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The influence of water-filling on the photoluminescence (PL) properties of SWCNTs is studied by ensemble and single-molecule PL spectroscopy. Red-shifted PL and PL excitation spectra are observed upon water filling for 16 chiralities and can be used to unambiguously distinguish empty SWCNTs from filled ones. The effect of water-filling on the optical transitions is well reproduced by a continuum dielectric constant model previously developed to describe the influence of the nanotube outer environment. Empty nanotubes display narrower luminescence lines and lower inhomogeneous broadening, signatures of reduced extrinsic perturbations. The radial breathing mode (RBM) phonon side band is clearly observed in the PL spectrum of small diameter empty tubes and a strong exciton-phonon coupling is measured for this vibration. Biexponential PL decays are observed for empty and water filled tubes, and only the short living component is influenced by the water-filling. This may be attributed to a shortening of the radiative lifetime of the bright state by the inner dielectric environment.

Single-walled carbon nanotubes (SWCNTs) have unique optical properties [START_REF] Jorio | Carbon Nanotubes: Advanced topics in the synthesis, structure, properties & applications Springer[END_REF] due to their true one-dimensional nature. Because of the confinement, strong Coulomb interactions between electrons and holes lead to the formation of excitons, [START_REF] Ando | Excitons in carbon nanotubes[END_REF][START_REF] Maultzsch | Exciton binding energies in carbon nanotubes from two-photon photoluminescence[END_REF][START_REF] Wang | The optical resonances in carbon nanotubes arise from excitons[END_REF] with large binding energies that can reach up to ~1eV in air-suspended semiconducting nanotubes. [START_REF] Lefebvre | Excited excitonic states in single-walled carbon nanotubes[END_REF] When nanotubes are contained in a dense medium, dielectric screening lowers the energy of the excitons, leading to red-shifts of the optical transitions. [START_REF] Lefebvre | Excited excitonic states in single-walled carbon nanotubes[END_REF][START_REF] Nugraha | Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes[END_REF][START_REF] Perebeinos | Scaling of excitons in carbon nanotubes[END_REF] Since all atoms of a SWCNT are at its surface, the photoluminescence (PL) properties of SWCNTs are extremely sensitive to the local environment [START_REF] Duque | Environmental and Synthesis-Dependent Luminescence Properties of Individual Single-Walled Carbon Nanotubes[END_REF][START_REF] Gokus | Mono-and Biexponential Luminescence Decays of Individual Single-Walled Carbon Nanotubes[END_REF] and to the presence of structural defects that can severely quench the PL. [START_REF] Cognet | Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions[END_REF] While the effect of the nanotubes outer environment on their optical properties has been widely studied, little is known on the influence of their inner content.

Aqueous surfactant solutions of chemically purified tubes or solutions of ultrasonicated tubes mainly contain water-filled tubes. [START_REF] Wenseleers | Effect of water filling on the electronic and vibrational resonances of carbon nanotubes: Characterizing tube opening by Raman spectroscopy[END_REF] Since heavy ultrasonication steps are almost universally used to prepare solutions for optical characterization, nearly all spectroscopic studies of aqueous solutions reported to date are based on water-filled tubes. [START_REF] Weisman | Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot[END_REF] Raman studies have shown that water-filling leads to a blue-shift of the radial breathing mode (RBM) vibrations of the nanotubes attributed to an additional restoring force for the RBM vibration excerted by the encapsulated water. [START_REF] Wenseleers | Effect of water filling on the electronic and vibrational resonances of carbon nanotubes: Characterizing tube opening by Raman spectroscopy[END_REF][START_REF] Cambré | Experimental Observation of Single-File Water Filling of Thin Single-Wall Carbon Nanotubes down to Chiral Index (5,3)[END_REF] In addition, a global red-shift of the electronic transitions observed by two dimensional (2D) resonant Raman scattering in ensemble experiments was a first indication of reduced dielectric screening in empty nanotubes. [START_REF] Wenseleers | Effect of water filling on the electronic and vibrational resonances of carbon nanotubes: Characterizing tube opening by Raman spectroscopy[END_REF][START_REF] Cambré | Experimental Observation of Single-File Water Filling of Thin Single-Wall Carbon Nanotubes down to Chiral Index (5,3)[END_REF] Apart from those Raman studies and preliminary fluorescence experiments, [START_REF] Cambré | Separation and Diameter-sorting of empty (endcapped) and water-filled (open) carbon nanotubes by density gradient ultracentrifugation[END_REF] there is still a patent lack of knowledge about the spectroscopic differences between empty and water-filled SWCNTs.

