considered constant for reasonable temperature excursions. In this case, S PHI ∝ ΔT S ∂ T n d 3  r ∫ f (r) scales linearly with ΔT S as can be seen on Figure 2a (open symbols). In a phase changing medium, the former proportionality does not hold (see Figure 2 filled symbols) because ∂ T n is function of the temperature thus function of the distance to the particle. Indeed, at sample temperature well below T C , the signal first increases linearly with ΔT S at a steeper assent than in silicone oil due to the greater ∂ T n of the 5CB nematic phase. Then, a super-linear growth in the signal is clearly visible owing to the sharp increase of ∂ T n // induced by the phase transition that occurs in the environment of the nanoparticle. As the power is further increased, the relative proportion of material undergoing a phase transition in the probe beam focal volume increases giving more of a signal enhancement. The latest starts to level off when the heating power induces a phase transition in the whole volume defined by the probe beam. One can estimate the local phase transition temperature (∼32°C) from ΔT S at which the signal starts to deviate from linearity. For larger absorbed powers, the signal increases again linearly but with a lower slope given by ∂ T n iso , of the isotropic phase. This overall behavior is clearly understood from Figure 2b-c where we have solved the heat equation diffusion in a medium experiencing a phase transition [START_REF] Bonacina | Numerical Solution of Phase-Change Problems[END_REF] using the thermal parameters of 5CB 10 and an averaged heat conductivity for the nematic phase in order to plot ΔT (r) (Figure 2b) and -Δn // (r) 2c) for different ΔT S . One can see that it is the rapid drop of ΔT (r) with r which limits the extent of the region undergoing a phase transition around the nanoparticle and imposes the signal evolution with ΔT S . 

(Figure
Noteworthy, the contribution of the phase change to the overall PHI signal shown above is not fully exploited in the experimental configuration of Figure 2 (T sample well below T C ). Indeed, if all the material within the probe beam can transitioned without the need of high P abs , a greater signal enhancement should be obtained. This can be accomplished by using small ΔT S and increasing the overall temperature of the sample near T C . In Figure 3 we recorded S PHI as a function of T sample (22°C to 34°C) while maintaining ΔT S to a fixed small value (0.5°C). As expected from the sharp variation of ∂ T n the enhancement of the signal when T sample is raised from 23°C to 31°C is larger using ΔT S = 0.5 °C (≈4.3

Figure 3) than ΔT S = 2.5 °C (≈2.8 Figure 1d-e). In conclusion, we have shown that the sensitivity of photothermal microscopy can be enhanced by up to 40-fold near the phase transition of 5CB liquid crystals. We demonstrate that the fraction of material phase transitioning within the confocal volume determines the signal enhancement. Optimal enhancement is obtained for probe beam polarization along the nematic axis and sample temperature close to the phase transition of the liquid crystals. Further experiments aim to the detection of tiny nanoabsorbers and to use nano-heating to study order dynamics in such media.

EXPERIMENTAL METHODS

The PHI setup used here corresponds to the forward direction scheme [START_REF] Berciaud | Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals[END_REF][START_REF] Berciaud | Photothermal Heterodyne Imaging of Individual Metallic Nanoparticles: Theory Versus Experiments[END_REF] . A non-resonant probe beam (HeNe, 632.8 n) and an absorbed heating beam (532 nm, frequency doubled Nd:YAG laser) are overlaid and focused on the sample by means of a high NA microscope objective [START_REF] Selmke | Photothermal Single-Particle Microscopy: Detection of a Nanolens[END_REF] (60×, NA=1.49, oil immersion). The intensity of the heating beam is modulated at a frequency Ω (a few 100 kHz) by an acousto-optic modulator. The interfering probe-transmitted and forward-scattered fields are efficiently collected using a second microscope objective (60×, water immersion) on a fast photodiode and fed into a lock-in amplifier in order to extract the beatnote signal at Ω. Photothermal images are obtained by raster scanning of the samples by means of a piezoscanner stage. The probe beam power (∼100-200µW) induces a particle surface heating (< 2°C) which is not modulated and does not contribute to the PHI signal. A resistor heating element with 11 mm optical clearance and two objective heaters were used to control the temperature within 0.1°C (Bioscience Tools).

The liquid crystal 4-Cyano-4'-pentylbiphenyl (5CB) was purchased from Hebei Maison Chemical Co., LTD. Gold nanoparticles (Nanopartz TM Inc.) of 27.8±1.5 nm diameter as determined by TEM were diluted with (2%) aqueous dispersions of polyvinyl alcohol (PVA) and spin-coating on a plasma cleaned coverslip. A 1% PVA solution was spin-coated onto a second plasma-cleaned coverslip before being lightly scratched with velvet to induce large, highly aligned domains in the 5CB liquid crystal that is placed immediately after (1.5 μL drop). The PVA coated coverslip that contained the nanoparticles was then turned upsidedown (coated side facing down) and placed on top sandwiching the 5CB between both coverslips. Once the 5CB fills the space between the coverslips, the thickness is estimated to be between 7 and 10 μm, epoxy was then used to seal and fix the coverslips in place. As a control, samples were prepared by the same technique (without epoxy) with viscous silicone oil or water.
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 1 Figure 1: (a) Index of refractions (parallel and perpendicular to the nematic axis) of 5CB as function of
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 2 Figure 2: (a) Signal evolution of individual gold nanoparticles recorded in 5CB (red filled symbols)
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 3 Figure 3: PHI signal measured in 5CB as a function of increasing global sample temperature for 28 nm

  Approximating the temperature profile around the nanoparticle by T sample + ΔT S a r , one should thus findT MAX = T C -ΔT S a R beamwith a the radius of the nanoparticle and R beam the characteristic size of the confocal probed volume. Since a << R beam , T MAX should be a direct measurement of the local phase transition temperature T C . Experimentally, one finds T MAX = T C = 31°C ± 0.5°C in agreement with the global phase transition temperature of 5CB ( 32°C ±1°C ) 12 measured on our sample (7-12 μm thick) by a birefringence technique.
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