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aUniversité de Lyon, CNRS
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Abstract

Generalized maps are widely used to model the topology of nD objects (such
as images) by means of incidence and adjacency relationships between cells
(vertices, edges, faces, volumes, ...). In this paper, we introduce distance
measures for comparing generalized maps, which is an important issue for
image processing and analysis. We introduce a first distance measure which
is defined by means of the size of a largest common submap. This distance
is generic: it is parameterized by a submap relation (which may either be
induced or partial), and by weights to balance the importance of darts with
respect to seams. We show that this distance measure is a metric. We also
introduce a map edit distance, which is defined by means of a minimum
cost sequence of edit operations that should be performed to transform a
map into another map. We relate maximum common submaps with the map
edit distance by introducing special edit cost functions for which they are
equivalent. We experimentally evaluate these distance measures and show
that they may be used to classify meshes.
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1. Introduction

Generalized maps are very nice data structures to model the topology of
nD objects subdivided in cells (e.g., vertices, edges, faces, volumes, . . . ) by
means of incidence and adjacency relationships between these cells. In 2D,
they are an extension of plane graphs (i.e., a planar graph which is embedded
in a plane), and a generalization for higher dimensions. Generalized maps
can be used for examples to represent, for example, 3D meshes or Region
Adjacency Graphs. In particular, generalized maps are very well suited for
scene modeling [1], for 2D and 3D image segmentation [2], and there exist
efficient algorithms to extract maps from images [3].

In [4], we have defined two basic tools for comparing 2D combinatorial
maps, i.e., map isomorphism (which involves deciding if two maps are equiva-
lent) and submap isomorphism (which involves deciding if a copy of a pattern
map may be found in a target map), and we have proposed efficient poly-
nomial time algorithms for solving these two problems. This work has been
generalized to open nD combinatorial maps in [5].

However, (sub)map isomorphism are decision problems which cannot be
used to measure the similarity of two maps as soon as there is no inclusion
or equivalence relation between them. Therefore, we have introduced in [6] a
first distance measure to compare generalized maps. This distance measure
is defined by means of the size of a largest common submap, in a similar
way as a graph distance measure is defined by means of the size of a largest
common subgraph in [7].

Contributions of the paper. The distance defined in [6] is based on induced
submap relations, such that submaps are obtained by removing some darts
and all their seams (just like induced subgraphs are obtained by removing
some vertices and all their incident edges). In this paper, we introduce a
new kind of submap relation, called partial submap: partial submaps are
obtained by removing not only some darts (and all their seams), but also
some other seams, just like partial subgraphs are obtained by removing not
only some vertices (and their incident edges), but also some other edges.

We introduce a generic distance measure, which is defined by means of
the size of a largest submap which may either be an induced or a partial
submap, and which is parameterized by two weights which allow to balance
the importance of darts with respect to seams. This distance is more general
than the one introduced in [6], and we show that it is a metric.
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We also introduce an edit distance, which defines the distance between
two maps G and G′ in an operational way, by means of a minimum cost
sequence of edit operations that should be performed to transform G into
G′. We relate maximum common submaps with the map edit distance by
introducing special edit cost functions for which they become equivalent,
in a similar way as Bunke has related graph edit distances with maximum
common subgraphs in [8].

Outline. In Section 2, we recall definitions related to generalized maps and to
(induced) submap isomorphism. In Section 3, we introduce partial submap
isomorphism and we define a generic distance measure based on maximum
common (induced or partial) submaps. In Section 4, we introduce a map edit
distance and we relate it to the generic distance based on maximum common
submaps.

In Section 5, we illustrate our distance measures on some practical exam-
ples, and show preliminary results on an application to 2D Mesh classifica-
tion.

2. Recalls and basic definitions

When objects are modelled by graphs, we need to define graph similarity
measures to compare objects. This problem has been widely studied, and dif-
ferent approaches have been proposed based, for example, on graph matching
[9, 10], graph kernels [11, 12], or graph embeddings [13, 14]. Graphs describe
binary relationships between nodes by means of edges. However, they can-
not be used to model faces (which appear when embedding a planar graph
in a plane), or higher dimension cells such as volumes. Generalized maps are
better suited data structures for describing adjacency and incidence relation-
ships between cells (nodes, edges, faces, volumes, . . .). We refer the reader
to [15] for more details.

Definition 1. (nG-map) Let n ≥ 0. An n-dimensional generalized map (or
nG-map) is defined by a tuple G = (D,α0, . . . , αn) such that

1. D is a finite set of darts;

2. ∀i ∈ [0, n], αi is an involution2 on D;

2An involution f on D is a bijective mapping from D to D such that f = f−1.
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Figure 1: Example of 2G-map. (a) describes αi involutions of a 2G-map composed of 16
darts denoted by letters from a to p. (b) displays a graphical representation of this 2G-
map: darts are represented by grey segments labelled with the associated letter; incident
darts separated by little black segments are 0-sewn (e.g., α0(b) = c and α0(c) = b); incident
darts separated with a dot are 1-sewn (e.g., α1(a) = b and α1(b) = a); adjacent darts are
2-sewn (e.g., α2(d) = o and α2(o) = d). (c) displays the plane graph modelled by the
2G-map: vertices, edges, and faces of this graph correspond to sets of darts of the 2G-map
(e.g., vertex v1 corresponds to darts {a, b}, vertex v2 to darts {c, d, o, p}, . . ., edge e1 to
darts {a, h}, edge e3 to darts {d, e, o, n}, . . ., face f1 to darts {a, b, c, d, e, f, g, h}, and face
f2 to darts {i, j, k, l,m, n, o, p}).

