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Abstract: We propose an algebraic method for proving estimates on mo-

ments of stochastic integrals. The method uses qualitative properties of

roots of algebraic polynomials from certain general classes. As an applica-

tion, we give a new proof of a variation of the Burkholder-Davis-Gundy

inequality for the case of stochastic integrals with respect to real locally

square integrable martingales. Further possible applications and extensions

of the method are outlined.
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1. Introduction

Connections between special algebraic polynomials and stochastic integrals have

a long history (see Wiener [1938], Itô [1951]), and received considerable at-

tention in stochastic analysis (Ikeda and Watanabe [1989], Carlen and Krée

[1991], Borodin and Salminen [2002], Nualart and Schoutens [2000]). Fruitful

applications of special polynomials have been found in the theory of Markov

processes (Kendall [1959], Karlin and McGregor [1957]), financial mathematics
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(Schoutens [2000]), statistics (Diaconis and Zabell [1991]). The book Schoutens

[2000] contains an extensive overview of this field of stochastic analysis and its

applications.

In this paper, we study a different type of application of polynomials to

stochastic integration. We show that not only properties of special systems of

orthogonal polynomials can be used in stochastic analysis, but also that ele-

mentary properties of certain general classes of polynomials can be effectively

utilized. In particular, we give a new proof of the Burkholder-Davis-Gundy in-

equality in Section 2 as an illustration of our approach. Some possible extensions

and further applications of our results are described in Section 3, were we also

prove the B-D-G inequality for the case of stochastic integrals with respect to

locally square integrable martingales.

2. The main idea

We propose an algebraic proof for the following classic variation of the B-D-G

inequality.

Theorem 1. Let b(s), s ∈ [0, t], be a progressively measurable process, b ∈
L2[0, T ], t ≤ T . Then for every n ≥ 2 there exists constants C1 > 0, C2 > 0

such that

C1 E
( ∫ t

0

b2(s) ds

)n

≤ E
( ∫ t

0

b(s) dW (s)
)2n

≤ C2 E
( ∫ t

0

b2(s) ds

)n

.

(1)

The constants C1 and C2 depend on n, but not on the process b.

The key feature of our approach is that we use general qualitative properties

of roots of algebraic polynomials. The idea of proving the Burkholder-Davis-

Gundy inequality via the use of Hermitian polynomials has been already ex-

plored by different authors (see, for example, McKean [1969], pp.40-41 or Ikeda

and Watanabe [1989]). However, the previous proofs used properties of polyno-

mials in a different way and worked only for n ≤ 4. Our proof is valid for general
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n and, moreover, can be extended to give estimates for more general types of

stochastic integrals.

The following two algebraic lemmas are in the core of our method.

Lemma 1. Consider real polynomials

P1(z) =
2m∑
k=0

bkz2k and P2(z) = z

2m1∑
i=0

ciz
2i , (2)

where m1 < m is integer and nonnegative, bk ≥ 0 for all k, b0 > 0, bm > 0,

ci ≥ 0 for all i. Then there exists 0 < d1 < d2 such that only for z ∈ [d1, d2] one

can have P1(z) ≤ P2(z), but for z /∈ [d1, d2] one has P1(z) > P2(z).

Proof. (Lemma 1) Note first that P1(z) is symmetric, P1(z) ≥ b0 for all z ∈ R,

and P1(z) ∼ bmz2m as z → ∞. Furthermore, P2(−z) = −P2(z), and for z ≥ 0

one has P2(z) ≥ 0, P2(0) = 0, and deg P1(z) < deg P2(z), where deg Pi denotes

the degree of the polynomial Pi.

This implies that for z < 0 one has P1(z) > 0 > P2(z). At z = 0 it holds that

P1(0) = b0 > 0 = P2(z). This shows that all possible solutions of the inequality

P1(z) ≤ P2(z) are positive, i.e. bounded from below by a positive number d1.

Since P1(z)/P2(z) → ∞ as z → ∞, it follows that for sufficiently large

z ≥ z0 always P1(z) > P2(z). Therefore, all possible solutions of the inequality

P1(z) ≤ P2(z) lays in some interval [d1, d2] with d1 > 0 and d2 > 0.