In this work we combine ensemble and single-molecule experiments to study the effect of the water-filling on the PL and PL-excitation (PLE) spectra of SWCNTs. Clear shifts of the optical transitions are observed and studied for a wide range of chiralities. The knowledge of the effect of water-filling on the electronic transitions is crucial to understand e.g. the different E ii values that have been reported in the literature. The effect of water-filling was also studied spatially along the length of the tube, yielding for example information on the degree of filling and the presence of defects. The results show that empty nanotubes are model systems to study the intrinsic behavior of pristine nanotubes in liquid environments.

Throughout this study, we use bile salt surfactants to solubilize the SWCNTs in aqueous solutions, [START_REF] Wenseleers | Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles[END_REF] in order to individualize the nanotubes, without using ultrasonication, which is known to cause structural damage to the SWCNTs. [START_REF] Wenseleers | Effect of water filling on the electronic and vibrational resonances of carbon nanotubes: Characterizing tube opening by Raman spectroscopy[END_REF] Density gradient ultracentrifugation (DGU) was used to separate empty and filled HiPco nanotubes, [START_REF] Cambré | Separation and Diameter-sorting of empty (endcapped) and water-filled (open) carbon nanotubes by density gradient ultracentrifugation[END_REF] Fractions containing exclusively empty nanotubes and fractions containing a majority of filled tubes with a small proportion of empty nanotubes (less than 10%) were obtained. The ratio of empty/filled tubes in the different fractions was obtained by resonant Raman scattering (see Supporting Information Figures S1-S2).

Figure 1a shows an overlay of 2D PLE maps measured on empty (red) and filled (blue) SWCNTs fractions. Although E 11 (emission) and E 22 (excitation) optical transitions of the two fractions overlap, they display distinct maxima. As well, a significant line broadening (~ 10 to 30%) is observed for water-filled tubes (Figure 1a and Supporting 1b showing that water-filling leads to red-shifts, depending on the specific nanotube diameter, ranging from 5 to 30 meV as expected for an increased dielectric screening. We note that PLE spectra are systematically broader and more asymmetric than PL emission lines [START_REF] Ghosh | Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation[END_REF] explaining the larger error bars obtained for E 22 shifts as compared to E 11 . (E 22 ) transitions. Red lines correspond to the linear fit of the data, yielding the slope Cκ for each sample. The green line corresponds to the fit of the reference supergrowth (SG) sample used in [START_REF] Nugraha | Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes[END_REF].

A model to account for the dielectric screening of the external environment was previously proposed by Nugraha et al. [START_REF] Nugraha | Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes[END_REF]. Within this model an effective dielectric constant κ is derived for each experimental E ii value, and plotted as a function of κ= Cκ p 0.8 (1/d t ) 1.6 (1/l k ) 0.4 , where p is the subband index (p=1,2 for E 11 and E 22 respectively), d t the tube diameter and l k the exciton size in the reciprocal space, in which (1/d t ) and (1/l k ) are set to be dimensionless values. [START_REF] Nugraha | Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes[END_REF] The linear slope, Cκ, observed in such a plot yields a measure of the dielectric screening of the nanotubes (both semiconducting and metallic), in different environments. For these fits, the PL line widths are taken as error bars on the determination of κ in order to account for inhomogeneous broadening effects. Using the same unit definitions as in reference [START_REF] Nugraha | Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes[END_REF], Figures 1c-d gives these plots for empty and water-filled SWCNTs as well as for Cκ SG =0.84±0.02 corresponding to the reference sample of as-produced 'Super Growth' nanotubes (the free-standing nanotube forests used in ref. [START_REF] Doorn | Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy[END_REF], which are generally considered as the best approximation to isolated nanotubes without dielectric screening). Water-filling leads to a significant increase of Cκ compared to empty and SG nanotubes, showing that Cκ can account for both the outer and inner environment. This continuum model cannot however reproduce deviations from the linear slope in Figs. 1c-d, which could originate from subtle variations of ΔE 11 (ΔE 22 ) with the ordering of the water-molecules in nanotubes of different diameters, and would rather require a molecular model.