3. ∀i, j ∈ [0, n] such that i+ 2 ≤ j, αi ◦ αj is an involution.

Fig. 1 displays an example of 2G-map which models a plane graph com-
posed of two adjacent square faces. The 2G-map is composed of sixteen darts
which are sewn by the αi involutions: α0 sews every dart to a dart which
belongs to the next 0-cell vertex (e.g., α0(b) = c, thus allowing us to reach
vertex v2 from vertex v1), α1 sews every dart to a dart which belongs to the
next 1-cell edge (e.g., α1(a) = b, thus allowing us to reach edge e2 from edge
e1), and α2 sews every dart to a dart which belongs to the adjacent 2-cell
face (e.g., α2(d) = o, thus allowing us to reach face f2 from face f1).

We say that a dart d is i-free if αi(d) = d and that it is i-sewn otherwise.
For example, dart a in Fig. 1 is 2-free because α2(a) = a, whereas dart a is
0-sewn because α0(a) = h. A dart d is said isolated if ∀i ∈ [0, n], d is i-free.
A seam is a tuple (d, i, d′) such that d′ is i-sewn to d. For example, (a, 0, h)
is a seam of the map displayed in Fig. 1 because α0(a) = h.
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Definition 2. (seams of a set of darts in an nG-map) LetG = (D,α0, . . . , αn)
be an nG-map and E ⊆ D be a set of darts. The set of seams associated
with E in G is:
seamsG(E) = {(d, i, αi(d))|d ∈ E, i ∈ [0, n], αi(d) ∈ E,αi(d) 6= d}.

In this paper, we modify nG-maps by adding or removing seams : when
the seams (d, i, d′) and (d′, i, d) are removed from (resp. added to) a G-map
G, we modify the αi involution by setting αi(d) to d and αi(d

′) to d′ (resp.,
αi(d) to d′ and αi(d

′) to d). In other words, we i-unsew d and d′ (resp. i-sew
d and d′).

Throughout the paper, G and G′ denote two nG-maps such that G =
(D,α0, . . . , αn) and G′ = (D′, α′0, . . . , α

′
n).

Map isomorphism has been defined in [15] to decide of the equivalence of
two maps.

Definition 3. (nG-map isomorphism [15]) G and G′ are isomorphic, de-
noted G ' G′, if there exists a bijection f : D → D′, such that ∀d ∈ D, ∀i ∈
[0, n], f(αi(d)) = α′i(f(d)).

In [4], induced submap has been defined: G is an induced submap of G′

if G preserves all seams of G′, i.e, for every couple of darts (d1, d2) of G, d1

is i-sewn to d2 in G′ if and only if d1 is i-sewn to d2 in G.

Definition 4. (induced submap) G′ is an induced submap of G if D′ ⊆ D
and seamsG′(D

′) = seamsG(D′).

Definition 5. (induced submap isomorphism) There is an induced submap
isomorphism from G to G′, denoted G vi G′ if there exists an induced
submap of G′ which is isomorphic to G.

In [5] we have shown that if there exists an induced submap isomorphism
from G to G′, then there exists an injection f : D → D′ called induced
subisomorphism function such that ∀d ∈ D and ∀i ∈ [0, n]:

• if d is i-sewn, then f(αi(d)) = α′i(f(d));

• if d is i-free, then either f(d) is i-free, or f(d) is i-sewn with a dart
which is not matched by f to another dart of D, i.e., ∀dk ∈ D, f(dk) 6=
α′i(f(d)).

Fig. 2 displays examples of induced submap isomorphism.
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Figure 2: Submap isomorphism example. We have G′ vi G and (d) displays a submap
isomorphism function. We also have G′ vi G”. However we don’t have G” vi G. Indeed,
darts 7 and 14 are 1-free and cannot be matched to darts a and h respectively as they are
1-sewn.

3. Generic distance measure based on maximum common submap

In [6], we have defined a first distance measure based on induced submap
isomorphism. The distance between G and G′ is defined by means of the size
of the largest nG-map G” such that G” vi G and G” vi G′. In this case,
the size of an nG-map is defined by its number of darts.

This definition may lead to surprising results. Let us consider, for ex-
ample, the three maps G, G′, and G” displayed in Fig. 2. The maximum
common submap of G and G′ is isomorphic to the maximum common submap
of G and G′′ (and is also isomorphic to G′). As a consequence, the distance
between G and G′ is equal to the distance between G and G′′ when consid-
ering the distance defined in [6] whereas G seems more similar to G” than
to G′. Indeed, G” is obtained from G by 1-unsewing darts a and b and darts
d and e, whereas G′ is obtained from G by not only 1-unsewing these darts,
but also 0-unsewing darts h and g and darts f and e and finally removing
darts h and e.

In this paper, we extend definitions and theoritical results of [6] by defin-
ing a new kind of submap relation, called partial submap by analogy with
existing work on graphs. Indeed, induced subgraphs are obtained by remov-
ing some nodes (and all their incident edges) whereas partial subgraphs are
obtained by removing not only some nodes (and all their incident edges) but
also some edges. In our map context, partial submaps are obtained by re-
moving not only some darts (and all their seams) but also some other seams.

Definition 6. (partial submap) G′ is a partial submap of G if D′ ⊆ D and
seamsG′(D

′) ⊆ seamsG(D′).
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Submap isomorphism is extended to the partial case in a straightforward
way.