Lemma 2. Consider real polynomials

P1(z) = b0z
2m+1 and P2(z) = z

m1∑
i=0

ciz
2i , (3)

where m1 < m is integer and nonnegative, b0 > 0, ci ≥ 0 for all i, c0 > 0,

cm1 > 0. Then there exists d2 > 0 such that only for z ∈ [−∞, d2] one can have

P1(z) ≤ P2(z), but for z > d2 one always has P1(z) > P2(z).

Proof. (Lemma 2) The proof is analogous to the one of Lemma 1.

Now we are able to prove the main theorem.
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Proof. (Theorem 1). In the proof below we can assume that b is bounded, since

the general case follows by the usual truncation argument.

We denote for brevity

∫ t

0

b2(s) ds =
∫

b2 ds ,

∫ t

0

b(s) dW (s) =
∫

b dW .

Let us write for n ≥ 1

ρ2n(t) = H2n

( ∫
b2 ds ,

∫
b dW

)
=

∑
0≤k≤n

(−1)kak

( ∫
b dW

)2n−2k( ∫
b2 ds

)k

, (4)

where H2n stands for the 2n−th Hermitian polynomial defined as

H2n(x, y) :=
(−x)n

n!
ey2/2x dn

dyn
e−y2/2x =

∑
0≤k≤n

(−1)kak xky2n−2k ,

and it is known that

ak =
1

2kk!(2n− 2k)!
.

Taking in (4) the expectation of both sides and noting that E ρ2n = 0 (see

McKean [1969], pp. 37-38 or Ikeda and Watanabe [1989], pp. 150-152), we get

∑
0≤k≤n

(−1)k
akE

{( ∫
b dW

)2n−2k(∫
b2 ds

)k}
= 0 . (5)

By Hölder’s inequality, for all 1 ≤ k ≤ n

E
{( ∫

b dW

)2n−2k( ∫
b2 ds

)k}
≤ (6)

≤ E
n−k

n

( ∫
b dW

)2n

E
k
n

( ∫
b2 ds

)n

.

Part I. Consider first the case of even n, and let n = 2m in (1). Since ak ≥ 0

for all k, and also
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E
{( ∫

b dW

)2n−2k(∫
b2 ds

)k}
≥ 0

for all k, after throwing out from (5) all the summands with even k, except for

k = 0 and k = n, we get

a0 E
( ∫

b dW

)2n

−
∑

0≤2l+1≤n

a2l+1E
{( ∫

b dW

)2n−2k(l)( ∫
b2 ds

)k(l)}

+ an E
( ∫

b2 ds

)n

≤ 0 , (7)

where for integer l ≥ 0 we denoted k(l) = 2l + 1.

Applying inequality (6) to (7), we get

a0 E
( ∫

b dW

)2n

−
∑

0≤2l+1≤n

a2l+1E
n−k(l)

n

( ∫
b dW

)2n

E
k(l)

n

( ∫
b2 ds

)n

+ an E
( ∫

b2 ds

)n

≤ 0 . (8)

Divide both parts of (8) by E
( ∫

b2 ds
)n and put

z :=
E1/n

( ∫
b dW

)2n

E1/n
( ∫

b2 ds
)n , (9)

then we obtain

a0 zn −
∑

0≤2l+1≤n

a2l+1z
n−k(l) + an ≤ 0 ,

or equivalently

a0 zn + an ≤
∑

0≤2l+1≤n

a2l+1z
n−k(l) . (10)

Let us now put in (10) P1(z) = a0 zn + an, P2(z) =
∑

0≤2l+1≤n a2l+1z
n−k(l).

By Lemma 1, there exists positive constants C1, C2 such that 0 < C1 ≤ z ≤ C2,

i.e. Cn
1 ≤ zn ≤ Cn

2 , and this proves (1) for the case of n = 2m.
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Part II. Consider now the case of odd n, and let n = 2m + 1 in (1). Throwing

away from (5) all the summands with even k, except for k = 0, we get

a0 E
( ∫

b dW

)2n

−
∑

0≤2l+1≤n

a2l+1E
{( ∫

b dW

)2n−2k(l)( ∫
b2 ds

)k(l)}
≤ 0 ,

(11)

and analogously to (10) we derive

a0 zn ≤
∑

0≤2l+1≤n

a2l+1z
n−k(l) , (12)

where z is defined by (9).