To overcome the effects of inhomogeneous broadening and averaging inherent to ensemble measurements we performed single molecule experiments. These experiments give access to distributions of physical parameters (instead of their average) and allow cross-correlations between distributions to be determined. Furthermore, they also provide the possibility to follow the spatial changes of the parameters along the length of the nanotube.

Individual nanotubes with different diameters and belonging to different chiralities were studied (chiral indices (12,1), (11,3), (10,5) and (9,7) of the same family 2n+m=25 and the smaller diameter (6,4) nanotubes. In order to avoid any bias introduced by the length of the nanotubes (tube-ends effect) or the number of defects present on the tube, we studied, for each chirality, a large number of tubes with various lengths, ranging from the diffraction limit (~500nm) up to 10 microns, and various PL intensities. Figure 2b shows the examples of PL spectra obtained from two (12,1) nanotubes, a water filled and an empty one. Emission peaks of water-filled tubes are significantly redshifted in agreement with ensemble measurements (red data points in Figure 1b). We use Voigt line shapes (see below and Supporting Information Figures S11-S12 for justification of the shape) to fit the spectra and to extract the peak positions (E 11 ) and the width (FWHM V ) of the emission lines. In Figure 2a we present the cross-correlation between E 11 and FWHM V measured on 78 individual (12,1) tubes. The empty nanotubes (extracted from the DGU sorted sample) display a narrow distribution of emission peaks centered on 1.055eV (close to the peak emissions of the bulk measurement) and a narrow distribution of FWHM V centered on ~14meV a value which is, as expected, smaller than the width of the inhomogeneously-broadened bulk emission line. In comparison, nanotubes extracted from the fractions containing a majority of filled tubes, show a more heterogeneous distribution. Since this fraction contains a small proportion of empty ones, some few emission lines fall within the distributions just described above (dashed circle) while the majority is centered at a different mean and with a larger spread. The same behavior is obtained for the (11,3), (10,5) and (9,7) tubes as well as for the thinner nanotubes (6,4) (Figures S13-S14, Supporting Information). This indicates that water filling leads to a broadening of the PL lines (up to ~20% in average, depending on the chirality) and to wider distributions of both E 11 and FWHM V . The strong broadening observed in the ensemble experiments for water-filled tubes is thus originating from a combination of larger standard deviations (inhomogeneous broadening), and larger line widths (homogeneous broadening) (see below for more detailed description of the line shape).

We next studied the second optical transitions by measuring PLE spectra at the single nanotube level. For this purpose, a tunable Ti:Saphire laser was used for resonantly exciting the nanotubes at their E 22 (Figure 2c). Similarly to E 11 transitions, the E 22 optical transitions are red-shifted, broadened and display a larger statistical distribution for the water-filled tubes (Supporting Figure S12) revealing again the presence of both homogeneous and inhomogeneous effects in ensemble experiments. All together, these results indicate that nanotubes can securely be assigned at the single molecule level as empty or water-filled tubes through their luminescence lines, as is the case for Raman spectra.