Definition 7. (partial submap isomorphism) There is a partial submap iso-
morphism from G to G′, denoted G vp G′ if there exists a partial submap of
G′ which is isomorphic to G.

Note that G vi G′ ⇒ G vp G′. Note also that if G vp G′ then there exists
an injective function f : D → D′, called partial subisomorphism function,
such that ∀d ∈ D and ∀i ∈ [0, n]: if d is i-sewn, then f(αi(d)) = α′i(f(d)).

For example, let us consider the maps displayed in Fig. 2. We have
G′ vp G and G′ vp G” as G′ vi G and G′ vi G”. We also have G” vp G.
Indeed, we simply have to remove seams (h, 1, a), (a, 1, h), (d, 1, e) and (e, 1, d)
from G to obtain a map isomorphic to G”.

Throughout the paper, ∗ will denote either p or i (i.e., ∗ ∈ {p, i}) so that
G v∗ G′ will denote either an induced submap isomorphism (G vi G′) or a
partial one (G vp G′).

The distance introduced in [6] is based on the size of a largest common
induced submap, where the size is defined by the number of darts. To extend
the distance to the partial case, we have to reconsider the definition of the
size of an nG-map. Let us consider for example the two nG-maps G and
G” displayed in Fig. 2. These two nG-maps have the same number of darts.
However G has four more seams than G”. To integrate this information, we
define the size of an nG-map as a combination of both the number of darts
and the number of seams, respectively weighted by two parameters ω1 and
ω2.

Definition 8. (parameterized size of an nG-map) Given (ω1, ω2) ∈ R+2 such
that (ω1, ω2) 6= (0, 0), the size of an nG-map G is sizeω1,ω2(G) = ω1.|D| +
ω2.|seamsG(D)|.

Note that when ω1 = 1 and ω2 = 0, this size actually corresponds to the
one introduced in [6]. Let us now define maximum common submap.

Definition 9. (maximum common submap) Given (ω1, ω2) ∈ R+2 such that
(ω1, ω2) 6= (0, 0), a maximum common submap ofG andG′, denotedmcs∗ω1,ω2

(G,G′),
is an nG-map such that:

• mcs∗ω1,ω2
(G,G′) v∗ G;
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(a) G (b) G′ (c) G” (d) G′′′

Figure 3: Maximum common submap examples. The maximum common induced submap
of G and G′ is isomorphic to G” when ω1 = ω2 = 1, i.e., mcsi1,1(G,G′) ' G”, and
size1,1(G”) = 6 + 8. The maximum common partial submap of G and G′ is isomorphic to
G′′′ when ω1 = ω2 = 1, i.e., mcsp1,1(G,G′) ' G′′′ and size1,1(G′′′) = 8 + 12.

• mcs∗ω1,ω2
(G,G′) v∗ G′;

• sizeω1,ω2(mcs
∗
ω1,ω2

(G,G′)) is maximal.

mcsiω1,ω2
(G,G′) is called the maximum common induced submap, and

mcspω1,ω2
(G,G′) the maximum common partial submap.

Fig. 3 displays examples of maximum common submaps.
One can easily show that mcs∗ω1,ω2

(G,G′) = mcs∗ω1,ω2
(G′, G). Also, the

size of a maximum common submap is smaller than or equal to the size of
original maps, i.e., sizeω1,ω2(mcs

∗
ω1,ω2

(G,G′)) ≤ sizeω1,ω2(G) (this is a direct
consequence of the fact that mcs∗ω1,ω2

(G,G′) v∗ G).
Let us now define a distance measure based on the size of the maximum

common submap.

Definition 10. (parameterized distance between two nG-maps) Given ω1, ω2 ∈
R+ such that (ω1, ω2) 6= (0, 0), the distance between G and G′ is defined by:

d∗ω1,ω2
(G,G′) = 1− sizeω1,ω2 (mcs∗ω1,ω2

(G,G′))

max(sizeω1,ω2 (G),sizeω1,ω2 (G′))

Note that the maximum common submap defined in [6] corresponds to
mcsi1,0 and that the distance defined in [6] is equivalent to di1,0.

In [6], we have shown that di1,0 is a metric, and this result may be extended
to diω1,0

in a straightforward way. Fig. 4 shows us that dpω1,0
and d∗0,ω2

do
not satisfy the isomorphism of indiscernibles property so that our distance
measure is not a metric in these two particular cases. Let us now show that
d∗ω1,ω2

is a metric in all other cases, i.e., whenever ω1 > 0 and ω2 > 0.
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Figure 4: Examples of non isomorphic maps for which the distance may be null.
dpω1,0

(G,G′) = 0 because G vp G′ and G and G′ have the same number of darts. However
G and G′ are not isomorphic. Therefore dpω1,0

is not a metric. Also, d∗0,ω2
(G,G”) = 0

because G vp G′′ and G and G” have the same number of seams (dart 9 is not sewn).
However G and G” are not isomorphic. Therefore d∗0,ω2

(G,G′) is not a metric.