After applying Lemma 2 to P1(z) = a0 zn and P2(z) =
∑

0≤2l+1≤n a2l+1z
n−k(l)

in (12), we obtain from (12) that z ≤ d2 for some positive d2. Since n is odd,

this implies zn ≤ dn
2 and the upper bound in (1) follows.

It remains only to prove the lower bound in (1) for n = 2m + 1. In this case,

we leave in (5) only the summands with even k and k = n, thus getting

∑
0≤2k<n

a2k E
{( ∫

b dW

)2n−4k( ∫
b2 ds

)2k}
− an E

{( ∫
b2 ds

)n}
≥ 0 .

(13)

Analogously to our previous derivations, this implies the inequality

∑
0≤2k<n

a2k zn−2k − an ≥ 0 , i.e.

P (z) :=
∑

0≤2k<n

a2k zn−2k ≥ an , (14)

where z is again as in (9). Since P (z) is a polynomial of the form
∑m

i=1 biz
2i+1, it

easily follows that (14) is equivalent to z ≥ C1 for some constant C1 = C1(n) >

0. Therefore, zn ≥ Cn
1 , and the lower bound in (1) is proved for n = 2m+1.

imsart-generic ver. 2007/04/13 file: estimates_stochastic_integrals_revised.tex date: December 20, 2010



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

M. Langovoy/Estimates for stochastic integrals 7

3. Possible extensions

As an immediate extension of the above result, we prove the following more

general theorem. This will not be the most general framework where the B-D-G

inequality holds or where our approach could work; we decided to stick to the

stochastic integrals version for uniformity of presentation.

Theorem 2. Let a real process (M(s))s≥0 be a locally square integrable martin-

gale and 〈M〉 be its quadratic variation process. Let b(s), s ∈ [0, t], be a bounded

progressively measurable process, b ∈ Lloc
2 [0, T ], t ≤ T . Then for every n ≥ 2

there exists constants C1 > 0, C2 > 0 such that

C1 E
( ∫ t

0

b2(s) d〈M〉(s)
)n

≤ E
( ∫ t

0

b(s) dM(s)
)2n

≤ C2 E
( ∫ t

0

b2(s) d〈M〉(s)
)n

.

(15)

The constants C1 and C2 depend on n, but not on the processes b and M .

Proof. (Theorem 2). Let us write again

ρ2n(t) = H2n

( ∫ t

0

b2(s) d〈M〉(s) ,

∫ t

0

b(s) dM(s)
)

=
∑

0≤k≤n

(−1)kak

( ∫
b dM

)2n−2k( ∫
b2 d〈M〉

)k

, (16)

where H2n is the 2n−th Hermitian polynomial. By Theorem 29, pp. 75-76 of

Protter [2004], we have

〈 ∫
b dM

〉
=

∫
b2 d 〈M〉 .

From Theorem 5.1 on p. 152 of Ikeda and Watanabe [1989], we again see that

E ρ2n = 0. Therefore, the proof of Theorem 1 can be directly transferred to the

present situation.
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In the above proof we have used only some elementary and entirely qualitative

facts about certain general types of polynomials, together with such a crude

technique as simple throwing out every second term in the martingale identity

(5). Nontheless, we were able to prove a rather general Burkholder-Davis-Gundy

theorem. This suggests that our approach can lead to substantially stronger

results in estimation of stochastic integrals with respect to Brownian motion, if

we could incorporate in our method the existing quantitative estimates for roots

of Hermitian polynomials. Indeed, as was shown in Davis [1976], for p = 2n,

where n is an integer, the best values for C1 and C2 in Theorem 1 are l2n
2n and

r2n
2n respectively, where l2n

2n and r2n
2n are the smallest and the largest positive

roots of the Hermite polynomial H2n.

Moreover, equation (4) represents only one of the many polynomial-type mar-

tingales that can be composed from stochastic integrals. Other important exam-

ples are given by the connection between integrals with respect to the Poisson

process and Charlier polynomials (see Bertoin [1996]), the connection between

integrals with respect to the Gamma process and Laguerre polynomials, and the

link between Sheffer polynomials and several classes of Lévy processes. Many

examples of such martingales can be found in Schoutens [2000]. It seems plausi-

ble that one could modify the method of the present paper and prove estimates

for more general stochastic integrals.
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