Figure 3: a) PL spectrum of an empty (6,4) tube (gray dots) fitted (black) using a superposition of the main E 11 excitonic peak (red), the RBM phonon side band (blue) and the phonon side band of the K-momentum dark exciton (cyan). Inset: comparison of the PL-spectra of an empty (6,4) tube (red) with that of a water-filled one (blue). b-c)

Histograms of the Gaussian (FWHM G ) and Lorentzian (FWHM L ) line-width contributions

of the Voigt fits of the main E 11 excitonic peak for empty (red) and water-filled (blue) (6,4) SWCNTs.

We now focus on the PL spectral shape of small diameter empty (6,4) tubes. Besides the main excitonic peak and the K momentum dark-exciton phonon sideband at ~130 meV, [START_REF] Matsunaga | Origin of low-energy photoluminescence peaks in single carbon nanotubes: K-momentum dark excitons and triplet dark excitons[END_REF][START_REF] Murakami | Photoluminescence sidebands of carbon nanotubes below the bright singlet excitonic levels[END_REF][START_REF] Santos | All-Optical Trion Generation in Single-Walled Carbon Nanotubes[END_REF][START_REF] Torrens | Energy of K-Momentum Dark Excitons in Carbon Nanotubes by Optical Spectroscopy[END_REF] an additional sideband is clearly resolved which can be assigned to the RBM phonon sideband, positioned at ħω RBM ~41.5 meV for these thin tubes (Figure 3a). The clear observation of the RBM phonon sideband for empty (6,4) tubes suggest that it is responsible for the asymmetric line shape observed for the filled (6,4) tubes (inset of Figure 3a) and for the other small-diameter nanotubes. Up to now, the RBM sideband in the PL spectrum had only been resolved in low temperature PLE single molecule experiments [START_REF] Htoon | Single carbon nanotubes probed by photoluminescence excitation spectroscopy: The role of phonon-assisted transitions[END_REF] and also evoked to explain asymmetric E 11 lines of room temperature ensemble PLE spectra. [START_REF] Plentz | Direct experimental evidence of exciton-phonon bound states in carbon nanotubes[END_REF] Our single tube PL spectra are well fitted with three Voigt curves (see Supporting information Figure S12). The Voigt line shapes include both the intrinsic line broadening (Lorentzian) due to the dipole dephazing time as well as the inhomogeneous broadening (Gaussian) due to exciton transition energy fluctuations induced by environmental heterogeneities. In the fits, the RBM sideband position was fixed at an energy of 41.5 meV below E 11 , a value accurately determined by Raman spectroscopy for empty tubes [START_REF] Cambré | Experimental Observation of Single-File Water Filling of Thin Single-Wall Carbon Nanotubes down to Chiral Index (5,3)[END_REF] and the Gaussian contribution of all three Voigt lines had identical widths. The relative weight of the RBM phonon sideband to the E 11 main emission peak defines the Huang-Rhys factor S= V 2 RBM / ħ 2 ω 2 RBM with V RBM , the excitonphonon coupling energy. We find S~0.1 which leads to V RBM ~ 13meV, a value larger than reported previously (4-5 meV) for the E 22 -transition in ~1nm diameter tubes. [START_REF] Shreve | Determination of exciton-phonon coupling elements in single-walled carbon nanotubes by Raman overtone analysis[END_REF] This is consistent with theoretical predictions of a stronger exciton-phonon coupling for small diameter tubes. [START_REF] Avouris | Carbon nanotube optoelectronics[END_REF][START_REF] Jiang | Exciton-photon, exciton-phonon matrix elements, and resonant Raman intensity of single-wall carbon nanotubes[END_REF][START_REF] Yu | Exciton-phonon coupling strength in single wall carbon nanotubes[END_REF] Apart from the red-shift of the peak emission, water-filled nanotubes also display wider emission lines. Interestingly, Figure 3b-c shows that both the Lorentzian and the Gaussian components are broadened suggesting a faster exciton dephazing time and increased environmental fluctuations in water filled tubes. The dephazing times extracted from the Lorentzian component width (~9 meV) on single nanotubes is in agreement with that measured using ultrafast pump probe spectroscopy on ensembles of tubes (~7 to 8 meV for (6,5) tubes). [START_REF] Graham | Femtosecond Photon Echo Spectroscopy of Semiconducting Single-Walled Carbon Nanotubes[END_REF][START_REF] Graham | Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes[END_REF] We now address the influence of water-filling on the recombination dynamics of excitons in SWCNTs. We have previously shown that several extrinsic factors affect their PL decays. Indeed, (6,5) and (6,4) nanotubes can exhibit either mono-or biexponential behaviors depending on the synthesis methods and their environments. [START_REF] Gokus | Mono-and Biexponential Luminescence Decays of Individual Single-Walled Carbon Nanotubes[END_REF][START_REF] Berciaud | Luminescence decay and the absorption cross section of individual single-walled carbon nanotubes[END_REF] These observations were explained using a model which takes into account the band edge exciton fine structure 1 (including the two lowest bright and dark singlet states) and the dominant defect-dependent non-radiative decay mechanisms proposed by Pereibenos et al. [START_REF] Perebeinos | Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes[END_REF] More precisely, individual high-quality tubes display a biexponential PL decay with two components, a short time component (τ S , of the order of 50ps, reflecting essentially the decay of the bright state) and a long one (τ L , up to a few ns, reflecting the decay of the dark one, lying a few meV below the bright one). In contrast, in nanotubes subject to defects or environmental effects, an extrinsic fast non-radiative relaxation process dominates τ L and shortens τ S leading to a mono-exponential decay. [START_REF] Gokus | Mono-and Biexponential Luminescence Decays of Individual Single-Walled Carbon Nanotubes[END_REF] Figure 4a shows a typical PL decay curve obtained from an empty (6,4) tube. A biexponential decay is observed with time constants τ S ~70ps and τ L ~1.6ns, and long time component fractional yield (A long ) of 7%. Figure 4b compares τ S and τ L for individual empty and filled (6,4) tubes. Remarkably, τ L (and A long data not shown) is not significantly influenced by the water-filling, while τ S is shorter for the filled tubes.