Theorem 1. Let n ≥ 1, ω1 > 0 and ω2 > 0. The distance d∗ω1,ω2
is a metric

on the set G of all nG-maps so that the following properties hold:

1. Non-negativity: ∀G1, G2 ∈ G, d∗ω1,ω2
(G1, G2) ≥ 0;

2. Isomorphism of indiscernibles:
∀G1, G2 ∈ G, d∗ω1,ω2

(G1, G2) = 0 iff G1 ' G2;
3. Symmetry: ∀G1, G2 ∈ G, d∗ω1,ω2

(G1, G2) = d∗ω1,ω2
(G2, G1);

4. Triangle inequality: ∀G1, G2, G3 ∈ G, d∗ω1,ω2
(G1, G3) ≤ d∗ω1,ω2

(G1, G2) +
d∗ω1,ω2

(G2, G3).

Proof. Properties 1, and 3 are direct consequences of Def. 10.

Proof of property 2 We have d∗ω1,ω2
= 0 then using Def. 10 we ob-

tain: sizeω1,ω2(mcs
∗
ω1,ω2

(G1, G2)) = max(sizeω1,ω2(G1), sizeω1,ω2(G2)). We
also know using Def. 9 that mcs∗ω1,ω2

(G1, G2) v G1 and mcs∗ω1,ω2
(G1, G2) v

G2. Then it follows that sizeω1,ω2(mcs
∗
ω1,ω2

(G1, G2)) = sizeω1,ω2(G1) =
sizeω1,ω2(G2).

From the fact that mcs∗ω1,ω2
(G1, G2) v G1 and mcs∗ω1,ω2

(G1, G2) v G2

we deduce that there exists an injection between mcs∗ω1,ω2
(G1, G2) and a

submap of G1 and also an injection from mcs∗ω1,ω2
(G1, G2) and a submap

of G2. Furthermore we have shown that the sizes are equal, and because
the mcs∗ω1,ω2

(G1, G2) v∗ G1 and mcs∗ω1,ω2
(G1, G2) v∗ G2, we deduce that

the darts and the seams of mcs∗ω1,ω2
(G1, G2) are also in G1 and also in G2.

In consequence, the two injections are also bijections. Then, there exists a
bijection from G1 to G2 that preserves all the darts and all the seams. Finally
from Def. 3 it follows that G1 ' G2.
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Proof of property 4 Let us denotemij = mcs∗ω1,ω2
(Gi, Gj), sizeω1,ω2(G) =

size(G) and Sij = max(size(Gi), size(Gj)), and let us show Property 4 by
considering separately the two following cases.

(Case 1): d∗ω1,ω2
(G1, G2) + d∗ω1,ω2

(G2, G3) ≥ 1.
In this case, the triangle inequality trivially holds as d∗ω1,ω2

(G1, G3) ≤ 1.
(Case 2): d∗ω1,ω2

(G1, G2) + d∗ω1,ω2
(G2, G3) < 1.

In this case, let us first show that there exists at least a common part of G2

which belongs both to m12 and m23, i.e.,

size(G2) < size(m12) + size(m23) (1)

This inequation can be proven by considering all possible order relations
between nG-map sizes. For example, if size(G1) ≥ size(G3) ≥ size(G2),
then:
(Case 2)⇔ 1− size(m12)

size(G1)
+1− size(m23)

size(G3)
< 1 (by Def. 10, and as S12 = size(G1)

and S23 = size(G3))

⇔ size(G3) < size(G3)
size(G1)

size(m12) + size(m23) (by multiplying by size(G3))

⇒ size(G3) < size(m12) + size(m23) (as size(G3)
size(G1)

< 1)

⇒ size(G2) < size(m12) + size(m23) (as size(G3) ≥ size(G2)).
Ineq. (1) can be proven in a very similar way for the five other possible order
relations between nG-map sizes.

Ineq. (1) shows that the sum of the sizes of the two common submaps
m12 and m23 is always strictly greater than the size of G2 so that there is
at least a common part that both belong to m12 and m23. Therefore, the
nG-map mcs∗ω1,ω2

(m12,m23) is a common submap of G1, G2, and G3 which
has at least a size of size(m12) + size(m23) − size(G2). This nG-map gives
a lower bound on the size of the maximum common submap of G1 and G3,
i.e.,

size(m13) ≥ size(m12) + size(m23)− size(G2) (2)

Let us use this lower bound to show that the triangle inequality holds.
When developing the triangle inequality w.r.t. Def. 10, it becomes:

size(m13) ≥ S13

S12

size(m12) +
S13

S23

size(m23)− S13 (3)

Let us prove (3) by considering all order relations between nG-map sizes:

(Case 2.1): size(G1) ≥ size(G2) ≥ size(G3) so that S13 = size(G1), S12 =

10



size(G1), S23 = size(G2). Ineq. (3) becomes size(m13) ≥ size(m12) +
size(G1)
size(G2)

size(m23)− size(G1). As size(m13) ≥ size(m12) + size(m23)−
size(G2) (Ineq. (2)), we have to show that size(m23) − size(G2) ≥
size(G1)
size(G2)

size(m23)− size(G1), i.e., size(m23) ≤ size(G2) (as size(G2)−
size(G1) < 0). This inequality trivially holds by Def. 9.

(Case 2.2): size(G2) ≥ size(G1) ≥ size(G3) so that S13 = size(G1), S12 =

size(G2), S23 = size(G2). Ineq. (3) becomes size(m13) ≥ size(G1)
size(G2)

size(m12)+
size(G1)
size(G2)

size(m23) − size(G1). As size(G1)
size(G2)

≤ 1, Ineq. (2) implies that

size(m13) ≥ size(G1)
size(G2)

(size(m12)+size(m23)−size(G2). Therefore, Ineq. (3)
holds.

