The algebraic combinatorics of snakes - Archive ouverte HAL
Article Dans Une Revue Journal of Combinatorial Theory, Series A Année : 2012

The algebraic combinatorics of snakes

Résumé

Snakes are analogues of alternating permutations defined for any Coxeter group. We study these objects from the point of view of combinatorial Hopf algebras, such as noncommutative symmetric functions and their generalizations. The main purpose is to show that several properties of the generating functions of snakes, such as differential equations or closed form as trigonometric functions, can be lifted at the level of noncommutative symmetric functions or free quasisymmetric functions. The results take the form of algebraic identities for type B noncommutative symmetric functions, noncommutative supersymmetric functions and colored free quasisymmetric functions.
Fichier principal
Vignette du fichier
josuat-algsnakes.pdf (298.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00735009 , version 1 (25-09-2012)

Identifiants

Citer

Matthieu Josuat-Vergès, Jean-Christophe Novelli, Jean-Yves Thibon. The algebraic combinatorics of snakes. Journal of Combinatorial Theory, Series A, 2012, 119 (8), pp.1613-1638. ⟨10.1016/j.jcta.2012.05.002⟩. ⟨hal-00735009⟩
138 Consultations
320 Téléchargements

Altmetric

Partager

More