Although one cannot absolutely rule out a mechanism that would increase the non-radiative recombination of the bright exciton solely, we believe that this behavior is not primarily due to modifications of the magnitude of non-radiative decay pathways, since one expects that such modifications would drastically affect the long time component of the PL decay. Indeed, it has been shown both experimentally [START_REF] Gokus | Mono-and Biexponential Luminescence Decays of Individual Single-Walled Carbon Nanotubes[END_REF] and theoretically [START_REF] Perebeinos | Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes[END_REF] that extrinsic effects which drive non-radiative decay processes affect all band-edge excitonic singlet sublevels. Therefore, we propose that the sole reduction of τ S upon water-filling may be due to an increased exciton radiative decay rate as a consequence of a higher dielectric constant inside the tubes. [START_REF] Kunz | Changes in fluorescence lifetimes induced by variable optical environments[END_REF] We found variation of the decay rates (1/τ S ) between empty and filled of the order of ~1ns -1 , a value which is of the same order of the calculated radiative decays in SWCNTs. [START_REF] Perebeinos | Radiative lifetime of excitons in carbon nanotubes[END_REF][START_REF] Spataru | Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes[END_REF] The modification of the radiative lifetime of a dipole placed at the interface between two media in a nanotube geometry is complicated to model, and strong variations are predicted for planar interface. [START_REF] Lukosz | Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers[END_REF] We finally focus on the variations of PL properties along the length of tubes.

Interestingly, PL spectra recorded at different positions of long empty and filled nanotubes (>5µm) did not show any significant variations of E 11 and FWHM V . This indicates that tubes are either completely empty or completely filled and do not present distinct empty and water-filled domains within a same tube, in agreement with earlier DGU separation experiments. [START_REF] Cambré | Separation and Diameter-sorting of empty (endcapped) and water-filled (open) carbon nanotubes by density gradient ultracentrifugation[END_REF][START_REF] Fagan | Separation of Empty and Water-Filled Single-Wall Carbon Nanotubes[END_REF] However, biexponential decays with the largest A long and longest τ L are only observed around the center of the tubes, regardless of water filling. Indeed, as shown in Figure 4c, A long decreases towards the tube ends and vanishes completely at the extremities. This shows that the tube ends act as defect centers which introduce additional non-radiative decay channels responsible for the observed fast mono-exponential PL decays. This also explains why biexponential decays are only observed for long (>1µm) SWCNTs.