(Case 2.3): size(G1) ≥ size(G3) ≥ size(G2) so that S13 = size(G1), S12 =
size(G1), S23 = size(G3). Ineq. (3) becomes size(m13) ≥ size(m12) +
size(G1)
size(G3)

size(m23)− size(G1). As size(m13) ≥ size(m12) + size(m23)−
size(G2) (Ineq. (2)), we have to show that size(m23) − size(G2) ≥
size(G1)
size(G3)

size(m23) − size(G1), i.e., size(m23) ≤ size(G3) size(G2)−size(G1)
size(G3)−size(G1)

(as size(G3)− size(G1) < 0). This inequality trivially holds by Def. 9

because size(G2)−size(G1)
size(G3)−size(G1)

≥ 1.

The three others cases can be proven in a similar way.

4. Map edit distance

The distance defined in the previous section is defined in a denotational
way, by means of the size of a largest common submap. In this section, we
introduce another distance measure which is defined in a more operational
way, by means of a minimum cost sequence of map edit operations that should
be performed to transform one map into another map. This second distance
measure may be viewed as an adaptation of classical graph edit distances to
generalized maps.

In Section 4.1, we define edit operations that are used to transform maps,
and we define a map edit distance which is parameterized by edit operation
costs. Then, we relate the map edit distance to maximum common submaps
by introducing special edit cost functions for which they are equivalent, in
a similar way as Bunke has related maximum common subgraphs to graph
edit distances in [8].
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4.1. Edit operations and edit distance

Let us first define map edit operations. These edit operations allow one
to add/delete a whole set of darts or seams, instead of adding/deleting darts
or seams one by one. Indeed, the addition/deletion of a single dart or seam
may lead to a non valid nG-map. Let us consider for example the nG-map
G of Fig. 1. We cannot delete dart e without also removing dart n or dart d
(otherwise α0 ◦ α2 no longer is an involution so that Property 3 of Def. 1 no
longer is satisfied).

Operations 1 to 4 define four basic edit operations. In the following, we
ensure that sets of darts or seams which are added or deleted are consistent
so that applying these operations leads to valid nG-maps.

The delE operation deletes a set of darts E and i-frees every non deleted
dart which was i-sewn with a deleted dart.

Operation 1. (delE) Let G = (D,α0, . . . , αn) be an nG-map and E a set of
darts such that E ⊆ D. delE(G) = (D′, α′0, . . . , α

′
n) where D′ = D \ E and

∀d′ ∈ D′,∀i ∈ [0, n]:

• if αi(d
′) ∈ D′, then α′i(d

′) = αi(d
′);

• otherwise α′i(d
′) = d′.

The addE,F operation is the inverse operation. It adds a new set of darts
E and a new set of seams F . The added seams must sew new darts of E
either to darts of G or to other new darts.

Operation 2. (addE,F ) Let G = (D,α0, . . . , αn) be an nG-map, E a set of
isolated darts such that E∩D = ∅ and F a set of seams such that ∀(d1, i, d2) ∈
F , {d1, d2} ∩ E 6= ∅: addE,F (G) = (D′, α′0, . . . , α

′
n) where D′ = D ∪ E and

∀d′ ∈ D′, ∀i ∈ [0, n]:

• if ∃(d′, i, d′′) ∈ F : α′i(d
′) = d′′;

• otherwise if d′ ∈ E: α′i(d
′) = d′;

• otherwise α′i(d
′) = αi(d

′).

The sewF operation adds a new set of seams F .
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Operation 3. (sewF ) Let G = (D,α0, . . . , αn) be an nG-map and F be a set
of seams such that ∀(d1, i, d2) ∈ F, αi(d1) = d1 and αi(d2) = d2. sewF (G) =
(D,α′0, . . . , α

′
n) where ∀i ∈ [0, n],∀d′ ∈ D:

• if ∃(d′, i, d′′) ∈ F then α′i(d
′) = d”;

• otherwise α′i(d) = αi(d).

The unsewF operation deletes a set of seams F .

Operation 4. (unsewF ) Let G = (D,α0, . . . , αn) be an nG-map and F ⊆
seamsG(D) be a set of seams. unsewF (G) = (D,α′0, . . . , α

′
n) where ∀i ∈

[0, n],∀d′ ∈ D:

• if ∃(d′, i, d′′) ∈ F then α′i(d
′) = d′′;

• otherwise α′i(d
′) = αi(d

′).

Let us finally define an edit path as a sequence of edit operations, and
the edit distance as the cost of the minimal cost edit path.

Definition 11. (edit path) Let ∆ =< δ1, . . . , δk > be a sequence of k edit
operations. ∆ is an edit path for G if δk(δk−1(. . . (δ1(G)))), denoted ∆(G),
is an nG-map (according to Def. 1).

Edit paths may be combined and we denote ∆1 ·∆2 the concatenation of
two edit paths ∆1 and ∆2.

Definition 12. (map edit distance) Let c be a function which associates a
cost c(δ) ∈ R+ with every edit operation δ. The edit distance between G and
G′ is dc(G,G

′) =
∑

δi∈∆(c(δi)) where ∆ is an edit path such that ∆(G) = G′

and
∑

δi∈∆(c(δi)) is minimal.
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4.2. Relation with maximum common induced submap

Let us now relate the map edit distance to maximum common induced
submaps. To this aim, we first define the edit path that allows one to trans-
form a map G into another map G′ such that G′ vi G or, conversely, to
transform G′ into G.

Definition 13. (edit path associated with an induced submap isomorphism
function) Let G and G′ be such that G vi G′, and let f : D → D′ be an
associated induced subisomorphism function. Without loss of generality, we
assume that D ∩D′ = ∅. We define the edit paths:

• i∆G′→G
f =< delE > (i.e., i∆G′→G

f removes all darts which are not
matched by f);

• i∆G→G′
f =< addE,F > (i.e., i∆G→G′

f adds all darts which are not
matched by f , and all seams that sew these darts either together or to
darts of D).

Where

• E = {d′ ∈ D′|@d ∈ D, f(d) = d′};

• F = {(d′1, i, d′2) ∈ seamsG′(D
′)}|d′1 ∈ E or d′2 ∈ E}.

One can easily show that i∆G′→G
f (G′) simG and i∆G→G′

f (G) ' G′.
Let us consider for example maps G and G′ and the induced subisomor-

phism function f of Fig. 2. We have

• i∆G→G′
f =< del{h,e} >;

• i∆G′→G
f =< add{e,h},{(h,1,a),(a,1,h),(h,0,g),(g,0,h),(e,1,d),(d,1,e),(e,0,f),(f,0,e)} >.

Let us now show that there exists a cost function such that an edit path
that transforms G into mcsiω1,ω2

(G,G′) and then mcsiω1,ω2
(G,G′) into G′ has

a minimal cost, i.e., its cost is equal to the edit distance in this case. This
relates the distance introduced in Section 2 with the edit distance.

Proposition 1. Let ω1 ∈ R+ \ {0} and c be the cost function such that

• c(delE) = c(addE,F ) = ω1.|E|;
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• c(sewF ) = c(unsewF ) = +∞.

Let G” = mcsiω1,0
(G,G′) = (D”, α”0, . . . , α”n), and f : D” → D (resp.

f ′ : D” → D′) be an induced subisomorphism function associated with the
subisomorphism relation G” vi G (resp. G” vi G′).

We have dc(G,G
′) =

∑
δj∈i∆G→G”

f ·i∆G”→G′
f ′

(c(δj)).

Proof. According to Def. 13, i∆G→G”
f ·i∆G”→G′

f ′ is an edit path that transforms
G into G′ passing though the nG-map G” which is a maximum common
induced submap of G and G′. To prove that the cost of this edit path is equal
to the edit distance, we have to prove that this edit path has a minimum
cost.

Suppose that there exists an edit path ∆2 such that c(∆2) < c(i∆G→G”
f ·

i∆G”→G′
f ′ ). ∆2 is a composition of deletions delDr0 , . . . delDrn and additions

addDa0,S0 , . . . addDan,Sn such that ∆2(G) ' G′. Note that a dart cannot
belong to two operations, otherwise the dart is involved in a deletion and
an addition operation. Then it would be possible to remove the dart from
the two operations and in consequence get a better cost. It follows that
∀Di, D

′
i ∈ {Dr0, . . . Drn, Da0, . . . , Dan}, Di 6= D′i ⇒ Di ∩ D′i = ∅. This

observation allows us to reorganize operations of ∆2 starting with deletions
followed by additions: ∆2 =< delDr0 , . . . delDrn , addDa0,S0 , . . . addDan,Sn >.
We can also compact the deletions in a unique operation, and the same
can be done for the additions such that: ∆2 =< delD′r, addD′a,S′ >, with
D′r = Dr0 ∪ . . . ∪Drn, D′a = Da0 ∪ . . . ∪Dan and S ′ = S0 ∪ . . . ∪ Sn.

Note that the nG-map delD′r(G) is an nG-map that is composed of darts
that are in G and also in G′ then using Def. 13, it follows that delD′r(G) vi G
and delD′r(G) vi G′.

Let us consider the two parts of the edit path separatly. If we have
c(delD′r) < c(∆G→G”

f ) then sizeω1,0(delD′r(G)) > sizeω1,0(G”), which con-
tradicts the maximum common submap definition. On the other side if
c(addDa′,S′) < c(∆G”→G′

f ′ ) we can look to the inverse operation of addD′a,S′
that would remove the darts from G′ to obtain a common nG-map of G
and G′. It also contradicts the maximum common submap definition be-
cause it would imply that sizeω1,0(delD′a(G

′)) > sizeω1,0(G”) and in conse-
quence it would be the G”. Then it follows that c(delD′r) ≥ c(i∆G→G”

f )

and c(addDa′n,S′n) ≥ c(i∆G”→G′
f ′ ) and therefore that c(∆2) ≥ c(i∆G→G”

f ·
i∆G”→G′

f ′ ).
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4.3. Relation with maximum common partial submap

Let us now relate the map edit distance to maximum common partial
submaps. Like in Section 4.2, we first define an edit path that allows one to
transform a map G into another map G′ such that G′ vp G or, conversely,
to transform G′ into G.

Definition 14. (edit path associated with a partial submap isomorphism
function) Let G and G′ be such that G vp G′, and let f : D → D′ be an
associated partial subisomorphism function. Without loss of generality, we
assume that D ∩D′ = ∅. We define the edit paths:

• p∆G′→G
f =< unsewF , delE > (i.e., p∆G′→G

f first unsews all darts which
are not matched by f and all darts which are matched by f but not
sewn in G′, and then removes all darts which are not matched by f);

• p∆G→G′
f =< addE,∅, sewF > (i.e., p∆G→G′

f first adds all darts which are
not matched by f , and then sews them and sews all the matched darts
which are not sewn in G′).