We note that in previous studies of SWCNT PL decays, 9 biexponential behaviors were rarely observed for (6,4) tubes (as opposed to (6,5) tubes). Here, we systematically observe biexponential decays both for empty and water-filled (6,4) SWCNTs, provided that care is taken of the following factors: METHODS Raw HiPco SWCNTs were solubilized in D 2 O with the surfactant sodium deoxycholate (DOC, 99% Acros organics), using only (gentle) magnetic stirring as described in ref.

[ 15 ] (no ultrasonication is applied). The empty tubes were then sorted out using density gradient ultracentrifugation as described in ref.

[ 14 ] with a 0.7%w/v surfactant concentration, and were characterized with absorption, resonant Raman scattering and 2D PLE spectroscopy to obtain the composition of the sample (see Supporting Information). Several batches of HiPco samples were used depending on the abundance of the chiralities to be studied. [START_REF] Duque | Diameter-Dependent Solubility of Single-Walled Carbon Nanotubes[END_REF] 2D PLE spectroscopy was performed using a home built set-up based on either a liquid-nitrogen cooled extended InGaAs photodiode array detector (Roper Scientific, OMA V: 1024/LN-2.2, sensitive up to 2.2 µm) or a liquid-nitrogen cooled deep depletion Si CCD (Roper Scientific, SPEC-10:400BR, sensitive up to ~1µm) and a pulsed Xe-lamp for excitation (Edinburgh Instruments, Xe900/xP920).

For the single-molecule experiments the SWCNTs were immobilized in aqueous agarose gels (5 wt%), which do not change the properties of the solubilized nanotubes compared to aqueous solutions. [START_REF] Duque | Environmental and Synthesis-Dependent Luminescence Properties of Individual Single-Walled Carbon Nanotubes[END_REF][START_REF] Cognet | Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions[END_REF] Single-molecule wide-field and confocal photoluminescence microscopes were used to image individual SWCNTs. The SWCNTs were optically excited with a CW or pulsed laser near their second order resonance E 22 . [START_REF] Santos | All-Optical Trion Generation in Single-Walled Carbon Nanotubes[END_REF] For this purpose we used a 561nm solid state laser and a tunable Ti:sapphire laser, and for the pulsed excitation an optical parametric oscillator (OPO; operated at 582nm, 76

MHz repetition rate, ~2ps pulse width). For the PL decays a conventional time-correlated single-photon counting setup was used. Excitation powers (<31W/cm 2 ) were kept low enough in order to assure that less than one photon is absorbed per pulse, per micron tube length, ensuring that multi-excitonic effects are absent. 
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 1 Figure 1: a) Two-color overlay graph of 2D PLE maps of a DGU sorted sample of empty tubes (red) and one containing mainly water-filled SWCNTs (blue); (see also Figures S3-S6 for other 2D PLE maps). Top and right panels: PL (integrated over excitation wavelength range 700-745nm) and PLE (integrated over emission wavelength range 1100-1150nm) spectra for empty
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 2 Figure 2: a) linewidths (FWHM V ) versus E 11 obtained by fitting with Voigt profiles the

( 1 )

 1 highly diluted samples are used to minimize energy transfer to other tubes (towards this aim, DGU-separated solutions were valuable) (2) non-sonicated solutions are used to obtain long, bright and nearly defectfree SWCNTs and (3) the center of long tubes is studied and not the tube ends.
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 4 Figure 4: a) PL decay of a filled (6,4) SWCNT (black) and its fits to a bi-exponential
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