Where

• E = {d′ ∈ D′|@d ∈ D, f(d) = d′};

• F = {(d1, i, d2) ∈ seamsG′(D′)|(d1, i, d2) /∈ seamsG′(D)}.

One can easily show that p∆G′→G
f (G′) ' G and p∆G→G′

f (G) ' G′. Fig. 5
displays an example of edit path.

Let us now show that there exists a cost function such that an edit path
that transforms G into mcspω1,ω2

(G,G′) and then mcspω1,ω2
(G,G′) into G′ has

a minimal cost, i.e., its cost is equal to the edit distance in this case. This
relates the distance introduced in Section 2 with the edit distance.

Proposition 2. Let ω1, ω2 in R+ such that ω1 6= 0, ω2 6= 0 and let c be the
cost function such that :

• c(delE) = ω1.|E|+ ω2.|{(d1, i, d2) ∈ seamsG′(D
′), di ∈ E or d2 ∈ E}|);

• c(addE,F ) = ω1.|E|+ ω2.|F |;

• c(sewF ) = c(unsewF ) = ω2.|F |.
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(c) f

p∆G→G′
f =< add{c,d}, sew{(1,1,c),(c,1,1),(d,1,4),(4,1,d),(c,0,d),(d,0,c),(11,2,10),(10,2,11),(12,2,9),(9,2,12)} >

p∆G′→G
f =< unsew{(m,2,l),(l,2,m),(n,2,k),(k,2,n)}∪{(x,i,y)∈seamsG′ (D′)|{x,y}∩{c,d}6=∅}, del{c,d} >

Figure 5: Example of edit path associated with a partial submap isomorphism function. (c)
describes a partial submap isomorphism function from darts of G to darts of G′. p∆G→G′

f

gives the edit path associated with f which may be used to transform G in G′. p∆G′→G
f

gives the edit path associated with f which may be used to transform G′ in G.

Let G” = mcspω1,ω2
(G,G′) = (D”, α”0, . . . , α”n), and f : D” → D (resp.

f ′ : D” → D′) be a partial subisomorphism function associated with the
subisomorphism relation G” vp G (resp. G” vp G′).

We have dc(G,G
′) =

∑
δj∈p∆G→G”

f ·p∆G”→G′
f ′

(c(δj)).

Proof. In a very similar way that we have proven in Prop. 1 we can show
that involved seams and involved darts cannot belong to two different oper-
ations. It follows that operations can be reorganized starting by the deletion
of seams, deletion of darts, addition of new darts and finally addition of
new seams. This order of operations leads to the maximum common partial
submap after the deletions, then we can prove that there is no edit path with
a smaller cost that would transform G into G′ without passing througth the
maximum common partial submap and as a consequence it follows that the
cost of the edit path is minimum.

5. Experimental results

In this section, we first illustrate basic differences between our distance
measures on a small example. Then, we quickly describe algorithms for
computing approximations of our distance measures and we evaluate these
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Figure 6: Distance examples: For the two maps G1 and G′1 : diω1,0(G1, G
′
1) ≈ 0.43,

di1,1(G1, G
′
1) ≈ 0.56 and dp1,1(G1, G

′
1) ≈ 0.57. And for the two other maps G2 and G′2 :

diω1,0(G2, G
′
2) = 0.125, di1,1(G2, G

′
2) ≈ 0.21 and dp1,1(G2, G

′
2) ≈ 0.08

algorithms, and compare our distance measures, on a set of 2G-maps which
model a same mesh at different levels of details. Finally, we illustrate the
interest of our distance measures on a small mesh classification problem.

In the following experiments, we will consider operations defined in Sec-
tion 4.1 to degrade and modify G-maps del to Op. 1, add to Op. 2, sew to
Op. 3 and unsew is referencing to Op. 4 .

5.1. Comparison of induced- and partial-based distance measures on an ex-
ample

Let us consider maps of Fig. 6 to illustrate the basic differences of these
different distances.

Let us first consider the distance based on the maximum common induced
submap. In this case, the edit path is composed of two operations: add and
del. The cost of the edit path that transforms G1 into G′1 is equal to 8 · ω1

as 6 darts {p,m, n, o, q, t} are deleted and 2 darts {1, 2} are added. In this
case, diω1,0

(G1, G
′
1) = 1− 8/14 ≈ 0.43. When ω2 6= 0, the distance also takes

into account the number of sewn/unsewn darts (related to the added/deleted
darts), so that for example di1,1(G1, G

′
1) = 1− 8+12

14+32
≈ 0.56. The cost of the

edit path that transforms G2 into G′2 is equal to 8 ·ω1 as 4 darts {g, f,m, n}
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are deleted and 4 darts {1, 2, 3, 4} are added. In this second example, we have
diω1,0

(G2, G
′
2) = 1−14/16 = 0.125. However, the two maps look rather similar

(the only difference is that on the right-hand-side map, the two squares are
not 2-sewn). This rather counter- intuitive result comes from the fact that
we consider the maximum common induced submap or, from an edit distance
point of view, we forbid sew and unsew operations.

When considering the distance based on the maximum common partial
submap, edit paths are composed of four operations: unsew, del, add and
sew. The cost of the edit path that transformsG1 intoG′1 is equal to 16·ω2+4·
ω1+4·ω2 as we unsew the 16 seams of the 4 deleted darts {p,m, n, o} and add
4 new seams {(q, 1, l), (l, 1, q), (t, 1, a), (a, 1, t)}. In this case dp1,1(G1, G

′
1) =

1−24/56 ≈ 0.57. The cost of the edit path that transformsG2 intoG′2 is equal
to 4 · ω2 as we just remove the seams {(g, 2,m), (m, 2, g), (f, 2, n), (n, 2, f)}.
In this second example, we have dp1,1(G2, G

′
2) = 1− 48/52 ≈ 0.08.

5.2. Approximation algorithms

We have described in [6] an algorithm which efficiently computes an ap-
proximation of di1,0(G,G′). We have extended this algorithm to compute an
approximation of our generic distance measure d∗ω1,ω2

in a rather straightfor-
ward way. This algorithm basically computes r common submaps in a greedy
randomized way, and returns the cost associated with the largest computed
submap, among the r computed ones. Each greedy construction is done in
polynomial time, in O(n · s · log(s)) where n is the dimension of the nG-map
and s = size1,0(G) · size1,0(G′).

In this section, we evaluate the quality of the computed approximations
on maps for which we actually know the exact value of dp1,1. This exact value
is known by construction: starting from an initial map G0, we generate a set
of 14 maps {G1, G2, . . . , G14} such that Gi is a partial submap of G0 which
is obtained by randomly removing from G0 i × 5% of seams or darts. This
way, we can compute the exact value of dp1,1(G0, Gi) (as Gi vp G0 and we
know an edit path from G0 to Gi).

Fig. 7 compares dp1,1 with the approximations of dp and di computed by
our algorithm, on average for 60 different sets of 15 maps, starting from 60
different initial 2G-maps which model 60 different meshes selected from the
[16] repository. These initial 2G-maps have 4808 darts and 14031 seams, on
average.

Fig. 7 shows us that the approximation of dp computed by our greedy
algorithm is rather close to the exact value of dp. It also shows us that the
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Figure 7: Comparison of dp1,1 with the approximations of dp1,1 and di1,1 computed by our
algorithm (with r = 10). For each i ∈ {1, ..., 14}, Gi is a submap of G0 obtained by
removing i · 5% of its seams or darts. The three curves respectively plot the evolution of
dp1,1(G0, Gi) and of the approximations of dp1,1(G0, GI) and di1,1(G0, Gi) (average results
on a set of 60 maps).

approximation of di is greater than the approximation of dp. This comes
from the fact that unsew operations used to transform G0 in Gi lead to dart
deletions and additions when considering di (as the only way to unsew a dart
is to remove it, with all its seams, and then to add it again with all its seams
except the one that had to be removed

5.3. Meshes classification

Let us now show that our distance measures may be used to classify
objects modelled by 2G-maps. We consider 2G-maps which model meshes
extracted from [16] repository. These meshes are triangular meshes so that
they do not contain much structural information. To obtain more relevant
2G-maps, whose faces have different number of edges, we have merged faces
with small diedral angles (less than 5 degrees). To ensure that the classi-
fication is not influenced by the size of the maps, we have considered four
initial 2G-maps which all have 4808 darts (see Fig. 8(a)). We have generated
four classes of ten 2G-maps: starting from each of the four initial maps of
Fig. 8(a), we have generated ten maps by randomly applying del and unsew
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Figure 8: (a) The orignal meshes used in the classification process. (b) 3D representation
of the matrix of dissimilarity. Each point represents a map modelling a mesh.

operations on the initial map, so that the reduced maps contain from 15%
to 25% of the darts and seams of the initial map. Therefore, we obtain an
experimental set of forty 2G-maps generated from 4 different initial 2G-maps
(these initial maps are not included in the experimental set as they have more
darts and seams).

We have first classified this experimental set by using the k-nearest neigh-
bour (kNN) classification algorithm (with a leave-one-out principle), and by
using our algorithm to compute an approximation of dp1,1 for evaluating the
dissimilarity of two 2G-maps. The classification rate ranges between 90% and
95% when k is between 1 and 7, the best classification rate being reached
when k = 3.

We also have computed an embedding of the experimental set in a vector
space by computing a matrix of dissimilarity corresponding to the approxima-
tions of dp1,1 computed by our algorithm. Fig. 8(b) displays the 3D projection
of this vector space by using multidimensional scaling (MDS) [17]. It shows
us that the four sets of 2G-maps are rather well separated. Two classes are
rather close, i.e., humans and tables. This may come from the fact that hu-
mans have two arms and two legs which may rather well matched with the
four table legs.

Note that these results have been obtained by only considering structural
informations so that they are independent from any geometrical information
and transformation (position of vertices, scale factor, and any rigid transfor-
mation (translation, rotation . . .).

21



6. Conclusion

In this paper, we have introduced a generic distance based on the size
of maximum common submaps which may either be partial or induced. In
addition we introduced a map edit distance with its operations and we related
both distance.

Our edit distance may be related to previous work on nG-map pyramids
[18, 19] which represent a same object at different levels of details. In a
pyramid, the map at level i may be obtained by applying edit operations to
the map at level i − 1. These edit operations may be used to compute the
edit distance between two maps at two different levels in a same pyramid.
Note however that the edit operations used in pyramids are different from
those used in this paper so that we should first define a relationship between
edit operations.

Further work will mainly concern the experimental evaluation of the rel-
evancy of our distance measure for classifying or retrieving objects modelled
by nG-maps, such as images and meshes. We also plan to extend our dis-
tances by integrating geometrical information by means of label substitution
costs.
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